US20010052308A1 - Cement admixture and cement composition comprising this - Google Patents
Cement admixture and cement composition comprising this Download PDFInfo
- Publication number
- US20010052308A1 US20010052308A1 US09/840,397 US84039701A US2001052308A1 US 20010052308 A1 US20010052308 A1 US 20010052308A1 US 84039701 A US84039701 A US 84039701A US 2001052308 A1 US2001052308 A1 US 2001052308A1
- Authority
- US
- United States
- Prior art keywords
- meth
- cement
- acrylate
- acid
- favorably
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004568 cement Substances 0.000 title claims abstract description 113
- 239000000203 mixture Substances 0.000 title claims abstract description 45
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims abstract description 78
- 229920001577 copolymer Polymers 0.000 claims abstract description 59
- 229920001515 polyalkylene glycol Polymers 0.000 claims abstract description 57
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 33
- 125000003827 glycol group Chemical group 0.000 claims abstract description 15
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims abstract description 11
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 27
- 230000000694 effects Effects 0.000 abstract description 14
- 238000005336 cracking Methods 0.000 abstract description 6
- 230000005764 inhibitory process Effects 0.000 abstract description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 108
- -1 oxypropylene group Chemical group 0.000 description 76
- 239000000178 monomer Substances 0.000 description 74
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 55
- 125000004432 carbon atom Chemical group C* 0.000 description 45
- 235000019441 ethanol Nutrition 0.000 description 25
- 150000003839 salts Chemical class 0.000 description 24
- 125000005702 oxyalkylene group Chemical group 0.000 description 21
- 238000002156 mixing Methods 0.000 description 20
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 17
- 238000005886 esterification reaction Methods 0.000 description 17
- 239000004570 mortar (masonry) Substances 0.000 description 17
- 125000002947 alkylene group Chemical group 0.000 description 16
- 239000002253 acid Substances 0.000 description 15
- 239000004567 concrete Substances 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- 239000002270 dispersing agent Substances 0.000 description 14
- 239000002518 antifoaming agent Substances 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 13
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 12
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 12
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 12
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 12
- 238000001035 drying Methods 0.000 description 12
- 150000001298 alcohols Chemical class 0.000 description 11
- 230000032050 esterification Effects 0.000 description 11
- 229920001223 polyethylene glycol Polymers 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 10
- 230000002349 favourable effect Effects 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 239000002202 Polyethylene glycol Substances 0.000 description 9
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 9
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 8
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 8
- 150000002334 glycols Chemical class 0.000 description 8
- 150000002430 hydrocarbons Chemical group 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 125000006353 oxyethylene group Chemical group 0.000 description 8
- 238000006116 polymerization reaction Methods 0.000 description 8
- 125000000217 alkyl group Chemical group 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 229920001296 polysiloxane Polymers 0.000 description 7
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 7
- ATVJXMYDOSMEPO-UHFFFAOYSA-N 3-prop-2-enoxyprop-1-ene Chemical compound C=CCOCC=C ATVJXMYDOSMEPO-UHFFFAOYSA-N 0.000 description 6
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 6
- 150000001408 amides Chemical class 0.000 description 6
- 150000001412 amines Chemical class 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 239000003638 chemical reducing agent Substances 0.000 description 6
- 235000014113 dietary fatty acids Nutrition 0.000 description 6
- 239000000194 fatty acid Substances 0.000 description 6
- 229930195729 fatty acid Natural products 0.000 description 6
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 6
- 239000003999 initiator Substances 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- 229920001451 polypropylene glycol Polymers 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 5
- WCASXYBKJHWFMY-NSCUHMNNSA-N 2-Buten-1-ol Chemical compound C\C=C\CO WCASXYBKJHWFMY-NSCUHMNNSA-N 0.000 description 5
- BYDRTKVGBRTTIT-UHFFFAOYSA-N 2-methylprop-2-en-1-ol Chemical compound CC(=C)CO BYDRTKVGBRTTIT-UHFFFAOYSA-N 0.000 description 5
- 238000007259 addition reaction Methods 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- WCASXYBKJHWFMY-UHFFFAOYSA-N gamma-methylallyl alcohol Natural products CC=CCO WCASXYBKJHWFMY-UHFFFAOYSA-N 0.000 description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 5
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 4
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 4
- DKIDEFUBRARXTE-UHFFFAOYSA-N 3-mercaptopropanoic acid Chemical compound OC(=O)CCS DKIDEFUBRARXTE-UHFFFAOYSA-N 0.000 description 4
- HXDOZKJGKXYMEW-UHFFFAOYSA-N 4-ethylphenol Chemical compound CCC1=CC=C(O)C=C1 HXDOZKJGKXYMEW-UHFFFAOYSA-N 0.000 description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 4
- 235000019445 benzyl alcohol Nutrition 0.000 description 4
- 229960004217 benzyl alcohol Drugs 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000007859 condensation product Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 150000001991 dicarboxylic acids Chemical class 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 230000000977 initiatory effect Effects 0.000 description 4
- 239000011976 maleic acid Substances 0.000 description 4
- ZWRUINPWMLAQRD-UHFFFAOYSA-N nonan-1-ol Chemical compound CCCCCCCCCO ZWRUINPWMLAQRD-UHFFFAOYSA-N 0.000 description 4
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 4
- 159000000000 sodium salts Chemical class 0.000 description 4
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 239000011398 Portland cement Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 3
- 150000003863 ammonium salts Chemical class 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000002956 ash Substances 0.000 description 3
- 239000012986 chain transfer agent Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000007334 copolymerization reaction Methods 0.000 description 3
- 150000005690 diesters Chemical class 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000011396 hydraulic cement Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- UIIIBRHUICCMAI-UHFFFAOYSA-N prop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)CC=C UIIIBRHUICCMAI-UHFFFAOYSA-N 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 239000011369 resultant mixture Substances 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 125000000542 sulfonic acid group Chemical group 0.000 description 3
- NMRPBPVERJPACX-UHFFFAOYSA-N (3S)-octan-3-ol Natural products CCCCCC(O)CC NMRPBPVERJPACX-UHFFFAOYSA-N 0.000 description 2
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 2
- QWBBPBRQALCEIZ-UHFFFAOYSA-N 2,3-dimethylphenol Chemical compound CC1=CC=CC(O)=C1C QWBBPBRQALCEIZ-UHFFFAOYSA-N 0.000 description 2
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 2
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 2
- WOFPPJOZXUTRAU-UHFFFAOYSA-N 2-Ethyl-1-hexanol Natural products CCCCC(O)CCC WOFPPJOZXUTRAU-UHFFFAOYSA-N 0.000 description 2
- CYEJMVLDXAUOPN-UHFFFAOYSA-N 2-dodecylphenol Chemical compound CCCCCCCCCCCCC1=CC=CC=C1O CYEJMVLDXAUOPN-UHFFFAOYSA-N 0.000 description 2
- QHPQWRBYOIRBIT-UHFFFAOYSA-N 4-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C=C1 QHPQWRBYOIRBIT-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 229920001503 Glucan Polymers 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- LLEMOWNGBBNAJR-UHFFFAOYSA-N biphenyl-2-ol Chemical compound OC1=CC=CC=C1C1=CC=CC=C1 LLEMOWNGBBNAJR-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 229920003086 cellulose ether Polymers 0.000 description 2
- 229960000541 cetyl alcohol Drugs 0.000 description 2
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 2
- 229940018557 citraconic acid Drugs 0.000 description 2
- 229930003836 cresol Natural products 0.000 description 2
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 2
- 150000001990 dicarboxylic acid derivatives Chemical class 0.000 description 2
- MSJMDZAOKORVFC-UAIGNFCESA-L disodium maleate Chemical compound [Na+].[Na+].[O-]C(=O)\C=C/C([O-])=O MSJMDZAOKORVFC-UAIGNFCESA-L 0.000 description 2
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 2
- 239000004519 grease Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 2
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 2
- 150000002763 monocarboxylic acids Chemical class 0.000 description 2
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 2
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 2
- 235000014593 oils and fats Nutrition 0.000 description 2
- 229940055577 oleyl alcohol Drugs 0.000 description 2
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 2
- 229920001542 oligosaccharide Polymers 0.000 description 2
- 150000002482 oligosaccharides Chemical class 0.000 description 2
- 239000006072 paste Substances 0.000 description 2
- 229920001748 polybutylene Polymers 0.000 description 2
- 239000003505 polymerization initiator Substances 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- SONHXMAHPHADTF-UHFFFAOYSA-M sodium;2-methylprop-2-enoate Chemical compound [Na+].CC(=C)C([O-])=O SONHXMAHPHADTF-UHFFFAOYSA-M 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 150000005846 sugar alcohols Chemical class 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 150000003739 xylenols Chemical class 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- FGTUGLXGCCYKPJ-SPIKMXEPSA-N (Z)-but-2-enedioic acid 2-[2-(2-hydroxyethoxy)ethoxy]ethanol Chemical compound OC(=O)\C=C/C(O)=O.OC(=O)\C=C/C(O)=O.OCCOCCOCCO FGTUGLXGCCYKPJ-SPIKMXEPSA-N 0.000 description 1
- FEGUODPCXXSESO-SNAWJCMRSA-N (e)-4-amino-4-oxo-2-(propylamino)but-2-enoic acid Chemical compound CCCN\C(C(O)=O)=C\C(N)=O FEGUODPCXXSESO-SNAWJCMRSA-N 0.000 description 1
- KKSNTCYLMGYFFB-UHFFFAOYSA-N (prop-2-enoylamino)methanesulfonic acid Chemical compound OS(=O)(=O)CNC(=O)C=C KKSNTCYLMGYFFB-UHFFFAOYSA-N 0.000 description 1
- FFJCNSLCJOQHKM-CLFAGFIQSA-N (z)-1-[(z)-octadec-9-enoxy]octadec-9-ene Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCCCCCCC\C=C/CCCCCCCC FFJCNSLCJOQHKM-CLFAGFIQSA-N 0.000 description 1
- 0 *OC(=O)C(C)(C)C(C)(C)C Chemical compound *OC(=O)C(C)(C)C(C)(C)C 0.000 description 1
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- BJELTSYBAHKXRW-UHFFFAOYSA-N 2,4,6-triallyloxy-1,3,5-triazine Chemical compound C=CCOC1=NC(OCC=C)=NC(OCC=C)=N1 BJELTSYBAHKXRW-UHFFFAOYSA-N 0.000 description 1
- LXOFYPKXCSULTL-UHFFFAOYSA-N 2,4,7,9-tetramethyldec-5-yne-4,7-diol Chemical compound CC(C)CC(C)(O)C#CC(C)(O)CC(C)C LXOFYPKXCSULTL-UHFFFAOYSA-N 0.000 description 1
- IHJUECRFYCQBMW-UHFFFAOYSA-N 2,5-dimethylhex-3-yne-2,5-diol Chemical compound CC(C)(O)C#CC(C)(C)O IHJUECRFYCQBMW-UHFFFAOYSA-N 0.000 description 1
- OVPQPMTZOLCPHB-UHFFFAOYSA-N 2-(2-heptoxyethoxy)ethanol Chemical compound CCCCCCCOCCOCCO OVPQPMTZOLCPHB-UHFFFAOYSA-N 0.000 description 1
- WGIMXKDCVCTHGW-UHFFFAOYSA-N 2-(2-hydroxyethoxy)ethyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OCCOCCO WGIMXKDCVCTHGW-UHFFFAOYSA-N 0.000 description 1
- FEBUJFMRSBAMES-UHFFFAOYSA-N 2-[(2-{[3,5-dihydroxy-2-(hydroxymethyl)-6-phosphanyloxan-4-yl]oxy}-3,5-dihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-4-yl)oxy]-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl phosphinite Chemical compound OC1C(O)C(O)C(CO)OC1OCC1C(O)C(OC2C(C(OP)C(O)C(CO)O2)O)C(O)C(OC2C(C(CO)OC(P)C2O)O)O1 FEBUJFMRSBAMES-UHFFFAOYSA-N 0.000 description 1
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 1
- OYUNTGBISCIYPW-UHFFFAOYSA-N 2-chloroprop-2-enenitrile Chemical compound ClC(=C)C#N OYUNTGBISCIYPW-UHFFFAOYSA-N 0.000 description 1
- QENRKQYUEGJNNZ-UHFFFAOYSA-N 2-methyl-1-(prop-2-enoylamino)propane-1-sulfonic acid Chemical compound CC(C)C(S(O)(=O)=O)NC(=O)C=C QENRKQYUEGJNNZ-UHFFFAOYSA-N 0.000 description 1
- FYRRWGUSDSVKRL-UHFFFAOYSA-N 2-methyl-4-(3-methylbut-3-enoxy)but-1-ene Chemical compound CC(=C)CCOCCC(C)=C FYRRWGUSDSVKRL-UHFFFAOYSA-N 0.000 description 1
- CEBKHWWANWSNTI-UHFFFAOYSA-N 2-methylbut-3-yn-2-ol Chemical compound CC(C)(O)C#C CEBKHWWANWSNTI-UHFFFAOYSA-N 0.000 description 1
- FKOZPUORKCHONH-UHFFFAOYSA-N 2-methylpropane-1-sulfonic acid Chemical compound CC(C)CS(O)(=O)=O FKOZPUORKCHONH-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- AYKYXWQEBUNJCN-UHFFFAOYSA-N 3-methylfuran-2,5-dione Chemical compound CC1=CC(=O)OC1=O AYKYXWQEBUNJCN-UHFFFAOYSA-N 0.000 description 1
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- OKVWYBALHQFVFP-UHFFFAOYSA-N CCC(C)(C)C(C)C Chemical compound CCC(C)(C)C(C)C OKVWYBALHQFVFP-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- CBOCVOKPQGJKKJ-UHFFFAOYSA-L Calcium formate Chemical compound [Ca+2].[O-]C=O.[O-]C=O CBOCVOKPQGJKKJ-UHFFFAOYSA-L 0.000 description 1
- UNMYWSMUMWPJLR-UHFFFAOYSA-L Calcium iodide Chemical compound [Ca+2].[I-].[I-] UNMYWSMUMWPJLR-UHFFFAOYSA-L 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical class NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 229920002558 Curdlan Polymers 0.000 description 1
- 239000001879 Curdlan Substances 0.000 description 1
- AVGPOAXYRRIZMM-UHFFFAOYSA-N D-Apiose Natural products OCC(O)(CO)C(O)C=O AVGPOAXYRRIZMM-UHFFFAOYSA-N 0.000 description 1
- ASNHGEVAWNWCRQ-LJJLCWGRSA-N D-apiofuranose Chemical compound OC[C@@]1(O)COC(O)[C@@H]1O ASNHGEVAWNWCRQ-LJJLCWGRSA-N 0.000 description 1
- ASNHGEVAWNWCRQ-UHFFFAOYSA-N D-apiofuranose Natural products OCC1(O)COC(O)C1O ASNHGEVAWNWCRQ-UHFFFAOYSA-N 0.000 description 1
- QXKAIJAYHKCRRA-JJYYJPOSSA-N D-arabinonic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C(O)=O QXKAIJAYHKCRRA-JJYYJPOSSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- ZFDIRQKJPRINOQ-HWKANZROSA-N Ethyl crotonate Chemical compound CCOC(=O)\C=C\C ZFDIRQKJPRINOQ-HWKANZROSA-N 0.000 description 1
- FPVVYTCTZKCSOJ-UHFFFAOYSA-N Ethylene glycol distearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCOC(=O)CCCCCCCCCCCCCCCCC FPVVYTCTZKCSOJ-UHFFFAOYSA-N 0.000 description 1
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 1
- 239000001263 FEMA 3042 Substances 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- HDIFHQMREAYYJW-XGXNLDPDSA-N Glyceryl Ricinoleate Chemical compound CCCCCC[C@@H](O)C\C=C/CCCCCCCC(=O)OCC(O)CO HDIFHQMREAYYJW-XGXNLDPDSA-N 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 229920001543 Laminarin Polymers 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical class ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920002984 Paramylon Polymers 0.000 description 1
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical group CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 229920002305 Schizophyllan Polymers 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 239000004147 Sorbitan trioleate Substances 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- YDONNITUKPKTIG-UHFFFAOYSA-N [Nitrilotris(methylene)]trisphosphonic acid Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CP(O)(O)=O YDONNITUKPKTIG-UHFFFAOYSA-N 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000005037 alkyl phenyl group Chemical group 0.000 description 1
- 125000005211 alkyl trimethyl ammonium group Chemical group 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 150000008378 aryl ethers Chemical class 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910001622 calcium bromide Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- WGEFECGEFUFIQW-UHFFFAOYSA-L calcium dibromide Chemical compound [Ca+2].[Br-].[Br-] WGEFECGEFUFIQW-UHFFFAOYSA-L 0.000 description 1
- 239000004281 calcium formate Substances 0.000 description 1
- 229940044172 calcium formate Drugs 0.000 description 1
- 235000019255 calcium formate Nutrition 0.000 description 1
- 229940046413 calcium iodide Drugs 0.000 description 1
- 229910001640 calcium iodide Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- ZCZLQYAECBEUBH-UHFFFAOYSA-L calcium;octadec-9-enoate Chemical compound [Ca+2].CCCCCCCCC=CCCCCCCCC([O-])=O.CCCCCCCCC=CCCCCCCCC([O-])=O ZCZLQYAECBEUBH-UHFFFAOYSA-L 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 229920003064 carboxyethyl cellulose Polymers 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- 239000003818 cinder Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 235000019316 curdlan Nutrition 0.000 description 1
- 229940078035 curdlan Drugs 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 150000007973 cyanuric acids Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 150000001470 diamides Chemical class 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 235000013681 dietary sucrose Nutrition 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Natural products C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 1
- 229940043264 dodecyl sulfate Drugs 0.000 description 1
- DUYCTCQXNHFCSJ-UHFFFAOYSA-N dtpmp Chemical compound OP(=O)(O)CN(CP(O)(O)=O)CCN(CP(O)(=O)O)CCN(CP(O)(O)=O)CP(O)(O)=O DUYCTCQXNHFCSJ-UHFFFAOYSA-N 0.000 description 1
- NFDRPXJGHKJRLJ-UHFFFAOYSA-N edtmp Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CCN(CP(O)(O)=O)CP(O)(O)=O NFDRPXJGHKJRLJ-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-M ethenesulfonate Chemical compound [O-]S(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-M 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethyl mercaptane Natural products CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 1
- 229910001653 ettringite Inorganic materials 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N formaldehyde Substances O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- NVVZQXQBYZPMLJ-UHFFFAOYSA-N formaldehyde;naphthalene-1-sulfonic acid Chemical compound O=C.C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 NVVZQXQBYZPMLJ-UHFFFAOYSA-N 0.000 description 1
- RRDQTXGFURAKDI-UHFFFAOYSA-N formaldehyde;naphthalene-2-sulfonic acid Chemical class O=C.C1=CC=CC2=CC(S(=O)(=O)O)=CC=C21 RRDQTXGFURAKDI-UHFFFAOYSA-N 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 229940095098 glycol oleate Drugs 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 239000011372 high-strength concrete Substances 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- DBTMGCOVALSLOR-VPNXCSTESA-N laminarin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)OC1O[C@@H]1[C@@H](O)C(O[C@H]2[C@@H]([C@@H](CO)OC(O)[C@@H]2O)O)O[C@H](CO)[C@H]1O DBTMGCOVALSLOR-VPNXCSTESA-N 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- FSQQTNAZHBEJLS-UPHRSURJSA-N maleamic acid Chemical compound NC(=O)\C=C/C(O)=O FSQQTNAZHBEJLS-UPHRSURJSA-N 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- MCVVUJPXSBQTRZ-ONEGZZNKSA-N methyl (e)-but-2-enoate Chemical compound COC(=O)\C=C\C MCVVUJPXSBQTRZ-ONEGZZNKSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 125000001624 naphthyl group Chemical class 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- RAFRTSDUWORDLA-UHFFFAOYSA-N phenyl 3-chloropropanoate Chemical compound ClCCC(=O)OC1=CC=CC=C1 RAFRTSDUWORDLA-UHFFFAOYSA-N 0.000 description 1
- 125000003884 phenylalkyl group Chemical group 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 239000010773 plant oil Substances 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- WSHYKIAQCMIPTB-UHFFFAOYSA-M potassium;2-oxo-3-(3-oxo-1-phenylbutyl)chromen-4-olate Chemical compound [K+].[O-]C=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 WSHYKIAQCMIPTB-UHFFFAOYSA-M 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- ZHDCHCTZRODSEN-HWKANZROSA-N propyl (e)-but-2-enoate Chemical compound CCCOC(=O)\C=C\C ZHDCHCTZRODSEN-HWKANZROSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- NTVDGBKMGBRCKB-UHFFFAOYSA-M sodium;12-hydroxyoctadecanoate Chemical compound [Na+].CCCCCCC(O)CCCCCCCCCCC([O-])=O NTVDGBKMGBRCKB-UHFFFAOYSA-M 0.000 description 1
- XCPXWEJIDZSUMF-UHFFFAOYSA-M sodium;dioctyl phosphate Chemical compound [Na+].CCCCCCCCOP([O-])(=O)OCCCCCCCC XCPXWEJIDZSUMF-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229940035044 sorbitan monolaurate Drugs 0.000 description 1
- 235000019337 sorbitan trioleate Nutrition 0.000 description 1
- 229960000391 sorbitan trioleate Drugs 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 229960004793 sucrose Drugs 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 description 1
- 229920002258 tannic acid Polymers 0.000 description 1
- 229940033123 tannic acid Drugs 0.000 description 1
- 235000015523 tannic acid Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 150000004764 thiosulfuric acid derivatives Chemical class 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- ZFDIRQKJPRINOQ-UHFFFAOYSA-N transbutenic acid ethyl ester Natural products CCOC(=O)C=CC ZFDIRQKJPRINOQ-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 150000004043 trisaccharides Chemical class 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/24—Macromolecular compounds
- C04B24/26—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B24/2641—Polyacrylates; Polymethacrylates
- C04B24/2647—Polyacrylates; Polymethacrylates containing polyether side chains
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B40/00—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
- C04B40/0028—Aspects relating to the mixing step of the mortar preparation
- C04B40/0039—Premixtures of ingredients
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/34—Non-shrinking or non-cracking materials
- C04B2111/343—Crack resistant materials
Definitions
- the present invention relates to a cement admixture and a cement composition comprising this. More specifically, the invention relates to: a cement admixture which is mixed into cement mixtures, such as cement paste, mortar, and concrete, and thereby can give the cement mixtures excellent cracking inhibition effect and excellent fluidity; and a cement composition comprising this admixture.
- cement mixtures such as cement paste, mortar, and concrete
- the means to suppress the drying shrinkage of the cement mixtures to a small one it is effective to decrease the quantity of water (unit water quantity) for knead-mixing of concrete.
- unit water quantity for knead-mixing of concrete.
- the Architectural Society of Japan prescribes that the upper limit value of the unit water quantity in high durable concrete should be 175 kg.
- high-performance water-reducing agents such as salts of ⁇ -naphthalenesulfonic acid-formaldehyde condensation products are conventionally used to satisfy this prescription.
- JP-B-051148/1981 proposes alkylene oxide adducts to alcohols having 1 to 4 carbon atoms
- JP-B-053214/1989 proposes ethylene oxide-propylene oxide co-adducts to di- to octahydric alcohols
- JP-B-053215/1989 proposes alkylene oxide adducts to lower alkylamines
- JP-A-152253/1984 proposes oligomeric polypropylene glycol
- JP-B-006500/1994 proposes low-molecular alcohols
- Japanese Patent No. 2825855 proposes alkylene oxide adducts to 2-ethylhexanol having 8 carbon atoms.
- shrinkage-reducing agents are oligomers or low-molecular compounds having a molecular weight of not larger than hundreds, and therefore involve problems in that: for example, as is also described in “The Development of Concrete Admixture and Its Newest Technology” (1st edition, issued by CMC Co., Ltd. on Sep. 18, 1995), these shrinkage-reducing agents need to be used in a large standard amount of 2 to 6% of the unit cement weight, therefore the cost of concrete increases.
- An object of the present invention is to provide: a cement admixture which displays excellent cracking inhibition effect and brings about good fluidity even if the quantity of the cement admixture as added is small; and a cement composition comprising this cement admixture.
- the present inventors diligently studied to solve the above-mentioned problems. As a result, they have completed the present invention by finding that: if a polyalkylene glycol having a specific molecular weight is allowed to coexist in a specific ratio with a polyalkylene glycol mono(meth)acrylate/unsaturated carboxylic acid-based copolymer having a polyalkylene glycol chain portion of which the average molecular weight is nearly equal to that of the above-mentioned polyalkylene glycol (the difference between these molecular weights is in a definite range), then the resultant mixture is a cement admixture which is extremely excellent in both properties of the drying shrinkage reducibility and the dispersibility.
- a cement admixture comprises a polyalkylene glycol (A) and a polyalkylene glycol mono(meth)acrylate/unsaturated carboxylic acid-based copolymer (B), wherein: the average molecular weight (X) of the polyalkylene glycol (A) is in the range of 400 to 10,000; the average molecular weight (X) of the polyalkylene glycol (A) and the average molecular weight (Y) of a polyalkylene glycol chain portion of the copolymer (B) satisfy the following equation (1):
- a cement composition at least comprises the above cement admixture according to the present invention, water, and cement.
- the cement admixture comprises a polyalkylene glycol (A) (which might hereinafter simply be abbreviated to component A) and a polyalkylene glycol mono(meth)acrylate/unsaturated carboxylic acid-based copolymer (B) (which might hereinafter simply be abbreviated to component B).
- A polyalkylene glycol
- B polyalkylene glycol mono(meth)acrylate/unsaturated carboxylic acid-based copolymer
- the component A in the present invention is, for example, represented by the following general formula (2):
- AO represents an oxyalkylene group having 2 to 18 carbon atoms (wherein: the AO-repeating units may be either identical with or different from each other and, if the AO-repeating units are in the form of a mixture of at least two thereof, they may be formed by any of block addition, random addition, and alternating addition);
- m is an average molar number of addition of the oxyalkylene groups and represents a number of 8 to 250;
- R 1 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
- R 1 in the formula (2) is especially favorably a hydrocarbon group having 1 to 30 carbon atoms, more favorably 1 to 22 carbon atoms, still more favorably 1 to 18 carbon atoms, particularly favorably 1 to 12 carbon atoms.
- R 1 is a hydrocarbon group having 4 to 12 carbon atoms.
- R 1 include: alkyl groups having 1 to 30 carbon atoms; benzene ring-containing aromatic groups having 6 to 30 carbon atoms, such as a phenyl group, alkylphenyl groups, phenylalkyl groups, alkyl group-substituted or phenyl group-substituted phenyl groups, and a naphthyl group; and alkenyl groups having 2 to 30 carbon atoms.
- AO in the formula (2) is particularly favorably a linear or branched oxyalkylene group having 2 to 8 carbon atoms.
- examples thereof include an oxyethylene group, an oxypropylene group, an oxybutylene group, and an oxystyrene group. Of these groups, the oxyethylene group, the oxypropylene group, and the oxybutylene group are favorable.
- component A examples include: alkoxypolyalkylene glycols obtained by addition reactions of alkylene oxides having 2 to 18 carbon atoms to any of the following alcohols: saturated aliphatic alcohols having 1 to 30 carbon atoms, such as methanol, ethanol, 2-propanol, 1-butanol, octanol, 2-ethyl-1-hexanol, nonyl alcohol, lauryl alcohol, cetyl alcohol, and stearyl alcohol; unsaturated aliphatic alcohols having 3 to 30 carbon atoms, such as allyl alcohol, methallyl alcohol, crotyl alcohol, and oleyl alcohol; alicyclic alcohols having 3 to 30 carbon atoms, such as cyclohexanol; and aromatic alcohols having 6 to 30 carbon atoms, such as phenol, phenylmethanol (benzyl alcohol), methylphenol (cresol), p-ethylphenol, dimethylphenol (xyleno
- the average molecular weight (X) of the aforementioned component A is in the range of 400 to 10,000. In the case where the average molecular weight (X) of the component A is less than 400 or more than 10,000, it is difficult to display sufficient drying shrinkage reducibility even using a small quantity.
- the average molecular weight (X) of the component A is favorably in the range of 500 to 9,000, more favorably 700 to 8,000, still more favorably 900 to 7,000, most favorably 1,000 to 6,000.
- the average molecular weight (X) of the component A can easily be calculated from the terminal end group, the sorts of the oxyalkylene groups, and their average molar number of addition in the component A.
- the average molar number of addition of the oxyalkylene groups in the component A is favorably in the range of 10 to 220, more favorably 15 to 200, still more favorably 20 to 170, most favorably 22 to 150, for the average molecular weight (X) of the component A to be in the above favorable range.
- the component (B) in the present invention comprises the following essential constitutional units: a unit (I) of the general formula (3) below as derived from a polyalkylene glycol mono(meth)acrylate-based monomer; and a unit (II) of the general formula (4) below as derived from an unsaturated carboxylic acid-based monomer.
- R 2 and R 3 independently of each other, represent a hydrogen atom or a methyl group
- R 4 O represents an oxyalkylene group having 2 to 18 carbon atoms (wherein: the R 4 O-repeating units may be either identical with or different from each other and, if the R 4 O-repeating units are in the form of a mixture of at least two thereof, they may be formed by any of block addition, random addition, and alternating addition);
- n is an average molar number of addition of the oxyalkylene groups and represents a number of 8 to 250;
- R 5 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
- R 6, R 7 and R 8 independently of each other, denote a hydrogen atom, a methyl group or a (CH 2 ) p COOX group;
- X denotes a hydrogen atom, a monovalent metal, a divalent metal, an ammonium group or an organic amine group
- p denotes an integer of 0 to 2;
- COOX groups wherein if at least two COOX groups exist they may be in the form of an anhydride.
- R 5 in the formula (3) is especially favorably a hydrocarbon group having 1 to 30 carbon atoms, more favorably 1 to 22 carbon atoms, still more favorably 1 to 18 carbon atoms, particularly favorably 1 to 12 carbon atoms.
- Examples of the hydrocarbon group having 1 to 30 carbon atoms include the same as those previously cited as examples of R 1 in the aforementioned formula (2).
- R 4 O in the formula (3) is particularly favorably a linear or branched oxyalkylene group having 2 to 8, more favorably 2 to 4 carbon atoms.
- examples thereof include an oxyethylene group, an oxypropylene group, an oxybutylene group, and an oxystyrene group. Of these groups, the oxyethylene group, the oxypropylene group, and the oxybutylene group are favorable.
- Examples of a monomer (a) to give the constitutional unit (I) of the formula (3) include: adducts obtained by addition reactions of alkylene oxides having 2 to 18 carbon atoms to (meth)acrylic acid; and compounds obtained by esterification of alkoxypolyalkylene glycols with (meth)acrylic acid, wherein the alkoxypolyalkylene glycols are obtained by addition reactions of alkylene oxides having 2 to 18 carbon atoms to any of the following alcohols: saturated aliphatic alcohols having 1 to 30 carbon atoms, such as methanol, ethanol, 2-propanol, 1-butanol, octanol, 2-ethyl-1-hexanol, nonyl alcohol, lauryl alcohol, cetyl alcohol, and stearyl alcohol; unsaturated aliphatic alcohols having 3 to 30 carbon atoms, such as allyl alcohol, methallyl alcohol, crotyl alcohol, and oleyl alcohol; aliphatic alcohol
- the monomer (a) include: various polyalkylene glycol mono(meth)acrylates such as polyethylene glycol mono(meth)acrylate, polypropylene glycol mono(meth)acrylate, and polybutylene glycol mono(meth)acrylate; and various alkoxypolyalkylene glycol mono(meth)acrylates, for example, as follows: various alkoxypolyethylene glycol mono(meth)acrylates such as methoxypolyethylene glycol mono(meth)acrylate, ethoxypolyethylene glycol mono(meth)acrylate, 1-propoxypolyethylene glycol mono(meth)acrylate, 2-propoxypolyethylene glycol mono(meth)acrylate, 1-butoxypolyethylene glycol mono(meth)acrylate, 2-butoxypolyethylene glycol mono(meth)acrylate, 2-methyl-1-propoxypolyethylene glycol mono(meth)acrylate, 2-methyl-2-propoxypolyethylene glycol mono(meth)acrylate, cyclohe
- the average molar number of addition of the oxyalkylene groups in the monomer (a) and the constitutional unit (I) (n in the formula (3)) is in the range of 8 to 250.
- this average molar number of addition there is the following tendency: as the average molar number of addition decreases, the hydrophilicity lowers, while as the average molar number of addition increases, the reactivity lowers. Therefore, the average molar number of addition is favorably in the range of 10 to 220, more favorably 15 to 200, still more favorably 20 to 170, particularly favorably 22 to 150.
- the monomers (a) may be used either alone respectively or in combinations with each other. However, in the case where only one kind thereof is used, it is favorable for ensuring a balance between hydrophilicity and hydrophobicity that the oxyethylene group is indispensable as the oxyalkylene group, and further that the ratio of the oxyethylene group is not less than 50 mol % of the oxyalkylene groups. In addition, in the case where at least two kinds of monomers (a) (constitutional units (I)) are used, it is favorable that at least any one kind of them includes the oxyethylene group as the oxyalkylene group.
- the constitutional unit (I) content is not especially limited, but is fitly not less than 5 weight %, favorably not less than 10 weight %, more favorably not less than 20 weight %, still more favorably not less than 30 weight %, particularly favorably not less than 40 weight %, most favorably not less than 50 weight %, of the entirety of the copolymer as the component B.
- a monomer (b) to give the constitutional unit (II) of the formula (4) include: unsaturated monocarboxylic acid-based monomers, such as acrylic acid, methacrylic acid, crotonic acid, and their metal salts, ammonium salts, and amine salts; unsaturated dicarboxylic acid-based monomers, such as maleic acid, itaconic acid, citraconic acid, fumaric acid, and their metal salts, ammonium salts, and amine salts; and further, anhydrides of unsaturated dicarboxylic acid-based monomers, such as maleic anhydride, itaconic anhydride, and citraconic anhydride. Of these monomers, the unsaturated monocarboxylic acid-based monomers are favorable, and (meth)acrylic acid and their salts are particularly favorable. These monomers (b) may be used either alone respectively or in combinations with each other.
- unsaturated monocarboxylic acid-based monomers such as acrylic acid, methacrylic acid,
- the constitutional unit (II) content is not especially limited.
- the milliequivalent number of carboxyl groups in the component B is particularly favorably in the range of 0.25 to 5.00 meq per 1 g of the copolymer as the component B assuming all the carboxyl groups in the component B to be in unneutralized forms.
- This milliequivalent number of carboxyl groups is more favorably in the range of 0.25 to 4.50 meq/g, still more favorably 0.25 to 4.00 meq/g, particularly favorably 0.25 to 3.50 meq/g, most favorably 0.30 to 3.00 meq/g.
- the milliequivalent number of carboxyl groups in the component B can be calculated as follows.
- the copolymer which is the component B may further comprise another constitutional unit (III) in addition to the constitutional unit (I) of the general formula (3) and the constitutional unit (II) of the general formula (4), if necessary.
- a monomer (c) to give the constitutional unit (III) if this monomer (c) is copolymerizable with the aforementioned monomers (a) and (b).
- examples thereof include: half esters and diesters of unsaturated dicarboxylic acids, such as maleic acid, fumaric acid, itaconic acid, and citraconic acid, with alcohols having 1 to 30 carbon atoms; half amides and diamides of the aforementioned unsaturated dicarboxylic acids with amines having 1 to 30 carbon atoms; half esters and diesters of the aforementioned unsaturated dicarboxylic acids with alkyl (poly)alkylene glycols as obtained by addition reactions of 1 to 500 mols of alkylene oxides having 2 to 18 carbon atoms to the aforementioned alcohols or amines; half esters and diesters of the aforementioned unsaturated dicarboxylic acids with glycols having 2 to 18 carbon atom
- constitutional unit (III) content there is no especial limitation with regard to the constitutional unit (III) content if it is within the range which does not damage the effects of the present invention, but this content is favorably not more than 70 weight %, more favorably not more than 60 weight %, still more favorably not more than 50 weight %, particularly favorably not more than 40 weight %, most favorably not more than 30 weight %, of the entirety of the copolymer as the component B.
- the process for obtaining the copolymer which is the component B is not especially limited.
- the process may comprise the step of, in the presence of a polymerization initiator, copolymerizing monomer components including a monomer to give the constitutional unit (I) (for example, the aforementioned monomer (a)) and a monomer to give the constitutional unit (II) (for example, the aforementioned monomer (b)) as essential components and, if necessary, further including a monomer to give the constitutional unit (III) (for example, the aforementioned monomer (c)).
- the polymerization can be carried out by conventional methods such as solution polymerization and bulk polymerization.
- the polymerization reaction may be carried out within the range of usually 0 to 120° C. using polymerization initiators, such as ammonium persulfate, alkaline metal persulfates, hydrogen peroxide, and azo compounds, in water or lower alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol.
- polymerization initiators such as ammonium persulfate, alkaline metal persulfates, hydrogen peroxide, and azo compounds
- water or lower alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol.
- thiol-based chain transfer agents such as mercaptoethanol and 3-mercaptopropionic acid can further be used in order to adjust the molecular weight of the resulting copolymer.
- the copolymer as obtained in the above way may be used as the component B as it is.
- this copolymer may be used in a polymer salt form by further being neutralized with an alkaline substance, if necessary.
- an alkaline substance include: inorganic substances such as hydroxides and carbonates of mono- and divalent metals (typically, sodium hydroxide); ammonia; and organic amines.
- the copolymer is used in a solid form by evaporating solvents as used to produce the copolymer.
- the average molecular weight (Y) of the polyalkylene glycol chain portion of the component B satisfies the relation of the below-mentioned equation (1) with the average molecular weight (X) of the aforementioned component A.
- the average molecular weight (Y) of the polyalkylene glycol chain portion of the component B is the average molecular weight of the portion corresponding to O(R 4 O) n —R 5 in the aforementioned general formula (3) and can easily be calculated in the following way.
- R 5 , R 4 O, and n in the general formula (3) are a methyl group, ethylene oxide, and 25 respectively
- the weight-average molecular weight of the copolymer which is the component B if, as is mentioned above, the average molecular weight (Y) of the polyalkylene glycol chain portion of the component B satisfies the aforementioned equation (1).
- the weight-average molecular weight of the component B is favorably in the range of 1,000 to 500,000, more favorably 5,000 to 300,000. In the case where the weight-average molecular weight of the component B is less than 1,000 or more than 500,000, there are disadvantages in that the dispersibility is low.
- the production process for the cement admixture according to the present invention is not especially limited.
- the process can comprise the steps of: copolymerizing the monomers (a) and (b) in the aforementioned way to synthesize the component B; and then mixing the components A and B together so that the weight ratio therebetween may be in the aforementioned range.
- this process it is possible to also easily produce a cement admixture in which the component A does not have the same structure as that of the polyalkylene glycol chain portion of the component B.
- the weight ratio of between the components A and B may be adjusted into the aforementioned range by further adding the component A later.
- post-esterification reaction of polymer which is a esterification reaction of an alkoxypolyalkylene glycol having a C1 to C30 hydrocarbon group at one terminal end directly with at least a part of carboxyl groups of a polymer which is obtained by polymerizing
- the weight ratio of between the components A and B may be adjusted into the aforementioned range by further adding the component A later.
- the milliequivalent number of carboxyl groups in the copolymer (B) assuming all the carboxyl groups in the copolymer (B) to be in unneutralized forms cannot be calculated in the way of the aforementioned calculation examples based on the monomers. Therefore, the milliequivalent number may be calculated by measuring the acid value of the polymer in consideration of counter ion species of carboxyl groups in the polymer.
- the cement composition at least comprises the cement admixture according to the present invention, cement, and water as essential components, and is, for example, usable as cement paste or as mortar, concrete, self-levelling materials, and plaster by mixing the cement paste further with aggregates such as sand and ballast.
- the cement composition can be used favorably also for mortar and concrete which are required to have high fluidity, such as high fluid concrete and self-filling concrete.
- the aforementioned cement is a substance having a property of hardening by its hydration reaction, and specific examples thereof include: hydraulic cements, such as portland cements of various types (e.g. normal types, high-early-strength types, and ultra-high-early-strength types), various mixed cements (obtained by mixing the aforementioned portland cements with such as blast furnace slag, fly ash, cinder ash, clinker ash, husk ash, and silica), white cements, ultra fast hardenable cements, and alumina cements; and hydraulic materials such as gypsum.
- hydraulic cements such as portland cements of various types (e.g. normal types, high-early-strength types, and ultra-high-early-strength types), various mixed cements (obtained by mixing the aforementioned portland cements with such as blast furnace slag, fly ash, cinder ash, clinker ash,
- the cement composition according to the present invention is not especially limited with regard to the amount of cement as used per 1 m 3 of the cement composition and the amount of water as used per 1 m 3 of the cement composition (unit water amount).
- the unit water amount is in the range of 100 to 185 kg/m 3 , favorably 120 to 175 kg/m 3 ;
- the amount of cement as used is in the range of 250 to 800 kg/m 3 , favorably 270 to 800 kg/m 3 ;
- the water/cement weight ratio is in the range of 0.10 to 0.7, favorably 0.2 to 0.65.
- the cement composition according to the present invention is usable in the wide range from a poor to rich content, and is effective in all over the range from a high strength concrete with a large unit cement amount to a poor content concrete with a unit cement amount of not larger than 300 kg/m 3 .
- the ratio of the cement admixture (component A+component B) according to the present invention in the cement composition according to the present invention is not especially limited, but is recommended to be in the range of 0.001 to 15 weight %, favorably 0.01 to 10 weight %, more favorably 0.02 to 5 weight %, still more favorably 0.05 to 3 weight %, particular favorably 0.1 to 2 weight %, of the weight of cement.
- the ratio of the cement admixture (component A+component B) according to the present invention is recommended to be in the range of 0.01 to 10 weight %, favorably 0.02 to 5 weight %, more favorably 0.05 to 3 weight %, particular favorably 0.1 to 2 weight %, of the weight of the hydraulic cement.
- the total ratio of the components A and B is smaller than 0.01 weight %, it is difficult to sufficiently obtain the drying shrinkage reducibility and the fluidity.
- the cement admixture is used in a ratio of larger than 10 weight %, the resultant effects substantially reach the top and do not increase any more, so there are economical disadvantages.
- the cement admixture according to the present invention may further comprise conventional cement dispersants.
- the conventional cement dispersant which is usable is not especially limited, but examples thereof include: various sulfonic dispersants having a sulfonic acid group in their molecules; and various polycarboxylic dispersants having a polyoxyalkylene chain and a carboxyl group in their molecules.
- Examples of the aforementioned sulfonic dispersants include ligninsulfonic acid salts, naphthalenesulfonic acid-formaldehyde condensation products, melaminesulfonic acid-formaldehyde condensation products, polystyrenesulfonic acid salts, and aminosulfonic dispersants such as aminoarylsulfonic acid-phenol-formaldehyde condensation products.
- Examples of the aforementioned polycarboxylic dispersants include: copolymers obtained by copolymerizing a monomer mixture comprising three essential monomers, namely, a polyalkylene glycol mono(meth)acrylate monomer (having a polyoxyalkylene chain of 2 to 300 in average molar number of addition of alkylene oxides having 2 to 3 carbon atoms), a (meth)acrylic monomer, and an alkyl (meth)acrylate; copolymers obtained by copolymerizing a monomer mixture comprising three essential monomers, namely, a polyalkylene glycol mono(meth)acrylate monomer (having a polyoxyalkylene chain of 2 to 300 in average molar number of addition of alkylene oxides having 2 to 3 carbon atoms), a (meth)acrylic monomer, and any one of (meth)allylsulfonic acid (or its salt), vinylsulfonic acid (or its salt), and p-(meth)
- the mixing ratio by weight of the present invention cement admixture (component A+component B) to the conventional cement dispersant is favorably in the range of 5:95 to 95:5, more favorably 10:90 to 90:10, though not uniformly determinable, depending on differences in factors such as kind, composition, and test conditions of the conventional cement dispersant as used.
- the cement admixture according to the present invention may further comprise, besides the aforementioned conventional cement dispersant, other conventional cement additives (materials to add to cement) such as (1) to (20) as exemplified below:
- water-soluble high-molecular substances for example: unsaturated carboxylic acid polymers such as poly(acrylic acid) (or its sodium salt), poly(methacrylic acid) (or its sodium salt), poly(maleic add) (or its sodium salt), and sodium salts of acrylic acid-maleic acid copolymers; nonionic cellulose ethers such as methyl cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, carboxyethyl cellulose, and hydroxypropyl cellulose; polysaccharides produced by microbiological fermentation such as yeast glucan, xanthane gum, and ⁇ -1.3 glucans (which may be either a linear or branched chain type and of which examples include curdlan, paramylon, vacciman, scleroglucan and laminaran); polyacrylamide; poly(vinyl alcohol); starch; starch phosphate; sodium alginate; gelatin; and acrylic acid copo
- (2) high-molecular emulsions for example: copolymers of various vinyl monomers such as alkyl (meth)acrylates;
- retarders for example: oxycarboxylic acids, such as gluconic acid, glucoheptonic acid, arabonic acid, malic acid and citric acid, and their inorganic or organic salts with such as sodium, potassium, calcium, magnesium, ammonium and triethanolamine; saccharides, for example, monosaccharides such as glucose, fructose, galactose, saccharose, xylose, apiose, ribose, and isomerized saccharides, or oligosaccharides such as disaccharides and trisaccharides, or oligosaccharides such as dextrin, or polysaccharides such as dextran, or molasses including them; sugar alcohols such as sorbitol; magnesium silicofluoride; phosphoric acid and its salts or borates; aminocarboxylic acids and their salts; alkali-soluble proteins; fumic acid; tannic acid; phenol; polyhydric alcohol
- high-early-strength agents and promoters for example: soluble calcium salts such as calcium chloride, calcium nitrite, calcium nitrate, calcium bromide, and calcium iodide; chlorides such as iron chloride and magnesium chloride; sulfates; potassium hydroxide; sodium hydroxide; carbonates; thiosulfates; formic acid and formates such as calcium formate; alkanol amines; alumina cements; and calcium aluminate silicate;
- mineral oil base defoaming agents for example: kerosine and liquid paraffin
- oils-and-fats base defoaming agents for example: animal and plant oils, sesame oil, castor oil and their alkylene oxide adducts;
- fatty acid base defoaming agents for example: oleic acid, stearic acid and their alkylene oxide adducts;
- fatty acid ester base defoaming agents for example: glycerol monoricinolate, alkenyl succinic acid derivatives, sorbitol monolaurate, sorbitol trioleate, and natural wax;
- oxyalkylene base defoaming agents for example: polyoxyalkylenes such as (poly)oxyethylene (poly)oxypropylene adducts; (poly)oxyalkyl ethers such as diethylene glycol heptyl ether, polyoxyethylene oleyl ether, polyoxypropylene butyl ether, polyoxyethylene polyoxypropylene 2-ethylhexyl ether, and adducts obtained by addition reactions of oxyethylene oxypropylene to higher alcohols having 12 to 14 carbon atoms; (poly)oxyalkylene (alkyl) aryl ethers such as polyoxypropylene phenyl ether and polyoxyethylene nonyl phenyl ether; acetylene ethers as formed by addition polymerization of alkylene oxides to acetylene alcohols such as 2,4,7,9-tetramethyl-5-decyne-4,7-diol, 2,5-d
- alcohol base defoaming agents for example: octyl alcohol, hexadecyl alcohol, acetylene alcohol, and glycols;
- amide base defoaming agents for example: acrylate polyamines
- phosphoric acid ester base defoaming agents for example: tributyl phosphate and sodium octyl phosphate;
- metal soap base defoaming agents for example: aluminum stearate and calcium oleate
- silicone base defoaming agents for example: dimethyl silicone oils, silicone pastes, silicone emulsions, organic-denatured polysiloxanes (polyorganosiloxanes such as dimethyl polysiloxane), and fluorosilicone oils;
- alkyl diphenyl ether sulfonates as formed by ether-bonding of two phenyl groups having a sulfonic acid group, which may have an alkyl or alkoxy group as a substituent
- various kinds of anionic surfactants various kinds of cationic surfactants such as alkylamine acetate and alkyltrimethylammonium chloride
- various kinds of nonionic surfactants various kinds of amphoteric surfactants
- amphoteric surfactants for example: alkyl diphenyl ether sulfonates as formed by ether-bonding of two phenyl groups having a sulfonic acid group, which may have an alkyl or alkoxy group as a substituent
- anionic surfactants various kinds of cationic surfactants such as alkylamine acetate and alkyltrimethylammonium chloride
- nonionic surfactants various kinds of amphoteric surfactants
- waterproofing agents for example: fatty acids (or their salts), fatty acid esters, oils and fats, silicone, paraffin, asphalt, and wax;
- anticorrosives for example: nitrous acid salts, phosphoric acid salts, and zinc oxide;
- fissure-reducing agents for example: polyoxyalkyl ethers
- swelling materials for example: ettringite base and lime base ones.
- the cement composition according to the present invention may further comprise conventional cement additives (materials to add to cement) other than the above.
- conventional cement additives materials to add to cement
- examples thereof include: cement humectants, thickeners, flocculants, strength-enhancing agents, self-levelling agents, colorants, moldproofing agents, pozzolan, and zeolite.
- cement additives materials to add to cement
- these cement additives can be contained either alone respectively or in combinations with each other.
- a combination comprising the following two essential components: (1) the present invention cement admixture and (2) the oxyalkylene base defoaming agent.
- the mixing ratio by weight of (2) the oxyalkylene base defoaming agent is favorably in the range of 0.01 to 10 weight % of the component B in (1) the present invention cement admixture.
- a combination comprising the following two essential components: (1) the present invention cement admixture and (2) the sulfonic dispersant having a sulfonic acid group in its molecule.
- the mixing ratio by weight of (1) the present invention cement admixture to (2) the sulfonic dispersant is favorably in the range of 5:95 to 95:5, more favorably 10:90 to 90:10.
- a combination comprising the following two essential components: (1) the present invention cement admixture and (2) the ligninsulfonic acid salt.
- the mixing ratio by weight of (1) the present invention cement admixture to (2) the ligninsulfonic acid salt is favorably in the range of 5:95 to 95:5, more favorably 10:90 to 90:10.
- a combination comprising the following two essential components: (1) the present invention cement admixture and (2) a material-separation-decreasing agent.
- the material-separation-decreasing agent include: various thickeners such as nonionic cellulose ethers; and compounds having a hydrophobic substituent, namely, a C4 to C30 hydrocarbon chain, as a partial structure, and further having a polyoxyalkylene chain of 2 to 300 in average molar number of addition of C2 to C18 alkylene oxides as another partial structure.
- the mixing ratio by weight of (1) the present invention cement admixture to (2) the material-separation-decreasing agent is favorably in the range of 10:90 to 99.99:0.01, more favorably 50:50 to 99.9:0.1.
- the cement composition comprising this combination is favorable as high fluid concrete, self-filling concrete, and self-levelling materials.
- a combination comprising the following two essential components: (1) the present invention cement admixture and (2) the retarder.
- the mixing ratio by weight of (1) the present invention cement admixture to (2) the retarder is favorably in the range of 50:50 to 99.9:0.1, more favorably 70:30 to 99:1.
- a combination comprising the following two essential components: (1) the present invention cement admixture and (2) the promotor.
- the mixing ratio by weight of (1) the present invention cement admixture to (2) the promotor is favorably in the range of 10:90 to 99.9:0.1, more favorably 20:80 to 99:1.
- the present invention enables to display excellent cracking inhibition effect and further to bring about good fluidity even if the quantity of the addition is small.
- an aqueous monomer solution as prepared by mixing 1,668 parts of 1-butoxypolyethylene glycol monomethacrylate (average molar number of addition of ethylene oxide: 25), 332 parts of methacrylic acid, 500 parts of ion-exchanged water, and 16.7 parts of 3-mercaptopropionic acid (chain transfer agent), was dropwise added into the reactor over a period of 4 hours, and simultaneously with the initiation of this dropwise addition of the aqueous monomer solution, an aqueous initiator solution comprising 23 parts of ammonium persulfate and 207 parts of ion-exchanged water was dropwise added into the reactor over a period of 5 hours.
- an aqueous monomer solution as prepared by mixing 275.6 parts of 1-butoxypolyethylene glycol monomethacrylate (average molar number of addition of ethylene oxide: 75), 24.4 parts of methacrylic acid, 200 parts of ion-exchanged water, and 2.3 parts of 3-mercaptopropionic acid (chain transfer agent), was dropwise added into the reactor over a period of 4 hours, and simultaneously with the initiation of this dropwise addition of the aqueous monomer solution, an aqueous initiator solution comprising 3.4 parts of ammonium persulfate and 146.6 parts of ion-exchanged water was dropwise added into the reactor over a period of 5 hours.
- the internal temperature of the reactor was maintained at 80° C. for 1 hour to complete the polymerization reaction. Thereafter, the resultant reaction mixture was neutralized with a 30% aqueous sodium hydroxide solution, thus obtaining an aqueous solution of a copolymer (B-2) having a weight-average molecular weight of 38,000.
- the milliequivalent number of carboxyl groups in the copolymer (B-2) was 0.95 (meq/g) per 1 g of the copolymer (B-2) assuming all the carboxyl groups in the copolymer (B-2) to be in unneutralized forms.
- the average molecular weight (Y) of the polyalkylene glycol chain portion was 3,373.
- an aqueous monomer solution as prepared by mixing 1,668 parts of methoxypolyethylene glycol monomethacrylate (average molar number of addition of ethylene oxide: 25), 332 parts of methacrylic acid, 500 parts of ion-exchanged water, and 16.7 parts of 3-mercaptopropionic acid (chain transfer agent), was dropwise added into the reactor over a period of 4 hours, and simultaneously with the initiation of this dropwise addition of the aqueous monomer solution, an aqueous initiator solution comprising 23 parts of ammonium persulfate and 207 parts of ion-exchanged water was dropwise added into the reactor over a period of 5 hours.
- the internal temperature of the reactor was maintained at 80° C. for 1 hour to complete the polymerization reaction. Thereafter, the resultant reaction mixture was neutralized with a 30% aqueous sodium hydroxide solution, thus obtaining an aqueous solution of a copolymer (B-3) having a weight-average molecular weight of 24,000.
- the milliequivalent number of carboxyl groups in the copolymer (B-3) was 1.93 (meq/g) per 1 g of the copolymer (B-3) assuming all the carboxyl groups in the copolymer (B-3) to be in unneutralized forms.
- the average molecular weight (Y) of the polyalkylene glycol chain portion was 1,131.
- the resultant mortar was fully filled into a hollow cylinder of 55 mm both in inner diameter and in height as placed on a horizontal table. After 5 minutes from the kneading initiation, this cylinder was gently lifted in perpendicular, and the major and minor axes of the mortar as spread onto the table were measured, and the average value thereof was regarded as the mortar flow value (mm).
- the quantity of air was adjusted to 5 ⁇ 1% by fitly using a (oxyalkylene-based) defoaming agent for the quantity of entrained air to be a definite value.
- Tables 1 and 2 Incidentally, it can be said that: the larger this mortar flow value (mm) is, the higher the fluidity is.
- a specimen (4 ⁇ 4 ⁇ 16 cm) was prepared according to JIS-A-1129 as follows.
- the mold frame was precoated with silicone grease for the purposes of water cutting and easy mold releasing, and an arrangement was carried out so that a gauge plug might be fitted on both sides of the specimen.
- the mortar as obtained above was cast into this mold frame, and the resultant mortar-containing mold frame was then placed into an thermohumidistat (PL-2G, produced by Tabai Espec Co., Ltd.) as set at a temperature of 20° C. and a humidity of 60%, whereby initial curing was carried out.
- PL-2G thermohumidistat
- the resultant specimen was released from the mold frame, and the silicone grease as attached to the surface of the specimen was washed off with water using a sponge-made scrubbing brush. Thereafter, specimen was cured in still water of 20° C. for 7 days.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
- A. Technical Field
- The present invention relates to a cement admixture and a cement composition comprising this. More specifically, the invention relates to: a cement admixture which is mixed into cement mixtures, such as cement paste, mortar, and concrete, and thereby can give the cement mixtures excellent cracking inhibition effect and excellent fluidity; and a cement composition comprising this admixture.
- B. Backgrounds Art
- In general, cement mixtures, such as cement paste, mortar, and concrete, are used in order to construct such as civil engineering structures and building structures. However, hitherto, there are problems in that: according to such as outside air temperature or humidity conditions, the volatilization of unreacted water from the concreted cement mixtures might promote the drying shrinkage to crack the hardened products, and the resultant cracks cause the deterioration of the strength and watertightness of the above structures. Furthermore, in recent years, there is a movement to bind in duty to give a guarantee against cracks due to the drying shrinkage. For example, a law regarding the promotion to ensure the house quality, which intends to add cracking of concrete to objects of a guarantee against defects, is put in effect. Therefore, it is desired to take effective countermeasures to suppress the drying shrinkage of the cement mixtures to thereby prevent cracking.
- As to the means to suppress the drying shrinkage of the cement mixtures to a small one, it is effective to decrease the quantity of water (unit water quantity) for knead-mixing of concrete. For example, the Architectural Society of Japan prescribes that the upper limit value of the unit water quantity in high durable concrete should be 175 kg. Hitherto, high-performance water-reducing agents such as salts of β-naphthalenesulfonic acid-formaldehyde condensation products are conventionally used to satisfy this prescription.
- However, in the case where the high-performance water-reducing agents are used, there are problems in that: chemical or physical cohesion of cement particles proceeds with the passage of time after knead-mixing, and the fluidity is therefore apt to decrease with the passage of time, with the result that there occur troubles with execution of works.
- On the other hand, various studies are carried out also about shrinkage-reducing agents to suppress the drying shrinkage of the cement mixtures to a small one. For example, JP-B-051148/1981 proposes alkylene oxide adducts to alcohols having 1 to 4 carbon atoms, and JP-B-053214/1989 proposes ethylene oxide-propylene oxide co-adducts to di- to octahydric alcohols, and JP-B-053215/1989 proposes alkylene oxide adducts to lower alkylamines, and JP-A-152253/1984 proposes oligomeric polypropylene glycol, and JP-B-006500/1994 proposes low-molecular alcohols, and Japanese Patent No. 2825855 proposes alkylene oxide adducts to 2-ethylhexanol having 8 carbon atoms.
- However, all these shrinkage-reducing agents are oligomers or low-molecular compounds having a molecular weight of not larger than hundreds, and therefore involve problems in that: for example, as is also described in “The Development of Concrete Admixture and Its Newest Technology” (1st edition, issued by CMC Co., Ltd. on Sep. 18, 1995), these shrinkage-reducing agents need to be used in a large standard amount of 2 to 6% of the unit cement weight, therefore the cost of concrete increases.
- A. OBJECT OF THE INVENTION
- An object of the present invention is to provide: a cement admixture which displays excellent cracking inhibition effect and brings about good fluidity even if the quantity of the cement admixture as added is small; and a cement composition comprising this cement admixture.
- B. DISCLOSURE OF THE INVENTION
- The present inventors diligently studied to solve the above-mentioned problems. As a result, they have completed the present invention by finding that: if a polyalkylene glycol having a specific molecular weight is allowed to coexist in a specific ratio with a polyalkylene glycol mono(meth)acrylate/unsaturated carboxylic acid-based copolymer having a polyalkylene glycol chain portion of which the average molecular weight is nearly equal to that of the above-mentioned polyalkylene glycol (the difference between these molecular weights is in a definite range), then the resultant mixture is a cement admixture which is extremely excellent in both properties of the drying shrinkage reducibility and the dispersibility.
- Namely, a cement admixture, according to the present invention, comprises a polyalkylene glycol (A) and a polyalkylene glycol mono(meth)acrylate/unsaturated carboxylic acid-based copolymer (B), wherein: the average molecular weight (X) of the polyalkylene glycol (A) is in the range of 400 to 10,000; the average molecular weight (X) of the polyalkylene glycol (A) and the average molecular weight (Y) of a polyalkylene glycol chain portion of the copolymer (B) satisfy the following equation (1):
- 0.9<(X/Y)<1.1 (1);
- and
- the weight ratio of the polyalkylene glycol (A) to the copolymer (B) is in the range of (A)/(B)=0.02 to 0.3.
- In addition, a cement composition, according to the present invention, at least comprises the above cement admixture according to the present invention, water, and cement.
- These and other objects and the advantages of the present invention will be more fully apparent from the following detailed disclosure.
- The cement admixture, according to the present invention, comprises a polyalkylene glycol (A) (which might hereinafter simply be abbreviated to component A) and a polyalkylene glycol mono(meth)acrylate/unsaturated carboxylic acid-based copolymer (B) (which might hereinafter simply be abbreviated to component B). Hereinafter, each of them is explained in detail.
- The component A in the present invention is, for example, represented by the following general formula (2):
- R1O(AO)mH (2)
- wherein:
- AO represents an oxyalkylene group having 2 to 18 carbon atoms (wherein: the AO-repeating units may be either identical with or different from each other and, if the AO-repeating units are in the form of a mixture of at least two thereof, they may be formed by any of block addition, random addition, and alternating addition);
- m is an average molar number of addition of the oxyalkylene groups and represents a number of 8 to 250; and
- R 1 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
- R 1 in the formula (2) is especially favorably a hydrocarbon group having 1 to 30 carbon atoms, more favorably 1 to 22 carbon atoms, still more favorably 1 to 18 carbon atoms, particularly favorably 1 to 12 carbon atoms. In particular, favorably for obtaining high drying shrinkage reducibility, R1 is a hydrocarbon group having 4 to 12 carbon atoms. Specific examples of R1 include: alkyl groups having 1 to 30 carbon atoms; benzene ring-containing aromatic groups having 6 to 30 carbon atoms, such as a phenyl group, alkylphenyl groups, phenylalkyl groups, alkyl group-substituted or phenyl group-substituted phenyl groups, and a naphthyl group; and alkenyl groups having 2 to 30 carbon atoms.
- AO in the formula (2) is particularly favorably a linear or branched oxyalkylene group having 2 to 8 carbon atoms. Examples thereof include an oxyethylene group, an oxypropylene group, an oxybutylene group, and an oxystyrene group. Of these groups, the oxyethylene group, the oxypropylene group, and the oxybutylene group are favorable.
- Specific examples of the component A include: alkoxypolyalkylene glycols obtained by addition reactions of alkylene oxides having 2 to 18 carbon atoms to any of the following alcohols: saturated aliphatic alcohols having 1 to 30 carbon atoms, such as methanol, ethanol, 2-propanol, 1-butanol, octanol, 2-ethyl-1-hexanol, nonyl alcohol, lauryl alcohol, cetyl alcohol, and stearyl alcohol; unsaturated aliphatic alcohols having 3 to 30 carbon atoms, such as allyl alcohol, methallyl alcohol, crotyl alcohol, and oleyl alcohol; alicyclic alcohols having 3 to 30 carbon atoms, such as cyclohexanol; and aromatic alcohols having 6 to 30 carbon atoms, such as phenol, phenylmethanol (benzyl alcohol), methylphenol (cresol), p-ethylphenol, dimethylphenol (xylenol), p-t-butylphenol, nonylphenol, dodecylphenol, phenylphenol, and naphthol; and further include polyalkylene glycols, such as polyethylene glycol, polypropylene glycol, and polyethylene polypropylene glycol.
- In the present invention, it is important that the average molecular weight (X) of the aforementioned component A is in the range of 400 to 10,000. In the case where the average molecular weight (X) of the component A is less than 400 or more than 10,000, it is difficult to display sufficient drying shrinkage reducibility even using a small quantity. The average molecular weight (X) of the component A is favorably in the range of 500 to 9,000, more favorably 700 to 8,000, still more favorably 900 to 7,000, most favorably 1,000 to 6,000. Incidentally, in the present invention, the average molecular weight (X) of the component A can easily be calculated from the terminal end group, the sorts of the oxyalkylene groups, and their average molar number of addition in the component A. For example, if R 1, AO, and m in the general formula (2) are a methyl group, ethylene oxide, and 25 respectively, the average molecular weight (X) of the component A is calculated as 32+44×25=1,132. The average molar number of addition of the oxyalkylene groups in the component A (m in the formula (2)) is favorably in the range of 10 to 220, more favorably 15 to 200, still more favorably 20 to 170, most favorably 22 to 150, for the average molecular weight (X) of the component A to be in the above favorable range.
- The component (B) in the present invention comprises the following essential constitutional units: a unit (I) of the general formula (3) below as derived from a polyalkylene glycol mono(meth)acrylate-based monomer; and a unit (II) of the general formula (4) below as derived from an unsaturated carboxylic acid-based monomer.
- wherein:
- R 2 and R3, independently of each other, represent a hydrogen atom or a methyl group;
- R 4O represents an oxyalkylene group having 2 to 18 carbon atoms (wherein: the R4O-repeating units may be either identical with or different from each other and, if the R4O-repeating units are in the form of a mixture of at least two thereof, they may be formed by any of block addition, random addition, and alternating addition);
- n is an average molar number of addition of the oxyalkylene groups and represents a number of 8 to 250; and
-
- wherein:
- R 6, R7 and R8, independently of each other, denote a hydrogen atom, a methyl group or a (CH2)pCOOX group;
- X denotes a hydrogen atom, a monovalent metal, a divalent metal, an ammonium group or an organic amine group; and
- p denotes an integer of 0 to 2;
- wherein if at least two COOX groups exist they may be in the form of an anhydride.
- R 5 in the formula (3) is especially favorably a hydrocarbon group having 1 to 30 carbon atoms, more favorably 1 to 22 carbon atoms, still more favorably 1 to 18 carbon atoms, particularly favorably 1 to 12 carbon atoms. Examples of the hydrocarbon group having 1 to 30 carbon atoms include the same as those previously cited as examples of R1 in the aforementioned formula (2).
- R 4O in the formula (3) is particularly favorably a linear or branched oxyalkylene group having 2 to 8, more favorably 2 to 4 carbon atoms. Examples thereof include an oxyethylene group, an oxypropylene group, an oxybutylene group, and an oxystyrene group. Of these groups, the oxyethylene group, the oxypropylene group, and the oxybutylene group are favorable.
- Examples of a monomer (a) to give the constitutional unit (I) of the formula (3) include: adducts obtained by addition reactions of alkylene oxides having 2 to 18 carbon atoms to (meth)acrylic acid; and compounds obtained by esterification of alkoxypolyalkylene glycols with (meth)acrylic acid, wherein the alkoxypolyalkylene glycols are obtained by addition reactions of alkylene oxides having 2 to 18 carbon atoms to any of the following alcohols: saturated aliphatic alcohols having 1 to 30 carbon atoms, such as methanol, ethanol, 2-propanol, 1-butanol, octanol, 2-ethyl-1-hexanol, nonyl alcohol, lauryl alcohol, cetyl alcohol, and stearyl alcohol; unsaturated aliphatic alcohols having 3 to 30 carbon atoms, such as allyl alcohol, methallyl alcohol, crotyl alcohol, and oleyl alcohol; alicyclic alcohols having 3 to 30 carbon atoms, such as cyclohexanol; and aromatic alcohols having 6 to 30 carbon atoms, such as phenol, phenylmethanol (benzyl alcohol), methylphenol (cresol), p-ethylphenol, dimethylphenol (xylenol), p-t-butylphenol, nonylphenol, dodecylphenol, phenylphenol, and naphthol.
- Specific examples of the monomer (a) include: various polyalkylene glycol mono(meth)acrylates such as polyethylene glycol mono(meth)acrylate, polypropylene glycol mono(meth)acrylate, and polybutylene glycol mono(meth)acrylate; and various alkoxypolyalkylene glycol mono(meth)acrylates, for example, as follows: various alkoxypolyethylene glycol mono(meth)acrylates such as methoxypolyethylene glycol mono(meth)acrylate, ethoxypolyethylene glycol mono(meth)acrylate, 1-propoxypolyethylene glycol mono(meth)acrylate, 2-propoxypolyethylene glycol mono(meth)acrylate, 1-butoxypolyethylene glycol mono(meth)acrylate, 2-butoxypolyethylene glycol mono(meth)acrylate, 2-methyl-1-propoxypolyethylene glycol mono(meth)acrylate, 2-methyl-2-propoxypolyethylene glycol mono(meth)acrylate, cyclohexoxypolyethylene glycol mono(meth)acrylate, 1-octoxypolyethylene glycol mono(meth)acrylate, 2- ethyl-1-h exoxypolyethylene glycol mono (meth)acrylate, nonylalkoxypolyethylene glycol mono(meth)acrylate, laurylalkoxypolyethylene glycol mono(meth )acrylate, cetylalkoxypolyethylene glycol mono(meth)acrylate, stearylalkoxypolyethylene glycol mono(meth)acrylate, phenoxypolyethylene glycol mono(meth)acrylate, phenylmethoxypolyethylene glycol mono(meth)acrylate, methylphenoxypolyethylene glycol mono(meth)acrylate, p-ethylphenoxypolyethylene glycol mono(meth)acrylate, dimethylphenoxypolyethylene glycol mono(meth)acrylate, p-t-butylphenoxypolyethylene glycol mono(meth)acrylate, nonylphenoxypolyethylene glycol mono(meth)acrylate, dodecylphenoxypolyethylene glycol mono(meth)acrylate, phenylphenoxypolyethylene glycol mono(meth)acrylate, naphthoxypolyethylene glycol mono(meth)acrylate, products by esterification of ethylene-oxide-added allyl alcohol with acrylic acid, products by esterification of ethylene-oxide-added methallyl alcohol with acrylic acid, and products by esterification of ethylene-oxide-added crotyl alcohol with acrylic acid; various alkoxypolypropylene glycol mono(meth)acrylates such as methoxypolypropylene glycol mono(meth)acrylate, ethoxypolypropylene glycol mono(meth)acrylate, 1-propoxypolypropylene glycol mono(meth)acrylate, 2-propoxypolypropylene glycol mono(meth)acrylate, 1-butoxypolypropylene glycol mono(meth)acrylate, 2-butoxypolypropylene glycol mono(meth)acrylate, products by esterification of propylene-oxide-added allyl alcohol with acrylic acid, products by esterification of propylene-oxide-added methallyl alcohol with acrylic acid, and products by esterification of propylene-oxide-added crotyl alcohol with acrylic acid; various alkoxypolybutylene glycol mono(meth)acrylates such as methoxypolybutylene glycol mono(meth)acrylate, ethoxypolybutylene glycol mono(meth)acrylate, 1-propoxypolybutylene glycol mono(meth)acrylate, 2-propoxypolybutylene glycol mono(meth)acrylate, 1-butoxypolybutylene glycol mono(meth)acrylate, 2-butoxypolybutylene glycol mono(meth)acrylate, products by esterification of butylene-oxide-added allyl alcohol with acrylic acid, products by esterification of butylene-oxide-added methallyl alcohol with acrylic acid, and products by esterification of butylene-oxide-added crotyl alcohol with acrylic acid; and products by esterification of at-least-two-alkylene-oxides-added alcohols with (meth)acrylic acid, such as methoxypolyethylene glycol polypropylene glycol mono(meth)acrylate, methoxypolyethylene glycol polybutylene glycol mono(meth)acrylate, and methoxypolyethylene glycol polystyrene glycol mono(meth)acrylate. These monomers (a) may be used either alone respectively or in combinations with each other.
- Incidentally, the average molar number of addition of the oxyalkylene groups in the monomer (a) and the constitutional unit (I) (n in the formula (3)) is in the range of 8 to 250. As to this average molar number of addition, there is the following tendency: as the average molar number of addition decreases, the hydrophilicity lowers, while as the average molar number of addition increases, the reactivity lowers. Therefore, the average molar number of addition is favorably in the range of 10 to 220, more favorably 15 to 200, still more favorably 20 to 170, particularly favorably 22 to 150.
- The monomers (a) (constitutional units (I)) may be used either alone respectively or in combinations with each other. However, in the case where only one kind thereof is used, it is favorable for ensuring a balance between hydrophilicity and hydrophobicity that the oxyethylene group is indispensable as the oxyalkylene group, and further that the ratio of the oxyethylene group is not less than 50 mol % of the oxyalkylene groups. In addition, in the case where at least two kinds of monomers (a) (constitutional units (I)) are used, it is favorable that at least any one kind of them includes the oxyethylene group as the oxyalkylene group.
- The constitutional unit (I) content is not especially limited, but is fitly not less than 5 weight %, favorably not less than 10 weight %, more favorably not less than 20 weight %, still more favorably not less than 30 weight %, particularly favorably not less than 40 weight %, most favorably not less than 50 weight %, of the entirety of the copolymer as the component B.
- Specific examples of a monomer (b) to give the constitutional unit (II) of the formula (4) include: unsaturated monocarboxylic acid-based monomers, such as acrylic acid, methacrylic acid, crotonic acid, and their metal salts, ammonium salts, and amine salts; unsaturated dicarboxylic acid-based monomers, such as maleic acid, itaconic acid, citraconic acid, fumaric acid, and their metal salts, ammonium salts, and amine salts; and further, anhydrides of unsaturated dicarboxylic acid-based monomers, such as maleic anhydride, itaconic anhydride, and citraconic anhydride. Of these monomers, the unsaturated monocarboxylic acid-based monomers are favorable, and (meth)acrylic acid and their salts are particularly favorable. These monomers (b) may be used either alone respectively or in combinations with each other.
- The constitutional unit (II) content is not especially limited. In the present invention, however, the milliequivalent number of carboxyl groups in the component B is particularly favorably in the range of 0.25 to 5.00 meq per 1 g of the copolymer as the component B assuming all the carboxyl groups in the component B to be in unneutralized forms. This milliequivalent number of carboxyl groups is more favorably in the range of 0.25 to 4.50 meq/g, still more favorably 0.25 to 4.00 meq/g, particularly favorably 0.25 to 3.50 meq/g, most favorably 0.30 to 3.00 meq/g. In the case where this milliequivalent number of carboxyl groups is smaller than 0.25 meq/g, the dispersibility of the copolymer which is the component B is so much low that it is difficult to obtain sufficient fluidity when a cement composition is prepared. On the other hand, in the case where the milliequivalent number of carboxyl groups is larger than 5.00 meq/g, the fluidity is apt to decrease with the passage of time when a cement composition is prepared.
- Incidentally, assuming all the carboxyl groups in the component B to be in unneutralized forms, the milliequivalent number of carboxyl groups in the component B can be calculated as follows. For example, in the case where the copolymerization is carried out in the composition ratio of monomer (a)/monomer (b)=90/10 (weight %) using acrylic acid as the monomer (b), the milliequivalent number of carboxyl groups per 1 g of the copolymer is calculated as (0.1/72)×1000=1.39 (meq/g) (calculation example 1), because the molecular weight of acrylic acid is 72. In addition, for example, in the case where the copolymerization is carried out in the composition ratio of monomer (a)/monomer (b)=90/10 (weight %) using sodium methacrylate as the monomer (b), the milliequivalent number of carboxyl groups per 1 g of the copolymer is calculated as (0.1×86/108)/{(0.9+0.1×86/108)×86}1000=0.95 (meq/g) (calculation example 2), because the molecular weight of sodium methacrylate is 108 and because the molecular weight of methacrylic acid is 86. Incidentally, also in the case where methacrylic acid is used during the polymerization and where carboxyl groups derived from methacrylic acid are neutralized with sodium hydroxide after the polymerization, the calculation can be carried out in the same way as of the above calculation example 2. In addition, for example, in the case where the copolymerization is carried out in the composition ratio of monomer (a)/monomer (b)=90/10 (weight %) using sodium maleate as the monomer (b), the milliequivalent number of carboxyl groups per 1 g of the copolymer is calculated as (0.1×116/160)/{(0.9+0.1×116/160)×116/2}×1000=1.29 (meq/g) (calculation example 3), because the molecular weight of sodium maleate is 160 and because the molecular weight of maleic acid is 116 and because maleic acid has two carboxyl groups per molecule.
- There is no especial limitation with regard to the ratio between the aforementioned constitutional units (I) and (II) if this ratio satisfies the aforementioned range of the milliequivalent number of carboxyl groups assuming all the carboxyl groups in the component B to be in unneutralized forms. However, this ratio is usually favorably in the range of constitutional unit (I)/constitutional unit (II)=(50 to 99)/(1 to 50) (weight %), more favorably (55 to 99)/(1 to 45) (weight %), still more favorably (60 to 98)/(2 to 40) (weight %), particularly favorably (65 to 98)/(2 to 35) (weight %), most favorably (70 to 97)/(3 to 30) (weight %).
- The copolymer which is the component B may further comprise another constitutional unit (III) in addition to the constitutional unit (I) of the general formula (3) and the constitutional unit (II) of the general formula (4), if necessary.
- There is no especial limitation with regard to a monomer (c) to give the constitutional unit (III) if this monomer (c) is copolymerizable with the aforementioned monomers (a) and (b). Examples thereof include: half esters and diesters of unsaturated dicarboxylic acids, such as maleic acid, fumaric acid, itaconic acid, and citraconic acid, with alcohols having 1 to 30 carbon atoms; half amides and diamides of the aforementioned unsaturated dicarboxylic acids with amines having 1 to 30 carbon atoms; half esters and diesters of the aforementioned unsaturated dicarboxylic acids with alkyl (poly)alkylene glycols as obtained by addition reactions of 1 to 500 mols of alkylene oxides having 2 to 18 carbon atoms to the aforementioned alcohols or amines; half esters and diesters of the aforementioned unsaturated dicarboxylic acids with glycols having 2 to 18 carbon atoms or with polyalkylene glycols of 2 to 500 in molar number of addition of the foregoing glycols; half amides of maleamic acid with glycols having 2 to 18 carbon atoms or with polyalkylene glycols of 2 to 500 in molar number of addition of the foregoing glycols; (poly)alkylene glycol di(meth)acrylates such as triethylene glycol di(meth)acrylate, (poly)ethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, and (poly)ethylene glycol (poly)propylene glycol di(meth)acrylate; multifunctional (meth)acrylates such as hexanediol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, and trimethylolpropane di(meth)acrylate; (poly)alkylene glycol dimaleates such as triethylene glycol dimaleate and polyethylene glycol dimaleate; unsaturated sulfonic acids, such as vinylsulfonate, (meth)allylsulfonate, 2-(meth)acryloxyethylsulfonate, 3-(meth)acryloxypropylsulfonate, 3-(meth)acryloxy-2-hydroxypropylsulfonate, 3-(meth)acryloxy-2-hydroxypropylsulfophenyl ether, 3-(meth)acryloxy-2-hydroxypropyloxysulfobenzoate, 4-( meth)acryloxybutylsulfonate, (meth)acrylamidomethylsulfonic acid, (meth)acrylamidoethylsulfonic acid, 2-methylpropanesulfonic acid (meth)acrylamide, and styrenesulfonic acid, and their monovalent metal salts, divalent metal salts, ammonium salts, and organic amine salts; esters of unsaturated monocarboxylic acids with alcohols having 1 to 30 carbon atoms, such as methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, glycidyl (meth)acrylate, methyl crotonate, ethyl crotonate, and propyl crotonate; amides of unsaturated monocarboxylic acids with amines having 1 to 30 carbon atoms, such as methyl(meth)acrylamide; vinyl aromatic compounds such as styrene, α-methylstyrene, vinyltoluene, and p-methylstyrene; alkanediol mono(meth)acrylates such as 1,4-butanediol mono(meth)acrylate, 1,5-pentanediol mono(meth)acrylate, and 1,6-hexanediol mono(meth)acrylate; dienes such as butadiene, isoprene, 2-methyl-1,3-butadiene, and 2-chloro-1,3-butadiene; unsaturated amides such as (meth)acrylamide, (meth)acrylalkylamide, N-methylol(meth)acrylamide, and N,N-dimethyl(meth)acrylamide; unsaturated cyanes such as (meth)acrylonitrile and α-chloroacrylonitrile; unsaturated esters such as vinyl acetate and vinyl propionate; unsaturated amines such as aminoethyl (meth)acrylate, methylaminoethyl (meth)acrylate, dimethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, dibutylaminoethyl (meth)acrylate, and vinylpyridine; divinyl aromatic compounds such as divinylbenzene; cyanurates such as triallyl cyanurate; allyl compounds such as (meth)allyl alcohol and glycidyl (meth)allyl ether; vinyl ethers or allyl ethers, such as methoxypolyethylene glycol monovinyl ether, polyethylene glycol monovinyl ether, methoxypolyethylene glycol mono(meth)allyl ether, and polyethylene glycol mono(meth)allyl ether; and siloxane derivatives such as polydimethylsiloxanepropylaminomaleamic acid, polydimethylsiloxaneaminopropyleneaminomaleamic acid, polydimethylsiloxanebis(propylaminomaleamic acid), polydimethylsiloxanebis(dipropyleneaminomaleamic acid), polydimethylsiloxane-(1-propyl-3-acrylate), polydimethylsiloxane-(1-propyl-3-methacrylate), polydimethylsiloxanebis(l-propyl-3-acrylate), and polydimethylsiloxanebis(1-propyl-3-methacrylate). These may be used either alone respectively or in combinations with each other.
- There is no especial limitation with regard to the constitutional unit (III) content if it is within the range which does not damage the effects of the present invention, but this content is favorably not more than 70 weight %, more favorably not more than 60 weight %, still more favorably not more than 50 weight %, particularly favorably not more than 40 weight %, most favorably not more than 30 weight %, of the entirety of the copolymer as the component B.
- The ratio between the constitutional units composing the copolymer which is the component B is fitly in the range of constitutional unit (I)/constitutional unit (II)/constitutional unit (III)=(5 to 99)/(1 to 50)/(0 to 70) (weight %), favorably (10 to 99)/(1 to 45)/(0 to 60) (weight %), more favorably (20 to 98)/(2 to 40)/(0 to 50) (weight %), still more favorably (30 to 98)/(2 to 35)/(0 to 50) (weight %), particularly favorably (40 to 98)/(2 to 35)/(0 to 40) (weight %), and most favorably (50 to 97)/(3 to 30)/(0 to 30) (weight %) wherein the total of the constitutional units (I), (II) and (III) is always 100 weight %.
- The process for obtaining the copolymer which is the component B is not especially limited. For example, the process may comprise the step of, in the presence of a polymerization initiator, copolymerizing monomer components including a monomer to give the constitutional unit (I) (for example, the aforementioned monomer (a)) and a monomer to give the constitutional unit (II) (for example, the aforementioned monomer (b)) as essential components and, if necessary, further including a monomer to give the constitutional unit (III) (for example, the aforementioned monomer (c)). The polymerization can be carried out by conventional methods such as solution polymerization and bulk polymerization. For specific example, the polymerization reaction may be carried out within the range of usually 0 to 120° C. using polymerization initiators, such as ammonium persulfate, alkaline metal persulfates, hydrogen peroxide, and azo compounds, in water or lower alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol.
- In addition, thiol-based chain transfer agents such as mercaptoethanol and 3-mercaptopropionic acid can further be used in order to adjust the molecular weight of the resulting copolymer.
- The copolymer as obtained in the above way may be used as the component B as it is. However, this copolymer may be used in a polymer salt form by further being neutralized with an alkaline substance, if necessary. Favorable examples of such an alkaline substance include: inorganic substances such as hydroxides and carbonates of mono- and divalent metals (typically, sodium hydroxide); ammonia; and organic amines. Furthermore, it is also possible that the copolymer is used in a solid form by evaporating solvents as used to produce the copolymer.
- In the present invention, it is important that the average molecular weight (Y) of the polyalkylene glycol chain portion of the component B satisfies the relation of the below-mentioned equation (1) with the average molecular weight (X) of the aforementioned component A.
- 0.9<(X/Y)<1.1 (1)
- Only in the case where (X/Y) is in this range, in other words, where the average molecular weight (X) of the component A is nearly equal to the average molecular weight (Y) of the polyalkylene glycol chain portion of the component B, there is a specific interaction between the polyalkylene glycol (which is the component A) and the polyalkylene glycol chain portion of the component B, so that the drying shrinkage reduction effect can be displayed sufficiently even using a small quantity. Incidentally, in the present invention, the average molecular weight (Y) of the polyalkylene glycol chain portion of the component B is the average molecular weight of the portion corresponding to O(R 4O)n—R5 in the aforementioned general formula (3) and can easily be calculated in the following way. For example, if R5, R4O, and n in the general formula (3) are a methyl group, ethylene oxide, and 25 respectively, the average molecular weight (Y) of the polyalkylene glycol chain portion of the component B is calculated as 31+44×25=1,131.
- There is no especial limitation with regard to the weight-average molecular weight of the copolymer which is the component B if, as is mentioned above, the average molecular weight (Y) of the polyalkylene glycol chain portion of the component B satisfies the aforementioned equation (1). However, the weight-average molecular weight of the component B is favorably in the range of 1,000 to 500,000, more favorably 5,000 to 300,000. In the case where the weight-average molecular weight of the component B is less than 1,000 or more than 500,000, there are disadvantages in that the dispersibility is low.
- It is important that the cement admixture according to the present invention comprises the aforementioned components A and B so that the weight ratio therebetween may be in the range of (A)/(B)=0.02 to 0.3. In the case where the weight ratio between the components A and B is less than (A)/(B)=0.02, the drying shrinkage reduction effect is low. On the other hand, in the case where the weight ratio is more than 0.3, the fluidity is low. Both the drying shrinkage reducibility and the fluidity cannot be satisfied unless the weight ratio between the components A and B ((A)/(B)) is in the aforementioned range.
- The production process for the cement admixture according to the present invention is not especially limited. For example, the process can comprise the steps of: copolymerizing the monomers (a) and (b) in the aforementioned way to synthesize the component B; and then mixing the components A and B together so that the weight ratio therebetween may be in the aforementioned range. In this process, it is possible to also easily produce a cement admixture in which the component A does not have the same structure as that of the polyalkylene glycol chain portion of the component B.
- Another production process for the cement admixture according to the present invention can also be used wherein this production process, for example, comprises the steps of: carrying out an esterification reaction of a polyalkylene glycol with (meth)acrylic acid; and then stopping this esterification reaction under conditions where a portion of the polyalkylene glycol (=component A) remains unreacted; and then carrying out a polymerization reaction in which the portion of the polyalkylene glycol (=component A) is left to remain unreacted, thereby synthesizing the component B (polyalkylene glycol mono(meth)acrylate/unsaturated carboxylic acid-based copolymer); so that the weight ratio between the components A and B may be in the aforementioned weight ratio range. In addition, the weight ratio of between the components A and B may be adjusted into the aforementioned range by further adding the component A later.
- Yet another production process for the cement admixture according to the present invention may also be used wherein this production process, for example, comprises the steps of: synthesizing the component B by what is called “post-esterification reaction of polymer” which is a esterification reaction of an alkoxypolyalkylene glycol having a C1 to C30 hydrocarbon group at one terminal end directly with at least a part of carboxyl groups of a polymer which is obtained by polymerizing a monomer component including the unsaturated carboxylic acid-based monomer (b) as an essential component; and then stopping this esterification reaction so that the weight ratio between the polyalkylene glycol (=component A) and the component B may be in the aforementioned weight ratio range. In this process, the weight ratio of between the components A and B may be adjusted into the aforementioned range by further adding the component A later. Incidentally, in the case where the component B is obtained by the so-called “post-esterification reaction of polymer” in the above way, the milliequivalent number of carboxyl groups in the copolymer (B) assuming all the carboxyl groups in the copolymer (B) to be in unneutralized forms cannot be calculated in the way of the aforementioned calculation examples based on the monomers. Therefore, the milliequivalent number may be calculated by measuring the acid value of the polymer in consideration of counter ion species of carboxyl groups in the polymer.
- The cement composition, according to the present invention, at least comprises the cement admixture according to the present invention, cement, and water as essential components, and is, for example, usable as cement paste or as mortar, concrete, self-levelling materials, and plaster by mixing the cement paste further with aggregates such as sand and ballast. Particularly, the cement composition can be used favorably also for mortar and concrete which are required to have high fluidity, such as high fluid concrete and self-filling concrete.
- The aforementioned cement is a substance having a property of hardening by its hydration reaction, and specific examples thereof include: hydraulic cements, such as portland cements of various types (e.g. normal types, high-early-strength types, and ultra-high-early-strength types), various mixed cements (obtained by mixing the aforementioned portland cements with such as blast furnace slag, fly ash, cinder ash, clinker ash, husk ash, and silica), white cements, ultra fast hardenable cements, and alumina cements; and hydraulic materials such as gypsum.
- The cement composition according to the present invention is not especially limited with regard to the amount of cement as used per 1 m 3 of the cement composition and the amount of water as used per 1 m3 of the cement composition (unit water amount). However, for example, it is recommended that: the unit water amount is in the range of 100 to 185 kg/m3, favorably 120 to 175 kg/m3; the amount of cement as used is in the range of 250 to 800 kg/m3, favorably 270 to 800 kg/m3; and the water/cement weight ratio is in the range of 0.10 to 0.7, favorably 0.2 to 0.65. Thus, the cement composition according to the present invention is usable in the wide range from a poor to rich content, and is effective in all over the range from a high strength concrete with a large unit cement amount to a poor content concrete with a unit cement amount of not larger than 300 kg/m3.
- The ratio of the cement admixture (component A+component B) according to the present invention in the cement composition according to the present invention is not especially limited, but is recommended to be in the range of 0.001 to 15 weight %, favorably 0.01 to 10 weight %, more favorably 0.02 to 5 weight %, still more favorably 0.05 to 3 weight %, particular favorably 0.1 to 2 weight %, of the weight of cement. Particularly, when the cement composition is used for such as mortar and concrete containing the hydraulic cement, the ratio of the cement admixture (component A+component B) according to the present invention is recommended to be in the range of 0.01 to 10 weight %, favorably 0.02 to 5 weight %, more favorably 0.05 to 3 weight %, particular favorably 0.1 to 2 weight %, of the weight of the hydraulic cement. In the case where the total ratio of the components A and B is smaller than 0.01 weight %, it is difficult to sufficiently obtain the drying shrinkage reducibility and the fluidity. On the other hand, even if the cement admixture is used in a ratio of larger than 10 weight %, the resultant effects substantially reach the top and do not increase any more, so there are economical disadvantages.
- The cement admixture according to the present invention may further comprise conventional cement dispersants. The conventional cement dispersant which is usable is not especially limited, but examples thereof include: various sulfonic dispersants having a sulfonic acid group in their molecules; and various polycarboxylic dispersants having a polyoxyalkylene chain and a carboxyl group in their molecules.
- Examples of the aforementioned sulfonic dispersants include ligninsulfonic acid salts, naphthalenesulfonic acid-formaldehyde condensation products, melaminesulfonic acid-formaldehyde condensation products, polystyrenesulfonic acid salts, and aminosulfonic dispersants such as aminoarylsulfonic acid-phenol-formaldehyde condensation products.
- Examples of the aforementioned polycarboxylic dispersants include: copolymers obtained by copolymerizing a monomer mixture comprising three essential monomers, namely, a polyalkylene glycol mono(meth)acrylate monomer (having a polyoxyalkylene chain of 2 to 300 in average molar number of addition of alkylene oxides having 2 to 3 carbon atoms), a (meth)acrylic monomer, and an alkyl (meth)acrylate; copolymers obtained by copolymerizing a monomer mixture comprising three essential monomers, namely, a polyalkylene glycol mono(meth)acrylate monomer (having a polyoxyalkylene chain of 2 to 300 in average molar number of addition of alkylene oxides having 2 to 3 carbon atoms), a (meth)acrylic monomer, and any one of (meth)allylsulfonic acid (or its salt), vinylsulfonic acid (or its salt), and p-(meth)allyloxybenzenesulfonic acid (or its salt); copolymers obtained by graft-polymerizing (meth)acrylamide and/or 2-(meth)acrylamido-2-methylpropanesulfonic acid onto copolymers obtained by copolymerizing a monomer mixture comprising three essential monomers, namely, a polyalkylene glycol mono(meth)acrylate monomer (having a polyoxyalkylene chain of 2 to 50 in average molar number of addition of ethylene oxide), a (meth)acrylic monomer, and (meth)allylsulfonic acid (or its salt); copolymers obtained by copolymerizing a monomer mixture comprising four essential monomers, namely, a polyethylene glycol mono(meth)acrylate monomer (having a polyoxyalkylene chain of 5 to 50 in average molar number of addition of ethylene oxide), a polyethylene glycol mono(meth)allyl ether monomer (having a polyoxyalkylene chain of 1 to 30 in average molar number of addition of ethylene oxide), a (meth)acrylic monomer, and any one of (meth)allylsulfonic acid (or its salt) and p-(meth)allyloxybenzenesulfonic acid (or its salt); copolymers obtained by copolymerizing a monomer mixture comprising a polyalkylene glycol mono(meth)allyl ether monomer (having a polyoxyalkylene chain of 2 to 300 in average molar number of addition of alkylene oxides having 2 to 18 carbon atoms) and a maleic monomer as essential components; copolymers obtained by copolymerizing a monomer mixture comprising a polyalkylene glycol mono(meth)allyl ether monomer (having a polyoxyalkylene chain of 2 to 300 in average molar number of addition of alkylene oxides having 2 to 4 carbon atoms) and a polyalkylene glycol maleate monomer as essential components; and copolymers obtained by copolymerizing a monomer mixture comprising a polyalkylene glycol 3-methyl-3-butenyl ether monomer (having a polyoxyalkylene chain of 2 to 300 in average molar number of addition of alkylene oxides having 2 to 4 carbon atoms) and a maleic monomer as essential components. Incidentally, these conventional cement dispersants can also be used in combinations with each other.
- In the case where the aforementioned conventional cement dispersant is used, the mixing ratio by weight of the present invention cement admixture (component A+component B) to the conventional cement dispersant is favorably in the range of 5:95 to 95:5, more favorably 10:90 to 90:10, though not uniformly determinable, depending on differences in factors such as kind, composition, and test conditions of the conventional cement dispersant as used.
- The cement admixture according to the present invention may further comprise, besides the aforementioned conventional cement dispersant, other conventional cement additives (materials to add to cement) such as (1) to (20) as exemplified below:
- (1) water-soluble high-molecular substances, for example: unsaturated carboxylic acid polymers such as poly(acrylic acid) (or its sodium salt), poly(methacrylic acid) (or its sodium salt), poly(maleic add) (or its sodium salt), and sodium salts of acrylic acid-maleic acid copolymers; nonionic cellulose ethers such as methyl cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, carboxyethyl cellulose, and hydroxypropyl cellulose; polysaccharides produced by microbiological fermentation such as yeast glucan, xanthane gum, and β-1.3 glucans (which may be either a linear or branched chain type and of which examples include curdlan, paramylon, vacciman, scleroglucan and laminaran); polyacrylamide; poly(vinyl alcohol); starch; starch phosphate; sodium alginate; gelatin; and acrylic acid copolymers having an amino group in their molecules and their quaternized compounds;
- (2) high-molecular emulsions, for example: copolymers of various vinyl monomers such as alkyl (meth)acrylates;
- (3) retarders, for example: oxycarboxylic acids, such as gluconic acid, glucoheptonic acid, arabonic acid, malic acid and citric acid, and their inorganic or organic salts with such as sodium, potassium, calcium, magnesium, ammonium and triethanolamine; saccharides, for example, monosaccharides such as glucose, fructose, galactose, saccharose, xylose, apiose, ribose, and isomerized saccharides, or oligosaccharides such as disaccharides and trisaccharides, or oligosaccharides such as dextrin, or polysaccharides such as dextran, or molasses including them; sugar alcohols such as sorbitol; magnesium silicofluoride; phosphoric acid and its salts or borates; aminocarboxylic acids and their salts; alkali-soluble proteins; fumic acid; tannic acid; phenol; polyhydric alcohols such as glycerol; and phosphonic acids and derivatives therefrom, such as aminotri(methylenephosphonic acid), 1-hydroxyethylidene-1,1-diphosphonic acid, ethylenediaminetetra(methylenephosphonic acid), diethylenetriaminepenta(methylenephosphonic acid), and their alkaline metal salts and alkaline earth metal salts;
- (4) high-early-strength agents and promoters, for example: soluble calcium salts such as calcium chloride, calcium nitrite, calcium nitrate, calcium bromide, and calcium iodide; chlorides such as iron chloride and magnesium chloride; sulfates; potassium hydroxide; sodium hydroxide; carbonates; thiosulfates; formic acid and formates such as calcium formate; alkanol amines; alumina cements; and calcium aluminate silicate;
- (5) mineral oil base defoaming agents, for example: kerosine and liquid paraffin;
- (6) oils-and-fats base defoaming agents, for example: animal and plant oils, sesame oil, castor oil and their alkylene oxide adducts;
- (7) fatty acid base defoaming agents, for example: oleic acid, stearic acid and their alkylene oxide adducts;
- (8) fatty acid ester base defoaming agents, for example: glycerol monoricinolate, alkenyl succinic acid derivatives, sorbitol monolaurate, sorbitol trioleate, and natural wax;
- (9) oxyalkylene base defoaming agents, for example: polyoxyalkylenes such as (poly)oxyethylene (poly)oxypropylene adducts; (poly)oxyalkyl ethers such as diethylene glycol heptyl ether, polyoxyethylene oleyl ether, polyoxypropylene butyl ether, polyoxyethylene polyoxypropylene 2-ethylhexyl ether, and adducts obtained by addition reactions of oxyethylene oxypropylene to higher alcohols having 12 to 14 carbon atoms; (poly)oxyalkylene (alkyl) aryl ethers such as polyoxypropylene phenyl ether and polyoxyethylene nonyl phenyl ether; acetylene ethers as formed by addition polymerization of alkylene oxides to acetylene alcohols such as 2,4,7,9-tetramethyl-5-decyne-4,7-diol, 2,5-dimethyl-3-hexyne-2,5-diol, and 3-methyl-1-butyn-3-ol; (poly)oxyalkylene fatty acid esters such as diethylene glycol oleate, diethylene glycol laurate, and ethylene glycol distearate; (poly)oxyalkylene sorbitan fatty acid esters such as (poly)oxyethylene sorbitan monolaurate and (poly)oxyethylene sorbitan trioleate; (poly)oxyalkylene alkyl (aryl) ether sulfuric acid ester salts such as sodium polyoxypropylene methyl ether sulfate and sodium polyoxyethylene dodecylphenol ether sulfate; (poly)oxyalkylene alkyl phosphoric acid esters such as (poly)oxyethylene stearyl phosphate; (poly)oxyalkylene alkylamines such as polyoxyethylene laurylamine; and polyoxyalkylene amide;
- (10) alcohol base defoaming agents, for example: octyl alcohol, hexadecyl alcohol, acetylene alcohol, and glycols;
- (11) amide base defoaming agents, for example: acrylate polyamines;
- (12) phosphoric acid ester base defoaming agents, for example: tributyl phosphate and sodium octyl phosphate;
- (13) metal soap base defoaming agents, for example: aluminum stearate and calcium oleate;
- (14) silicone base defoaming agents, for example: dimethyl silicone oils, silicone pastes, silicone emulsions, organic-denatured polysiloxanes (polyorganosiloxanes such as dimethyl polysiloxane), and fluorosilicone oils;
- (15) AE agents, for example: resin soap, saturated or unsaturated fatty acids, sodium hydroxystearate, lauryl sulfate, ABS (alkylbenzenesulfonic acids), LAS (linear alkylbenzenesulfonic acids), alkanesulfonates, polyoxyethylene alkyl (phenyl) ethers, polyoxyethylene alkyl (phenyl) ether sulfuric acid esters or their salts, polyoxyethylene alkyl (phenyl) ether phosphoric acid esters or their salts, protein materials, alkenylsulfosuccinic acids, and α-olefinsulfonates;
- (16) other surfactants, for example: alkyl diphenyl ether sulfonates as formed by ether-bonding of two phenyl groups having a sulfonic acid group, which may have an alkyl or alkoxy group as a substituent; various kinds of anionic surfactants; various kinds of cationic surfactants such as alkylamine acetate and alkyltrimethylammonium chloride; various kinds of nonionic surfactants; and various kinds of amphoteric surfactants;
- (17) waterproofing agents, for example: fatty acids (or their salts), fatty acid esters, oils and fats, silicone, paraffin, asphalt, and wax;
- (18) anticorrosives, for example: nitrous acid salts, phosphoric acid salts, and zinc oxide;
- (19) fissure-reducing agents, for example: polyoxyalkyl ethers; and
- (20) swelling materials, for example: ettringite base and lime base ones.
- The cement composition according to the present invention may further comprise conventional cement additives (materials to add to cement) other than the above. Examples thereof include: cement humectants, thickeners, flocculants, strength-enhancing agents, self-levelling agents, colorants, moldproofing agents, pozzolan, and zeolite. Incidentally, these cement additives (materials to add to cement) can be contained either alone respectively or in combinations with each other.
- Examples of particularly favorable embodiments with regard to components other than cement and water in the cement composition according to the present invention include the following 1) to 6):
- 1) A combination comprising the following two essential components: (1) the present invention cement admixture and (2) the oxyalkylene base defoaming agent. Incidentally, the mixing ratio by weight of (2) the oxyalkylene base defoaming agent is favorably in the range of 0.01 to 10 weight % of the component B in (1) the present invention cement admixture. 2) A combination comprising the following two essential components: (1) the present invention cement admixture and (2) the sulfonic dispersant having a sulfonic acid group in its molecule. Incidentally, the mixing ratio by weight of (1) the present invention cement admixture to (2) the sulfonic dispersant is favorably in the range of 5:95 to 95:5, more favorably 10:90 to 90:10.
- 3) A combination comprising the following two essential components: (1) the present invention cement admixture and (2) the ligninsulfonic acid salt. Incidentally, the mixing ratio by weight of (1) the present invention cement admixture to (2) the ligninsulfonic acid salt is favorably in the range of 5:95 to 95:5, more favorably 10:90 to 90:10.
- 4) A combination comprising the following two essential components: (1) the present invention cement admixture and (2) a material-separation-decreasing agent. Usable examples of the material-separation-decreasing agent include: various thickeners such as nonionic cellulose ethers; and compounds having a hydrophobic substituent, namely, a C4 to C30 hydrocarbon chain, as a partial structure, and further having a polyoxyalkylene chain of 2 to 300 in average molar number of addition of C2 to C18 alkylene oxides as another partial structure. Incidentally, the mixing ratio by weight of (1) the present invention cement admixture to (2) the material-separation-decreasing agent is favorably in the range of 10:90 to 99.99:0.01, more favorably 50:50 to 99.9:0.1. The cement composition comprising this combination is favorable as high fluid concrete, self-filling concrete, and self-levelling materials.
- 5) A combination comprising the following two essential components: (1) the present invention cement admixture and (2) the retarder. Incidentally, the mixing ratio by weight of (1) the present invention cement admixture to (2) the retarder is favorably in the range of 50:50 to 99.9:0.1, more favorably 70:30 to 99:1.
- 6) A combination comprising the following two essential components: (1) the present invention cement admixture and (2) the promotor. Incidentally, the mixing ratio by weight of (1) the present invention cement admixture to (2) the promotor is favorably in the range of 10:90 to 99.9:0.1, more favorably 20:80 to 99:1.
- The present invention enables to display excellent cracking inhibition effect and further to bring about good fluidity even if the quantity of the addition is small.
- Hereinafter, the present invention is more specifically illustrated by the following examples of some preferred embodiments in comparison with comparative examples not according to the invention. However, the invention is not limited to the below-mentioned examples. Incidentally, in the examples, unless otherwise noted, the units “part(s)” and “%” denote those by weight. In addition, the weight-average molecular weight of copolymer (B) is in terms of polyethylene glycol by gel permeation chromatography (GPC).
- Used as the raw polyalkylene glycols (A) are the following four:
- (A-1): 1-Butoxypolyethylene glycol (average molar number of addition of ethylene oxide: 25, average molecular weight (X) as calculated from the terminal end group, the sort of the oxyalkylene group, and its average molar number of addition: 1,174)
- (A-2): 1-Butoxypolyethylene glycol (average molar number of addition of ethylene oxide: 75, average molecular weight (X) as calculated from the terminal end group, the sort of the oxyalkylene group, and its average molar number of addition: 3,374)
- (A-3): Methoxypolyethylene glycol (average molar number of addition of ethylene oxide: 25, average molecular weight (X) as calculated from the terminal end group, the sort of the oxyalkylene group, and its average molar number of addition: 1,132)
- (A-4): Polyethylene glycol (average molar number of addition of ethylene oxide: 5, average molecular weight (X) as calculated from the terminal end group, the sort of the oxyalkylene group, and its average molar number of addition: 238)
- The raw polyalkylene glycol mono(meth)acrylate/(meth)acrylic acid- based copolymers (B) were obtained in the following ways:
- First of all, 1,698 parts of ion-exchanged water was placed into a glass-made reactor as equipped with a thermometer, a stirrer, a dropping funnel, a nitrogen-introducing tube and a reflux condenser. The internal air of the reactor was then replaced with nitrogen under stirring, and the reactor was then heated to 80° C. under the nitrogen atmosphere. Next, an aqueous monomer solution, as prepared by mixing 1,668 parts of 1-butoxypolyethylene glycol monomethacrylate (average molar number of addition of ethylene oxide: 25), 332 parts of methacrylic acid, 500 parts of ion-exchanged water, and 16.7 parts of 3-mercaptopropionic acid (chain transfer agent), was dropwise added into the reactor over a period of 4 hours, and simultaneously with the initiation of this dropwise addition of the aqueous monomer solution, an aqueous initiator solution comprising 23 parts of ammonium persulfate and 207 parts of ion-exchanged water was dropwise added into the reactor over a period of 5 hours. Subsequently to the end of the dropwise addition of the aqueous initiator solution, the internal temperature of the reactor was maintained at 80° C. for 1 hour to complete the polymerization reaction. Thereafter, the resultant reaction mixture was neutralized with a 30% aqueous sodium hydroxide solution, thus obtaining an aqueous solution of a copolymer (B-1) having a weight-average molecular weight of 27,000. Incidentally, the milliequivalent number of carboxyl groups in the copolymer (B-1) was 1.93 (meq/g) per 1 g of the copolymer (B-1) assuming all the carboxyl groups in the copolymer (B-1) to be in unneutralized forms. In addition, the average molecular weight (Y) of the polyalkylene glycol chain portion, as calculated from the structures of the used monomers, was 1,173.
- First of all, 847.7 parts of ion-exchanged water was placed into the same reactor as that used in Production Example 1. The internal air of the reactor was then replaced with nitrogen under stirring, and the reactor was then heated to 80° C. under the nitrogen atmosphere. Next, an aqueous monomer solution, as prepared by mixing 275.6 parts of 1-butoxypolyethylene glycol monomethacrylate (average molar number of addition of ethylene oxide: 75), 24.4 parts of methacrylic acid, 200 parts of ion-exchanged water, and 2.3 parts of 3-mercaptopropionic acid (chain transfer agent), was dropwise added into the reactor over a period of 4 hours, and simultaneously with the initiation of this dropwise addition of the aqueous monomer solution, an aqueous initiator solution comprising 3.4 parts of ammonium persulfate and 146.6 parts of ion-exchanged water was dropwise added into the reactor over a period of 5 hours. Subsequently to the end of the dropwise addition of the aqueous initiator solution, the internal temperature of the reactor was maintained at 80° C. for 1 hour to complete the polymerization reaction. Thereafter, the resultant reaction mixture was neutralized with a 30% aqueous sodium hydroxide solution, thus obtaining an aqueous solution of a copolymer (B-2) having a weight-average molecular weight of 38,000. Incidentally, the milliequivalent number of carboxyl groups in the copolymer (B-2) was 0.95 (meq/g) per 1 g of the copolymer (B-2) assuming all the carboxyl groups in the copolymer (B-2) to be in unneutralized forms. In addition, the average molecular weight (Y) of the polyalkylene glycol chain portion, as calculated from the structures of the used monomers, was 3,373.
- First of all, 1,698 parts of ion-exchanged water was placed into the same reactor as that used in Production Example 1. The internal air of the reactor was then replaced with nitrogen under stirring, and the reactor was then heated to 80° C. under the nitrogen atmosphere. Next, an aqueous monomer solution, as prepared by mixing 1,668 parts of methoxypolyethylene glycol monomethacrylate (average molar number of addition of ethylene oxide: 25), 332 parts of methacrylic acid, 500 parts of ion-exchanged water, and 16.7 parts of 3-mercaptopropionic acid (chain transfer agent), was dropwise added into the reactor over a period of 4 hours, and simultaneously with the initiation of this dropwise addition of the aqueous monomer solution, an aqueous initiator solution comprising 23 parts of ammonium persulfate and 207 parts of ion-exchanged water was dropwise added into the reactor over a period of 5 hours. Subsequently to the end of the dropwise addition of the aqueous initiator solution, the internal temperature of the reactor was maintained at 80° C. for 1 hour to complete the polymerization reaction. Thereafter, the resultant reaction mixture was neutralized with a 30% aqueous sodium hydroxide solution, thus obtaining an aqueous solution of a copolymer (B-3) having a weight-average molecular weight of 24,000. Incidentally, the milliequivalent number of carboxyl groups in the copolymer (B-3) was 1.93 (meq/g) per 1 g of the copolymer (B-3) assuming all the carboxyl groups in the copolymer (B-3) to be in unneutralized forms. In addition, the average molecular weight (Y) of the polyalkylene glycol chain portion, as calculated from the structures of the used monomers, was 1,131.
- An amount of 400 g of normal portland cement (produced by Pacific Cement Co., Ltd.) and 800 g of Toyoura standard sand were kneaded without water at a low speed for 30 seconds using a HOBART type mortar mixer (N-50 model, produced by HOBART Corporation). The aforementioned polyalkylene glycol (A) and the aforementioned copolymer (B) were weighed out in the ratios of Tables 1 and 2 and then diluted with ion-exchanged water to the total weight of 240 g, and the resultant mixture was added to the above-kneaded cement-sand mixture. Then, the resultant mixture was kneaded at a middle speed for 3 minutes, thus obtaining mortar. Incidentally, the mixing ratio (%) of each component in the Tables is weight % (in terms of solid content), based on cement, of each component.
- The resultant mortar was evaluated in the following ways:
- The resultant mortar was fully filled into a hollow cylinder of 55 mm both in inner diameter and in height as placed on a horizontal table. After 5 minutes from the kneading initiation, this cylinder was gently lifted in perpendicular, and the major and minor axes of the mortar as spread onto the table were measured, and the average value thereof was regarded as the mortar flow value (mm). Incidentally, if the quantity of entrained air is large, the flow value and the shrinkage amount both result in being apparently large. Therefore, the quantity of air was adjusted to 5±1% by fitly using a (oxyalkylene-based) defoaming agent for the quantity of entrained air to be a definite value. The results are shown in Tables 1 and 2. Incidentally, it can be said that: the larger this mortar flow value (mm) is, the higher the fluidity is.
- First, a specimen (4×4×16 cm) was prepared according to JIS-A-1129 as follows. The mold frame was precoated with silicone grease for the purposes of water cutting and easy mold releasing, and an arrangement was carried out so that a gauge plug might be fitted on both sides of the specimen. Then, the mortar as obtained above was cast into this mold frame, and the resultant mortar-containing mold frame was then placed into an thermohumidistat (PL-2G, produced by Tabai Espec Co., Ltd.) as set at a temperature of 20° C. and a humidity of 60%, whereby initial curing was carried out. After 4 days, the resultant specimen was released from the mold frame, and the silicone grease as attached to the surface of the specimen was washed off with water using a sponge-made scrubbing brush. Thereafter, specimen was cured in still water of 20° C. for 7 days.
- Water was wiped off from the surface of the specimen (as cured above in still water for 7 days) with a paper towel, and immediately thereafter the length of the specimen was measured with a dial gauge (produced by Nishi Nihon Shikenki Co., Ltd.) in accordance with JIS-A-1129, and the length at this time was taken as the standard. Thereafter, the specimen was preserved in the thermohumidistat as set at a temperature of 20° C. and a humidity of 60%. After 28 days from the ending date of the curing in water, the length was measured again to determine a change of length, namely, a difference (μm) as given by subtracting a length of the specimen 28 days after the standard date (ending date of the curing in water) from a length of the specimen at the standard date (for example, the case where the change of length is 247 μm shows that the specimen shrank by 247 μm from its length at the standard date). The results are shown in Tables 1 and 2. Incidentally, it can be said that: the less the value of the change of length (μm) is, the greater the shrinkage reduction effect is and the less the structure cracked due to shrinkage.
TABLE 1 Average A/B molecular Change of (weight Component Component Total (%) weight Mortar flow length Mixing ratio) A (%) B (%) of A + B ratio X/Y value (mm) (μm) Example A-1 + 0.05 0.0214 0.4286 0.4500 1.0 135 247 1 B-1 Example A-1 + 0.10 0.0409 0.4091 0.4500 1.0 130 237 2 B-1 Example A-1 + 0.20 0.0750 0.3750 0.4500 1.0 125 218 3 B-1 Example A-2 + 0.05 0.0152 0.3048 0.3200 1.0 144 249 4 B-2 Example A-2 + 0.10 0.0291 0.2909 0.3200 1.0 139 242 5 B-2 Example A-2 + 0.20 0.0533 0.2667 0.3200 1.0 132 225 6 B-2 Example A-3 + 0.02 0.0047 0.2353 0.2400 1.0 142 256 7 B-3 Example A-3 + 0.05 0.0114 0.2286 0.2400 1.0 140 252 8 B-3 Example A-3 + 0.10 0.0218 0.2182 0.2400 1.0 136 246 9 B-3 Example A-3 + 0.20 0.0400 0.2000 0.2400 1.0 130 232 10 B-3 -
TABLE 2 Average A/B molecular Change of (weight Component Component Total (%) weight Mortar flow length Mixing ratio) A (%) B (%) of A + B ratio X/Y value (mm) (μm) Comparative B-1 0.00 0.0000 0.4500 0.4500 — 139 260 Example 1 Comparative A-1 + 0.35 0.1167 0.3333 0.4500 1.0 103 193 Example 2 B-1 Comparative B-2 0.00 0.0000 0.3200 0.3200 — 147 263 Example 3 Comparative A-2 + 0.35 0.0830 0.2370 0.3200 1.0 107 202 Example 4 B-2 Comparative B-3 0.00 0.0000 0.2400 0.2400 — 145 262 Example 5 Comparative A-3 + 0.005 0.0012 0.2388 0.2400 1.0 143 261 Example 6 B-3 Comparative A-3 + 0.35 0.0622 0.1778 0.2400 1.0 110 213 Example 7 B-3 Comparative A-4 + 0.20 0.0400 0.2000 0.2400 0.2 128 259 Example 8 B-3 - From Table 2, it has been found as follows. As to Comparative Examples 1, 3, 5, and 6, the fluidity is high, but the shrinkage reduction effect is not obtained enough, because the mixing ratio of the component A is too low when compared with the range as defined in the present invention. On the other hand, as to Comparative Examples 2, 4, and 7, the shrinkage reduction effect is great, but the fluidity is not obtained enough, because the mixing ratio of the component A is too high when compared with the range as defined in the present invention. In addition, as to Comparative Example 8, the fluidity is high, but the shrinkage reduction effect is not obtained enough, because the average molecular weight (X) of the component A is too low when compared with the average molecular weight (Y) of the polyalkylene glycol chain portion of the component B.
- In contrast to the above, from Table 1, it has been found that all the Examples of the cement composition according to the present invention display excellent shrinkage reducibility and excellent fluidity.
- Various details of the invention may be changed without departing from its spirit not its scope. Furthermore, the foregoing description of the preferred embodiments according to the present invention is provided for the purpose of illustration only, and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
Claims (4)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000130949 | 2000-04-28 | ||
| JP2000-130949 | 2000-04-28 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20010052308A1 true US20010052308A1 (en) | 2001-12-20 |
| US6454850B2 US6454850B2 (en) | 2002-09-24 |
Family
ID=18639939
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/840,397 Expired - Lifetime US6454850B2 (en) | 2000-04-28 | 2001-04-23 | Cement admixture and cement composition comprising this |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US6454850B2 (en) |
| EP (1) | EP1149808B1 (en) |
| DE (1) | DE60134190D1 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100249280A1 (en) * | 2007-05-30 | 2010-09-30 | Macklin Michael B | Cement Additive For Stucco Applications |
| US8017561B2 (en) * | 2004-03-03 | 2011-09-13 | Halliburton Energy Services, Inc. | Resin compositions and methods of using such resin compositions in subterranean applications |
| CN107531569A (en) * | 2015-04-24 | 2018-01-02 | 克内奥斯公司 | For the auxiliary material of cement or refractory concrete composition, its purposes and cement and refractory concrete composition |
| CN118084437A (en) * | 2024-04-28 | 2024-05-28 | 石家庄铁道大学 | Shotcrete and its preparation method and application |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ATE403632T1 (en) * | 2000-05-25 | 2008-08-15 | Constr Res & Tech Gmbh | ADDITIVES FOR CEMENT COMPOSITIONS |
| JP4096192B2 (en) * | 2001-09-14 | 2008-06-04 | Basfポゾリス株式会社 | Additive for cement composition |
| US8215079B2 (en) | 2002-04-11 | 2012-07-10 | Encore Building Solutions, Inc | Building block and system for manufacture |
| US6869998B2 (en) * | 2003-06-23 | 2005-03-22 | Geo Specialty Chemicals, Inc. | Concrete or cement dispersant and method of use |
| GB2435165B (en) * | 2004-10-04 | 2009-09-23 | Grace W R & Co | Integrally waterproofed concrete |
| EP1795511A1 (en) * | 2005-12-08 | 2007-06-13 | Sika Technology AG | Composition and its utilisation to improve the processability of hydraulic setting compositions |
| JP4531799B2 (en) * | 2007-10-19 | 2010-08-25 | コンストラクション リサーチ アンド テクノロジー ゲーエムベーハー | Cement additive |
| JP5215680B2 (en) | 2008-01-28 | 2013-06-19 | コンストラクション リサーチ アンド テクノロジー ゲーエムベーハー | Shrinkage reducing agent |
| US9126866B2 (en) * | 2013-03-06 | 2015-09-08 | Construction Research & Technology Gmbh | Polycarboxylate ethers with branched side chains |
| JP2016538222A (en) | 2013-11-22 | 2016-12-08 | コンストラクション リサーチ アンド テクノロジー ゲーエムベーハーConstruction Research & Technology GmbH | Crack reduction material for cementitious compositions |
| CN110669212B (en) * | 2019-09-18 | 2020-09-29 | 西南石油大学 | Process for preparing metal-chelate type retarder by sol-gel method |
Family Cites Families (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5637259A (en) | 1979-08-30 | 1981-04-10 | Sanyo Chemical Ind Ltd | Cement contraction reducing agent |
| US4547223A (en) | 1981-03-02 | 1985-10-15 | Nihon Cement Co., Ltd. | Cement-shrinkage-reducing agent and cement composition |
| JPS5921557A (en) | 1982-07-26 | 1984-02-03 | 電気化学工業株式会社 | Cement dry shrinkage preventing agent |
| JPS59128250A (en) | 1983-01-06 | 1984-07-24 | 三洋化成工業株式会社 | Shrinkage decreasing agent for cement |
| JPS59152253A (en) | 1983-02-15 | 1984-08-30 | 竹本油脂株式会社 | Dry shrinkage reducing agent for hydraulic cement |
| US5174820A (en) | 1988-07-15 | 1992-12-29 | Fujisawa Pharmaceutical Co., Ltd. | Durability improving agent for cement-hydraulic-set substances, method of improving same, and cement-hydraulic-set substances improved in durability |
| JP2825855B2 (en) | 1988-07-15 | 1998-11-18 | 株式会社竹中工務店 | Cement hydraulics durability improving agent, durability improving method, and cement hydraulics with improved durability |
| ATE87601T1 (en) | 1988-07-15 | 1993-04-15 | Fujisawa Pharmaceutical Co | MEANS FOR IMPROVING THE STRENGTH OF HYDRAULICALLY SETTING CEMENT SUBSTANCES, METHOD OF IMPROVING SUCH STRENGTH AND HYDRAULICALLY SETTING CEMENT SUBSTANCES IMPROVED IN STRENGTH. |
| JPH066500B2 (en) | 1989-05-22 | 1994-01-26 | 日本セメント株式会社 | Shrinkage reducer for cement |
| US5181961A (en) | 1989-05-22 | 1993-01-26 | Nihon Cement Co., Ltd. | Cement composition |
| JP3203270B2 (en) * | 1992-09-08 | 2001-08-27 | 花王株式会社 | Admixture for concrete |
| US5556460A (en) | 1995-09-18 | 1996-09-17 | W.R. Grace & Co.-Conn. | Drying shrinkage cement admixture |
| US5614017A (en) | 1996-03-26 | 1997-03-25 | Arco Chemical Technology, L.P. | Cement additives |
| ES2146087T3 (en) | 1996-03-26 | 2000-07-16 | Arco Chem Tech | CEMENT ADDITIVES. |
| US5670578A (en) | 1996-12-10 | 1997-09-23 | Arco Chemical Technology, L.P. | Cement additives |
| US5912284A (en) * | 1996-12-26 | 1999-06-15 | Nippon Shokubai Co., Ltd. | Cement additive, its production process and use |
| US6166112A (en) | 1997-03-10 | 2000-12-26 | Nippon Shokubai Co., Ltd. | Cement admixture and cement composition |
| JP3285820B2 (en) | 1997-06-10 | 2002-05-27 | 株式会社日本触媒 | Method for producing polycarboxylic acid |
| JP3568430B2 (en) | 1998-09-22 | 2004-09-22 | 株式会社日本触媒 | Method for producing raw monomer for cement dispersant |
| WO2001010920A1 (en) | 1999-08-06 | 2001-02-15 | Kao Corporation | Process for producing (meth)acrylic acid polymer |
| DE19957177A1 (en) | 1999-11-27 | 2001-08-02 | Basf Ag | Process for the preparation of water-soluble polymers of esters from ethylenically unsaturated carboxylic acids and polyalkylene glycols |
-
2001
- 2001-04-19 EP EP01109696A patent/EP1149808B1/en not_active Expired - Lifetime
- 2001-04-19 DE DE60134190T patent/DE60134190D1/en not_active Expired - Lifetime
- 2001-04-23 US US09/840,397 patent/US6454850B2/en not_active Expired - Lifetime
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8017561B2 (en) * | 2004-03-03 | 2011-09-13 | Halliburton Energy Services, Inc. | Resin compositions and methods of using such resin compositions in subterranean applications |
| US20100249280A1 (en) * | 2007-05-30 | 2010-09-30 | Macklin Michael B | Cement Additive For Stucco Applications |
| US8097666B2 (en) * | 2007-05-30 | 2012-01-17 | W. R. Grace & Co.-Conn. | Cement additive for stucco applications |
| CN107531569A (en) * | 2015-04-24 | 2018-01-02 | 克内奥斯公司 | For the auxiliary material of cement or refractory concrete composition, its purposes and cement and refractory concrete composition |
| CN118084437A (en) * | 2024-04-28 | 2024-05-28 | 石家庄铁道大学 | Shotcrete and its preparation method and application |
Also Published As
| Publication number | Publication date |
|---|---|
| DE60134190D1 (en) | 2008-07-10 |
| EP1149808A3 (en) | 2006-07-26 |
| EP1149808B1 (en) | 2008-05-28 |
| EP1149808A2 (en) | 2001-10-31 |
| US6454850B2 (en) | 2002-09-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100771024B1 (en) | Cement Additives and Cement Compositions | |
| EP0931799B1 (en) | Cement admixture and cement composition | |
| JP4233294B2 (en) | Cement admixture, cement composition, and method for producing cement admixture | |
| US6258162B1 (en) | Cement composition | |
| US7232873B2 (en) | Polycarboxylic acid cement dispersant and method for producing concrete secondary product | |
| US6454850B2 (en) | Cement admixture and cement composition comprising this | |
| EP0931776B1 (en) | Cement admixture and cement composition | |
| EP1437330A1 (en) | Cement dispersant and cement composition comprising this | |
| WO2004078672A1 (en) | Cement admixture, cement composition and method for laying work the same, and method for producing cement hardened product | |
| WO2011034142A1 (en) | Cement admixture, cement composition, and polycarboxylic acid copolymer for cement admixture | |
| JP2007529397A (en) | Drying shrinkage reducing agent | |
| EP1725508B1 (en) | Additive for hydraulic material | |
| JP4410438B2 (en) | Cement dispersant and cement composition using the same | |
| KR100867212B1 (en) | Polycarboxylic acid polymer for blending in cement | |
| JP4947856B2 (en) | Cement dispersant and cement composition using the same | |
| JP4785267B2 (en) | Cement admixture and cement composition using the same | |
| JP4283940B2 (en) | Cement admixture | |
| JP4877691B2 (en) | Method of constructing cement admixture and cement composition | |
| US20070181039A1 (en) | Drying shrinkage-reducing agent | |
| JP2007076969A (en) | Admixture composition for hydraulic material | |
| JP4822613B2 (en) | Cement admixture and cement composition | |
| JP2007076970A (en) | Admixture composition for hydraulic material | |
| JP2003212622A (en) | Cement admixture and method for applying cement composition | |
| JP2002053358A (en) | Cement admixture and cement composition | |
| JP2003212623A (en) | Cement admixture and method for manufacturing hardened cement |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: NIPPON SHOKUBAI CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMASHITA, AKIHIKO;MITSUKAWA, HIROSHI;HIRATA, TSUYOSHI;REEL/FRAME:011732/0321 Effective date: 20010326 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| FPAY | Fee payment |
Year of fee payment: 12 |