US20010049433A1 - Method for producing 1,2-naphthoquinonediazide photosensitive agent - Google Patents
Method for producing 1,2-naphthoquinonediazide photosensitive agent Download PDFInfo
- Publication number
- US20010049433A1 US20010049433A1 US09/851,008 US85100801A US2001049433A1 US 20010049433 A1 US20010049433 A1 US 20010049433A1 US 85100801 A US85100801 A US 85100801A US 2001049433 A1 US2001049433 A1 US 2001049433A1
- Authority
- US
- United States
- Prior art keywords
- naphthoquinonediazide
- photosensitive agent
- producing
- amide
- organic amine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 53
- ALVGSDOIXRPZFH-UHFFFAOYSA-N [(1-diazonioimino-3,4-dioxonaphthalen-2-ylidene)hydrazinylidene]azanide Chemical compound C1=CC=C2C(=N[N+]#N)C(=NN=[N-])C(=O)C(=O)C2=C1 ALVGSDOIXRPZFH-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 42
- 238000001914 filtration Methods 0.000 claims abstract description 41
- 150000001412 amines Chemical class 0.000 claims abstract description 38
- 150000001408 amides Chemical class 0.000 claims abstract description 37
- 239000002253 acid Substances 0.000 claims abstract description 33
- 239000002904 solvent Substances 0.000 claims abstract description 30
- 239000011541 reaction mixture Substances 0.000 claims abstract description 22
- 239000003960 organic solvent Substances 0.000 claims abstract description 20
- 150000002989 phenols Chemical class 0.000 claims abstract description 19
- 150000003839 salts Chemical class 0.000 claims abstract description 17
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 30
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 21
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 239000002244 precipitate Substances 0.000 claims description 16
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 claims description 14
- 238000009833 condensation Methods 0.000 claims description 14
- 230000005494 condensation Effects 0.000 claims description 14
- 239000000706 filtrate Substances 0.000 claims description 14
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 12
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 claims description 10
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 claims description 8
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 7
- 230000002378 acidificating effect Effects 0.000 claims description 6
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 5
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 239000012535 impurity Substances 0.000 abstract description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 44
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 33
- 239000000243 solution Substances 0.000 description 27
- 239000011369 resultant mixture Substances 0.000 description 22
- 230000000052 comparative effect Effects 0.000 description 15
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 12
- 239000012456 homogeneous solution Substances 0.000 description 10
- ILWRPSCZWQJDMK-UHFFFAOYSA-N triethylazanium;chloride Chemical compound Cl.CCN(CC)CC ILWRPSCZWQJDMK-UHFFFAOYSA-N 0.000 description 10
- ZRDYULMDEGRWRC-UHFFFAOYSA-N (4-hydroxyphenyl)-(2,3,4-trihydroxyphenyl)methanone Chemical compound C1=CC(O)=CC=C1C(=O)C1=CC=C(O)C(O)=C1O ZRDYULMDEGRWRC-UHFFFAOYSA-N 0.000 description 9
- HTQNYBBTZSBWKL-UHFFFAOYSA-N 2,3,4-trihydroxbenzophenone Chemical compound OC1=C(O)C(O)=CC=C1C(=O)C1=CC=CC=C1 HTQNYBBTZSBWKL-UHFFFAOYSA-N 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 239000003929 acidic solution Substances 0.000 description 6
- 229920002120 photoresistant polymer Polymers 0.000 description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- 125000004203 4-hydroxyphenyl group Chemical group [H]OC1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 3
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 3
- 238000001226 reprecipitation Methods 0.000 description 3
- -1 sulfonate ion Chemical class 0.000 description 3
- RXYPXQSKLGGKOL-UHFFFAOYSA-N 1,4-dimethylpiperazine Chemical compound CN1CCN(C)CC1 RXYPXQSKLGGKOL-UHFFFAOYSA-N 0.000 description 2
- PAMIQIKDUOTOBW-UHFFFAOYSA-N 1-methylpiperidine Chemical compound CN1CCCCC1 PAMIQIKDUOTOBW-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000007810 chemical reaction solvent Substances 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- GBQZZLQKUYLGFT-UHFFFAOYSA-N (2,4-dihydroxyphenyl)-(2,3,4-trihydroxyphenyl)methanone Chemical compound OC1=CC(O)=CC=C1C(=O)C1=CC=C(O)C(O)=C1O GBQZZLQKUYLGFT-UHFFFAOYSA-N 0.000 description 1
- REIZMDJZLFAPQU-UHFFFAOYSA-N (3,4-dihydroxyphenyl)-(2,3,4-trihydroxyphenyl)methanone Chemical compound C1=C(O)C(O)=CC=C1C(=O)C1=CC=C(O)C(O)=C1O REIZMDJZLFAPQU-UHFFFAOYSA-N 0.000 description 1
- AVFZOVWCLRSYKC-UHFFFAOYSA-N 1-methylpyrrolidine Chemical compound CN1CCCC1 AVFZOVWCLRSYKC-UHFFFAOYSA-N 0.000 description 1
- IIFFFBSAXDNJHX-UHFFFAOYSA-N 2-methyl-n,n-bis(2-methylpropyl)propan-1-amine Chemical compound CC(C)CN(CC(C)C)CC(C)C IIFFFBSAXDNJHX-UHFFFAOYSA-N 0.000 description 1
- AGBJJOIVDGQVLV-UHFFFAOYSA-N 3-[(3-hydroxy-2,4-dimethylphenyl)methyl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC=C1CC1=CC=C(C)C(O)=C1C AGBJJOIVDGQVLV-UHFFFAOYSA-N 0.000 description 1
- FNFYXIMJKWENNK-UHFFFAOYSA-N 4-[(2,4-dihydroxyphenyl)methyl]benzene-1,3-diol Chemical compound OC1=CC(O)=CC=C1CC1=CC=C(O)C=C1O FNFYXIMJKWENNK-UHFFFAOYSA-N 0.000 description 1
- IKQWMLALTXOOGU-UHFFFAOYSA-N 4-[(4-hydroxy-2,6-dimethylphenyl)methyl]-3,5-dimethylphenol Chemical compound CC1=CC(O)=CC(C)=C1CC1=C(C)C=C(O)C=C1C IKQWMLALTXOOGU-UHFFFAOYSA-N 0.000 description 1
- WKNMHADBVOPGEF-UHFFFAOYSA-N 4-[(4-hydroxy-2-methylphenyl)methyl]-3-methylphenol Chemical compound CC1=CC(O)=CC=C1CC1=CC=C(O)C=C1C WKNMHADBVOPGEF-UHFFFAOYSA-N 0.000 description 1
- YMSALPCDWZMQQG-UHFFFAOYSA-N 4-[2-(2,4-dihydroxyphenyl)propan-2-yl]benzene-1,3-diol Chemical compound C=1C=C(O)C=C(O)C=1C(C)(C)C1=CC=C(O)C=C1O YMSALPCDWZMQQG-UHFFFAOYSA-N 0.000 description 1
- SDDLEVPIDBLVHC-UHFFFAOYSA-N Bisphenol Z Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)CCCCC1 SDDLEVPIDBLVHC-UHFFFAOYSA-N 0.000 description 1
- GSCCALZHGUWNJW-UHFFFAOYSA-N N-Cyclohexyl-N-methylcyclohexanamine Chemical compound C1CCCCC1N(C)C1CCCCC1 GSCCALZHGUWNJW-UHFFFAOYSA-N 0.000 description 1
- AHVYPIQETPWLSZ-UHFFFAOYSA-N N-methyl-pyrrolidine Natural products CN1CC=CC1 AHVYPIQETPWLSZ-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- LNTHITQWFMADLM-UHFFFAOYSA-N anhydrous gallic acid Natural products OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- WXNRYSGJLQFHBR-UHFFFAOYSA-N bis(2,4-dihydroxyphenyl)methanone Chemical compound OC1=CC(O)=CC=C1C(=O)C1=CC=C(O)C=C1O WXNRYSGJLQFHBR-UHFFFAOYSA-N 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 229940043279 diisopropylamine Drugs 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229940074391 gallic acid Drugs 0.000 description 1
- 235000004515 gallic acid Nutrition 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000004464 hydroxyphenyl group Chemical group 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/022—Quinonediazides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C303/00—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
- C07C303/26—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids
- C07C303/28—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids by reaction of hydroxy compounds with sulfonic acids or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C309/00—Sulfonic acids; Halides, esters, or anhydrides thereof
- C07C309/63—Esters of sulfonic acids
- C07C309/72—Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
- C07C309/76—Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon skeleton
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/022—Quinonediazides
- G03F7/0226—Quinonediazides characterised by the non-macromolecular additives
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/022—Quinonediazides
- G03F7/023—Macromolecular quinonediazides; Macromolecular additives, e.g. binders
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/022—Quinonediazides
- G03F7/023—Macromolecular quinonediazides; Macromolecular additives, e.g. binders
- G03F7/0233—Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/022—Quinonediazides
- G03F7/023—Macromolecular quinonediazides; Macromolecular additives, e.g. binders
- G03F7/0233—Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
- G03F7/0236—Condensation products of carbonyl compounds and phenolic compounds, e.g. novolak resins
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/039—Macromolecular compounds which are photodegradable, e.g. positive electron resists
- G03F7/0392—Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2602/00—Systems containing two condensed rings
- C07C2602/02—Systems containing two condensed rings the rings having only two atoms in common
- C07C2602/04—One of the condensed rings being a six-membered aromatic ring
- C07C2602/10—One of the condensed rings being a six-membered aromatic ring the other ring being six-membered, e.g. tetraline
Definitions
- the present invention relates to a method for producing 1,2-naphthoquinonediazide photosensitive agent used in a positive-type photoresist.
- Positive-type photo resists containing an alkali-soluble resin and a 1,2-naphthoquinonediazide photosensitive agent are materials known to have excellent resolution, sensitivity, and etching resistance, and are used for producing semiconductor elements and liquid crystal elements.
- the photosensitive agent used in such a positive-type photoresist can be obtained through esterification between a polyhydric phenolic compound having hydroxyl groups and a 1,2-naphthoquinonediazide-sulfonic acid halide.
- miniaturization of semiconductor elements has imposed a requirement for a strict control of the level of impurities in photoresists. Accordingly, there is demand for reducing the impurity level of the 1,2-naphthoquinonediazide photosensitive agent used in the photoresists.
- Japanese Patent Application Laid-Open (kokai) No. 8-328247 discloses one previous method for producing a 1,2-naphthoquinonediazide.
- polyhydric phenolic compound and a 1,2-naphthoquinonediazide-sulfonic acid halide are subjected to a condensation reaction in an organic solvent in the presence of an organic amine; the resultant reaction mixture is neutralized; the formed organic amine acid salt is filtered off; and the filtrate is poured into an aqueous acidic solution.
- this method results in the presence of organic amine, acid, or organic amine acid salt which cannot be removed to a satisfactory degree of purity.
- a 1,2-naphthoquinonediazide photosensitive agent containing a low level of impurities may be obtained if the aforementioned condensation is performed in an amide solvent serving as a reaction solvent, then neutralizing the resultant reaction mixture, filtering off the formed organic amine acid salt, and pouring the filtrate into an aqueous acidic solution.
- this method is also deficient in that a 1,2-naphthoquinonediazide-sulfonic acid halide is decomposed in amide solvent, and the resulting 1,2-naphthoquinonediazide-sulfonic acid remains as an impurity in the resulting photosensitive agent product.
- the present invention is based on the discovery that a high-purity 1,2-naphthoquinonediazide photosensitive agent containing a low level of impurities can be obtained by condensing, in an organic solvent other than amide, at least one polyhydric phenolic compound and at least one 1,2-naphthoquinonediazide-sulfonic acid halide in the presence of an organic amine; subsequently adding an amide solvent to the resultant reaction mixture; and filtering off the formed organic amine hydrohalide salt.
- the present invention provides a method for producing 1,2-naphthoquinonediazide photosensitive agent, comprising condensing, in organic solvent other than amide, at least one polyhydric phenolic compound and at least one 1,2-napthoquinonediazide-sulfonic acid halide in the presence of organic amine; subsequently adding amide solvent to the resultant reaction mixture; and filtering off the formed organic amine acid salt.
- a method for producing 1,2-naphthoquinonediazide photosensitive agent comprising condensing, in organic solvent other than amide, at least one polyhydric phenolic compound and at least one 1,2-naphthoquinonediazide-sulfonic acid halide in the presence of organic amine; subsequently adding amide solvent to the resultant reaction mixture; further adding volatile acid so as to render the resultant reaction mixture acidic; and filtering off the formed organic amine acid salt.
- a method for producing 1,2-naphthoquinonediazide photosensitive agent comprising condensing, in organic solvent other than amide, at least one polyhydric phenolic compound and at least one 1,2-naphthoquinonediazide-sulfonic acid halide in the presence of organic amine; subsequently adding amide solvent to the resultant reaction mixture; further adding volatile acid so as to render the resultant reaction mixture acidic; filtering off the formed organic amine acid salt; pouring the resultant filtrate into pure water or an aqueous solution of a volatile acid, to thereby form precipitates; and collecting the precipitates through filtration.
- a 1,2-naphthoquinonediazide photosensitive agent can be obtained by condensing, in organic solvent other than amide, at least one polyhydric phenolic compound and at least one 1,2-naphthoquinonediazide-sulfonic acid halide in the presence of organic amine; subsequently adding amide solvent to the resultant reaction mixture; and filtering off the formed organic amine acid salt.
- Representative polyhydric phenolic compounds which can be used in the instant process include benzophenones such as 2,3,4-trihydroxybenzophenone, 2,3,4,4′-tetrahydroxybenzophenone, 2,2′,4,4′-tetrahydroxybenzophenone, 2,2′,3,4,4′-pentahydroxybenzophenone, and 2,3,3′,4,4′-pentahydroxybenzophenone; gallic acid alkyl esters; bis((poly)hydroxyphenyl)alkanes such as bis(4-hydroxy-2-methylphenyl)methane, bis(2,6-dimethyl-4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)cyclohexane, bis(2,4-dihydroxyphenyl)methane, 2,2-bis(2,4-dihydroxyphenyl)propane, bis(2,4-dimethyl-3-hydroxyphenyl)methane, (4-hydroxyphenyl)(2,3,4-hydroxyphen
- polynuclear phenols disclosed, for example, in Japanese Patent Publication (kokoku) No. 4-502519 and Japanese Patent Application Laid-Open (kokai) Nos. 3-48249, 6-167805, 7-104465, 7-104467, 7-159989, 7-159990, 7-168355, 7-175213, 7-219920, 7-225476, 7-230166, 8-29978, 8-202031, 8-245461, and 8-320558.
- These polyhydric phenolic compounds can be used in reaction singly or in combination of two or more species.
- 1,2-naphthoquinonediazide-sulfonic acid halides which can be used in the instant process include 1,2-naphthoquinonediazide-4-sulfonyl chloride, 1,2-naphthoquinonediazide-5-sulfonyl chloride, and 1,2-naphthoquinonediazide-6-sulfonyl chloride. These 1,2-naphthoquinonediazide-sulfonic acid halides can be used singly or in combination of two or more.
- organic amines which can be used in the instant process include ethylamine, diethylamine, triethylamine, diisopropylamine, tripropylamine, triisobutylamine, triethanolamine, monomethyldicyclohexylamine, N-methylpiperidine, N-methylmorpholine, N-methylpyrrolidine, 1,4-dimethylpiperazine, pyridine, N,N-dimethylaniline, and N,N-dimethylaminopyridine. These amines can be used singly or in combination of two or more.
- the reaction solvent used in the present invention is an organic solvent other than amide.
- organic solvents include acetone, 1,4-dioxane, 1,3-dioxolane, tetrahydrofuran (THF), ⁇ -butyrolactone, and propylene carbonate. These specific solvents are preferred. These solvents can be used singly or in combination of two or more.
- amide solvent is added.
- preferred amide solvents which can be used include N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, and N,N-dimethylimidazolidinone, and at least one species selected therefrom is used.
- Especially preferred amide solvents which can be used include N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide and N,N-dimethylimidazolidinone.
- At least one polyhydric phenolic compound and at least one 1,2-naphthoquinonediazide-sulfonic acid halide are dissolved in solvent, and, to the resultant solution, organic amine or a solution of organic amine in solvent is added, to thereby effect a condensation reaction.
- polyhydric phenolic compound and organic amine can be dissolved in solvent, and, to the resultant solution, 1,2-naphthoquinonediazide-sulfonic acid halide or a solution of the halide in a solvent is added.
- the resultant mixture is allowed to react for about ten minutes to five hours with stirring.
- Combining the two solutions for effecting condensation is performed at the temperature range of about from ⁇ 10° C. to 40° C., preferably at about 10-35° C., and condensation is carried out over a period of about from ten minutes to three hours.
- the 1,2-naphthoquinonediazide-sulfonic acid halide is added in an amount of about 0.3-1.1 mol, preferably about 0.5-1.0 mol, based on 1 equivalent, in terms of hydroxyl group, of the polyhydric phenolic compound.
- the amount is less than about 0.3 mol, the photoresist formed from an alkali-soluble resin exhibits poor contrast, whereas when the amount is greater than about 1.2 mol, unreacted 1,2-naphthoquinonediazide-sulfonic acid halide is prone to remain.
- the organic amine is added typically in an amount of about 1.0-1.5 mol, preferably about 1.05-1.2 mol based on 1 mol of the 1,2-naphthoquinonediazide-sulfonic acid halide.
- the amount is less than about 1.0 mol, 1,2-naphthoquinonediazide-sulfonic acid halide is prone to remain, whereas when the amount is in excess of about 1.5 mol, a 1,2-quinonediazide moiety is readily decomposed by an excessive organic amine.
- the solvent is used in an amount equal to about 2-10 times, preferably about 3-5 times, the total weight of the 1,2-naphthoquinonediazide-sulfonic acid halide and the polyhydric phenolic compound.
- amount is less than about 2 times the total weight, dissolution of a reaction component might be incomplete, and storage stability, good storage stability being one object of the present invention, becomes poor.
- amount of in excess of about 10 times the total weight a large amount of water is required to cause re-precipitation, which is economically disadvantageous.
- amide solvent is added.
- the amide solvent is used in an amount by weight preferably about 0.2-2 times, more preferably about 0.25-1 times, the weight of the solvent employed for condensation.
- the amount is less than about 0.2 times the weight, sufficient effects of the present invention cannot be attained, whereas when the amount is about 2 times or more the weight, a large amount of water is required to cause re-precipitation, which is economically disadvantageous.
- the reaction mixture is rendered acidic by adding a volatile acid prior to filtration and subsequently separating off the formed organic amine acid salt through filtration.
- volatile acid which can be so used in acidification include hydrochloric acid, acetic acid, and formic acid.
- the volatile acid is added in an amount, represented by the ratio of (1,2-naphthoquinonediazide-sulfonic acid halide/mol+acid to be added/mol) to (organic amine/mol), of about 1.0-1.5, preferably about 1.02-1.15.
- the reaction mixture is poured into pure water or an aqueous solution of a volatile acid, to thereby re-precipitate a 1,2-naphthoquinonediazide photosensitive agent.
- the re-precipitated 1,2-naphthoquinonediazide photosensitive agent is then filtered off, washed with pure water or a diluted aqueous solution of acid, and dried, to thereby yield the desired 1,2-naphthoquinonediazide photosensitive agent.
- the reaction mixture is poured into pure water, to thereby re-precipitate the photosensitive agent, and the re-precipitated 1,2-naphthoquinonediazide photosensitive agent is separated through filtration.
- pouring the reaction mixture into an aqueous acidic solution is preferred so as to facilitate filtration, since use of pure water might make filtration difficult.
- preferred acids to render the reaction mixture weakly acidic include volatile acids such as hydrochloric acid, acetic acid, and formic acid.
- the diluted aqueous acidic solution has an acid concentration of approximately 0.02-0.5 N.
- the amount of pure water or the aqueous acidic solution used for re-precipitation is about 2-10 times the weight of the organic solvent used, preferably about 3-6 times.
- the re-precipitated photosensitive agent is separated through filtration, washed with pure water or a diluted aqueous acidic solution, and dried in vacuum, to thereby remove the volatile acid.
- the formed triethylamine hydrochloride was separated off through filtration.
- the resultant filtrate was poured into a 0. 1% aqueous hydrochloric acid solution (3,000 ml) maintained at 30-35° C.
- the formed precipitates were collected through filtration, washed with water, and dried at 45° C., to thereby yield 100 g of a 2,3,4,4′-tetrahydroxybenzophenone 1,2-naphthoquinonediazide-5-sulfonate ester.
- the formed triethylamine hydrochloride was separated off through filtration.
- the resultant filtrate was poured into a 0. 1% aqueous hydrochloric acid solution (3,000 ml) maintained at 30-35° C.
- the formed precipitates were collected through filtration, washed with water, and dried at 45° C., to thereby yield 100 g of a 2,3,4,4′-tetrahydroxybenzophenone 1,2-naphthoquinonediazide-5-sulfonate ester.
- the resultant filtrate was poured into a 0.1% aqueous hydrochloric acid solution (1,800 ml) maintained at 30-35° C.
- the formed precipitates were collected through filtration, washed with water, and dried at 45° C., to thereby yield 100 g of a 2,3,4-trihydroxybenzophenone 1,2-naphthoquinonediazide-5-sulfonate ester.
- the formed triethylamine hydrochloride was separated off through filtration.
- the resultant filtrate was poured into a 0.1% aqueous hydrochloric acid solution (1,700 ml) maintained at 20-25° C.
- the formed precipitates were collected through filtration, washed with water, and dried at 45° C., to thereby yield 100 g of a 2,3,4-trihydroxybenzophenone 1,2-naphthoquinonediazide-5-sulfonate ester.
- N-methylpyrrolidone 150 g was added to the resultant mixture. Further, 30 minutes after addition of N-methylpyrrolidone was complete, 35% hydrochloric acid (5.2 g) was added dropwise to the resultant mixture. The formed triethylamine hydrochloride was separated off through filtration, and the resultant filtrate was poured into a 0.1% aqueous hydrochloric acid solution (2,500 ml) maintained at 20-25° C.
- the formed precipitates were collected through filtration, washed with water, and dried at 45° C., to thereby yield 100 g of a 3,3′-bis(2-hydroxy-5-methylbenzyl)-2,2′-dihydroxy-5,5′-dimethyldiphenylmethane 1,2-naphthoquinonediazide-5-sulfonate ester.
- the resultant filtrate was poured into a 0.1% aqueous hydrochloric acid solution (1,700 ml) maintained at 20-25° C.
- the formed precipitates were collected through filtration, washed with water, and dried at 45° C., to thereby yield 100 g of a 2,3,4-trihydroxybenzophenone 1,2-naphthoquinonediazide-5-sulfonate ester.
- a high-purity 1,2-naphthoquinonediazide photosensitive agent containing a low level of impurities can be produced by effecting condensation, in an organic solvent other than amide, between a polyhydric phenolic compound and a 1,2-naphthoquinonediazide-sulfonic acid halide in the presence of an organic amine; subsequently adding an amide solvent to the resultant reaction mixture; and separating off the formed organic amine hydrohalide salt through filtration.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Materials For Photolithography (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
- The present invention relates to a method for producing 1,2-naphthoquinonediazide photosensitive agent used in a positive-type photoresist.
- Positive-type photo resists containing an alkali-soluble resin and a 1,2-naphthoquinonediazide photosensitive agent are materials known to have excellent resolution, sensitivity, and etching resistance, and are used for producing semiconductor elements and liquid crystal elements. Generally, the photosensitive agent used in such a positive-type photoresist can be obtained through esterification between a polyhydric phenolic compound having hydroxyl groups and a 1,2-naphthoquinonediazide-sulfonic acid halide. In recent years, miniaturization of semiconductor elements has imposed a requirement for a strict control of the level of impurities in photoresists. Accordingly, there is demand for reducing the impurity level of the 1,2-naphthoquinonediazide photosensitive agent used in the photoresists.
- Japanese Patent Application Laid-Open (kokai) No. 8-328247 discloses one previous method for producing a 1,2-naphthoquinonediazide. There, polyhydric phenolic compound and a 1,2-naphthoquinonediazide-sulfonic acid halide are subjected to a condensation reaction in an organic solvent in the presence of an organic amine; the resultant reaction mixture is neutralized; the formed organic amine acid salt is filtered off; and the filtrate is poured into an aqueous acidic solution. However, this method results in the presence of organic amine, acid, or organic amine acid salt which cannot be removed to a satisfactory degree of purity.
- A 1,2-naphthoquinonediazide photosensitive agent containing a low level of impurities may be obtained if the aforementioned condensation is performed in an amide solvent serving as a reaction solvent, then neutralizing the resultant reaction mixture, filtering off the formed organic amine acid salt, and pouring the filtrate into an aqueous acidic solution. However, this method is also deficient in that a 1,2-naphthoquinonediazide-sulfonic acid halide is decomposed in amide solvent, and the resulting 1,2-naphthoquinonediazide-sulfonic acid remains as an impurity in the resulting photosensitive agent product.
- Accordingly, a continuing need exists for a process which provides 1,2-naphthoquinonediazide photosensitive agent containing very small amounts of impurities such as an organic amine, an acid, or acid salts of the organic amine, and 1,2-naphthoquinonediazide-sulfonic acid.
- The present invention is based on the discovery that a high-purity 1,2-naphthoquinonediazide photosensitive agent containing a low level of impurities can be obtained by condensing, in an organic solvent other than amide, at least one polyhydric phenolic compound and at least one 1,2-naphthoquinonediazide-sulfonic acid halide in the presence of an organic amine; subsequently adding an amide solvent to the resultant reaction mixture; and filtering off the formed organic amine hydrohalide salt.
- Accordingly, the present invention provides a method for producing 1,2-naphthoquinonediazide photosensitive agent, comprising condensing, in organic solvent other than amide, at least one polyhydric phenolic compound and at least one 1,2-napthoquinonediazide-sulfonic acid halide in the presence of organic amine; subsequently adding amide solvent to the resultant reaction mixture; and filtering off the formed organic amine acid salt.
- In an alternative embodiment of the invention, there is provided a method for producing 1,2-naphthoquinonediazide photosensitive agent, comprising condensing, in organic solvent other than amide, at least one polyhydric phenolic compound and at least one 1,2-naphthoquinonediazide-sulfonic acid halide in the presence of organic amine; subsequently adding amide solvent to the resultant reaction mixture; further adding volatile acid so as to render the resultant reaction mixture acidic; and filtering off the formed organic amine acid salt.
- In still another embodiment of the present invention, there is provided a method for producing 1,2-naphthoquinonediazide photosensitive agent, comprising condensing, in organic solvent other than amide, at least one polyhydric phenolic compound and at least one 1,2-naphthoquinonediazide-sulfonic acid halide in the presence of organic amine; subsequently adding amide solvent to the resultant reaction mixture; further adding volatile acid so as to render the resultant reaction mixture acidic; filtering off the formed organic amine acid salt; pouring the resultant filtrate into pure water or an aqueous solution of a volatile acid, to thereby form precipitates; and collecting the precipitates through filtration.
- According to the present invention, a 1,2-naphthoquinonediazide photosensitive agent can be obtained by condensing, in organic solvent other than amide, at least one polyhydric phenolic compound and at least one 1,2-naphthoquinonediazide-sulfonic acid halide in the presence of organic amine; subsequently adding amide solvent to the resultant reaction mixture; and filtering off the formed organic amine acid salt.
- Representative polyhydric phenolic compounds which can be used in the instant process include benzophenones such as 2,3,4-trihydroxybenzophenone, 2,3,4,4′-tetrahydroxybenzophenone, 2,2′,4,4′-tetrahydroxybenzophenone, 2,2′,3,4,4′-pentahydroxybenzophenone, and 2,3,3′,4,4′-pentahydroxybenzophenone; gallic acid alkyl esters; bis((poly)hydroxyphenyl)alkanes such as bis(4-hydroxy-2-methylphenyl)methane, bis(2,6-dimethyl-4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)cyclohexane, bis(2,4-dihydroxyphenyl)methane, 2,2-bis(2,4-dihydroxyphenyl)propane, bis(2,4-dimethyl-3-hydroxyphenyl)methane, (4-hydroxyphenyl)(2,3,4-hydroxyphenyl)methane, and 2-(4-hydroxyphenyl)-2-(2,3,4-hydroxyphenyl)propane; polyhydroxytriphenylalkanes disclosed, for example, in Japanese Patent Application Laid-Open (kokai) Nos. 3-142468, 3-158856, 4-29242, and 4-282454; polyhydroxybenzopyrans disclosed in Japanese Patent Application Laid-Open (kokai) No. 3-215863; polyhydroxyindanes disclosed, for example, in Japanese Patent Application Laid-Open (kokai) Nos. 3-215862 and 6-95374; polyhydroxycoumarones disclosed in Japanese Patent Application Laid-Open (kokai) Nos. 3-185447 and 7-56331; polyhydroxyphthalides disclosed in Japanese Patent Application Laid-Open (kokai) No. 5-27429; polyhydroxycoumarins disclosed in Japanese Patent Application Laid-Open (kokai) No. 5-27428; and polynuclear phenols disclosed, for example, in Japanese Patent Publication (kokoku) No. 4-502519 and Japanese Patent Application Laid-Open (kokai) Nos. 3-48249, 6-167805, 7-104465, 7-104467, 7-159989, 7-159990, 7-168355, 7-175213, 7-219920, 7-225476, 7-230166, 8-29978, 8-202031, 8-245461, and 8-320558. These polyhydric phenolic compounds can be used in reaction singly or in combination of two or more species.
- Examples of 1,2-naphthoquinonediazide-sulfonic acid halides which can be used in the instant process include 1,2-naphthoquinonediazide-4-sulfonyl chloride, 1,2-naphthoquinonediazide-5-sulfonyl chloride, and 1,2-naphthoquinonediazide-6-sulfonyl chloride. These 1,2-naphthoquinonediazide-sulfonic acid halides can be used singly or in combination of two or more.
- Examples of organic amines which can be used in the instant process include ethylamine, diethylamine, triethylamine, diisopropylamine, tripropylamine, triisobutylamine, triethanolamine, monomethyldicyclohexylamine, N-methylpiperidine, N-methylmorpholine, N-methylpyrrolidine, 1,4-dimethylpiperazine, pyridine, N,N-dimethylaniline, and N,N-dimethylaminopyridine. These amines can be used singly or in combination of two or more.
- The reaction solvent used in the present invention is an organic solvent other than amide. Examples of preferred organic solvents include acetone, 1,4-dioxane, 1,3-dioxolane, tetrahydrofuran (THF), γ-butyrolactone, and propylene carbonate. These specific solvents are preferred. These solvents can be used singly or in combination of two or more.
- After condensation is completed, amide solvent is added. Examples of preferred amide solvents which can be used include N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, and N,N-dimethylimidazolidinone, and at least one species selected therefrom is used. Especially preferred amide solvents which can be used include N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide and N,N-dimethylimidazolidinone.
- In a typical procedure, at least one polyhydric phenolic compound and at least one 1,2-naphthoquinonediazide-sulfonic acid halide are dissolved in solvent, and, to the resultant solution, organic amine or a solution of organic amine in solvent is added, to thereby effect a condensation reaction. Alternatively, polyhydric phenolic compound and organic amine can be dissolved in solvent, and, to the resultant solution, 1,2-naphthoquinonediazide-sulfonic acid halide or a solution of the halide in a solvent is added. Subsequently, the resultant mixture is allowed to react for about ten minutes to five hours with stirring. Combining the two solutions for effecting condensation is performed at the temperature range of about from −10° C. to 40° C., preferably at about 10-35° C., and condensation is carried out over a period of about from ten minutes to three hours.
- The 1,2-naphthoquinonediazide-sulfonic acid halide is added in an amount of about 0.3-1.1 mol, preferably about 0.5-1.0 mol, based on 1 equivalent, in terms of hydroxyl group, of the polyhydric phenolic compound. When the amount is less than about 0.3 mol, the photoresist formed from an alkali-soluble resin exhibits poor contrast, whereas when the amount is greater than about 1.2 mol, unreacted 1,2-naphthoquinonediazide-sulfonic acid halide is prone to remain. The organic amine is added typically in an amount of about 1.0-1.5 mol, preferably about 1.05-1.2 mol based on 1 mol of the 1,2-naphthoquinonediazide-sulfonic acid halide. When the amount is less than about 1.0 mol, 1,2-naphthoquinonediazide-sulfonic acid halide is prone to remain, whereas when the amount is in excess of about 1.5 mol, a 1,2-quinonediazide moiety is readily decomposed by an excessive organic amine. The solvent is used in an amount equal to about 2-10 times, preferably about 3-5 times, the total weight of the 1,2-naphthoquinonediazide-sulfonic acid halide and the polyhydric phenolic compound. When the amount is less than about 2 times the total weight, dissolution of a reaction component might be incomplete, and storage stability, good storage stability being one object of the present invention, becomes poor. When the amount of in excess of about 10 times the total weight, a large amount of water is required to cause re-precipitation, which is economically disadvantageous.
- After condensation is complete, amide solvent is added. The amide solvent is used in an amount by weight preferably about 0.2-2 times, more preferably about 0.25-1 times, the weight of the solvent employed for condensation. When the amount is less than about 0.2 times the weight, sufficient effects of the present invention cannot be attained, whereas when the amount is about 2 times or more the weight, a large amount of water is required to cause re-precipitation, which is economically disadvantageous.
- After addition of the amide solvent to the reaction mixture is complete, the resulting organic amine acid salt is separated off through filtration. Preferably, the reaction mixture is rendered acidic by adding a volatile acid prior to filtration and subsequently separating off the formed organic amine acid salt through filtration. Examples of volatile acid which can be so used in acidification include hydrochloric acid, acetic acid, and formic acid. The volatile acid is added in an amount, represented by the ratio of (1,2-naphthoquinonediazide-sulfonic acid halide/mol+acid to be added/mol) to (organic amine/mol), of about 1.0-1.5, preferably about 1.02-1.15.
- After removal of the organic amine acid salt through filtration, the reaction mixture is poured into pure water or an aqueous solution of a volatile acid, to thereby re-precipitate a 1,2-naphthoquinonediazide photosensitive agent. The re-precipitated 1,2-naphthoquinonediazide photosensitive agent is then filtered off, washed with pure water or a diluted aqueous solution of acid, and dried, to thereby yield the desired 1,2-naphthoquinonediazide photosensitive agent. In a typical procedure, the reaction mixture is poured into pure water, to thereby re-precipitate the photosensitive agent, and the re-precipitated 1,2-naphthoquinonediazide photosensitive agent is separated through filtration. However, pouring the reaction mixture into an aqueous acidic solution is preferred so as to facilitate filtration, since use of pure water might make filtration difficult. Examples of preferred acids to render the reaction mixture weakly acidic include volatile acids such as hydrochloric acid, acetic acid, and formic acid. The diluted aqueous acidic solution has an acid concentration of approximately 0.02-0.5 N. The amount of pure water or the aqueous acidic solution used for re-precipitation is about 2-10 times the weight of the organic solvent used, preferably about 3-6 times. The re-precipitated photosensitive agent is separated through filtration, washed with pure water or a diluted aqueous acidic solution, and dried in vacuum, to thereby remove the volatile acid.
- The present invention is still more fully described in the following examples, which are representative and should not be construed as limiting the invention.
- Into a three-neck flask, 2,3,4,4′-tetrahydroxybenzophenone (31 g), 1,2-naphthoquinonediazide-5-sulfonyl chloride (85.5 g), and tetrahydroifuran (570 g) were placed, and the resultant mixture was dissolved, to thereby provide a homogeneous solution. Subsequently, a mixture of triethylamine/tetrahydrofuran (35.4 g/35.4 g) was added dropwise to the solution at 30-35° C. over one hour. Thirty minutes after completion of addition, 35% hydrochloric acid (6.6 g) was added dropwise to the resultant mixture. The formed triethylamine hydrochloride was separated off through filtration. The resultant filtrate was poured into a 0. 1% aqueous hydrochloric acid solution (3,000 ml) maintained at 30-35° C. The formed precipitates were collected through filtration, washed with water, and dried at 45° C., to thereby yield 100 g of a 2,3,4,4′-tetrahydroxybenzophenone 1,2-naphthoquinonediazide-5-sulfonate ester.
- Into a three-neck flask, 2,3,4,4′-tetrahydroxybenzophenone (31 g), 1,2-naphthoquinonediazide-5-sulfonyl chloride (85.5 g), and tetrahydrofuran (450 g) were placed, and the resultant mixture was dissolved, to thereby provide a homogeneous solution. Subsequently, a mixture of triethylamine/tetrahydrofiran (35.4 g/35.4 g) was added dropwise to the solution at 30-35° C. over one hour. Thirty minutes after completion of addition, N,N′-dimethylacetamide (100 g) was added to the resultant mixture. Further, 30 minutes after addition of the amide was complete, 35% hydrochloric acid (6.6 g) was added dropwise to the resultant mixture. The formed triethylamine hydrochloride was separated off through filtration. The resultant filtrate was poured into a 0.1% aqueous hydrochloric acid solution (2,800 ml) maintained at 20-25° C. The formed precipitates were collected through filtration, washed with water, and dried at 45° C., to thereby yield 100 g of a 2,3,4,4′-tetrahydroxybenzophenone 1,2-naphthoquinonediazide-5-sulfonate ester.
- The chloride ion content of the photosensitive agent obtained in Comparative Production Example 1 and that obtained in Production Example 1 were measured. As shown in Table 1, the chloride ion content of the photosensitive agent obtained in Production Example 1 according to the present invention is remarkably low.
TABLE 1 Chloride ion content Comparative Production Example 1 230 ppm Production Example 1 ≦10 ppm - Into a three-neck flask, 2,3,4,4′-tetrahydroxybenzophenone (29 g), 1,2-naphthoquinonediazide-5-sulfonyl chloride (95 g), and 1,3-dioxolane (600 g) were placed, and the resultant mixture was dissolved, to thereby prepare a homogeneous solution. Subsequently, a mixture of triethylamine/dioxane (39.4 g/39.4 g) was added dropwise to the solution at 30-35° C. over one hour. Thirty minutes after completion of addition, 35% hydrochloric acid (7.4 g) was added dropwise to the resultant mixture. The formed triethylamine hydrochloride was separated off through filtration. The resultant filtrate was poured into a 0. 1% aqueous hydrochloric acid solution (3,000 ml) maintained at 30-35° C. The formed precipitates were collected through filtration, washed with water, and dried at 45° C., to thereby yield 100 g of a 2,3,4,4′-tetrahydroxybenzophenone 1,2-naphthoquinonediazide-5-sulfonate ester.
- Into a three-neck flask, 2,3,4,4′-tetrahydroxybenzophenone (29 g), 1,2-naphthoquinonediazide-5-sulfonyl chloride (95 g), and 1,3-dioxolane (400 g) were placed, and the resultant mixture was dissolved, to thereby prepare a homogeneous solution. Subsequently, a mixture of triethylamine/1,3-dioxolane (39.4 g/39.4 g) was added dropwise to the solution at 30-35° C. over one hour. Thirty minutes after completion of addition, N-methylpyrrolidone (100 g) was added to the resultant mixture. Further, 30 minutes after addition of N-methylpyrrolidone, 35% hydrochloric acid (7.4 g) was added dropwise to the mixture. The formed triethylamine hydrochloride was separated off through filtration. The resultant filtrate was poured into a 0.1% aqueous hydrochloric acid solution (2,800 ml) maintained at 20-25° C. The formed precipitates were collected through filtration, washed with water, and dried at 45° C., to thereby yield 100 g of a 2,3,4,4′-tetrahydroxybenzophenone 1,2-naphthoquinonediazide-5-sulfonate ester.
- The chloride ion content of the photosensitive agent obtained in Comparative Production Example 2 and that obtained in Production Example 2 were measured. As shown in Table 2, the chloride ion content of the photosensitive agent obtained in Production Example 2 according to the present invention is remarkably low.
TABLE 2 Chloride ion content Comparative Production Example 2 270 ppm Production Example 2 15 ppm - Into a three-neck flask, 2,3,4-trihydroxybenzophenone (35 g), 1,2-naphthoquinonediazide-5-sulfonyl chloride (81.4 g), and acetone (600 g) were placed, and the resultant mixture was dissolved, to thereby prepare a homogeneous solution. Subsequently, triethylamine (33.7 g) was added dropwise to the solution at 30-35° C. over one hour. Thirty minutes after completion of addition, 35% hydrochloric acid (6.3 g) was added dropwise to the solution. The formed triethylamine hydrochloride was separated through filtration. The resultant filtrate was poured into a 0.1% aqueous hydrochloric acid solution (1,800 ml) maintained at 30-35° C. The formed precipitates were collected through filtration, washed with water, and dried at 45° C., to thereby yield 100 g of a 2,3,4-trihydroxybenzophenone 1,2-naphthoquinonediazide-5-sulfonate ester.
- Into a three-neck flask, 2,3,4-trihydroxybenzophenone (35 g), 1,2-naphthoquinonediazide-5-sulfonyl chloride (81.4 g), and acetone (400 g) were placed, and the resultant mixture was dissolved, to thereby prepare a homogeneous solution. Subsequently, triethylamine (33.7 g) was added dropwise to the solution at 30-35° C. over one hour. Thirty minutes after completion of addition, N,N-dimethylformamide (100 g) was added to the solution. Further, 30 minutes after addition of N,N-dimethylformamide, 35% hydrochloric acid (6.3 g) was added dropwise to the mixture. The formed triethylamine hydrochloride was separated off through filtration. The resultant filtrate was poured into a 0.1% aqueous hydrochloric acid solution (1,700 ml) maintained at 20-25° C. The formed precipitates were collected through filtration, washed with water, and dried at 45° C., to thereby yield 100 g of a 2,3,4-trihydroxybenzophenone 1,2-naphthoquinonediazide-5-sulfonate ester.
- The chloride ion content of the photosensitive agent obtained in Comparative Production Example 3 and that obtained in Production Example 3 were measured. As shown in Table 3, the chloride ion content of the photosensitive agent obtained in Production Example 3 according to the present invention is remarkably low.
TABLE 3 Chloride ion content Comparative Production Example 3 130 ppm Production Example 3 10 ppm - Into a three-neck flask, 3,3′-bis(2-hydroxy-5-methylbenzyl)-2,2′-dihydroxy-5,5′-dimethyldiphenylmethane (47.0 g), 1,2-naphthoquinonediazide-5-sulfonyl chloride (67.4 g), and acetone (800 g) were placed, and the resultant mixture was dissolved, to thereby prepare a homogeneous solution. Subsequently, a mixture of triethylamine/acetone (27.9 g/27.9 g) was added dropwise to the solution at 30-35° C. over one hour. Thirty minutes after completion of addition, 35% hydrochloric acid (5.2 g) was added dropwise to the resultant mixture. The formed triethylamine hydrochloride was separated through filtration. The resultant filtrate was poured into a 0.1% aqueous hydrochloric acid solution (2,700 ml) maintained at 20-25° C. The formed precipitates were collected through filtration, washed with water, and dried at 45° C., to thereby yield 100 g of a 3,3′-bis(2-hydroxy-5-methylbenzyl)-2,2′-dihydroxy-5,5′-dimethyldiphenylmethane 1,2-naphthoquinonediazide-5-sulfonate ester.
- Into a three-neck flask, 3,3′-bis(2-hydroxy-5-methylbenzyl)-2,2′-dihydroxy-5,5′-dimethyldiphenylmethane (47.0 g), 1,2-naphthoquinonediazide-5-sulfonyl chloride (67.4 g), and acetone (550 g) were placed, and the resultant mixture was dissolved, to thereby prepare a homogeneous solution. Subsequently, a mixture of triethylamine/acetone (27.9 g/27.9 g) was added dropwise to the solution at 30-35° C. over one hour. Thirty minutes after completion of addition, N-methylpyrrolidone (150 g) was added to the resultant mixture. Further, 30 minutes after addition of N-methylpyrrolidone was complete, 35% hydrochloric acid (5.2 g) was added dropwise to the resultant mixture. The formed triethylamine hydrochloride was separated off through filtration, and the resultant filtrate was poured into a 0.1% aqueous hydrochloric acid solution (2,500 ml) maintained at 20-25° C. The formed precipitates were collected through filtration, washed with water, and dried at 45° C., to thereby yield 100 g of a 3,3′-bis(2-hydroxy-5-methylbenzyl)-2,2′-dihydroxy-5,5′-dimethyldiphenylmethane 1,2-naphthoquinonediazide-5-sulfonate ester.
- The chloride ion content of the photosensitive agent obtained in Comparative Production Example 4 and that obtained in Production Example 4 were measured. As shown in Table 4, the chloride ion content of the photosensitive agent obtained in Production Example 4 according to the present invention is remarkably low.
TABLE 4 Chloride ion content Comparative Production Example 4 185 ppm Production Example 4 20 ppm - Into a three-neck flask, 2,3,4-trihydroxybenzophenone (35 g), 1,2-naphthoquinonediazide-5-sulfonyl chloride (81.4 g), acetone (400 g), and N-methylpyrrolidone (100 g) were placed, and the resultant mixture was dissolved, to thereby prepare a homogeneous solution. Subsequently, triethylamine (33.7 g) was added dropwise to the solution at 30-35° C. over one hour. Thirty minutes after completion of addition, 35% hydrochloric acid (6.3 g) was added dropwise to the resultant mixture. The formed triethylamine hydrochloride was separated through filtration. The resultant filtrate was poured into a 0.1% aqueous hydrochloric acid solution (1,700 ml) maintained at 20-25° C. The formed precipitates were collected through filtration, washed with water, and dried at 45° C., to thereby yield 100 g of a 2,3,4-trihydroxybenzophenone 1,2-naphthoquinonediazide-5-sulfonate ester.
- Into a three-neck flask, 2,3,4-trihydroxybenzophenone (35 g), 1,2-naphthoquinonediazide-5-sulfonyl chloride (81.4 g), and acetone (400 g) were placed, and the resultant mixture was dissolved, to thereby prepare a homogeneous solution. Subsequently, triethylamine (33.7 g) was added dropwise to the solution at 30-35° C. over one hour. Thirty minutes after completion of addition, N-methylpyrrolidone (100 g) was added to the resultant mixture. Further, 30 minutes after addition of N-methylpyrrolidone was complete, 35% hydrochloric acid (6.3 g) was added dropwise to the resultant mixture. The formed triethylamine hydrochloride was separated off through filtration. The resultant filtrate was poured into a 0.1% aqueous hydrochloric acid solution (1,700 ml) maintained at 20-25° C. The formed precipitates were collected through filtration, washed with water, and dried at 45° C., to thereby yield 100 g of a 2,3,4-trihydroxybenzophenone 1,2-naphthoquinonediazide-5-sulfonate ester.
- The sulfonate ion content of the photosensitive agent obtained in Comparative Production Example 5 and that obtained in Production Example 5 were measured. As shown in Table 5, the sulfonate ion content of the photosensitive agent obtained in the case in which the amide solvent was added after completion of condensation is remarkably low.
TABLE 5 Sulfonate ion content Comparative Production Example 5 140 ppm Production Example 5 25 ppm - As described hereinabove, according to the present invention, a high-purity 1,2-naphthoquinonediazide photosensitive agent containing a low level of impurities can be produced by effecting condensation, in an organic solvent other than amide, between a polyhydric phenolic compound and a 1,2-naphthoquinonediazide-sulfonic acid halide in the presence of an organic amine; subsequently adding an amide solvent to the resultant reaction mixture; and separating off the formed organic amine hydrohalide salt through filtration.
Claims (12)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000134836A JP4179579B2 (en) | 2000-05-08 | 2000-05-08 | Method for producing 1,2-naphthoquinonediazide photosensitizer |
| JP2000-134836 | 2000-05-08 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20010049433A1 true US20010049433A1 (en) | 2001-12-06 |
| US6448383B2 US6448383B2 (en) | 2002-09-10 |
Family
ID=18643037
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/851,008 Expired - Fee Related US6448383B2 (en) | 2000-05-08 | 2001-05-08 | Method for producing 1,2-naphthoquinonediazide photosensitive agent |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US6448383B2 (en) |
| EP (1) | EP1153915B1 (en) |
| JP (1) | JP4179579B2 (en) |
| KR (1) | KR100617987B1 (en) |
| CN (1) | CN1208684C (en) |
| DE (1) | DE60122822T2 (en) |
| TW (1) | TW575545B (en) |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7208984B1 (en) * | 2004-07-15 | 2007-04-24 | Linear Technology Corporation | CMOS driver with minimum shoot-through current |
| DE102004063416A1 (en) | 2004-12-23 | 2006-07-06 | Az Electronic Materials (Germany) Gmbh | Process for the preparation of a photoresist solution |
| KR101632965B1 (en) * | 2008-12-29 | 2016-06-24 | 삼성디스플레이 주식회사 | Photoresist composition and method of fabricating thin film transistor substrate |
| CN109456230A (en) * | 2018-11-14 | 2019-03-12 | 大晶信息化学品(徐州)有限公司 | A kind of preparation method of photosensitizer |
| CN117258839A (en) * | 2023-08-09 | 2023-12-22 | 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) | Preparation method of composite photocatalyst and composite photocatalyst |
| CN117142988B (en) * | 2023-08-25 | 2024-03-01 | 安徽觅拓材料科技有限公司 | Preparation method and application of diazonaphthoquinone sulfonate monoester compound |
| CN117720440A (en) * | 2023-11-13 | 2024-03-19 | 湖北兴福电子材料股份有限公司 | A kind of process synthesis method of diazonaphthoquinone sulfonyl chloride compound |
Family Cites Families (38)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| BE586713A (en) * | 1959-01-21 | |||
| US4957846A (en) | 1988-12-27 | 1990-09-18 | Olin Hunt Specialty Products Inc. | Radiation sensitive compound and mixtures with trinuclear novolak oligomer with o-naphthoquinone diazide sulfonyl group |
| JPH087433B2 (en) | 1989-04-19 | 1996-01-29 | 日本ゼオン株式会社 | Positive resist composition |
| JP2830197B2 (en) | 1989-10-27 | 1998-12-02 | 住友化学工業株式会社 | Positive resist composition |
| JP2571136B2 (en) | 1989-11-17 | 1997-01-16 | 日本ゼオン株式会社 | Positive resist composition |
| JP2629988B2 (en) | 1989-12-14 | 1997-07-16 | 住友化学工業株式会社 | Positive resist composition |
| JP2715327B2 (en) | 1990-01-19 | 1998-02-18 | 富士写真フイルム株式会社 | Photosensitive resin composition |
| JP2715328B2 (en) | 1990-01-19 | 1998-02-18 | 富士写真フイルム株式会社 | Positive photoresist composition |
| JP2813033B2 (en) | 1990-05-25 | 1998-10-22 | 東京応化工業株式会社 | Positive photosensitive resin composition |
| JPH04282454A (en) | 1991-03-08 | 1992-10-07 | Shimadzu Corp | Data processing apparatus for chromatograph |
| JP2976597B2 (en) * | 1991-04-17 | 1999-11-10 | 住友化学工業株式会社 | Method for producing quinonediazidesulfonic acid ester |
| JPH0527429A (en) | 1991-07-19 | 1993-02-05 | Japan Synthetic Rubber Co Ltd | Radiation-sensitive resin composition |
| JPH0527428A (en) | 1991-07-25 | 1993-02-05 | Sumitomo Chem Co Ltd | Positive resist composition |
| JP3466218B2 (en) | 1992-06-04 | 2003-11-10 | 住友化学工業株式会社 | Positive resist composition |
| JP2744557B2 (en) | 1992-09-11 | 1998-04-28 | 富士写真フイルム株式会社 | Photosensitive resin composition |
| JP3185447B2 (en) | 1993-03-11 | 2001-07-09 | 日産自動車株式会社 | Active duct silencer |
| JP3180518B2 (en) | 1993-08-19 | 2001-06-25 | ジェイエスアール株式会社 | Radiation-sensitive resin composition |
| JPH07104465A (en) | 1993-10-07 | 1995-04-21 | Fuji Photo Film Co Ltd | Positive photoresist composition |
| JPH07104467A (en) | 1993-10-05 | 1995-04-21 | Shin Etsu Chem Co Ltd | Positive resist composition and pattern forming method |
| JP3275505B2 (en) | 1993-12-02 | 2002-04-15 | 日本ゼオン株式会社 | Positive resist composition |
| JP3429039B2 (en) | 1993-12-10 | 2003-07-22 | 富士写真フイルム株式会社 | Positive photoresist composition |
| JPH07168355A (en) | 1993-12-13 | 1995-07-04 | Sumitomo Chem Co Ltd | Positive resist composition |
| JP3133881B2 (en) | 1993-12-17 | 2001-02-13 | 富士写真フイルム株式会社 | Ionizing radiation-sensitive resin composition |
| JPH07225476A (en) | 1993-12-17 | 1995-08-22 | Fuji Photo Film Co Ltd | Positive type photoresist composition |
| JP3361636B2 (en) | 1993-12-24 | 2003-01-07 | 富士写真フイルム株式会社 | Radiation-sensitive resin composition |
| JPH07219920A (en) | 1994-01-31 | 1995-08-18 | Nippon Steel Corp | Optimization problem solving method and apparatus |
| JP3158856B2 (en) | 1994-03-31 | 2001-04-23 | 富士電機株式会社 | lift device |
| JPH0829978A (en) | 1994-07-14 | 1996-02-02 | Nippon Zeon Co Ltd | Positive resist composition |
| JP3365874B2 (en) * | 1994-10-05 | 2003-01-14 | 富士写真フイルム株式会社 | Synthetic method of quinonediazide and positive resist containing the same |
| JPH08202031A (en) | 1995-01-20 | 1996-08-09 | Fuji Photo Film Co Ltd | Positive photoresist composition |
| JP3215862B2 (en) | 1995-03-02 | 2001-10-09 | 農林水産省農業研究センター所長 | Bioreactor and method of using the same |
| JP3139319B2 (en) | 1995-03-08 | 2001-02-26 | 住友化学工業株式会社 | Tetraphenolic compounds, their production and use |
| US5514515A (en) | 1995-05-24 | 1996-05-07 | Shipley Company, L.L.C. | Photoactive compounds having a heterocyclic group used in photoresist compositions |
| US5618932A (en) * | 1995-05-24 | 1997-04-08 | Shipley Company, L.L.C. | Photoactive compounds and compositions |
| JP3467118B2 (en) | 1995-05-24 | 2003-11-17 | 富士写真フイルム株式会社 | Positive photoresist composition |
| JP3215863B2 (en) | 1995-09-26 | 2001-10-09 | 農林水産省農業生物資源研究所長 | The genome of konjac mosaic virus and its use |
| JP3142468B2 (en) | 1995-10-19 | 2001-03-07 | 積水化学工業株式会社 | Ceiling damping structure |
| US5821345A (en) * | 1996-03-12 | 1998-10-13 | Shipley Company, L.L.C. | Thermodynamically stable photoactive compound |
-
2000
- 2000-05-08 JP JP2000134836A patent/JP4179579B2/en not_active Expired - Fee Related
-
2001
- 2001-04-30 EP EP01110602A patent/EP1153915B1/en not_active Expired - Lifetime
- 2001-04-30 CN CNB011207639A patent/CN1208684C/en not_active Expired - Fee Related
- 2001-04-30 DE DE60122822T patent/DE60122822T2/en not_active Expired - Fee Related
- 2001-05-03 TW TW90110599A patent/TW575545B/en active
- 2001-05-04 KR KR1020010024343A patent/KR100617987B1/en not_active Expired - Fee Related
- 2001-05-08 US US09/851,008 patent/US6448383B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JP4179579B2 (en) | 2008-11-12 |
| EP1153915A2 (en) | 2001-11-14 |
| KR100617987B1 (en) | 2006-08-30 |
| DE60122822T2 (en) | 2007-04-05 |
| TW575545B (en) | 2004-02-11 |
| DE60122822D1 (en) | 2006-10-19 |
| JP2001316351A (en) | 2001-11-13 |
| US6448383B2 (en) | 2002-09-10 |
| CN1322966A (en) | 2001-11-21 |
| CN1208684C (en) | 2005-06-29 |
| EP1153915A3 (en) | 2004-03-03 |
| KR20010103642A (en) | 2001-11-23 |
| EP1153915B1 (en) | 2006-09-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0451170B1 (en) | Selected trinuclear novolak oligomer derivatives as photoactive compounds and their use in radiation sensitive mixtures | |
| US6448383B2 (en) | Method for producing 1,2-naphthoquinonediazide photosensitive agent | |
| DE69604314T2 (en) | Tetraphenol compounds, process for their preparation and their use as photosensitizers | |
| EP0372504B1 (en) | Process for preparing positive resist composition | |
| CN117142988B (en) | Preparation method and application of diazonaphthoquinone sulfonate monoester compound | |
| US6713225B2 (en) | 1,2-Naphthoquinone-2-diazidesulfonate ester photosensitive agent, method for producing the photosensitive agent, and photoresist composition | |
| KR100560021B1 (en) | Radiation-Sensitive Resin Composition | |
| KR19980019098A (en) | Radiation-Sensitive Resin Compositions | |
| US5300396A (en) | Process of making naphthoquinone diazide esters using lactone solvents | |
| US6603029B1 (en) | Partially protected novel trisphenols and process for production thereof | |
| KR100215529B1 (en) | Preparation of radiation sensitive material and positive resist compound | |
| DE102004063416A1 (en) | Process for the preparation of a photoresist solution | |
| JP3855285B2 (en) | Dimethylolated triphenolic compound and process for producing the same | |
| JP4067905B2 (en) | Method for producing phenolic compound | |
| JP2003337413A (en) | 1,2-naphthoquinone-2-diazidesulfonate photosensitive agent and method for producing the same | |
| EP1053509A4 (en) | Photosensitive diazonaphthoquinone esters based on selected cyclic alkyl ether-containing phenolics and their use in radiation sensitive mixtures | |
| EP1066252A1 (en) | A process of controlling particle size of naphthoquinone diazide esters | |
| WO2006039810A1 (en) | Photoactive compositions and preparation thereof | |
| JPH10310544A (en) | New pentanuclear polyphenol compound |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: TOYO GOSEI KOGYO CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMANAKA, TOMOTAKA;HAYAKAWA, MASAMICHI;REEL/FRAME:012998/0973 Effective date: 20010411 |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20100910 |