US20010041659A1 - Microencapsulated clomazone in the presence of fat and resin - Google Patents
Microencapsulated clomazone in the presence of fat and resin Download PDFInfo
- Publication number
- US20010041659A1 US20010041659A1 US09/778,280 US77828001A US2001041659A1 US 20010041659 A1 US20010041659 A1 US 20010041659A1 US 77828001 A US77828001 A US 77828001A US 2001041659 A1 US2001041659 A1 US 2001041659A1
- Authority
- US
- United States
- Prior art keywords
- formulation
- fat
- clomazone
- resin
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- KIEDNEWSYUYDSN-UHFFFAOYSA-N clomazone Chemical compound O=C1C(C)(C)CON1CC1=CC=CC=C1Cl KIEDNEWSYUYDSN-UHFFFAOYSA-N 0.000 title claims abstract description 70
- 239000005499 Clomazone Substances 0.000 title claims abstract description 69
- 229920005989 resin Polymers 0.000 title claims abstract description 33
- 239000011347 resin Substances 0.000 title claims abstract description 33
- 239000000203 mixture Substances 0.000 claims abstract description 118
- 238000009472 formulation Methods 0.000 claims abstract description 93
- 239000003094 microcapsule Substances 0.000 claims abstract description 58
- 230000002363 herbicidal effect Effects 0.000 claims abstract description 26
- 229920000642 polymer Polymers 0.000 claims abstract description 15
- 239000007788 liquid Substances 0.000 claims abstract description 11
- 229920006395 saturated elastomer Polymers 0.000 claims abstract description 11
- 235000019197 fats Nutrition 0.000 claims description 29
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 28
- 235000021083 high saturated fats Nutrition 0.000 claims description 22
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 19
- 239000003995 emulsifying agent Substances 0.000 claims description 18
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 17
- 239000005056 polyisocyanate Substances 0.000 claims description 17
- 229920001228 polyisocyanate Polymers 0.000 claims description 17
- 239000004009 herbicide Substances 0.000 claims description 16
- 238000007334 copolymerization reaction Methods 0.000 claims description 15
- 239000002904 solvent Substances 0.000 claims description 14
- 238000004132 cross linking Methods 0.000 claims description 13
- 150000001412 amines Chemical class 0.000 claims description 12
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 11
- 239000002253 acid Substances 0.000 claims description 9
- 239000000908 ammonium hydroxide Substances 0.000 claims description 9
- 239000003960 organic solvent Substances 0.000 claims description 9
- 239000012948 isocyanate Substances 0.000 claims description 8
- -1 and optionally Substances 0.000 claims description 7
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 7
- 150000002513 isocyanates Chemical class 0.000 claims description 7
- 229920002396 Polyurea Polymers 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 239000003208 petroleum Substances 0.000 claims description 6
- 239000003760 tallow Substances 0.000 claims description 6
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical class [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 5
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims description 5
- 239000000347 magnesium hydroxide Substances 0.000 claims description 5
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims description 5
- 239000004094 surface-active agent Substances 0.000 claims description 5
- 229920001732 Lignosulfonate Polymers 0.000 claims description 4
- 238000005507 spraying Methods 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 4
- 238000006116 polymerization reaction Methods 0.000 claims description 3
- 230000001804 emulsifying effect Effects 0.000 claims 2
- 239000002775 capsule Substances 0.000 abstract 1
- 241000196324 Embryophyta Species 0.000 description 23
- 239000003925 fat Substances 0.000 description 21
- 239000000243 solution Substances 0.000 description 21
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 17
- 239000008346 aqueous phase Substances 0.000 description 15
- 239000000725 suspension Substances 0.000 description 15
- 239000000047 product Substances 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 12
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 11
- 239000002518 antifoaming agent Substances 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 229920001577 copolymer Polymers 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 239000012074 organic phase Substances 0.000 description 8
- 239000004480 active ingredient Substances 0.000 description 7
- 239000007795 chemical reaction product Substances 0.000 description 7
- 229920000768 polyamine Polymers 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 150000001408 amides Chemical class 0.000 description 6
- 150000003863 ammonium salts Chemical class 0.000 description 6
- 239000004599 antimicrobial Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 239000004495 emulsifiable concentrate Substances 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 6
- 235000019737 Animal fat Nutrition 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 229920000538 Poly[(phenyl isocyanate)-co-formaldehyde] Polymers 0.000 description 5
- 125000001931 aliphatic group Chemical group 0.000 description 5
- 239000004202 carbamide Substances 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 239000003337 fertilizer Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229920001285 xanthan gum Polymers 0.000 description 5
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 239000007900 aqueous suspension Substances 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 229920006026 co-polymeric resin Polymers 0.000 description 4
- 125000005442 diisocyanate group Chemical group 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 3
- 230000002528 anti-freeze Effects 0.000 description 3
- 239000007798 antifreeze agent Substances 0.000 description 3
- 239000004305 biphenyl Substances 0.000 description 3
- 239000001110 calcium chloride Substances 0.000 description 3
- 229910001628 calcium chloride Inorganic materials 0.000 description 3
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 3
- 239000004927 clay Substances 0.000 description 3
- 230000001627 detrimental effect Effects 0.000 description 3
- 239000004205 dimethyl polysiloxane Substances 0.000 description 3
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 150000005846 sugar alcohols Polymers 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- 241000283690 Bos taurus Species 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000005058 Isophorone diisocyanate Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 235000015278 beef Nutrition 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- VHRGRCVQAFMJIZ-UHFFFAOYSA-N cadaverine Chemical compound NCCCCCN VHRGRCVQAFMJIZ-UHFFFAOYSA-N 0.000 description 2
- 239000004490 capsule suspension Substances 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 239000002917 insecticide Substances 0.000 description 2
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 2
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical group CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- BEGLCMHJXHIJLR-UHFFFAOYSA-N methylisothiazolinone Chemical class CN1SC=CC1=O BEGLCMHJXHIJLR-UHFFFAOYSA-N 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 239000004317 sodium nitrate Substances 0.000 description 2
- 235000010344 sodium nitrate Nutrition 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 2
- 239000000230 xanthan gum Substances 0.000 description 2
- 229940082509 xanthan gum Drugs 0.000 description 2
- 235000010493 xanthan gum Nutrition 0.000 description 2
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- QBIAZVPERXOGAL-OWOJBTEDSA-N (e)-prop-1-ene-1,3-diamine Chemical compound NC\C=C\N QBIAZVPERXOGAL-OWOJBTEDSA-N 0.000 description 1
- JJGGIYYGVKGMQZ-UHFFFAOYSA-N 1,2,4-triazole-3,4,5-triamine Chemical compound NC1=NN=C(N)N1N JJGGIYYGVKGMQZ-UHFFFAOYSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- ITWBWJFEJCHKSN-UHFFFAOYSA-N 1,4,7-triazonane Chemical compound C1CNCCNCCN1 ITWBWJFEJCHKSN-UHFFFAOYSA-N 0.000 description 1
- OVBFMUAFNIIQAL-UHFFFAOYSA-N 1,4-diisocyanatobutane Chemical compound O=C=NCCCCN=C=O OVBFMUAFNIIQAL-UHFFFAOYSA-N 0.000 description 1
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 description 1
- SBJCUZQNHOLYMD-UHFFFAOYSA-N 1,5-Naphthalene diisocyanate Chemical compound C1=CC=C2C(N=C=O)=CC=CC2=C1N=C=O SBJCUZQNHOLYMD-UHFFFAOYSA-N 0.000 description 1
- DFPJRUKWEPYFJT-UHFFFAOYSA-N 1,5-diisocyanatopentane Chemical compound O=C=NCCCCCN=C=O DFPJRUKWEPYFJT-UHFFFAOYSA-N 0.000 description 1
- YYDRNPOEMZZTPM-UHFFFAOYSA-N 2,4,6-triaminotoluene Chemical compound CC1=C(N)C=C(N)C=C1N YYDRNPOEMZZTPM-UHFFFAOYSA-N 0.000 description 1
- ANPRMXJYBQRJQE-UHFFFAOYSA-N 2-ethoxypropane-1,3-diol;2-ethylpropane-1,3-diol Chemical compound CCC(CO)CO.CCOC(CO)CO ANPRMXJYBQRJQE-UHFFFAOYSA-N 0.000 description 1
- FOGYNLXERPKEGN-UHFFFAOYSA-N 3-(2-hydroxy-3-methoxyphenyl)-2-[2-methoxy-4-(3-sulfopropyl)phenoxy]propane-1-sulfonic acid Chemical compound COC1=CC=CC(CC(CS(O)(=O)=O)OC=2C(=CC(CCCS(O)(=O)=O)=CC=2)OC)=C1O FOGYNLXERPKEGN-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- 240000001592 Amaranthus caudatus Species 0.000 description 1
- 108010053481 Antifreeze Proteins Proteins 0.000 description 1
- 239000005874 Bifenthrin Substances 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000006008 Brassica napus var napus Nutrition 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 239000005946 Cypermethrin Substances 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- 239000005508 Dimethachlor Substances 0.000 description 1
- JSFUMBWFPQSADC-UHFFFAOYSA-N Disperse Blue 1 Chemical compound O=C1C2=C(N)C=CC(N)=C2C(=O)C2=C1C(N)=CC=C2N JSFUMBWFPQSADC-UHFFFAOYSA-N 0.000 description 1
- 244000058871 Echinochloa crus-galli Species 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 241000219146 Gossypium Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 240000008415 Lactuca sativa Species 0.000 description 1
- 244000278243 Limnocharis flava Species 0.000 description 1
- 235000003403 Limnocharis flava Nutrition 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000005591 Pendimethalin Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- 235000017016 Setaria faberi Nutrition 0.000 description 1
- 241000820191 Setaria magna Species 0.000 description 1
- 240000003461 Setaria viridis Species 0.000 description 1
- 235000002248 Setaria viridis Nutrition 0.000 description 1
- 235000010086 Setaria viridis var. viridis Nutrition 0.000 description 1
- 240000006394 Sorghum bicolor Species 0.000 description 1
- 235000006923 Sorghum x drummondii Nutrition 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 241001148683 Zostera marina Species 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 210000000577 adipose tissue Anatomy 0.000 description 1
- 230000009418 agronomic effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- RQVYBGPQFYCBGX-UHFFFAOYSA-N ametryn Chemical compound CCNC1=NC(NC(C)C)=NC(SC)=N1 RQVYBGPQFYCBGX-UHFFFAOYSA-N 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229960000892 attapulgite Drugs 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- RPHKINMPYFJSCF-UHFFFAOYSA-N benzene-1,3,5-triamine Chemical compound NC1=CC(N)=CC(N)=C1 RPHKINMPYFJSCF-UHFFFAOYSA-N 0.000 description 1
- OMFRMAHOUUJSGP-IRHGGOMRSA-N bifenthrin Chemical compound C1=CC=C(C=2C=CC=CC=2)C(C)=C1COC(=O)[C@@H]1[C@H](\C=C(/Cl)C(F)(F)F)C1(C)C OMFRMAHOUUJSGP-IRHGGOMRSA-N 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 229960005424 cypermethrin Drugs 0.000 description 1
- KAATUXNTWXVJKI-UHFFFAOYSA-N cypermethrin Chemical compound CC1(C)C(C=C(Cl)Cl)C1C(=O)OC(C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 KAATUXNTWXVJKI-UHFFFAOYSA-N 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- SCCDDNKJYDZXMM-UHFFFAOYSA-N dimethachlor Chemical compound COCCN(C(=O)CCl)C1=C(C)C=CC=C1C SCCDDNKJYDZXMM-UHFFFAOYSA-N 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Natural products C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 229940116364 hard fat Drugs 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 description 1
- NADBWXCIVAJJQS-UHFFFAOYSA-N naphthalene-1,3,6-triamine Chemical compound NC1=CC(N)=CC2=CC(N)=CC=C21 NADBWXCIVAJJQS-UHFFFAOYSA-N 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 229910052625 palygorskite Inorganic materials 0.000 description 1
- CHIFOSRWCNZCFN-UHFFFAOYSA-N pendimethalin Chemical compound CCC(CC)NC1=C([N+]([O-])=O)C=C(C)C(C)=C1[N+]([O-])=O CHIFOSRWCNZCFN-UHFFFAOYSA-N 0.000 description 1
- 229960000490 permethrin Drugs 0.000 description 1
- RLLPVAHGXHCWKJ-UHFFFAOYSA-N permethrin Chemical compound CC1(C)C(C=C(Cl)Cl)C1C(=O)OCC1=CC=CC(OC=2C=CC=CC=2)=C1 RLLPVAHGXHCWKJ-UHFFFAOYSA-N 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- DGTNSSLYPYDJGL-UHFFFAOYSA-N phenyl isocyanate Chemical compound O=C=NC1=CC=CC=C1 DGTNSSLYPYDJGL-UHFFFAOYSA-N 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 231100000208 phytotoxic Toxicity 0.000 description 1
- 230000000885 phytotoxic effect Effects 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920001692 polycarbonate urethane Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 235000015277 pork Nutrition 0.000 description 1
- 229940072033 potash Drugs 0.000 description 1
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000010734 process oil Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 235000012045 salad Nutrition 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- RPACBEVZENYWOL-XFULWGLBSA-M sodium;(2r)-2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate Chemical compound [Na+].C=1C=C(Cl)C=CC=1OCCCCCC[C@]1(C(=O)[O-])CO1 RPACBEVZENYWOL-XFULWGLBSA-M 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- ZSDSQXJSNMTJDA-UHFFFAOYSA-N trifluralin Chemical compound CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O ZSDSQXJSNMTJDA-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/72—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
- A01N43/80—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,2
Definitions
- the present invention relates generally to the field of herbicidal chemical compositions.
- the present invention relates to novel compositions of a known herbicidal compound, namely clomazone, designed to reduce clomazone's characteristic volatility, thereby reducing risk of unintended herbicidal activity when clomazone is applied.
- Clomazone (2-[(2-chlorophenyl)methyl]-4,4-dimethyl-3-isoxazolidinone) is a well-known herbicide commercially available for controlling many broadleaf and most grass weeds, and has been found to have selective characteristics making it particularly useful for the control of weeds when growing soybean, cotton, sugarcane, rice, tobacco, oilseed rape, vegetables and others.
- Clomazone can be phytotoxic to some non-targeted crops and naturally occurring plant species when applied to control undesired vegetation. Contact of clomazone with such unintended crops is the result of vapor transfer of the clomazone to sensitive species growing in adjacent areas.
- clomazone can be, and is, sold with suitable label instructions to prevent exposure to sensitive crops, measures that will further decrease the exposure of the non-targeted crops to clomazone without substantial diminution of herbicidal efficacy against weeds will greatly expand the usefulness of clomazone and thus result in lower overall costs.
- the present invention is directed to herbicidal formulations comprising microcapsules suspended in an aqueous liquid medium, wherein the microcapsules comprise a porous polymer wall, clomazone, and a fat, or resin.
- the microcapsules comprise a porous polymer wall, clomazone, and a fat, or resin.
- the fat is at least 95% saturated.
- the present invention is also directed to said formulations wherein the porous polymer wall is, in part, the reaction product of the resin and a polyisocyanate.
- formulations provide for the application of clomazone to undesirable vegetation encountered in the cultivation of various plant species, particularly agronomic crops, while minimizing off-target vapor transfer of the herbicide. Accordingly, embodiments of the present invention provide sufficient herbicidal efficacy with respect to unwanted vegetation, yet avoid the aforementioned problems seen in currently available formulations of clomazone.
- formulations containing a herbicidally effective amount of clomazone wherein the microcapsule formed is, in part, the reaction product of a styrene-maleic anhydride copolymer resin and a polyfunctional polyisocyanate.
- formulations containing a herbicidally effective amount of clomazone in the presence of a highly saturated fat that is at least about 95% saturated, and wherein the microcapsule formed is, in part, the reaction product of a styrene-maleic anhydride copolymer resin and a polyfunctional polyisocyanate.
- the fat is at least about 98% saturated.
- examples of such fats include, without limitation, waxes, suet, lard or tallow.
- the encapsulant is a porous condensate polymer of polyurea, polyamide or amide-urea copolymer.
- the percentage of polymer comprising the microcapsules ranges from about 5 percent to about 35 percent by weight, preferably about 10 percent to about 25 percent by weight.
- the percentage of highly saturated fat of the encapsulated material ranges from about 0.5 percent to about 12 percent by weight of the organic phase, preferably about 1 percent to about 8 percent by weight, more preferably about 2 percent to about 6 percent by weight.
- the microcapsules of the present invention provide volatility reduction of about 20-90 percent as compared with clomazone prepared and applied from an emulsifiable concentrate, which is commercially available.
- the microcapsules of the present invention also provide increased herbicidal efficacy against certain weed species from about one to about four times that of known clomazone microcapsule formulations that are also commercially available.
- the practice of the present invention enables one to apply clomazone to the appropriate locus for control of weeds in crops while eliminating or substantially diminishing the risk of clomazone injury to plant species located in areas adjacent thereto without the need to resort to expensive and time-consuming pre-plant incorporation or special application procedures.
- the “about” range shall be not more than 10% of the absolute value of an end point or 10% of the range recited, whichever is less.
- ambient temperature refers to a temperature in the range of about 20 ° C. to about 30° C.
- crop or “crops”, “plant” or “plants” are one and the same, and refer to plants of interest or plant products derived thereof that are grown for ornamental, industrial or food uses.
- weed or “vegetation” are one and the same, and refer to an unwanted plant or plants that are growing in a place or in a manner that is detrimental to a plant or plants of interest.
- seed refers to a hard fat found, for example, around the kidneys and loins of beef and mutton, or cattle, from which tallow is derived.
- the term “tallow” refers to a rendered fat from said cattle.
- the term “lard” refers to a soft, solid or semi-solid fat obtained by rendering fatty tissue of hogs.
- the term “CS” or “CS formulation” refers to a microcapsule or capsule suspension formulation of clomazone.
- the term, for example, “3.0 CS” or “3.0 CS formulation” refers to a microcapsule or capsule suspension formulation of clomazone containing 3.0 pounds of clomazone/gallon of finished formulation.
- the term “resin” refers to a chemical polymer with a molecular weight of about 100,000 to about 400,000.
- the term “cross-linking” refers to the chemical bonding between two adjacent polymer chains.
- the formulations of clomazone in a first embodiment of the present invention, provide an aqueous suspension of microcapsules containing clomazone in combination with a highly saturated fat that is at least about 95% saturated.
- a second embodiment of the present invention there is provided formulations of clomazone wherein the microcapsule formed is, in part, the reaction product of a suitable resin and a polyfunctional polyisocyanate, wherein the resin is suitable if it acts both as an emulsifier and a cross-linker with the polyisocyanate.
- suitable resins include the copolymerization products of styrene and maleic anhydride.
- a third embodiment of the present invention there is provided formulations of clomazone in the presence of a highly saturated fat that is at least about 95% saturated, and wherein the microcapsule formed is, in part, the reaction product of a suitable resin and a polyfunctional polyisocyanate, which functions as described, supra.
- a highly saturated fat that can be used in the context of the present invention is one wherein at least about 95% of the carbon-carbon bonds contained therein are single bonds; a preferred highly saturated fat is one having at least about 98% single-bonded carbon-carbon bonds; a more preferred highly saturated fat is one having at least about 99% single bond carbon-carbon bonds.
- Preferred highly saturated fats are commonly animal fats, such as, without limitation, mutton suet, pork lard or beef tallow, or combinations, or subfractions thereof.
- Such highly saturated fats need not be of animal origin.
- waxes of plant, synthetic, and also animal origin can also be employed in the context of the present invention, so long as the selected wax exhibits the high saturation levels noted above.
- the function of the fat used in the present invention is not fully elucidated, it is believed that the high degree of saturation of the fat used in the present invention, in addition to contributing to the lowering of the natural volatility of the clomazone, also contributes to the lowering of unintended and detrimental reactions that would likely occur between less-saturated solvents or fats and components of the wall of the microcapsule. These unintended and detrimental reactions are referred to as “fugitive reactions”, and tend to disrupt the wall structure by forming strands that necessitate an additional filtration step in current clomazone formulation protocols.
- the fat used in the context of the present invention is a solid at room temperature, but dissolves in the presence of clomazone, which is a liquid. Accordingly, the clomazone acts as a solvent with the fat that is encased in the microcapsules of the present invention.
- the highly saturated fat as used in the context of the present invention preferably constitutes from about 0.5 percent to about 12 percent by weight of the solution that is contained in the microcapsule, the remainder comprising clomazone and, optionally, other reagents included for purposes of densitization and stabilization of the formulation.
- the solution of clomazone and highly saturated fat includes from about 1 percent to about 8 percent by weight of the highly saturated fat, and more preferably about 2 percent to about 6 percent.
- the encapsulating walls of the microcapsules are made of a porous polymer, such as polyurea, polyamide, polysulfonamide, polyester, polycarbonate, or polyurethane and comprise from about 5 percent to about 35 percent by weight of each microcapsule.
- the walls of the microcapsule comprise from about 10 percent to about 25 percent by weight of the microcapsule.
- the microcapsule preparation comprises an aqueous phase comprised of a solution containing a suitable emulsifier and an optional stabilizer, which is preferably an anti-foam agent, and an optional antimicrobial agent.
- the emulsifier is preferably selected from the group of the salts of ligninsulfonic acid, such as, for example, the sodium, potassium, magnesium, and calcium salts thereof. Particularly effective is the sodium salt of ligninsulfonic acid, which is referred to herein as a lignosulfonate emulsifier or surfactant.
- An organic phase comprising a solution of clomazone, an optional organic solvent, a highly saturated fat and a polyfunctional polyisocyanate, which is added to the composition of water, lignosulfonate surfactant, and optional antifoam agent.
- Preferred organic solvents are selected, without limitation, from aromatic hydrocarbon solvents with flash points in the range of about 90 ° C. to about 250° C., hydrocarbon C 15 -C 16 mixtures, C 14 -C 16 alkyl biphenyl mixtures, aromatic esters, vegetable oils such as corn oil, soybean oil, soy salad oil, and hydro-treated oils; refined light paraffinic distillates, petroleum process oils, and mixtures and subfractions thereof.
- Particularly preferred solvents are selected from aromatic hydrocarbon solvents with flash points in the range of about 90° C. to about 250° C.
- a more particularly preferred solvent is a mixture of C 9 -C 15 aromatic hydrocarbons with a flash point of about 95° C.
- Preferred, highly saturated fats are selected from animal fats that include suet, lard, and tallow.
- a particularly preferred fat is lard. The resulting mixture is stirred sufficiently under suitable conditions well-understood by those skilled in the art to form a homogenous dispersion of small droplets of the clomazone and fat solution within the aqueous phase.
- a polyfunctional amine is added with the stirring being continued until the polyfunctional amine has essentially fully reacted with the polyfunctional isocyanate.
- the polyfunctional isocyanate and the polyfunctional amine react in the presence of the surfactant under proper agitation and reaction conditions to form microcapsules having polyurea walls encapsulating the clomazone, optional solvent, and fat solution.
- the microcapsule preparation comprises an aqueous phase comprised of a solution containing a suitable emulsifier/cross-linking resin, an optional stabilizer in the form of an anti-foam agent, and an optional anti-microbial agent.
- the emulsifier/cross-linking resin is preferably derived from the copolymerization product of styrene and maleic anhydride, or derived from the copolymerization product of styrene, maleic anhydride and an alcohol. The copolymerization of styrene and maleic anhydride provides a non-esterified or anhydride copolymer.
- the maleic anhydride rings open to form a copolymer that is a half-acid and half-ester of the corresponding alcohol that is in the copolymerization reaction.
- alcohols include, without limitation, straight or branched chain lower C 1 -C 6 alkyl alcohols.
- the anhydride copolymers and the half acid/half ester copolymers are further reacted with hydroxides such as ammonium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, and the like, to provide the aforementioned resins in the form of water-soluble salts.
- Reaction of the aforementioned hydroxides with the anhydride copolymer causes the maleic anhydride rings to open to provide a di-salt, for example, a di-sodium salt or a di-potassium salt.
- a di-salt for example, a di-sodium salt or a di-potassium salt.
- the maleic anhydride rings open to provide an amide/ammonium salt.
- the emulsifier/cross-linking resin is preferably selected from the ammonium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, and calcium hydroxide salts of an anhydrous copolymerization product of styrene and maleic anhydride; and the ammonium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, and calcium hydroxide salts of a half-acid/half-ester copolymerization product of styrene and maleic anhydride.
- Particularly preferred resins are the ammonium hydroxide and sodium hydroxide salts of an anhydrous copolymerization product of styrene and maleic anhydride, most preferred is the ammonium hydroxide salt.
- An organic phase or solution of clomazone, an organic solvent, and a polyfunctional polyisocyanate is added to the composition of water, an emulsifier/cross-linking resin, an optional anti-foam agent, and an optional anti-microbial agent.
- the resulting mixture is stirred sufficiently under suitable conditions to form a homogenous dispersion of small droplets of the clomazone and organic solvent within the aqueous phase.
- a polyfunctional amine is added with the stirring being continued until the formation of the microcapsule having polyurea walls encapsulating the clomazone is complete.
- cross-linking of the resin occurs.
- the amide/ammonium salt moieties of the ammonium hydroxide salt of the anhydrous copolymerization product of styrene and maleic anhydride cross-link with the polyfunctional isocyanate during the microcapsule-forming reaction and become part of the porous polymer encapsulating wall. It is believed that the incorporation of the emulsifier/cross-linking resin into the encapsulating wall in the manner described, supra, promotes long-term physical stability of the formulation, inasmuch as the emulsifier has become part of the microcapsule, and cannot be physically removed by, for example, the exposure to the elements.
- the microcapsule preparation comprises an aqueous phase or solution containing an emulsifier/cross-linking resin as described, supra, an optional stabilizer in the form of an anti-foam agent, and an optional antimicrobial agent.
- An organic phase or solution of clomazone, a highly saturated fat, an organic solvent and a polyfunctional polyisocyanate is added to the composition of water, emulsifier/cross-linking resin, optional antifoam agent, and optional antimicrobial agent.
- the resulting mixture is stirred sufficiently under suitable conditions to form a homogenous dispersion of small droplets of the clomazone, fat, and organic solvent within the aqueous phase.
- a polyfunctional amine is added with stirring, during which time crosslinking of the resin occurs with the polyfunctional polyisocyanate as described supra.
- the rate of the polymerization will depend on the reaction conditions employed. The rate of polymerization will generally be directly related to the temperature at which the reaction takes place.
- the encapsulation process of the present invention is capable of satisfactory performance and production of encapsulated material without adjustment to a specific pH value.
- the pH of the finished microencapsulated formulations is best maintained in a range of about 5.0 to about 8.0, preferably about 6.0 to about 7.5, more preferably about 6.5 to about 7.2.
- Such reagents include hydrochloric acid, acetic acid, phosphoric acid, sodium hydroxide, potassium hydroxide, ammonium hydroxide and the like.
- the agitation employed to establish the dispersion of water immiscible phase droplets in the aqueous phase during the production of the formulation of the present invention may be supplied by any means capable of providing suitable high shear. That is to say that any variable shear mixing apparatus, e.g., a Waring Blender, a Brinkman Polytron homogenizer, Ross Model 100L homogenizer and the like can be usefully employed to provide the desired shear.
- any variable shear mixing apparatus e.g., a Waring Blender, a Brinkman Polytron homogenizer, Ross Model 100L homogenizer and the like can be usefully employed to provide the desired shear.
- the particular size of the microcapsules for formulating the composition of the present invention will generally range from about one micron up to about one hundred microns in average diameter. From about one to about twenty microns is a preferred average range, in which a more preferred average range is about eight to about fourteen microns
- Salts and other compounds may be employed in the formulation. Salts and other compounds may: 1) act as antifreezes; 2) increase the ionic strength; and 3) function as densifiers in the aqueous phase. Examples of such salts include, without limitation, calcium chloride, sodium nitrate, and combinations thereof. Other compounds include, for example, urea that functions as an anti-freeze when incorporated into the formulations of the present invention.
- the microcapsules of clomazone as set forth herein are preferably suspended in an aqueous medium that preferably includes reagents that serve to keep the microcapsules from settling.
- reagents which form a suspension system composition, preferably comprise a combination of agents, such as surfactants, dispersants, emulsifiers, antifreeze agents, clays, water, salts, polymers, and other suspension stabilizing and density balancing agents, appropriately selected to keep the microcapsules in stable homogeneous suspension in the water-based carrier over an extended period of time, such as, for example, two years or more.
- the agents comprising the suspension system will generally comprise 0.01 percent by weight to 15 percent by weight of the formulation, preferably 1 percent to about 15 percent, more preferably 2 percent by weight to 10 percent by weight.
- Suitable clays include bentonite clay and attapulgite clay and mixtures thereof, preferably in the range from about 0.01 percent to about 1.0 percent solid by weight, relative to the total formulation weight although greater or lesser amounts may be employed.
- the presence of at least one clay conventionally used in suspension systems improves the stability of the suspended microcapsules and particularly aids in the redistribution of the microcapsules upon shaking in the event some settling of microcapsules is experienced and redistribution thereof is required.
- Another preferred suspension system also includes a small amount of a polysaccaride thickening agent to aid in stabilizing the suspension of the microcapsules.
- Xanthan gum is preferable, and is preferably present in an amount in the range from about 0.01 percent by weight to about 0. 1 percent by weight although greater or lesser amounts may be employed.
- the viscosity of the final product comprising the suspension system of the microcapsules of the present invention is preferably in the range of about 100 to about 4000 centipoise (cP), more preferably in the range of about 400 to 3000 cP, and most preferably, about 600 to about 2000 cP.
- microcapsules polymer plus encapsulated material
- the encapsulating polymer component in the final encapsulated product normally will be in the range of about 0.2 percent by weight to about 12 percent by weight and preferably in the range of about 2 percent by weight to about 9 percent by weight.
- polyisocyanates will be generally understood as meaning those compounds that contain two and more isocyanate groups in the molecule.
- Preferred isocyanates are di- and triisocyanates whose isocyanate groups may be linked to an aliphatic or aromatic moiety.
- suitable aliphatic diisocyanates and aliphatic triisocyanates are tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate and 4-(isocyanatomethyl)-1,8-octyl diisocyanate.
- Suitable aromatic isocyanates are toluene diisocyanate (TDI: DESMODUR Registered TM VL, Bayer), polymethylene polyphenylisocyanate (MONDUR Registered TM MR, Miles Chemical Company); PAPI Registered TM 135 (Upjohn Company), 2,4,4′-diphenyl ether triisocyanate, 3,3′-dimethyl-4,4′-diphenyl diisocyanate, 3,3′-dimethoxy-4,4′-diphenyl diisocyanate, 1,5-naphthalene diisocyanate and 4,4′,4′′-triphenylmethane triisocyanate.
- a further suitable diisocyanate is isophorone diisocyanate.
- adducts of diisocyanates with polyhydric alcohols such as ethylene glycol, glycerol and trimethylolpropane, obtained by addition, per mole of polyhydric alcohol, of a number of moles of diisocyanate corresponding to the number of hydroxyl groups of the respective alcohol.
- polyhydric alcohols such as ethylene glycol, glycerol and trimethylolpropane
- DESMODUR Registered TM L can be prepared by reacting three moles of toluene diisocyanate with one mole of 2-ethylglycerol (1,1-bismethylolpropane).
- polyisocyanates are diphenylmethane-4,4′-diisocyanate and polymethylene polyphenylisocyanate.
- the di- and triisocyanates specified above can be employed individually or as mixtures of two or more such isocyanates.
- Suitable polyamines within the scope of this invention will be understood as meaning in general those compounds that contain two or more primary amino groups in the molecule, which amino groups may be linked to aliphatic and aromatic moieties.
- suitable aliphatic polyamines are alpha, omega-diamines, including, without limitation, ethylenediamine, propylene-1,3-diamine, tetramethylenediamine, pentamethylenediamine and 1,6-hexamethylenediamine.
- a preferred diamine is 1,6-hexamethylenediamine.
- polyethyleneamines including, without limitation, diethylenetriamine, triethylenetriamine, tetraethylenepentamine, pentaethylenehexamine.
- aromatic polyamines examples include 1 ,3-phenylenediamine, 2,4-toluylenediamine, 4,4′-diaminodiphenylmethane, 1,5-diaminoaphthalene, 1,3,5-triaminobenzene, 2,4,6-triaminotoluene, 1,3,6-triaminonaphthalene, 2,4,4′-triaminodiphenyl ether, 3,4,5-triamino-1,2,4-triazole, bis(hexamethylentriamine) and 1,4,5,8-tetraaminoanthraquinone.
- Those polyamines which are insoluble or insufficiently soluble in water may be used as hydrochloride salts.
- polyamines include those that contain sulfo or carboxyl groups in addition to the amino groups.
- examples of such polyamines are 1,4-phenylene diaminesulfonic acid, 4,4′-diaminodiphenyl-2-sulfonic acid, or diaminoammocarboxylic acids such as ornithene and lysine.
- Suitable liquid fertilizers can be mixed with the formulations herein without the formation of unacceptable amounts of agglomerates in the spray tank, thus avoiding poor spraying performance.
- the liquid fertilizers used in mixtures of the present invention can be liquid nitrogen fertilizers, optionally containing phosphate and/or potash components.
- Liquid fertilizers are usually designated by the percentage weight of nitrogen, phosphorous and potassium (N-P-K) ratios, e.g., 4-10-10, 6-18-18, or 10-30-10.
- the microcapsules of the present invention may be formulated with at least one other active ingredient.
- Such other active ingredient includes other pesticides such as herbicides and insecticides.
- herbicides include dimethachlor, ametryn, pendimethalin, and trifluralin.
- insecticides include bifenthrin, permethrin, cypermethrin, and organophosphates.
- This example illustrates the preparation of an aqueous suspension of microencapsulated clomazone in solution with a highly saturated fat.
- a pre-mixed aqueous phase consisting of 10.00 grams of the sodium salt of lignosulfonic acid (dispersant-Lignosol SFX65, from Lignotech; Rothchild, Wis.), and seven drops of a 100% polydimethyl siloxane (anti-foam agent-Dow Corning 1520US, from Ashland Chemical; Cleveland, Ohio) in 500.00 grams of water was placed in a 1000 mL beaker.
- the aqueous phase was homogenized at high speed (about 6000 rpm) for 60 seconds in a Brinkmann Polytron PT6000 blender, and a pre-mixed organic phase consisting of 20.00 grams of animal fat (solvent-lard, from Armour; Dallas, Tex.), 70.00 grams of polymethylenepolyphenyl isocyanate (wall-forming material-PAPI 27, from Dow Chemical; Midland, Mich.), 20.00 grams of a solvent consisting of a mixture of C 9 -C 15 aromatic hydrocarbons with a flash point of about 95° C. (petroleum based solvent-Aromatic 200, from Exxon; Houston, Tex.), and 350.00 grams of clomazone (91% active ingredient) was added.
- the high-speed blending was continued for about 120 minutes, then with medium stirring, 50.00 grams of 1,6-hexamethylenediamine (polymerizer-aqueous 70% HMDA from DuPont; Wilmington, Del.) in 50.00 grams of water was quickly injected into the aqueous/organic emulsion. With continued stirring, the temperature of the so-formed microcapsule suspension formulation was brought to about 60° C. during a 30 minute period, where it was maintained for about two hours.
- 1,6-hexamethylenediamine polymerizer-aqueous 70% HMDA from DuPont; Wilmington, Del.
- the formulation was cooled to ambient temperature and 50.00 grams of calcium chloride, 47.50 grams of sodium nitrate (densifiers-from Aldrich, Milwaukee, Wis.), and 20.00 grams of an aqueous 2% xanthum gum solution (thickener-Kelzan S from Kelco; Chicago, Ill.) was added to the formulation to promote the suspension of the microcapsules in water.
- Particle size 10.4 microns (90%), Viscosity: 320 cP, pH: 7.0.
- This example illustrates the preparation of an aqueous suspension of microencapsulated clomazone where the microcapsule is formed in part from the reaction product of the amide/ammonium salt resin of an anhydrous copolymerization product of styrene and maleic anhydride and a polyfunctional polyisocyanate.
- a pre-mixed aqueous phase consisting of 5.00 grams of an aqueous 25% solution of styrene maleic anhydride copolymer amide/ammonium salt (emulsifier/cross-linking-Scripset 720, from Solutia, Springfield, Mass.), 1.00 gram of a 100% polydimethyl siloxane (anti-foam agent-Dow Corning 1520US, from Ashland Chemical; Cleveland, Ohio), and 0.36 gram of an acidic 1.15% solution of a mixture of 2-methyl-4-isothiazolin-3-ones (a microbial growth inhibitor-Legend MK, from Rohm and Haas; Ambler, Pa.) in about 195.10 grams of water was placed in a 1000ml vessel.
- styrene maleic anhydride copolymer amide/ammonium salt emulsifier/cross-linking-Scripset 720, from Solutia, Springfield, Mass.
- the aqueous phase was homogenized at high speed (about 7000 rpm) for 10 seconds in a Brinkmann Polytron PT6000 blender, and a pre-mixed organic phase consisting of 210.00 grams of technical clomazone (90% active ingredient), 42.00 grams of polymethylenepolyphenyl isocyanate (wall-forming material-PAPI 27, from Dow Chemical; Midland, Mich.), and 24.00 grams of a solvent consisting of a mixture of C 9 -C 15 aromatic hydrocarbons with a flash point of about 95° C. (petroleum based solvent-Aromatic 200, from Exxon; Houston, Tex.) was added at ambient temperature.
- aqueous 2% xanthum gum solution thickener-Kelzan S from Kelco; Chicago, Ill.
- urea widely available
- the pH of the formulation was then adjusted to about 7.6 by the addition of about 5.00 grams of acetic acid (Aldrich, Milwaukee, Wis.). Particle size: 10.0 microns (90%), Viscosity; 900 cP, pH: 7.6.
- This example illustrates the preparation of an aqueous suspension of microencapsulated clomazone in solution with a highly saturated fat where the microcapsule is formed in part from the reaction product of the amide/ammonium salt resin of an anhydrous copolymerization product of styrene and maleic anhydride and a polyfunctional polyisocyanate.
- a pre-mixed aqueous phase consisting of 12.00 grams of an aqueous 25% solution of styrene maleic anhydride copolymer amide/ammonium salt (mulsifier/cross-linking-Scripset 720, from Solutia, Springfield, Mass.), 2.00 gram of a 100% polydimethyl siloxane (anti-foam agent-Dow Corning 1520US, from Ashland Chemical; Cleveland, Ohio), and 0.36 gram an acidic 1.15% solution of a mixture of 2-methyl-4-isothiazolin-3-ones (a microbial growth inhibitor-Legend MK, from Rohm and Haas, Ambler, Pa.) in about 204.64 grams of water was placed in a 1000ml vessel.
- the aqueous phase was homogenized at high speed (about 7000 rpm) for 10 seconds in a Brinkmann Polytron PT6000 blender, and a pre-mixed organic phase consisting of 210.00 grams of technical clomazone (90% active ingredient), 30.00 grams of polymethylenepolyphenyl isocyanate (wall-forming material-PAPI 27, from Dow Chemical Company; Midland, Mich.)), 12.00 grams of animal fat (solvent-lard, from Armour; Dallas, Tex.) and 12.00 grams of a solvent consisting of a mixture of C 9 -C 15 aromatic hydrocarbons with a flash point of about 95° C. (petroleum based solvent-Aromatic 200 from Exxon; Houston, Tex.) was added at 35° C.
- the high-speed blending was continued for about 10 seconds, then, with medium stirring, 40.00 grams of an aqueous 35% solution of 1,6-hexamethylenediamine (polymerizer-aqueous 70% HMDA from DuPont, Wilmington, Del.) was quickly injected to the emulsion.
- the so-formed microcapsule suspension formulation was warmed to 60° C. where it stirred for 2 hours, and finally, the formulation was cooled to ambient temperature where it stirred for about 15 minutes.
- aqueous 2% Xanthum gum solution thickener-Kelzan S from Kelco; Chicago, Ill.
- urea widely available
- the pH of the formulation was then adjusted to about 7.0 by the addition of about 3.50 grams of acetic acid (Aldrich, Milwaukee, Wis.). Particle size: 7.0 microns (90%), viscosity: 800 cP, pH: 7.0.
- test formulation 0.0625, 0.0313, 0.0156, and 0.0078 kg a.i./ha.
- the solutions of test formulation for each rate of application were then sprayed onto the surface of the soil using a track-sprayer in a spray hood.
- Flats were also sprayed as above with the same rates of a standard clomazone formulation sold as Command® Herbicide 4.0 Emulsifiable Concentrate (EC).
- Untreated controls were also included in each test. Upon completion of the spraying, the flats were placed in a greenhouse, where they were maintained for fourteen days. After this time, the test was visually evaluated for percent weed control.
- Examples I and II of the present invention are generally equal in, if not more, herbicidally active than the standard Command Herbicide 4EC.
- the formulations of Example I and II are significantly more herbicidally active than the formulations of U.S. Pat. No. 5,783,520, ranging from about 1.1 to about 3.6 times more herbicidally active.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Agronomy & Crop Science (AREA)
- Pest Control & Pesticides (AREA)
- Plant Pathology (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Dentistry (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
Description
- The present invention relates generally to the field of herbicidal chemical compositions. In particular, the present invention relates to novel compositions of a known herbicidal compound, namely clomazone, designed to reduce clomazone's characteristic volatility, thereby reducing risk of unintended herbicidal activity when clomazone is applied.
- Clomazone (2-[(2-chlorophenyl)methyl]-4,4-dimethyl-3-isoxazolidinone) is a well-known herbicide commercially available for controlling many broadleaf and most grass weeds, and has been found to have selective characteristics making it particularly useful for the control of weeds when growing soybean, cotton, sugarcane, rice, tobacco, oilseed rape, vegetables and others. Clomazone can be phytotoxic to some non-targeted crops and naturally occurring plant species when applied to control undesired vegetation. Contact of clomazone with such unintended crops is the result of vapor transfer of the clomazone to sensitive species growing in adjacent areas.
- Although clomazone can be, and is, sold with suitable label instructions to prevent exposure to sensitive crops, measures that will further decrease the exposure of the non-targeted crops to clomazone without substantial diminution of herbicidal efficacy against weeds will greatly expand the usefulness of clomazone and thus result in lower overall costs.
- Other microencapsulated formulations of clomazone exist that are intended to control the volatile nature of the herbicide. See, e.g., U.S. Pat. Nos. 5,597,780, 5,583,090, and 5,783,520. Unfortunately, these formulations do not provide optimum herbicidal efficacy when compared to commercially available clomazone 4 pound/gallon emulsifiable concentrate (4.0EC) formulation. Given the commercial value of clomazone, improved formulations are therefore needed.
- The present invention is directed to herbicidal formulations comprising microcapsules suspended in an aqueous liquid medium, wherein the microcapsules comprise a porous polymer wall, clomazone, and a fat, or resin. Different embodiments of the present invention include suitable concentrations of fat in the absence of resin, or resin in the absence of fat, or both fat and resin. Preferably, if included, the fat is at least 95% saturated. The present invention is also directed to said formulations wherein the porous polymer wall is, in part, the reaction product of the resin and a polyisocyanate. These formulations provide for the application of clomazone to undesirable vegetation encountered in the cultivation of various plant species, particularly agronomic crops, while minimizing off-target vapor transfer of the herbicide. Accordingly, embodiments of the present invention provide sufficient herbicidal efficacy with respect to unwanted vegetation, yet avoid the aforementioned problems seen in currently available formulations of clomazone.
- In a first embodiment of the present invention there is provided an aqueous dispersion of microcapsules containing a herbicidally effective amount of clomazone in the presence of a highly saturated fat that is at least about 95 % saturated.
- In a second embodiment of the present invention there is provided formulations containing a herbicidally effective amount of clomazone wherein the microcapsule formed is, in part, the reaction product of a styrene-maleic anhydride copolymer resin and a polyfunctional polyisocyanate.
- In a third embodiment of the present invention there is provided formulations containing a herbicidally effective amount of clomazone in the presence of a highly saturated fat that is at least about 95% saturated, and wherein the microcapsule formed is, in part, the reaction product of a styrene-maleic anhydride copolymer resin and a polyfunctional polyisocyanate.
- Preferably, in those formulations containing it, the fat is at least about 98% saturated. Examples of such fats include, without limitation, waxes, suet, lard or tallow. The encapsulant is a porous condensate polymer of polyurea, polyamide or amide-urea copolymer. To provide acceptable volatility control without unacceptable sacrifice of herbicidal efficacy, the percentage of polymer comprising the microcapsules ranges from about 5 percent to about 35 percent by weight, preferably about 10 percent to about 25 percent by weight. Also the percentage of highly saturated fat of the encapsulated material ranges from about 0.5 percent to about 12 percent by weight of the organic phase, preferably about 1 percent to about 8 percent by weight, more preferably about 2 percent to about 6 percent by weight.
- The microcapsules of the present invention provide volatility reduction of about 20-90 percent as compared with clomazone prepared and applied from an emulsifiable concentrate, which is commercially available. The microcapsules of the present invention also provide increased herbicidal efficacy against certain weed species from about one to about four times that of known clomazone microcapsule formulations that are also commercially available. Thus, the practice of the present invention, among other things, enables one to apply clomazone to the appropriate locus for control of weeds in crops while eliminating or substantially diminishing the risk of clomazone injury to plant species located in areas adjacent thereto without the need to resort to expensive and time-consuming pre-plant incorporation or special application procedures.
- Definitions
- The modifier “about” is used herein to indicate that certain preferred operating ranges, such as ranges for molar ratios for reactants, material amounts, and temperature, are not fixedly determined. The meaning will often be apparent to one of ordinary skill. For example, a recitation of a temperature range of about 120° C. to about 135° C. in reference to, for example, a range of temperature for a chemical reaction would be interpreted to include other like temperatures that can be expected to favor a useful reaction rate for the reaction, such as 105° C. or 150° C. Where guidance from the experience of those of ordinary skill is lacking, guidance from the context is lacking, and where a more specific rule is not recited below, the “about” range shall be not more than 10% of the absolute value of an end point or 10% of the range recited, whichever is less.
- The term “ambient temperature” refers to a temperature in the range of about 20 ° C. to about 30° C. As used herein, the terms “crop”, or “crops”, “plant” or “plants” are one and the same, and refer to plants of interest or plant products derived thereof that are grown for ornamental, industrial or food uses. The terms “weed” or “vegetation” are one and the same, and refer to an unwanted plant or plants that are growing in a place or in a manner that is detrimental to a plant or plants of interest. The term “suet” refers to a hard fat found, for example, around the kidneys and loins of beef and mutton, or cattle, from which tallow is derived. The term “tallow” refers to a rendered fat from said cattle. The term “lard” refers to a soft, solid or semi-solid fat obtained by rendering fatty tissue of hogs. The term “CS” or “CS formulation” refers to a microcapsule or capsule suspension formulation of clomazone. The term, for example, “3.0 CS” or “3.0 CS formulation” refers to a microcapsule or capsule suspension formulation of clomazone containing 3.0 pounds of clomazone/gallon of finished formulation. The term “resin” refers to a chemical polymer with a molecular weight of about 100,000 to about 400,000. The term “cross-linking” refers to the chemical bonding between two adjacent polymer chains.
- The formulations of clomazone, in a first embodiment of the present invention, provide an aqueous suspension of microcapsules containing clomazone in combination with a highly saturated fat that is at least about 95% saturated.
- In a second embodiment of the present invention there is provided formulations of clomazone wherein the microcapsule formed is, in part, the reaction product of a suitable resin and a polyfunctional polyisocyanate, wherein the resin is suitable if it acts both as an emulsifier and a cross-linker with the polyisocyanate. Preferred such resins include the copolymerization products of styrene and maleic anhydride.
- In a third embodiment of the present invention there is provided formulations of clomazone in the presence of a highly saturated fat that is at least about 95% saturated, and wherein the microcapsule formed is, in part, the reaction product of a suitable resin and a polyfunctional polyisocyanate, which functions as described, supra.
- A highly saturated fat that can be used in the context of the present invention is one wherein at least about 95% of the carbon-carbon bonds contained therein are single bonds; a preferred highly saturated fat is one having at least about 98% single-bonded carbon-carbon bonds; a more preferred highly saturated fat is one having at least about 99% single bond carbon-carbon bonds. Preferred highly saturated fats are commonly animal fats, such as, without limitation, mutton suet, pork lard or beef tallow, or combinations, or subfractions thereof. Such highly saturated fats need not be of animal origin. For example, waxes of plant, synthetic, and also animal origin can also be employed in the context of the present invention, so long as the selected wax exhibits the high saturation levels noted above.
- Although the function of the fat used in the present invention is not fully elucidated, it is believed that the high degree of saturation of the fat used in the present invention, in addition to contributing to the lowering of the natural volatility of the clomazone, also contributes to the lowering of unintended and detrimental reactions that would likely occur between less-saturated solvents or fats and components of the wall of the microcapsule. These unintended and detrimental reactions are referred to as “fugitive reactions”, and tend to disrupt the wall structure by forming strands that necessitate an additional filtration step in current clomazone formulation protocols. Generally, the fat used in the context of the present invention is a solid at room temperature, but dissolves in the presence of clomazone, which is a liquid. Accordingly, the clomazone acts as a solvent with the fat that is encased in the microcapsules of the present invention.
- The highly saturated fat as used in the context of the present invention preferably constitutes from about 0.5 percent to about 12 percent by weight of the solution that is contained in the microcapsule, the remainder comprising clomazone and, optionally, other reagents included for purposes of densitization and stabilization of the formulation. Preferably, the solution of clomazone and highly saturated fat includes from about 1 percent to about 8 percent by weight of the highly saturated fat, and more preferably about 2 percent to about 6 percent.
- The encapsulating walls of the microcapsules are made of a porous polymer, such as polyurea, polyamide, polysulfonamide, polyester, polycarbonate, or polyurethane and comprise from about 5 percent to about 35 percent by weight of each microcapsule. Preferably, the walls of the microcapsule comprise from about 10 percent to about 25 percent by weight of the microcapsule.
- In a preferred embodiment of the present invention, the microcapsule preparation comprises an aqueous phase comprised of a solution containing a suitable emulsifier and an optional stabilizer, which is preferably an anti-foam agent, and an optional antimicrobial agent. The emulsifier is preferably selected from the group of the salts of ligninsulfonic acid, such as, for example, the sodium, potassium, magnesium, and calcium salts thereof. Particularly effective is the sodium salt of ligninsulfonic acid, which is referred to herein as a lignosulfonate emulsifier or surfactant. An organic phase comprising a solution of clomazone, an optional organic solvent, a highly saturated fat and a polyfunctional polyisocyanate, which is added to the composition of water, lignosulfonate surfactant, and optional antifoam agent. Preferred organic solvents are selected, without limitation, from aromatic hydrocarbon solvents with flash points in the range of about 90 ° C. to about 250° C., hydrocarbon C 15-C16 mixtures, C14-C16 alkyl biphenyl mixtures, aromatic esters, vegetable oils such as corn oil, soybean oil, soy salad oil, and hydro-treated oils; refined light paraffinic distillates, petroleum process oils, and mixtures and subfractions thereof. Particularly preferred solvents are selected from aromatic hydrocarbon solvents with flash points in the range of about 90° C. to about 250° C. A more particularly preferred solvent is a mixture of C9-C15 aromatic hydrocarbons with a flash point of about 95° C. Preferred, highly saturated fats are selected from animal fats that include suet, lard, and tallow. A particularly preferred fat is lard. The resulting mixture is stirred sufficiently under suitable conditions well-understood by those skilled in the art to form a homogenous dispersion of small droplets of the clomazone and fat solution within the aqueous phase.
- Thereafter, in the preferred protocol, a polyfunctional amine is added with the stirring being continued until the polyfunctional amine has essentially fully reacted with the polyfunctional isocyanate. The polyfunctional isocyanate and the polyfunctional amine react in the presence of the surfactant under proper agitation and reaction conditions to form microcapsules having polyurea walls encapsulating the clomazone, optional solvent, and fat solution.
- In a another embodiment of the present invention, the microcapsule preparation comprises an aqueous phase comprised of a solution containing a suitable emulsifier/cross-linking resin, an optional stabilizer in the form of an anti-foam agent, and an optional anti-microbial agent. The emulsifier/cross-linking resin is preferably derived from the copolymerization product of styrene and maleic anhydride, or derived from the copolymerization product of styrene, maleic anhydride and an alcohol. The copolymerization of styrene and maleic anhydride provides a non-esterified or anhydride copolymer. When the copolymerization of styrene and maleic anhydride is conducted with an alcohol, the maleic anhydride rings open to form a copolymer that is a half-acid and half-ester of the corresponding alcohol that is in the copolymerization reaction. Such alcohols include, without limitation, straight or branched chain lower C 1-C6 alkyl alcohols. The anhydride copolymers and the half acid/half ester copolymers are further reacted with hydroxides such as ammonium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, and the like, to provide the aforementioned resins in the form of water-soluble salts. Reaction of the aforementioned hydroxides with the anhydride copolymer causes the maleic anhydride rings to open to provide a di-salt, for example, a di-sodium salt or a di-potassium salt. When the anhydride copolymer is reacted with, for example, ammonium hydroxide, the maleic anhydride rings open to provide an amide/ammonium salt. In the context of the present invention, the emulsifier/cross-linking resin is preferably selected from the ammonium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, and calcium hydroxide salts of an anhydrous copolymerization product of styrene and maleic anhydride; and the ammonium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, and calcium hydroxide salts of a half-acid/half-ester copolymerization product of styrene and maleic anhydride. Particularly preferred resins are the ammonium hydroxide and sodium hydroxide salts of an anhydrous copolymerization product of styrene and maleic anhydride, most preferred is the ammonium hydroxide salt.
- An organic phase or solution of clomazone, an organic solvent, and a polyfunctional polyisocyanate is added to the composition of water, an emulsifier/cross-linking resin, an optional anti-foam agent, and an optional anti-microbial agent. The resulting mixture is stirred sufficiently under suitable conditions to form a homogenous dispersion of small droplets of the clomazone and organic solvent within the aqueous phase. Thereafter, a polyfunctional amine is added with the stirring being continued until the formation of the microcapsule having polyurea walls encapsulating the clomazone is complete. During the reaction of the polyfunctional amine with the polyfunctional isocyanate, cross-linking of the resin occurs. For example, the amide/ammonium salt moieties of the ammonium hydroxide salt of the anhydrous copolymerization product of styrene and maleic anhydride cross-link with the polyfunctional isocyanate during the microcapsule-forming reaction and become part of the porous polymer encapsulating wall. It is believed that the incorporation of the emulsifier/cross-linking resin into the encapsulating wall in the manner described, supra, promotes long-term physical stability of the formulation, inasmuch as the emulsifier has become part of the microcapsule, and cannot be physically removed by, for example, the exposure to the elements.
- In a third embodiment of the present invention, the microcapsule preparation comprises an aqueous phase or solution containing an emulsifier/cross-linking resin as described, supra, an optional stabilizer in the form of an anti-foam agent, and an optional antimicrobial agent. An organic phase or solution of clomazone, a highly saturated fat, an organic solvent and a polyfunctional polyisocyanate is added to the composition of water, emulsifier/cross-linking resin, optional antifoam agent, and optional antimicrobial agent. The resulting mixture is stirred sufficiently under suitable conditions to form a homogenous dispersion of small droplets of the clomazone, fat, and organic solvent within the aqueous phase. Thereafter, a polyfunctional amine is added with stirring, during which time crosslinking of the resin occurs with the polyfunctional polyisocyanate as described supra.
- The rate of the polymerization will depend on the reaction conditions employed. The rate of polymerization will generally be directly related to the temperature at which the reaction takes place.
- The encapsulation process of the present invention is capable of satisfactory performance and production of encapsulated material without adjustment to a specific pH value. However, for purposes of enhanced stability the pH of the finished microencapsulated formulations is best maintained in a range of about 5.0 to about 8.0, preferably about 6.0 to about 7.5, more preferably about 6.5 to about 7.2. It may be desirable to further adjust the pH of the finished microcapsule formulation as, for example, when the aqueous base formulation of the microcapsules is combined with other herbicides, fertilizers, etc., conventional and suitable reagents for pH adjustment may be used. Such reagents include hydrochloric acid, acetic acid, phosphoric acid, sodium hydroxide, potassium hydroxide, ammonium hydroxide and the like.
- The agitation employed to establish the dispersion of water immiscible phase droplets in the aqueous phase during the production of the formulation of the present invention may be supplied by any means capable of providing suitable high shear. That is to say that any variable shear mixing apparatus, e.g., a Waring Blender, a Brinkman Polytron homogenizer, Ross Model 100L homogenizer and the like can be usefully employed to provide the desired shear.
- The particular size of the microcapsules for formulating the composition of the present invention will generally range from about one micron up to about one hundred microns in average diameter. From about one to about twenty microns is a preferred average range, in which a more preferred average range is about eight to about fourteen microns
- Salts and other compounds may be employed in the formulation. Salts and other compounds may: 1) act as antifreezes; 2) increase the ionic strength; and 3) function as densifiers in the aqueous phase. Examples of such salts include, without limitation, calcium chloride, sodium nitrate, and combinations thereof. Other compounds include, for example, urea that functions as an anti-freeze when incorporated into the formulations of the present invention.
- The microcapsules of clomazone as set forth herein are preferably suspended in an aqueous medium that preferably includes reagents that serve to keep the microcapsules from settling. These reagents, which form a suspension system composition, preferably comprise a combination of agents, such as surfactants, dispersants, emulsifiers, antifreeze agents, clays, water, salts, polymers, and other suspension stabilizing and density balancing agents, appropriately selected to keep the microcapsules in stable homogeneous suspension in the water-based carrier over an extended period of time, such as, for example, two years or more. The agents comprising the suspension system will generally comprise 0.01 percent by weight to 15 percent by weight of the formulation, preferably 1 percent to about 15 percent, more preferably 2 percent by weight to 10 percent by weight.
- Many such agents can be used, and the optimum combination for each particular suspension system of active ingredient will vary. Suitable clays include bentonite clay and attapulgite clay and mixtures thereof, preferably in the range from about 0.01 percent to about 1.0 percent solid by weight, relative to the total formulation weight although greater or lesser amounts may be employed. The presence of at least one clay conventionally used in suspension systems improves the stability of the suspended microcapsules and particularly aids in the redistribution of the microcapsules upon shaking in the event some settling of microcapsules is experienced and redistribution thereof is required.
- Another preferred suspension system also includes a small amount of a polysaccaride thickening agent to aid in stabilizing the suspension of the microcapsules. Xanthan gum is preferable, and is preferably present in an amount in the range from about 0.01 percent by weight to about 0. 1 percent by weight although greater or lesser amounts may be employed.
- The viscosity of the final product comprising the suspension system of the microcapsules of the present invention is preferably in the range of about 100 to about 4000 centipoise (cP), more preferably in the range of about 400 to 3000 cP, and most preferably, about 600 to about 2000 cP.
- In the preferred final product about 100 to 750 grams of microcapsules (polymer plus encapsulated material) per liter of the composition and more preferably about 400 to about 600 grams microcapsules per liter are present. The encapsulating polymer component in the final encapsulated product normally will be in the range of about 0.2 percent by weight to about 12 percent by weight and preferably in the range of about 2 percent by weight to about 9 percent by weight.
- Within the scope of this invention, polyisocyanates will be generally understood as meaning those compounds that contain two and more isocyanate groups in the molecule. Preferred isocyanates are di- and triisocyanates whose isocyanate groups may be linked to an aliphatic or aromatic moiety. Examples of suitable aliphatic diisocyanates and aliphatic triisocyanates are tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate and 4-(isocyanatomethyl)-1,8-octyl diisocyanate. Suitable aromatic isocyanates are toluene diisocyanate (TDI: DESMODUR Registered TM VL, Bayer), polymethylene polyphenylisocyanate (MONDUR Registered TM MR, Miles Chemical Company); PAPI Registered TM 135 (Upjohn Company), 2,4,4′-diphenyl ether triisocyanate, 3,3′-dimethyl-4,4′-diphenyl diisocyanate, 3,3′-dimethoxy-4,4′-diphenyl diisocyanate, 1,5-naphthalene diisocyanate and 4,4′,4″-triphenylmethane triisocyanate. A further suitable diisocyanate is isophorone diisocyanate. Also suitable are adducts of diisocyanates with polyhydric alcohols, such as ethylene glycol, glycerol and trimethylolpropane, obtained by addition, per mole of polyhydric alcohol, of a number of moles of diisocyanate corresponding to the number of hydroxyl groups of the respective alcohol. In this way several molecules of diisocyanate are linked urethane groups to the polyhydric alcohol to form high molecular polyisocyanates. Another suitable product of this kind (DESMODUR Registered TM L) can be prepared by reacting three moles of toluene diisocyanate with one mole of 2-ethylglycerol (1,1-bismethylolpropane). Further suitable products are obtained by addition of hexamethylene diisocyanate or isophorone diisocyanate with ethylene glycol or glycerol. Preferred polyisocyanates are diphenylmethane-4,4′-diisocyanate and polymethylene polyphenylisocyanate. The di- and triisocyanates specified above can be employed individually or as mixtures of two or more such isocyanates.
- Suitable polyamines within the scope of this invention will be understood as meaning in general those compounds that contain two or more primary amino groups in the molecule, which amino groups may be linked to aliphatic and aromatic moieties. Examples of suitable aliphatic polyamines are alpha, omega-diamines, including, without limitation, ethylenediamine, propylene-1,3-diamine, tetramethylenediamine, pentamethylenediamine and 1,6-hexamethylenediamine. A preferred diamine is 1,6-hexamethylenediamine.
- Further suitable aliphatic polyamines are polyethyleneamines, including, without limitation, diethylenetriamine, triethylenetriamine, tetraethylenepentamine, pentaethylenehexamine.
- Examples of suitable aromatic polyamines are 1 ,3-phenylenediamine, 2,4-toluylenediamine, 4,4′-diaminodiphenylmethane, 1,5-diaminoaphthalene, 1,3,5-triaminobenzene, 2,4,6-triaminotoluene, 1,3,6-triaminonaphthalene, 2,4,4′-triaminodiphenyl ether, 3,4,5-triamino-1,2,4-triazole, bis(hexamethylentriamine) and 1,4,5,8-tetraaminoanthraquinone. Those polyamines which are insoluble or insufficiently soluble in water may be used as hydrochloride salts.
- Yet further suitable polyamines are those that contain sulfo or carboxyl groups in addition to the amino groups. Examples of such polyamines are 1,4-phenylene diaminesulfonic acid, 4,4′-diaminodiphenyl-2-sulfonic acid, or diaminoammocarboxylic acids such as ornithene and lysine.
- Suitable liquid fertilizers can be mixed with the formulations herein without the formation of unacceptable amounts of agglomerates in the spray tank, thus avoiding poor spraying performance. The liquid fertilizers used in mixtures of the present invention can be liquid nitrogen fertilizers, optionally containing phosphate and/or potash components. Liquid fertilizers are usually designated by the percentage weight of nitrogen, phosphorous and potassium (N-P-K) ratios, e.g., 4-10-10, 6-18-18, or 10-30-10.
- The microcapsules of the present invention may be formulated with at least one other active ingredient. Such other active ingredient includes other pesticides such as herbicides and insecticides. Examples of such herbicides include dimethachlor, ametryn, pendimethalin, and trifluralin. Examples of such insecticides include bifenthrin, permethrin, cypermethrin, and organophosphates.
- The present invention is better illustrated and is explained in more detail in the following examples wherein parts and percentages are given on a weight basis unless otherwise stated. It should be understood that the examples are merely illustrative of the invention and not limitative.
- This example illustrates the preparation of an aqueous suspension of microencapsulated clomazone in solution with a highly saturated fat.
- PREPARATION OF A CLOMAZONE 3.0 CS FORMULATION CONTAINING ANIMAL FAT
- A pre-mixed aqueous phase consisting of 10.00 grams of the sodium salt of lignosulfonic acid (dispersant-Lignosol SFX65, from Lignotech; Rothchild, Wis.), and seven drops of a 100% polydimethyl siloxane (anti-foam agent-Dow Corning 1520US, from Ashland Chemical; Cleveland, Ohio) in 500.00 grams of water was placed in a 1000 mL beaker. The aqueous phase was homogenized at high speed (about 6000 rpm) for 60 seconds in a Brinkmann Polytron PT6000 blender, and a pre-mixed organic phase consisting of 20.00 grams of animal fat (solvent-lard, from Armour; Dallas, Tex.), 70.00 grams of polymethylenepolyphenyl isocyanate (wall-forming material-PAPI 27, from Dow Chemical; Midland, Mich.), 20.00 grams of a solvent consisting of a mixture of C 9-C15 aromatic hydrocarbons with a flash point of about 95° C. (petroleum based solvent-Aromatic 200, from Exxon; Houston, Tex.), and 350.00 grams of clomazone (91% active ingredient) was added. Upon completion of addition, the high-speed blending was continued for about 120 minutes, then with medium stirring, 50.00 grams of 1,6-hexamethylenediamine (polymerizer-aqueous 70% HMDA from DuPont; Wilmington, Del.) in 50.00 grams of water was quickly injected into the aqueous/organic emulsion. With continued stirring, the temperature of the so-formed microcapsule suspension formulation was brought to about 60° C. during a 30 minute period, where it was maintained for about two hours. After this time, the formulation was cooled to ambient temperature and 50.00 grams of calcium chloride, 47.50 grams of sodium nitrate (densifiers-from Aldrich, Milwaukee, Wis.), and 20.00 grams of an aqueous 2% xanthum gum solution (thickener-Kelzan S from Kelco; Chicago, Ill.) was added to the formulation to promote the suspension of the microcapsules in water. Particle size: 10.4 microns (90%), Viscosity: 320 cP, pH: 7.0.
- This example illustrates the preparation of an aqueous suspension of microencapsulated clomazone where the microcapsule is formed in part from the reaction product of the amide/ammonium salt resin of an anhydrous copolymerization product of styrene and maleic anhydride and a polyfunctional polyisocyanate.
- PREPARATION OF A CLOMAZONE 3.0 CS FORMULATION CONTAINING A RESIN COPOLYMER
- A pre-mixed aqueous phase consisting of 5.00 grams of an aqueous 25% solution of styrene maleic anhydride copolymer amide/ammonium salt (emulsifier/cross-linking-Scripset 720, from Solutia, Springfield, Mass.), 1.00 gram of a 100% polydimethyl siloxane (anti-foam agent-Dow Corning 1520US, from Ashland Chemical; Cleveland, Ohio), and 0.36 gram of an acidic 1.15% solution of a mixture of 2-methyl-4-isothiazolin-3-ones (a microbial growth inhibitor-Legend MK, from Rohm and Haas; Ambler, Pa.) in about 195.10 grams of water was placed in a 1000ml vessel. The aqueous phase was homogenized at high speed (about 7000 rpm) for 10 seconds in a Brinkmann Polytron PT6000 blender, and a pre-mixed organic phase consisting of 210.00 grams of technical clomazone (90% active ingredient), 42.00 grams of polymethylenepolyphenyl isocyanate (wall-forming material-PAPI 27, from Dow Chemical; Midland, Mich.), and 24.00 grams of a solvent consisting of a mixture of C 9-C15 aromatic hydrocarbons with a flash point of about 95° C. (petroleum based solvent-Aromatic 200, from Exxon; Houston, Tex.) was added at ambient temperature. Upon completion of addition, the high-speed blending was continued for about 10 seconds, then with medium stirring, 42.00 grams of an aqueous 35% solution of 1,6-hexamethylenediamine (polymerizer-aqueous 70% HMDA from DuPont; Wilmington, Del.) was quickly injected into the aqueous/organic emulsion. Upon completion of addition of the amine, the so-formed microcapsule suspension formulation was warmed to 60° C. where it stirred for 2 hours, and finally, the formulation was cooled to ambient temperature where it stirred for about 15 minutes. After this time, 24.00 grams of an aqueous 2% xanthum gum solution (thickener-Kelzan S from Kelco; Chicago, Ill.) was added to the formulation during a 15 minute period to promote the suspension of the microcapsules in water. To this was then added 42.00 grams of urea (widely available) as an antifreeze agent. The pH of the formulation was then adjusted to about 7.6 by the addition of about 5.00 grams of acetic acid (Aldrich, Milwaukee, Wis.). Particle size: 10.0 microns (90%), Viscosity; 900 cP, pH: 7.6.
- This example illustrates the preparation of an aqueous suspension of microencapsulated clomazone in solution with a highly saturated fat where the microcapsule is formed in part from the reaction product of the amide/ammonium salt resin of an anhydrous copolymerization product of styrene and maleic anhydride and a polyfunctional polyisocyanate.
- PREPARATION OF A CLOMAZONE 3.0 CS FORMULATION CONTAINING ANIMAL FAT AND A RESIN COPOLYMER
- A pre-mixed aqueous phase consisting of 12.00 grams of an aqueous 25% solution of styrene maleic anhydride copolymer amide/ammonium salt (mulsifier/cross-linking-Scripset 720, from Solutia, Springfield, Mass.), 2.00 gram of a 100% polydimethyl siloxane (anti-foam agent-Dow Corning 1520US, from Ashland Chemical; Cleveland, Ohio), and 0.36 gram an acidic 1.15% solution of a mixture of 2-methyl-4-isothiazolin-3-ones (a microbial growth inhibitor-Legend MK, from Rohm and Haas, Ambler, Pa.) in about 204.64 grams of water was placed in a 1000ml vessel. The aqueous phase was homogenized at high speed (about 7000 rpm) for 10 seconds in a Brinkmann Polytron PT6000 blender, and a pre-mixed organic phase consisting of 210.00 grams of technical clomazone (90% active ingredient), 30.00 grams of polymethylenepolyphenyl isocyanate (wall-forming material-PAPI 27, from Dow Chemical Company; Midland, Mich.)), 12.00 grams of animal fat (solvent-lard, from Armour; Dallas, Tex.) and 12.00 grams of a solvent consisting of a mixture of C 9-C15 aromatic hydrocarbons with a flash point of about 95° C. (petroleum based solvent-Aromatic 200 from Exxon; Houston, Tex.) was added at 35° C. Upon completion of addition, the high-speed blending was continued for about 10 seconds, then, with medium stirring, 40.00 grams of an aqueous 35% solution of 1,6-hexamethylenediamine (polymerizer-aqueous 70% HMDA from DuPont, Wilmington, Del.) was quickly injected to the emulsion. Upon completion of addition of the amine, the so-formed microcapsule suspension formulation was warmed to 60° C. where it stirred for 2 hours, and finally, the formulation was cooled to ambient temperature where it stirred for about 15 minutes. After this time, 18.00 grams an aqueous 2% Xanthum gum solution (thickener-Kelzan S from Kelco; Chicago, Ill.) was added to the formulation during a 15 minute period to promote the suspension of the microcapsules in water. To this was then added 60.00 grams of urea (widely available) as an antifreeze agent. The pH of the formulation was then adjusted to about 7.0 by the addition of about 3.50 grams of acetic acid (Aldrich, Milwaukee, Wis.). Particle size: 7.0 microns (90%), viscosity: 800 cP, pH: 7.0.
- This example illustrates microencapsulated formulations of clomazone within the scope of the present invention wherein the components are expressed as ranges in weight/weight percents.
CLOMAZONE 3.0 CS FORMULATIONS USING ANIMAL FATS AND/OR COPOLYMER RESIN Percent weight/weight Formulations Formulations Formulations of of of Example I Example II Example III Component Aqueous Phase Na salt of lignosulfonic 1.00-2.00 — — acid (Dispersant) Copolymer resin — 0.20-1.00 0.20-1.00 (Emulsifier/cross-linking) Anti-microbial agent — 0.02-0.10 0.02-0.10 Anti-foam agent 0.10-0.40 0.10-0.40 0.10-0.40 Water (Diluent) 27.82-47.26 29.82-52.12 28.82-48.06 Organic Phase Polymethylene poly- 4.50-8.00 4.50-8.00 4.50-8.00 phenylisocyanate (Wall-forming material) Animal fat (Solvent) 2.00-3.00 — 2.00-3.00 Petroleum-based hydro- 0.00-2.50 3.50-4.50 1.50-2.50 carbon (Solvent) Clomazone (90-99%) 34.75-35.50 34.75-35.50 34.75-35.50 Amine Phase 1,6-hexanediamine 1.90-5.00 1.90-5.00 1.90-5.00 (Polymerizer) Water (Diluent) 1.90-5.00 1.90-5.00 1.90-5.00 Post-encapsulation Components Xanthan gum 0.02-0.08 0.02-0.08 0.02-0.08 (Thickener) Urea/CaCl2/NaNO3 5.00-10.00 5.00-10.00 5.00-10.00 (Antifreeze/densifier) CH3CO2H (pH adjust) 0.05-0.60 0.05-0.60 0.05-0.60 - The following example further illustrates the present invention, but, of course, should not be construed as in any way limiting its scope. The example sets forth certain biological data illustrating the efficacy of the microcapsule formulations when compared to the efficacy of similar formulations known in the art.
- Seeds of barnyardgrass, giant foxtail, green foxtail, shattercane, and velvetleaf were planted in a 25 cm×15 cm×7.5 cm fiber flat containing topsoil. Each species was planted as a single row in the flat, which contained five rows. There were four replicate flats of the aforementioned weed species for each rate of application of clomazone test formulation. Stock solutions of each of the test formulations were prepared by dissolving a sufficient amount of formulation to provide 0.0356 grams of active ingredient in 40 mL of water. From the stock solution 20 mL was removed and serially diluted with 20 mL of water to provide application rates of 0.25, 0.125. 0.0625, 0.0313, 0.0156, and 0.0078 kg a.i./ha. The solutions of test formulation for each rate of application were then sprayed onto the surface of the soil using a track-sprayer in a spray hood. Flats were also sprayed as above with the same rates of a standard clomazone formulation sold as Command® Herbicide 4.0 Emulsifiable Concentrate (EC). Untreated controls were also included in each test. Upon completion of the spraying, the flats were placed in a greenhouse, where they were maintained for fourteen days. After this time, the test was visually evaluated for percent weed control. The percent weed control data for each test formulation and the standard Command Herbicide 4.0 EC formulation was subjected to regression analysis to determine the rate of application that would provide 85% weed control (ED85) of each of the weed species. From these data the relative potency of the test formulation ( the relative potency of the Command Herbicide 4.0 EC is one) was determined using the following ratio:
Formulation Relative Potency Barn- yard- Giant Green Shetter- Velvet- Formulation grass Foxtail Foxtail cane leaf Formulation of 1.03* 1.43* 1.09* 1.22* 1.94* Example I Formulation of 0.75 0.75 0.95 1.04 1.00 Example II Formulation of 0.42* 0.75* 0.59* 0.60* 0.54* U.S. Pat. No. 5,783,520 Command 1.00 1.00 1.00 1.00 1.00 Herbicide 4EC - The formulations of Examples I and II of the present invention are generally equal in, if not more, herbicidally active than the standard Command Herbicide 4EC. The formulations of Example I and II are significantly more herbicidally active than the formulations of U.S. Pat. No. 5,783,520, ranging from about 1.1 to about 3.6 times more herbicidally active.
- While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made herein without departing from the spirit and scope thereof.
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/778,280 US6380133B2 (en) | 1999-03-18 | 2001-02-06 | Microencapsulated clomazone in the presence of fat and resin |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12504499P | 1999-03-18 | 1999-03-18 | |
| US09/521,514 US6218339B1 (en) | 1999-03-18 | 2000-03-08 | Microencapsulated clomazone in the presence of fat and resin |
| US09/778,280 US6380133B2 (en) | 1999-03-18 | 2001-02-06 | Microencapsulated clomazone in the presence of fat and resin |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/521,514 Division US6218339B1 (en) | 1999-03-18 | 2000-03-08 | Microencapsulated clomazone in the presence of fat and resin |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20010041659A1 true US20010041659A1 (en) | 2001-11-15 |
| US6380133B2 US6380133B2 (en) | 2002-04-30 |
Family
ID=26823215
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/521,514 Expired - Fee Related US6218339B1 (en) | 1999-03-18 | 2000-03-08 | Microencapsulated clomazone in the presence of fat and resin |
| US09/778,280 Expired - Fee Related US6380133B2 (en) | 1999-03-18 | 2001-02-06 | Microencapsulated clomazone in the presence of fat and resin |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/521,514 Expired - Fee Related US6218339B1 (en) | 1999-03-18 | 2000-03-08 | Microencapsulated clomazone in the presence of fat and resin |
Country Status (14)
| Country | Link |
|---|---|
| US (2) | US6218339B1 (en) |
| EP (1) | EP1164849B1 (en) |
| CN (1) | CN1343092A (en) |
| AR (1) | AR022934A1 (en) |
| AT (1) | ATE295080T1 (en) |
| AU (1) | AU3744000A (en) |
| BR (1) | BR0008932A (en) |
| DE (1) | DE60020097T2 (en) |
| ES (1) | ES2240079T3 (en) |
| HK (1) | HK1043711A1 (en) |
| IL (1) | IL145107A0 (en) |
| PT (1) | PT1164849E (en) |
| UA (1) | UA69448C2 (en) |
| WO (1) | WO2000054590A1 (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080293602A1 (en) * | 2007-05-21 | 2008-11-27 | Kodali Dharma R | Glycerol derivatives and methods of making same |
| KR20140048241A (en) * | 2011-08-10 | 2014-04-23 | 유피엘 리미티드 | An improved herbicidal formulation |
| US20160106101A1 (en) * | 2012-12-24 | 2016-04-21 | Rotam Agrochem International Company Limited | Method of regulating plant growth |
| CN106061251A (en) * | 2014-03-26 | 2016-10-26 | 江苏龙灯化学有限公司 | Herbicidal composition, a method for its preparation and the use thereof |
| WO2019027630A1 (en) * | 2017-07-31 | 2019-02-07 | Dow Global Technologies Llc | Additive composition and method |
| US10542755B2 (en) | 2013-01-21 | 2020-01-28 | Rotam Agrochem International Company Limited | Agrochemical composition, method for its preparation and use thereof |
Families Citing this family (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100533239B1 (en) * | 2003-11-21 | 2005-12-05 | 씨에이치디메딕스 주식회사 | Long lasting aromatic and antibacterial insecticide for pets |
| GR1005292B (en) * | 2005-09-22 | 2006-09-22 | Αντωνιος Μιχαηλακης | Prolonged slow release of volatile organic molecules employing polyurea microcapsules |
| EP3180980A1 (en) * | 2006-02-23 | 2017-06-21 | Fmc Corporation | Microencapsulated and non-encapsulated pesticides |
| ES2864019T3 (en) | 2006-03-30 | 2021-10-13 | Fmc Corp | Microencapsulation of Clomazone through a refining process and specific microcapsules produced from it |
| MX2009000761A (en) * | 2006-07-31 | 2009-05-28 | Topchim N V | Particle in the shape of an encapsulated droplet and process for making such a particle. |
| BRPI0823242A2 (en) | 2008-11-10 | 2015-06-16 | Colgate Palmolive Co | Capsule Paste, Toothpaste Composition, and Method for Reducing Leakage of Coacervated Capsules |
| US20110053776A1 (en) * | 2009-09-01 | 2011-03-03 | Bahr James T | Blends of micro-encapsulated pesticide formulations |
| GB2478317B (en) * | 2010-03-02 | 2012-07-11 | Rotam Agrochem Int Co Ltd | Herbicidal composition and method of use thereof |
| EP2552212B8 (en) * | 2010-03-29 | 2015-02-25 | UPL Limited | An improved formulation |
| WO2011137170A1 (en) * | 2010-04-28 | 2011-11-03 | Syngenta Participations Ag | Stabilized agrochemical composition |
| KR102129638B1 (en) * | 2012-07-27 | 2020-07-02 | 에프엠씨 코포레이션 | Formulations of clomazone |
| RU2640885C2 (en) | 2012-11-16 | 2018-01-12 | Басф Се | Incapulated fertiliser particle containing pesticide |
| GB2509428B (en) * | 2014-03-26 | 2016-09-21 | Rotam Agrochem Int Co Ltd | Herbicidal composition, a method for its preparation and the use thereof |
| GB2509430B (en) * | 2014-03-26 | 2016-09-14 | Rotam Agrochem Int Co Ltd | Herbicidal composition, a method for its preparation and the use thereof |
| GB2509427B (en) * | 2014-03-26 | 2016-09-21 | Rotam Agrochem Int Co Ltd | Herbicidal composition, a method for its preparation and the use thereof |
| GB2509429B (en) * | 2014-03-26 | 2016-09-21 | Rotam Agrochem Int Co Ltd | Herbicidal composition, a method for its preparation and the use thereof |
| GB2509426B (en) * | 2014-03-26 | 2017-04-26 | Rotam Agrochem Int Co Ltd | Clomazone composition, its preparation and use thereof |
| JP6686157B2 (en) | 2016-10-12 | 2020-04-22 | 日本たばこ産業株式会社 | Flavor suction device |
| IL322381A (en) | 2023-01-31 | 2025-09-01 | Calyxia | Clomazone microcapsules |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5098468A (en) * | 1989-10-13 | 1992-03-24 | Safer, Inc. | Fatty acid based emulsifiable concentrate having herbicidal activity |
| FR2670085B1 (en) * | 1990-12-10 | 1996-12-13 | Rhone Poulenc Chimie | PHYTOSANITARY SUSPENSIONS. |
| ATE156728T1 (en) | 1992-01-03 | 1997-08-15 | Ciba Geigy Ag | SUSPENSION OF MICRO CAPSULES AND METHOD FOR THE PRODUCTION THEREOF |
| US5597780A (en) * | 1994-11-16 | 1997-01-28 | Fmc Corporation | Low volatility formulations of microencapsulated clomazone |
| DK0792100T3 (en) | 1994-11-16 | 2003-05-19 | Fmc Corp | Low volatility Clomazone formulations |
| US5583090A (en) * | 1995-06-26 | 1996-12-10 | Monsanto Company | Herbicidal microencapsulated clomazone compositions with reduced vapor transfer |
| US5783520A (en) * | 1995-06-26 | 1998-07-21 | Monsanto Company | Microencapsulated herbicidal compositions comprising clomazone and edible oils |
-
2000
- 2000-03-08 US US09/521,514 patent/US6218339B1/en not_active Expired - Fee Related
- 2000-03-15 CN CN00804970A patent/CN1343092A/en active Pending
- 2000-03-15 PT PT00916319T patent/PT1164849E/en unknown
- 2000-03-15 AU AU37440/00A patent/AU3744000A/en not_active Abandoned
- 2000-03-15 DE DE60020097T patent/DE60020097T2/en not_active Expired - Fee Related
- 2000-03-15 UA UA2001107049A patent/UA69448C2/en unknown
- 2000-03-15 ES ES00916319T patent/ES2240079T3/en not_active Expired - Lifetime
- 2000-03-15 EP EP00916319A patent/EP1164849B1/en not_active Expired - Lifetime
- 2000-03-15 BR BR0008932-0A patent/BR0008932A/en not_active IP Right Cessation
- 2000-03-15 IL IL14510700A patent/IL145107A0/en unknown
- 2000-03-15 HK HK02105544.8A patent/HK1043711A1/en unknown
- 2000-03-15 AT AT00916319T patent/ATE295080T1/en not_active IP Right Cessation
- 2000-03-15 AR ARP000101140A patent/AR022934A1/en unknown
- 2000-03-15 WO PCT/US2000/006622 patent/WO2000054590A1/en not_active Ceased
-
2001
- 2001-02-06 US US09/778,280 patent/US6380133B2/en not_active Expired - Fee Related
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080293602A1 (en) * | 2007-05-21 | 2008-11-27 | Kodali Dharma R | Glycerol derivatives and methods of making same |
| US7989555B2 (en) * | 2007-05-21 | 2011-08-02 | Global Agritech, Inc. | Glycerol derivatives and methods of making same |
| US9554577B2 (en) * | 2011-08-10 | 2017-01-31 | Upl Limited | Herbicidal formulation |
| US20140200141A1 (en) * | 2011-08-10 | 2014-07-17 | Upl Limited | Herbicidal formulation |
| KR20140048241A (en) * | 2011-08-10 | 2014-04-23 | 유피엘 리미티드 | An improved herbicidal formulation |
| KR101961505B1 (en) * | 2011-08-10 | 2019-03-22 | 유피엘 리미티드 | An improved herbicidal formulation |
| US20160106101A1 (en) * | 2012-12-24 | 2016-04-21 | Rotam Agrochem International Company Limited | Method of regulating plant growth |
| US10874106B2 (en) | 2012-12-24 | 2020-12-29 | Rotam Agrochem International Company Limited | Method of regulating plant growth |
| US10542755B2 (en) | 2013-01-21 | 2020-01-28 | Rotam Agrochem International Company Limited | Agrochemical composition, method for its preparation and use thereof |
| CN106061251A (en) * | 2014-03-26 | 2016-10-26 | 江苏龙灯化学有限公司 | Herbicidal composition, a method for its preparation and the use thereof |
| EP3122183A4 (en) * | 2014-03-26 | 2017-09-13 | Jiangsu Rotam Chemistry Co., Ltd | Herbicidal composition, a method for its preparation and the use thereof |
| US10499639B2 (en) | 2014-03-26 | 2019-12-10 | Jiangsu Rotam Chemistry Co., Ltd. | Herbicidal composition, a method for its preparation and the use thereof |
| WO2019027630A1 (en) * | 2017-07-31 | 2019-02-07 | Dow Global Technologies Llc | Additive composition and method |
Also Published As
| Publication number | Publication date |
|---|---|
| US6218339B1 (en) | 2001-04-17 |
| BR0008932A (en) | 2001-12-18 |
| IL145107A0 (en) | 2002-06-30 |
| HK1043711A1 (en) | 2002-09-27 |
| EP1164849A1 (en) | 2002-01-02 |
| PT1164849E (en) | 2005-08-31 |
| DE60020097D1 (en) | 2005-06-16 |
| AR022934A1 (en) | 2002-09-04 |
| US6380133B2 (en) | 2002-04-30 |
| WO2000054590A1 (en) | 2000-09-21 |
| EP1164849B1 (en) | 2005-05-11 |
| DE60020097T2 (en) | 2006-01-19 |
| ATE295080T1 (en) | 2005-05-15 |
| UA69448C2 (en) | 2004-09-15 |
| CN1343092A (en) | 2002-04-03 |
| AU3744000A (en) | 2000-10-04 |
| ES2240079T3 (en) | 2005-10-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6218339B1 (en) | Microencapsulated clomazone in the presence of fat and resin | |
| AU698102B2 (en) | Herbicidal compositions | |
| US5783520A (en) | Microencapsulated herbicidal compositions comprising clomazone and edible oils | |
| RU2567168C2 (en) | Microcapsule suspensions including high levels of agriculturally active ingredients | |
| KR101961505B1 (en) | An improved herbicidal formulation | |
| KR20010015572A (en) | Microcapsules with readily adjustable release rates | |
| US20040106523A1 (en) | Alkylene carbonate adjuvants | |
| TW201322922A (en) | Granules with improved dispersion properties | |
| CN104619173B (en) | Agrochemical composition, method for the production thereof and use thereof | |
| RU2234839C2 (en) | Microincapsulated clomazone with lipid and resin | |
| EP3550969A1 (en) | Composition comprising polyurethane microcapsules comprising cinmethylin |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: CITICORP USA, INC. (AS ADMINISTRATIVE AGENT), DELA Free format text: SECURITY AGREEMENT;ASSIGNORS:FMC CORPORATION;INTERMOUNTAIN RESEARCH AND DEVELOPMENT CORPROATION;REEL/FRAME:013525/0574 Effective date: 20021021 |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| AS | Assignment |
Owner name: FMC CORPORATION, PENNSYLVANIA Free format text: RELEASE OF PATENT SECURITY INTEREST;ASSIGNOR:CITICORP USA, INC. (AS ADMINISTRATIVE AGENT);REEL/FRAME:017336/0374 Effective date: 20060224 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20100430 |