US20010022421A1 - Signature delivery apparatus including two rotating buckets - Google Patents
Signature delivery apparatus including two rotating buckets Download PDFInfo
- Publication number
- US20010022421A1 US20010022421A1 US09/835,421 US83542101A US2001022421A1 US 20010022421 A1 US20010022421 A1 US 20010022421A1 US 83542101 A US83542101 A US 83542101A US 2001022421 A1 US2001022421 A1 US 2001022421A1
- Authority
- US
- United States
- Prior art keywords
- bucket
- inches
- blades
- delivery apparatus
- signatures
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000712 assembly Effects 0.000 abstract description 16
- 238000000429 assembly Methods 0.000 abstract description 16
- 238000000034 method Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 238000005520 cutting process Methods 0.000 description 8
- 238000013459 approach Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229920004943 Delrin® Polymers 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H29/00—Delivering or advancing articles from machines; Advancing articles to or into piles
- B65H29/38—Delivering or advancing articles from machines; Advancing articles to or into piles by movable piling or advancing arms, frames, plates, or like members with which the articles are maintained in face contact
- B65H29/40—Members rotated about an axis perpendicular to direction of article movement, e.g. star-wheels formed by S-shaped members
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2404/00—Parts for transporting or guiding the handled material
- B65H2404/60—Other elements in face contact with handled material
- B65H2404/65—Other elements in face contact with handled material rotating around an axis parallel to face of material and perpendicular to transport direction, e.g. star wheel
- B65H2404/659—Other elements in face contact with handled material rotating around an axis parallel to face of material and perpendicular to transport direction, e.g. star wheel particular arrangement
- B65H2404/6591—Pair of opposite elements rotating around parallel axis, synchronously in opposite direction
Definitions
- the present invention relates to a signature delivery apparatus for a folder.
- the invention relates to a signature delivery apparatus including two overlapping rotating buckets which operate to feed signatures alternately to one of two paths.
- a desired image is repeatedly printed on a continuous web or substrate such as paper.
- the continuous web is slit (in the longitudinal direction which is the direction of web movement) to produce a plurality of continuous ribbons.
- the ribbons are aligned one on top of the other, folded longitudinally, and then cut laterally to produce a plurality of multi-page, approximately page-length segments, each of which is termed a “signature”.
- signature also encompasses a single printed sheet that has or has not been folded. Because more than one different signature can be printed at one time, it is often desirable to separate the different signatures by transporting successive signatures in different directions or paths.
- One way to accomplish the sorting of a single stream of signatures is to use a diverter mechanism including a stationary diverter wedge to divert successive signatures to one of two paths. Examples of such diverter mechanisms are described in U.S. Pat. Nos. 4,373,713 and 4,729,282.
- each set of buckets includes several identical buckets arranged at a spaced distance from one another along a common axis.
- Each bucket has multiple blades which define pockets or slots for receiving signatures.
- Each blade includes a recess so that the blades do not collide when the two sets of buckets rotate.
- Signature placement alternates from the slots of the right set of buckets to the slots of the left set of buckets to thereby sort the single stream of signatures into two streams.
- a recess in the blade presents an obstacle for a signature and may interfere with the smooth entry or exit of the signature into or out of the slot.
- the process of removing a signature from a slot is also referred to as “stripping” the signature.
- the recess in the blade has a cover that acts like a spring. The cover can be depressed, and when the force is removed, the cover will bounce back. This cover gets depressed by the blade of the opposite bucket once per signature that is processed in the associated slot.
- the cover can wear out, break, or jam in the open or closed position.
- the dust created from the cutting process can cause problems with jamming of the cover.
- the delivery apparatus includes two counter-rotating bucket assemblies.
- Each bucket assembly includes a plurality of buckets spaced from one another along a common axis. The respective common axis of each bucket assembly is disposed parallel to the common axis of the other.
- Each of the buckets of one of the bucket assemblies is disposed adjacent to and in a respective common plane with a respective one of the buckets of the other of the bucket assemblies.
- each of the buckets includes a plurality of blades, the tips of the blades of each bucket defining a circumference.
- Each slot includes a first generally wedge-shaped portion defined by a first planar surface and a second planar surface disposed at a first angle from the first planar surface, and a second generally wedge-shaped portion defined by a third planar surface and a fourth planar surface disposed at a second angle from the third planar surface.
- the second angle is smaller than the first angle.
- FIG. 1 is a schematic diagram of a pinless folder incorporating a delivery apparatus in accordance with the present invention
- FIG. 2 is an illustration of two bucket assemblies and two stripping assemblies in accordance with the present invention
- FIG. 3 is a side view of a bucket assembly and associated stripping assembly in accordance with the present invention.
- FIG. 4 is a partial illustration of two overlapping buckets showing in detail the shapes of the blades and the slots.
- FIG. 1 of the drawings Illustrated in FIG. 1 of the drawings is a schematic of a folder 10 which is a portion of a high speed printing press.
- the folder 10 includes a forming section 12 , a drive section 14 , a cutting section 16 , and a delivery section 18 .
- the forming section 12 includes a generally triangularly shaped former board 20 which receives a web of material (or several longitudinally slit sections of the web called ribbons, wherein the ribbons are typically aligned one on top of the other) and folds the same longitudinally (i.e., in the same direction as the web travels).
- the folded web is then fed downwardly under the influence of a pair of squeeze rolls 21 to the drive section 14 .
- the drive section 14 includes pairs of upper and lower drive rolls, 22 and 24 respectively. These drive rolls transport the web to conditioning rolls 26 in the cutting section 16 .
- the web then passes into engagement with a cutting device 28 .
- the web is segmented by the cutting device 28 into a plurality of signatures 30 .
- Suitable timing means known to those of ordinary skill in the art, provide accurate longitudinal registration of the image on the web with respect to the cutting device 28 to ensure proper cut locations for the web segments.
- Successive signatures 30 enter the delivery section 18 along a delivery path 32 , aided by belts or transport tapes 34 .
- the opposed tapes 34 are shown apart for clarity, but are actually very close together and press on each other with the signature between them.
- the delivery section 18 also includes stripping assemblies 60 and two bucket assemblies 36 .
- the two bucket assemblies operate to sort the single stream of signatures into two streams and also slow down the signatures.
- the stripping assemblies 60 operate to remove a signature at a time from a respective bucket 38 .
- the signature then falls upon a conveyor (not shown) where successive signatures are arranged in a shingled stream.
- the movement of the signatures on the shingling conveyor can be to the left or the right or out of the plane of FIG. 1.
- each bucket assembly 36 includes identical buckets 38 spaced at predetermined distances along a respective common shaft 39 , as shown in FIG. 3.
- the buckets on the left rotate in a clockwise direction
- the buckets on the right rotate in a counterclockwise direction.
- each bucket 38 includes twelve blades 40 extending outwardly from an inner circular portion 42 .
- the tips 44 of the blades define an outer circle having an outer circumference 45 .
- the outer circumference 45 of the left set of buckets overlaps the outer circumference 45 of the right set of buckets.
- the diameter of the outer circle is 37.5 inches and the center to center spacing of the bucket assemblies is 36 inches such that there is 1.5 inches of overlap.
- each blade 40 is constructed so as to prevent collisions between blades from opposing buckets when the buckets 38 are rotating.
- each blade 40 includes a primary blade surface 46 and a secondary blade surface 48 .
- the primary blade surface 46 of one blade and the secondary blade surface 48 of a successive blade together define a slot 49 for receiving signatures.
- the primary blade surface is the main surface that the signature slides on as it enters the bucket slot.
- each primary blade surface 46 is composed of three portions AB, BC, and CD.
- portions AB, BC, and CD correspond to segment AB, which is a straight line
- segment BC which is an arc
- segment CD which is also an arc.
- segment AB has a length of five inches
- tangentially connected segment BC has a twenty four inch radius and a length of six inches
- tangentially connected segment CD has a 4.0 inch radius and a length of three inches.
- the slot 49 has a length measured along the primary blade surface 46 of fourteen inches and is intended to receive a signature that is eleven inches long.
- the longer slot allows room for the signature to bounce back slightly from the slot end DE, without interfering with the operation of the rotating buckets.
- the three inches of extra slot length also allows the signature to be completely within the slot before the signature slows down during the last three inches of travel as it approaches slot end DE.
- the secondary blade surface is composed of six surface portions EF, FG, GH, HJ, JK, and KL. Again as viewed in profile, these portions include corresponding segments EF, FG, GH, HJ, JK, and KL.
- segment EF is an arc having a radius drawn from the same center as segment CD.
- segment FG is an arc having a radius drawn from the same center as segment BC.
- the slot width A is therefore constant in the region from E to G, and in the preferred embodiment is 0.125 inches wide.
- Segment GH is an arc
- segment HJ is a straight line
- segment JK is an arc
- segment KL is a straight line.
- Segments AB and KL and the area between these segments provide the necessary clearance so that an opposing bucket blade does not collide with a given bucket blade.
- segment EF has a 3.875 inch radius
- segment FG has a 23.875 inch radius
- segment GH has a four inch radius
- segment JK has a four inch radius.
- portion LM can either be a planar surface or a convex surface that matches the circumference of the outer circle 45 .
- the blade edges 50 (shown in FIG. 3) of the primary and secondary blade surfaces 46 , 48 on both sides of the blade are rounded. The rounded edges reduce or eliminate the sharp edges that may tear or otherwise cause damage to a signature 30 .
- the primary blade surface 46 and the secondary blade surface 48 of a successive blade together define slots 49 for receiving signatures.
- the slots 49 include a first wedge-shaped section 52 , a second wedge-shaped section 54 , and a constant width section 56 .
- the first wedge-shaped section 52 is defined by planar surfaces partially including portions AB and KL.
- the second wedge-shaped section 54 is defined by curved surfaces partially including portions AB, BC and portions GH, HJ, and JK.
- the first wedge-shaped section 52 prevents opposing blades 40 from hitting the bucket 38 and allows clearance for the signature insertion as the bucket rotates.
- the second wedge-shaped section 54 functions to further channel the signature into the constant width section 56 of the slot and prevents flaring out of the leading edge of the signature which could cause dog ears on the leading edge.
- the slot 49 meets a tangent to the inner circular portion 42 at an angle of approximately forty-five (45) degrees. Additionally, the slot ends, surfaces DE, are on the circumference of the inner circular portion and also have rounded edges on both front and rear. In the preferred embodiment, the diameter of the inner circular portion 42 measures twenty-seven inches. For a given rotational bucket speed, the slot ends in a bucket having a larger inner diameter travel at a higher rate of speed than do slot ends in a bucket having a smaller inner diameter. Thus, the impact force between a moving signature and the slot end is reduced the faster the slot ends travel because the speed difference between the two is reduced.
- the speed of the transport tapes 34 is designed to be approximately 8 to 15% greater than the speed of the web prior to the cutting device. This speed increase creates a gap between successive signatures 30 along the delivery path 32 .
- the size of this gap is independent of machine speed and depends only upon the speed gain of the transport tapes 34 and the signature length. The larger the speed gain of the tapes, the larger the resulting gap between signatures. This gap between successive signatures makes the diverting of signatures to alternate buckets possible.
- each bucket turns one angular slot distance (30 degrees for a bucket with 12 slots) for everv two signatures fed from the cutting device 28 .
- Each bucket turns at such an angular speed so that it receives every other signature during the diverting process.
- the bucket shaft is driven by the printing press line shaft with the proper speed reduction to take into account the number of slots per bucket and the fact that every other signature is directed to a single bucket.
- a bucket having a smaller number of slots per given circumference has to turn at a faster angular speed (RPM) than one with more slots in order to receive all the signatures coming towards it.
- RPM faster angular speed
- the transport tapes 34 move the signatures 30 to a location in the vicinity of the two bucket assemblies 36 along delivery path 32 , which is the centerline between the two buckets.
- a signature 30 strikes a primary blade surface 46 of a blade 40 momentarily disposed across the signature path in a position for receiving the signature.
- the tip 44 of the blade is about 0.125 to 0.250 inches across the center line 32 as the leading edge of the signature hits the surface 46 .
- the signature strikes the surface 46 at an angle (shown in FIG. 4) of approximately twenty degrees or less. The smaller the angle is made, the smaller is the impact force on the leading edge 29 of the signature.
- the signature 30 is directed by the primary blade surface 46 into the slot 49 formed between adjacent blades. The frictional contact with the primary blade surface 46 and the ever tightening radius of curvature slows down the signature 30 as it continues in the slot 49 .
- the tips 44 of the next blades to cross center line 32 are tips from the opposite set of buckets 36 .
- the left hand bucket is phased with respect to the right hand bucket such that the blades from the two set of buckets much properly without hitting each other.
- These tips 44 act to deflect the trailing edge 31 of the signature in order to prevent the trailing edge 31 from accidentally whipping around the tip 44 of the previous bucket blade.
- the end of the signature is rounded so that it does not damage the signature during this hit process.
- the next signature 30 is then transported by the tapes 34 into the vicinity of these tips and the signature is placed into this opposite set of blades.
- the signature placement into the slots alternates between the two bucket assemblies.
- a stripping assembly 60 is utilized, as illustrated in FIGS. 1 - 3 .
- the stripping assembly 60 includes a pivot arm 62 , several strippers 64 , and a mounting bar 66 .
- the pivot arm 62 is mounted to remain stationary relative to the axis of the buckets during rotation thereof, but is adjustable around the bucket axis. As the pivot arm is adjusted around the bucket axis, the position of the strippers 64 are adjusted relative to the slots. The purpose of this adjustment is so that one can adjust the amount of time between the hit at the end of the bucket slot and the subsequent hit on the stripper.
- the strippers 64 are mounted in spaced apart relation along the mounting bar 66 . Each stripper 64 is spaced from a respective bucket 38 . The strippers 64 are individually adjustable along the length of the mounting bar 66 .
- each stripper 64 includes a smooth surface, depicted as curve 65 , on which the leading edge 29 of a signature strikes.
- the stripper curve 65 is one that decelerates a signature over as long of a time period as possible so that the impact force acting on the leading edge 29 of the signature 30 when the signature hits the stripper 64 is kept to a minimum.
- a smaller impact force on the stripper at a given rotational bucket speed prevents damage to the leading edge 29 of the signature 30 and allows for higher rotational bucket speeds which means faster printing press running speeds.
- the direction of the ejection force that pushes the signature out of the slot 49 should be in the direction of segment EG (i.e., along the slot length) rather than perpendicular to segment EG (i.e., perpendicular to the sides of the slots).
- An ejection force having too large of a force component perpendicular to the segment EG can damage or tear the signature 30 during the stripping process. This is especially true at slot end DE where the signature 30 first makes contact with the stripper 64 to start the stripping process.
- the impact force diminishes and its direction does not have to remain parallel to the direction of the slot.
- the impulse time can be increased by inclining the signature ejection force slightly away from the direction of the slot length, resulting in a small component of the signature ejection force that is perpendicular to the direction of the sides of the slot.
- the curve 65 results in an impact force that is gradually increased from within 10 degrees of the direction of the slot length during the first portion of the stripping process to within 20 degrees during the end of the stripping process.
- the stripper 64 is constructed out of a 3 ⁇ 4 inch thick sheet of plastic such as Delrin. This material allows the leading edge of the signature to slide easily along the stripper surface 65 during the stripping process.
- the impact energy dissipated at the bucket slot end DE associated with a signature collision with surface DE is less than 70% of the total impact energy dissipated by the signature 30 as it is brought to a stop at the end of the printing process.
- the impact energy of a signature collision with the stripper is greater than 30% of the total impact energy.
- the stripper surface 65 is also rounded along its two side edges to prevent signature damage.
- the delivery apparatus of the present invention organizes a separated stream of signatures into a shingled stream of signatures and includes a bucket having at least ten blades, and preferably includes at least ten blades and no fewer than 14 blades, and even more preferably includes 12 blades.
- the inner ends slots on the bucket define an inner circle having a diameter that is at least 24 inches, and preferably is at least 24 inches and no fewer than 30 inches, and even more preferably is 27 inches.
- the tips of the blades on the buckets define an outer circle having a diameter of at least 32 inches, and is preferably at least 32 inches and no fewer than 40 inches, and even more preferably is 37.5 inches.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Discharge By Other Means (AREA)
- Separation, Sorting, Adjustment, Or Bending Of Sheets To Be Conveyed (AREA)
Abstract
Description
- The present invention relates to a signature delivery apparatus for a folder. In particular, the invention relates to a signature delivery apparatus including two overlapping rotating buckets which operate to feed signatures alternately to one of two paths.
- In the printing industry, a desired image is repeatedly printed on a continuous web or substrate such as paper. In a typical printing process, the continuous web is slit (in the longitudinal direction which is the direction of web movement) to produce a plurality of continuous ribbons. The ribbons are aligned one on top of the other, folded longitudinally, and then cut laterally to produce a plurality of multi-page, approximately page-length segments, each of which is termed a “signature”. The term signature also encompasses a single printed sheet that has or has not been folded. Because more than one different signature can be printed at one time, it is often desirable to separate the different signatures by transporting successive signatures in different directions or paths.
- One way to accomplish the sorting of a single stream of signatures is to use a diverter mechanism including a stationary diverter wedge to divert successive signatures to one of two paths. Examples of such diverter mechanisms are described in U.S. Pat. Nos. 4,373,713 and 4,729,282.
- Another way to accomplish the sorting of a single stream of signatures into two or more streams is with the use of rotating buckets (also known as fans, fan wheels, paddle fans, or rotary flywheels). One known configuration for sorting signatures includes two sets of rotating buckets, wherein the two sets have outer diameters which overlap. This arrangement is disclosed in U.S. Pat. No. 5,112,033. As described therein, each set of buckets includes several identical buckets arranged at a spaced distance from one another along a common axis. Each bucket has multiple blades which define pockets or slots for receiving signatures. Each blade includes a recess so that the blades do not collide when the two sets of buckets rotate. Signature placement alternates from the slots of the right set of buckets to the slots of the left set of buckets to thereby sort the single stream of signatures into two streams.
- The use of recesses in the blades as described in U.S. Pat. No. 5,112,033 has certain disadvantages. For example, a recess in the blade presents an obstacle for a signature and may interfere with the smooth entry or exit of the signature into or out of the slot. The process of removing a signature from a slot is also referred to as “stripping” the signature. Additionally, in one embodiment described in the above-referenced patent, the recess in the blade has a cover that acts like a spring. The cover can be depressed, and when the force is removed, the cover will bounce back. This cover gets depressed by the blade of the opposite bucket once per signature that is processed in the associated slot. Thus, the cover can wear out, break, or jam in the open or closed position. Also, the dust created from the cutting process can cause problems with jamming of the cover.
- It is desirable to increase the operating speed of a printing press as much as possible in order to increase the printed product output. However, as the rotational speed of the buckets is increased, it is more difficult to ensure the reliable operation of the buckets while ensuring the quality of the signatures. For example, signature quality problems that can occur at higher press speeds include ink offset, dog-eared edges, and defects to both the leading and trailing edges of the signatures. These and other defects can lead to paper jams in the folder, resulting in press downtime and expense.
- It is a principal object of the present invention to provide a signature delivery apparatus for a folder for sorting a single stream of signatures into two or more streams. The delivery apparatus includes two counter-rotating bucket assemblies. Each bucket assembly includes a plurality of buckets spaced from one another along a common axis. The respective common axis of each bucket assembly is disposed parallel to the common axis of the other. Each of the buckets of one of the bucket assemblies is disposed adjacent to and in a respective common plane with a respective one of the buckets of the other of the bucket assemblies. Further, each of the buckets includes a plurality of blades, the tips of the blades of each bucket defining a circumference. The respective circumference of one bucket overlaps the circumference of the other bucket disposed in the respective common plane. Two neighboring blades on a bucket have respective surfaces defining a slot therebetween. Each slot includes a first generally wedge-shaped portion defined by a first planar surface and a second planar surface disposed at a first angle from the first planar surface, and a second generally wedge-shaped portion defined by a third planar surface and a fourth planar surface disposed at a second angle from the third planar surface. The second angle is smaller than the first angle.
- Also disclosed herein is an improved stripper profile which lessens the impact shock on the leading edge of the signature during signature stripping from the bucket.
- Other features and advantages of the invention will become apparent to those skilled in the art upon review of the following detailed description, claims and drawings.
- FIG. 1 is a schematic diagram of a pinless folder incorporating a delivery apparatus in accordance with the present invention;
- FIG. 2 is an illustration of two bucket assemblies and two stripping assemblies in accordance with the present invention;
- FIG. 3 is a side view of a bucket assembly and associated stripping assembly in accordance with the present invention; and
- FIG. 4 is a partial illustration of two overlapping buckets showing in detail the shapes of the blades and the slots.
- Before one embodiment of the invention is explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or as illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
- Illustrated in FIG. 1 of the drawings is a schematic of a folder 10 which is a portion of a high speed printing press. The folder 10 includes a forming
section 12, adrive section 14, acutting section 16, and adelivery section 18. - In particular, the forming
section 12 includes a generally triangularly shaped former board 20 which receives a web of material (or several longitudinally slit sections of the web called ribbons, wherein the ribbons are typically aligned one on top of the other) and folds the same longitudinally (i.e., in the same direction as the web travels). The folded web is then fed downwardly under the influence of a pair ofsqueeze rolls 21 to thedrive section 14. Thedrive section 14 includes pairs of upper and lower drive rolls, 22 and 24 respectively. These drive rolls transport the web to conditioningrolls 26 in thecutting section 16. The web then passes into engagement with a cutting device 28. The web is segmented by the cutting device 28 into a plurality ofsignatures 30. Suitable timing means, known to those of ordinary skill in the art, provide accurate longitudinal registration of the image on the web with respect to the cutting device 28 to ensure proper cut locations for the web segments. -
Successive signatures 30 enter thedelivery section 18 along adelivery path 32, aided by belts ortransport tapes 34. Theopposed tapes 34 are shown apart for clarity, but are actually very close together and press on each other with the signature between them. Thedelivery section 18 also includes strippingassemblies 60 and twobucket assemblies 36. The two bucket assemblies operate to sort the single stream of signatures into two streams and also slow down the signatures. The strippingassemblies 60 operate to remove a signature at a time from arespective bucket 38. The signature then falls upon a conveyor (not shown) where successive signatures are arranged in a shingled stream. The movement of the signatures on the shingling conveyor can be to the left or the right or out of the plane of FIG. 1. - Referring to FIGS. 2 and 4, the configuration of each
bucket assembly 36 is illustrated in detail. Although only onebucket 38 perbucket assembly 36 is shown in these figures, eachbucket assembly 36 includesidentical buckets 38 spaced at predetermined distances along a respectivecommon shaft 39, as shown in FIG. 3. In both FIGS. 2 and 4, the buckets on the left rotate in a clockwise direction, and the buckets on the right rotate in a counterclockwise direction. - In the preferred embodiment, each
bucket 38 includes twelveblades 40 extending outwardly from an innercircular portion 42. Thetips 44 of the blades define an outer circle having anouter circumference 45. Theouter circumference 45 of the left set of buckets overlaps theouter circumference 45 of the right set of buckets. In the preferred embodiment, the diameter of the outer circle is 37.5 inches and the center to center spacing of the bucket assemblies is 36 inches such that there is 1.5 inches of overlap. - The
blades 40 are constructed so as to prevent collisions between blades from opposing buckets when thebuckets 38 are rotating. In particular, as best seen in FIG. 4, eachblade 40 includes aprimary blade surface 46 and asecondary blade surface 48. Theprimary blade surface 46 of one blade and thesecondary blade surface 48 of a successive blade together define aslot 49 for receiving signatures. - The primary blade surface is the main surface that the signature slides on as it enters the bucket slot. In particular, each
primary blade surface 46 is composed of three portions AB, BC, and CD. Viewed in profile, portions AB, BC, and CD correspond to segment AB, which is a straight line, segment BC, which is an arc, and segment CD, which is also an arc. In the preferred embodiment, segment AB has a length of five inches, tangentially connected segment BC has a twenty four inch radius and a length of six inches, and tangentially connected segment CD has a 4.0 inch radius and a length of three inches. Thus, theslot 49 has a length measured along theprimary blade surface 46 of fourteen inches and is intended to receive a signature that is eleven inches long. The longer slot allows room for the signature to bounce back slightly from the slot end DE, without interfering with the operation of the rotating buckets. The three inches of extra slot length also allows the signature to be completely within the slot before the signature slows down during the last three inches of travel as it approaches slot end DE. - The secondary blade surface is composed of six surface portions EF, FG, GH, HJ, JK, and KL. Again as viewed in profile, these portions include corresponding segments EF, FG, GH, HJ, JK, and KL. In particular, segment EF is an arc having a radius drawn from the same center as segment CD. Similarly, segment FG is an arc having a radius drawn from the same center as segment BC.
- The slot width A is therefore constant in the region from E to G, and in the preferred embodiment is 0.125 inches wide. Segment GH is an arc, segment HJ is a straight line, segment JK is an arc, and segment KL is a straight line. Segments AB and KL and the area between these segments provide the necessary clearance so that an opposing bucket blade does not collide with a given bucket blade. Further in the preferred embodiment, segment EF has a 3.875 inch radius, segment FG has a 23.875 inch radius, segment GH has a four inch radius, and segment JK has a four inch radius.
- At the
tip 44 of ablade 40, portion LM can either be a planar surface or a convex surface that matches the circumference of theouter circle 45. The blade edges 50 (shown in FIG. 3) of the primary and secondary blade surfaces 46, 48 on both sides of the blade are rounded. The rounded edges reduce or eliminate the sharp edges that may tear or otherwise cause damage to asignature 30. - Thus, the
primary blade surface 46 and thesecondary blade surface 48 of a successive blade together defineslots 49 for receiving signatures. As shown in FIG. 4, theslots 49 include a first wedge-shapedsection 52, a second wedge-shapedsection 54, and a constant width section 56. The first wedge-shapedsection 52 is defined by planar surfaces partially including portions AB and KL. The second wedge-shapedsection 54 is defined by curved surfaces partially including portions AB, BC and portions GH, HJ, and JK. The first wedge-shapedsection 52 prevents opposingblades 40 from hitting thebucket 38 and allows clearance for the signature insertion as the bucket rotates. The second wedge-shapedsection 54 functions to further channel the signature into the constant width section 56 of the slot and prevents flaring out of the leading edge of the signature which could cause dog ears on the leading edge. - The
slot 49 meets a tangent to the innercircular portion 42 at an angle of approximately forty-five (45) degrees. Additionally, the slot ends, surfaces DE, are on the circumference of the inner circular portion and also have rounded edges on both front and rear. In the preferred embodiment, the diameter of the innercircular portion 42 measures twenty-seven inches. For a given rotational bucket speed, the slot ends in a bucket having a larger inner diameter travel at a higher rate of speed than do slot ends in a bucket having a smaller inner diameter. Thus, the impact force between a moving signature and the slot end is reduced the faster the slot ends travel because the speed difference between the two is reduced. - The speed of the
transport tapes 34 is designed to be approximately 8 to 15% greater than the speed of the web prior to the cutting device. This speed increase creates a gap betweensuccessive signatures 30 along thedelivery path 32. The size of this gap is independent of machine speed and depends only upon the speed gain of thetransport tapes 34 and the signature length. The larger the speed gain of the tapes, the larger the resulting gap between signatures. This gap between successive signatures makes the diverting of signatures to alternate buckets possible. - The angular speed of each bucket is such that each bucket turns one angular slot distance (30 degrees for a bucket with 12 slots) for everv two signatures fed from the cutting device 28. Each bucket turns at such an angular speed so that it receives every other signature during the diverting process. To achieve the proper speeds, the bucket shaft is driven by the printing press line shaft with the proper speed reduction to take into account the number of slots per bucket and the fact that every other signature is directed to a single bucket. A bucket having a smaller number of slots per given circumference has to turn at a faster angular speed (RPM) than one with more slots in order to receive all the signatures coming towards it.
- In operation, the
transport tapes 34 move thesignatures 30 to a location in the vicinity of the twobucket assemblies 36 alongdelivery path 32, which is the centerline between the two buckets. Asignature 30 strikes aprimary blade surface 46 of ablade 40 momentarily disposed across the signature path in a position for receiving the signature. Thetip 44 of the blade is about 0.125 to 0.250 inches across thecenter line 32 as the leading edge of the signature hits thesurface 46. The signature strikes thesurface 46 at an angle (shown in FIG. 4) of approximately twenty degrees or less. The smaller the angle is made, the smaller is the impact force on the leadingedge 29 of the signature. Thesignature 30 is directed by theprimary blade surface 46 into theslot 49 formed between adjacent blades. The frictional contact with theprimary blade surface 46 and the ever tightening radius of curvature slows down thesignature 30 as it continues in theslot 49. - The
tips 44 of the next blades to crosscenter line 32 are tips from the opposite set ofbuckets 36. The left hand bucket is phased with respect to the right hand bucket such that the blades from the two set of buckets much properly without hitting each other. Thesetips 44 act to deflect the trailingedge 31 of the signature in order to prevent the trailingedge 31 from accidentally whipping around thetip 44 of the previous bucket blade. The end of the signature is rounded so that it does not damage the signature during this hit process. Thenext signature 30 is then transported by thetapes 34 into the vicinity of these tips and the signature is placed into this opposite set of blades. Thus, the signature placement into the slots alternates between the two bucket assemblies. These steps are repeated in order to place successive signatures alternately into the two bucket assemblies, to thereby separate the single stream of signatures into two streams. - In order to remove the signatures from the slots, a stripping
assembly 60 is utilized, as illustrated in FIGS. 1-3. The strippingassembly 60 includes apivot arm 62,several strippers 64, and a mountingbar 66. Thepivot arm 62 is mounted to remain stationary relative to the axis of the buckets during rotation thereof, but is adjustable around the bucket axis. As the pivot arm is adjusted around the bucket axis, the position of thestrippers 64 are adjusted relative to the slots. The purpose of this adjustment is so that one can adjust the amount of time between the hit at the end of the bucket slot and the subsequent hit on the stripper. The two hits should not be too close together in time because it is desirable to have two separate distinct hits to dissipate the kinetic energy instead of only one hit on the stripper. As FIG. 3 illustrates, thestrippers 64 are mounted in spaced apart relation along the mountingbar 66. Eachstripper 64 is spaced from arespective bucket 38. Thestrippers 64 are individually adjustable along the length of the mountingbar 66. - It is desirable for a
signature 30 to approach the innercircular portions 42 of thebuckets 38 tangentially to reduce the impact force as thesignature 30 hits the inner circular portion at the slot end DE. However, for efficient signature removal by the stationary strippers, a relatively large angle is preferable because the impact force is less when the signature hits the stationary strippingassembly 60 and is ejected from theslots 49. Thus, an angle of forty-five degrees was chosen as a compromise between these two competing requirements. - As best seen in FIG. 2, each
stripper 64 includes a smooth surface, depicted ascurve 65, on which the leadingedge 29 of a signature strikes. Ideally, thestripper curve 65 is one that decelerates a signature over as long of a time period as possible so that the impact force acting on the leadingedge 29 of thesignature 30 when the signature hits thestripper 64 is kept to a minimum. A smaller impact force on the stripper at a given rotational bucket speed prevents damage to the leadingedge 29 of thesignature 30 and allows for higher rotational bucket speeds which means faster printing press running speeds. In addition, the direction of the ejection force that pushes the signature out of theslot 49 should be in the direction of segment EG (i.e., along the slot length) rather than perpendicular to segment EG (i.e., perpendicular to the sides of the slots). An ejection force having too large of a force component perpendicular to the segment EG can damage or tear thesignature 30 during the stripping process. This is especially true at slot end DE where thesignature 30 first makes contact with thestripper 64 to start the stripping process. Once thesignature 30 has started to move partially out of theslot 49 after the initial hit with the stripper 64 (after theleading edge 29 of thesignature 30 has been pushed out by about one inch from the slot end DE), then the impact force diminishes and its direction does not have to remain parallel to the direction of the slot. - The impulse time can be increased by inclining the signature ejection force slightly away from the direction of the slot length, resulting in a small component of the signature ejection force that is perpendicular to the direction of the sides of the slot. In the preferred embodiment of the
stripper 64, thecurve 65 results in an impact force that is gradually increased from within 10 degrees of the direction of the slot length during the first portion of the stripping process to within 20 degrees during the end of the stripping process. - In the preferred embodiment, the
stripper 64 is constructed out of a ¾ inch thick sheet of plastic such as Delrin. This material allows the leading edge of the signature to slide easily along thestripper surface 65 during the stripping process. The impact energy dissipated at the bucket slot end DE associated with a signature collision with surface DE is less than 70% of the total impact energy dissipated by thesignature 30 as it is brought to a stop at the end of the printing process. The impact energy of a signature collision with the stripper is greater than 30% of the total impact energy. Thestripper surface 65 is also rounded along its two side edges to prevent signature damage. - The delivery apparatus of the present invention organizes a separated stream of signatures into a shingled stream of signatures and includes a bucket having at least ten blades, and preferably includes at least ten blades and no fewer than 14 blades, and even more preferably includes 12 blades. In addition, the inner ends slots on the bucket define an inner circle having a diameter that is at least 24 inches, and preferably is at least 24 inches and no fewer than 30 inches, and even more preferably is 27 inches. The tips of the blades on the buckets define an outer circle having a diameter of at least 32 inches, and is preferably at least 32 inches and no fewer than 40 inches, and even more preferably is 37.5 inches.
- Various features and advantages of the invention are set forth in the following claims.
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/835,421 US6419219B2 (en) | 1999-04-12 | 2001-04-16 | Signature delivery apparatus including two rotating buckets |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/291,145 US6247692B1 (en) | 1999-04-12 | 1999-04-12 | Signature delivery apparatus including two rotating buckets |
| US09/835,421 US6419219B2 (en) | 1999-04-12 | 2001-04-16 | Signature delivery apparatus including two rotating buckets |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/291,145 Continuation-In-Part US6247692B1 (en) | 1999-04-12 | 1999-04-12 | Signature delivery apparatus including two rotating buckets |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20010022421A1 true US20010022421A1 (en) | 2001-09-20 |
| US6419219B2 US6419219B2 (en) | 2002-07-16 |
Family
ID=23119047
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/291,145 Expired - Lifetime US6247692B1 (en) | 1999-04-12 | 1999-04-12 | Signature delivery apparatus including two rotating buckets |
| US09/835,421 Expired - Lifetime US6419219B2 (en) | 1999-04-12 | 2001-04-16 | Signature delivery apparatus including two rotating buckets |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/291,145 Expired - Lifetime US6247692B1 (en) | 1999-04-12 | 1999-04-12 | Signature delivery apparatus including two rotating buckets |
Country Status (3)
| Country | Link |
|---|---|
| US (2) | US6247692B1 (en) |
| DE (1) | DE10003284A1 (en) |
| FR (1) | FR2791964A1 (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070257427A1 (en) * | 2005-12-16 | 2007-11-08 | Ncr Corporation | Stacker wheel |
| US20100201066A1 (en) * | 2009-02-06 | 2010-08-12 | Goss International Americas, Inc. | Multiple delivery web conversion apparatus and method of producing and delivering variable printed products |
| US20100201065A1 (en) * | 2009-02-06 | 2010-08-12 | Goss International Americas, Inc. | Adjustable delivery web conversion apparatus and method |
| US20100201056A1 (en) * | 2009-02-06 | 2010-08-12 | Goss International Americas, Inc. | Single level web conversion apparatus and method |
| US20100201058A1 (en) * | 2009-02-06 | 2010-08-12 | Goss International Americas, Inc. | Web conversion and collating apparatus and method |
| US10976263B2 (en) | 2016-07-20 | 2021-04-13 | Ball Corporation | System and method for aligning an inker of a decorator |
| US11034145B2 (en) | 2016-07-20 | 2021-06-15 | Ball Corporation | System and method for monitoring and adjusting a decorator for containers |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19813139C1 (en) * | 1998-03-25 | 1999-09-23 | Schober Werkzeug & Maschbau | Work conveyor for punch |
| DE10347572B3 (en) * | 2003-10-14 | 2005-05-19 | Koenig & Bauer Ag | A display device |
| CN108357724B (en) * | 2017-01-26 | 2020-12-15 | 株式会社特包可 | Automatic equipment for packing's collection device |
| CN110335408B (en) * | 2018-03-13 | 2024-10-29 | 山东新北洋信息技术股份有限公司 | Impeller assembly, banknote collection and separation device and cash recycling equipment |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE1917235B2 (en) | 1969-04-03 | 1973-09-27 | Koenig & Bauer Ag, 8700 Wuerzburg | Copy output in the folding units of web-fed rotary printing presses |
| US4373713A (en) | 1980-12-24 | 1983-02-15 | Motter Printing Press Co. | Diverter mechanism |
| DE3232348A1 (en) | 1982-08-31 | 1984-03-01 | GAO Gesellschaft für Automation und Organisation mbH, 8000 München | DEVICE FOR STACKING LEAF-SHAPED ITEMS |
| JPS59182156A (en) * | 1983-03-31 | 1984-10-16 | Toshiba Corp | Paper-sheet recovering apparatus |
| US4729282A (en) | 1986-07-22 | 1988-03-08 | Quad/Tech, Inc. | Sheet diverter for signature collation and method thereof |
| US5112033A (en) | 1990-05-09 | 1992-05-12 | Harris Graphics Corporation | Folder apparatus for a web-fed printing press |
| US5156389A (en) * | 1991-04-19 | 1992-10-20 | Heidelberg Harris Gmbh | Fan delivery with format-dependent adjustable signature guides |
| US5180160A (en) | 1991-08-12 | 1993-01-19 | Heidelberg Harris Gmbh | Delivery device in the folding apparatus of a rotary printing press |
| US5639083A (en) * | 1994-07-14 | 1997-06-17 | Heidelberger Druckmaschinen Ag | Device for the delivery of folded products |
| US5615878A (en) * | 1995-08-15 | 1997-04-01 | Heidelberg Harris Inc. | Method and apparatus for accelerating and diverting flat products |
| US5647586A (en) | 1995-12-11 | 1997-07-15 | Heidelberg Harris Inc. | Method and apparatus for decelerating a flat product |
| US5730435A (en) | 1996-11-18 | 1998-03-24 | Heidelberg Harris Inc. | Apparatus for absorbing energy during signature delivery |
-
1999
- 1999-04-12 US US09/291,145 patent/US6247692B1/en not_active Expired - Lifetime
-
2000
- 2000-01-26 DE DE10003284A patent/DE10003284A1/en not_active Withdrawn
- 2000-02-15 FR FR0001823A patent/FR2791964A1/en active Pending
-
2001
- 2001-04-16 US US09/835,421 patent/US6419219B2/en not_active Expired - Lifetime
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070257427A1 (en) * | 2005-12-16 | 2007-11-08 | Ncr Corporation | Stacker wheel |
| US20100201066A1 (en) * | 2009-02-06 | 2010-08-12 | Goss International Americas, Inc. | Multiple delivery web conversion apparatus and method of producing and delivering variable printed products |
| US20100201065A1 (en) * | 2009-02-06 | 2010-08-12 | Goss International Americas, Inc. | Adjustable delivery web conversion apparatus and method |
| US20100201056A1 (en) * | 2009-02-06 | 2010-08-12 | Goss International Americas, Inc. | Single level web conversion apparatus and method |
| WO2010090768A1 (en) | 2009-02-06 | 2010-08-12 | Goss International Americas, Inc. | Multiple delivery web conversion apparatus and method of producing and delivering variable printed products |
| US20100201058A1 (en) * | 2009-02-06 | 2010-08-12 | Goss International Americas, Inc. | Web conversion and collating apparatus and method |
| US7963515B2 (en) | 2009-02-06 | 2011-06-21 | Goss International Americas, Inc. | Adjustable delivery web conversion apparatus and method |
| US8002257B2 (en) | 2009-02-06 | 2011-08-23 | Goss International Americas, Inc. | Web conversion and collating apparatus and method |
| US20110219970A1 (en) * | 2009-02-06 | 2011-09-15 | Goss International Americas, Inc. | Adjustable delivery web conversion apparatus and method |
| US8020847B2 (en) | 2009-02-06 | 2011-09-20 | Goss International Americas, Inc. | Multiple delivery web conversion apparatus and method of producing and delivering variable printed products |
| US8020845B2 (en) | 2009-02-06 | 2011-09-20 | Goss International Americas, Inc. | Single level web conversion apparatus and method |
| US8104755B2 (en) | 2009-02-06 | 2012-01-31 | Goss International Americas, Inc. | Adjustable delivery web conversion apparatus and method |
| US8356809B2 (en) | 2009-02-06 | 2013-01-22 | Goss International Americas, Inc. | Adjustable delivery web conversion apparatus and method |
| US10976263B2 (en) | 2016-07-20 | 2021-04-13 | Ball Corporation | System and method for aligning an inker of a decorator |
| US11034145B2 (en) | 2016-07-20 | 2021-06-15 | Ball Corporation | System and method for monitoring and adjusting a decorator for containers |
Also Published As
| Publication number | Publication date |
|---|---|
| US6419219B2 (en) | 2002-07-16 |
| DE10003284A1 (en) | 2000-10-19 |
| US6247692B1 (en) | 2001-06-19 |
| FR2791964A1 (en) | 2000-10-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4919027A (en) | Sheet diverting and delivery system | |
| US5112033A (en) | Folder apparatus for a web-fed printing press | |
| JP3504974B2 (en) | A device that slows down signatures in a folder | |
| US4228997A (en) | Stacking machine | |
| US5030193A (en) | Folder apparatus for folding continuously moving sheets | |
| JPS605501B2 (en) | Sheet handling equipment | |
| US6419219B2 (en) | Signature delivery apparatus including two rotating buckets | |
| US5647586A (en) | Method and apparatus for decelerating a flat product | |
| US4073487A (en) | Discharging and stacking device for flat articles | |
| US4682767A (en) | Apparatus for folding and delivering sheet material | |
| GB2261872A (en) | Buckle chute folder. | |
| US4969640A (en) | Sweet diverting and delivery system | |
| US5615878A (en) | Method and apparatus for accelerating and diverting flat products | |
| JPH0223145A (en) | Paper discharger | |
| US4116430A (en) | Stacking apparatus for flexible sheets | |
| JP2516640Y2 (en) | Paper dodger | |
| EP0244650A2 (en) | Sheet diverting and delivery system | |
| EP3225574B1 (en) | Paper sheet stacking mechanism and paper sheet handling device | |
| EP0302169B1 (en) | High speed fly stripping device | |
| EP0602023B1 (en) | Paper delivery for web offset printing press | |
| US5037368A (en) | Folder apparatus | |
| US6494448B2 (en) | Paddle wheel arrangement for flat copies | |
| CA2042168C (en) | Folder apparatus for a web-fed printing press | |
| US5681254A (en) | Mechanism for applying a biasing force in a folder apparatus | |
| CN1956903A (en) | Fan delivery for a folding apparatus |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: QUAD/TECH, INC., WISCONSIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHAEFER, KARL P.;D'AGRELLA, INGERMAR S.;FOX, RICHARD J.;REEL/FRAME:011721/0150;SIGNING DATES FROM 20010326 TO 20010410 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| CC | Certificate of correction | ||
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| AS | Assignment |
Owner name: MAN ROLAND DRUCKMASCHINEN AG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:QUADTECH, INC.;REEL/FRAME:020532/0371 Effective date: 20070928 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FPAY | Fee payment |
Year of fee payment: 12 |
|
| AS | Assignment |
Owner name: MANROLAND AG, GERMANY Free format text: CHANGE OF NAME;ASSIGNOR:MAN ROLAND DRUCKMASCHINEN AG;REEL/FRAME:043635/0106 Effective date: 20080527 |
|
| AS | Assignment |
Owner name: MANROLAND WEB SYSTEMS GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MANROLAND AG;REEL/FRAME:043764/0889 Effective date: 20170825 |