US20010018539A1 - Synthesis and pharmaceuticals of novel 9-substituted-1, 5-dichloroanthracene analogs - Google Patents
Synthesis and pharmaceuticals of novel 9-substituted-1, 5-dichloroanthracene analogs Download PDFInfo
- Publication number
- US20010018539A1 US20010018539A1 US09/797,965 US79796501A US2001018539A1 US 20010018539 A1 US20010018539 A1 US 20010018539A1 US 79796501 A US79796501 A US 79796501A US 2001018539 A1 US2001018539 A1 US 2001018539A1
- Authority
- US
- United States
- Prior art keywords
- chloride
- och
- compound according
- group
- substituted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- -1 9-substituted-1, 5-dichloroanthracene Chemical class 0.000 title claims description 16
- 230000015572 biosynthetic process Effects 0.000 title claims description 9
- 238000003786 synthesis reaction Methods 0.000 title claims description 7
- 239000003814 drug Substances 0.000 title description 2
- 150000001875 compounds Chemical class 0.000 claims abstract description 79
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 17
- 238000011282 treatment Methods 0.000 claims abstract description 16
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims abstract description 14
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 11
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims abstract description 10
- 150000002367 halogens Chemical class 0.000 claims abstract description 10
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims abstract description 9
- 230000000172 allergic effect Effects 0.000 claims abstract description 8
- 208000010668 atopic eczema Diseases 0.000 claims abstract description 8
- 230000004968 inflammatory condition Effects 0.000 claims abstract description 4
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims abstract 9
- 238000000034 method Methods 0.000 claims description 15
- 150000003839 salts Chemical class 0.000 claims description 13
- 150000001263 acyl chlorides Chemical class 0.000 claims description 12
- 239000003937 drug carrier Substances 0.000 claims description 11
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 9
- HNDVRSZCIGFZGL-UHFFFAOYSA-N 1,5-dichloro-10h-anthracen-9-one Chemical compound O=C1C2=C(Cl)C=CC=C2CC2=C1C=CC=C2Cl HNDVRSZCIGFZGL-UHFFFAOYSA-N 0.000 claims description 8
- 238000005160 1H NMR spectroscopy Methods 0.000 claims description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 8
- 125000001424 substituent group Chemical group 0.000 claims description 7
- 230000003078 antioxidant effect Effects 0.000 claims description 4
- AOJDZKCUAATBGE-UHFFFAOYSA-N bromomethane Chemical compound Br[CH2] AOJDZKCUAATBGE-UHFFFAOYSA-N 0.000 claims description 4
- WBLIXGSTEMXDSM-UHFFFAOYSA-N chloromethane Chemical compound Cl[CH2] WBLIXGSTEMXDSM-UHFFFAOYSA-N 0.000 claims description 4
- ZJULYDCRWUEPTK-UHFFFAOYSA-N dichloromethyl Chemical compound Cl[CH]Cl ZJULYDCRWUEPTK-UHFFFAOYSA-N 0.000 claims description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 4
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 4
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 claims description 4
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical group O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 claims description 3
- 239000003963 antioxidant agent Substances 0.000 claims description 3
- 230000002401 inhibitory effect Effects 0.000 claims description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 3
- 239000004480 active ingredient Substances 0.000 claims 8
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical group ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 claims 3
- VMZCDNSFRSVYKQ-UHFFFAOYSA-N 2-phenylacetyl chloride Chemical group ClC(=O)CC1=CC=CC=C1 VMZCDNSFRSVYKQ-UHFFFAOYSA-N 0.000 claims 2
- YHOYYHYBFSYOSQ-UHFFFAOYSA-N 3-methylbenzoyl chloride Chemical compound CC1=CC=CC(C(Cl)=O)=C1 YHOYYHYBFSYOSQ-UHFFFAOYSA-N 0.000 claims 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims 2
- 201000004624 Dermatitis Diseases 0.000 claims 2
- 230000002159 abnormal effect Effects 0.000 claims 2
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical group CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 claims 2
- 239000012346 acetyl chloride Substances 0.000 claims 2
- 239000002260 anti-inflammatory agent Substances 0.000 claims 2
- 229940124599 anti-inflammatory drug Drugs 0.000 claims 2
- 230000003064 anti-oxidating effect Effects 0.000 claims 2
- 238000011394 anticancer treatment Methods 0.000 claims 2
- 239000002246 antineoplastic agent Substances 0.000 claims 2
- 229940041181 antineoplastic drug Drugs 0.000 claims 2
- 239000003560 cancer drug Substances 0.000 claims 2
- 230000002708 enhancing effect Effects 0.000 claims 2
- 230000035755 proliferation Effects 0.000 claims 2
- CEOCVKWBUWKBKA-UHFFFAOYSA-N 2,4-dichlorobenzoyl chloride Chemical compound ClC(=O)C1=CC=C(Cl)C=C1Cl CEOCVKWBUWKBKA-UHFFFAOYSA-N 0.000 claims 1
- SYZRZLUNWVNNNV-UHFFFAOYSA-N 2-bromoacetyl chloride Chemical compound ClC(=O)CBr SYZRZLUNWVNNNV-UHFFFAOYSA-N 0.000 claims 1
- JEQDSBVHLKBEIZ-UHFFFAOYSA-N 2-chloropropanoyl chloride Chemical compound CC(Cl)C(Cl)=O JEQDSBVHLKBEIZ-UHFFFAOYSA-N 0.000 claims 1
- GPZXFICWCMCQPF-UHFFFAOYSA-N 2-methylbenzoyl chloride Chemical compound CC1=CC=CC=C1C(Cl)=O GPZXFICWCMCQPF-UHFFFAOYSA-N 0.000 claims 1
- DGMOBVGABMBZSB-UHFFFAOYSA-N 2-methylpropanoyl chloride Chemical compound CC(C)C(Cl)=O DGMOBVGABMBZSB-UHFFFAOYSA-N 0.000 claims 1
- WHIHIKVIWVIIER-UHFFFAOYSA-N 3-chlorobenzoyl chloride Chemical compound ClC(=O)C1=CC=CC(Cl)=C1 WHIHIKVIWVIIER-UHFFFAOYSA-N 0.000 claims 1
- NXTNASSYJUXJDV-UHFFFAOYSA-N 3-nitrobenzoyl chloride Chemical compound [O-][N+](=O)C1=CC=CC(C(Cl)=O)=C1 NXTNASSYJUXJDV-UHFFFAOYSA-N 0.000 claims 1
- MFEILWXBDBCWKF-UHFFFAOYSA-N 3-phenylpropanoyl chloride Chemical compound ClC(=O)CCC1=CC=CC=C1 MFEILWXBDBCWKF-UHFFFAOYSA-N 0.000 claims 1
- OKEFBVALFLRAFV-UHFFFAOYSA-N 4-chloro-2-methoxybenzoyl chloride Chemical compound COC1=CC(Cl)=CC=C1C(Cl)=O OKEFBVALFLRAFV-UHFFFAOYSA-N 0.000 claims 1
- RKIDDEGICSMIJA-UHFFFAOYSA-N 4-chlorobenzoyl chloride Chemical compound ClC(=O)C1=CC=C(Cl)C=C1 RKIDDEGICSMIJA-UHFFFAOYSA-N 0.000 claims 1
- NQUVCRCCRXRJCK-UHFFFAOYSA-N 4-methylbenzoyl chloride Chemical compound CC1=CC=C(C(Cl)=O)C=C1 NQUVCRCCRXRJCK-UHFFFAOYSA-N 0.000 claims 1
- SKDHHIUENRGTHK-UHFFFAOYSA-N 4-nitrobenzoyl chloride Chemical compound [O-][N+](=O)C1=CC=C(C(Cl)=O)C=C1 SKDHHIUENRGTHK-UHFFFAOYSA-N 0.000 claims 1
- VGCXGMAHQTYDJK-UHFFFAOYSA-N Chloroacetyl chloride Chemical compound ClCC(Cl)=O VGCXGMAHQTYDJK-UHFFFAOYSA-N 0.000 claims 1
- DVECBJCOGJRVPX-UHFFFAOYSA-N butyryl chloride Chemical compound CCCC(Cl)=O DVECBJCOGJRVPX-UHFFFAOYSA-N 0.000 claims 1
- 125000001309 chloro group Chemical group Cl* 0.000 claims 1
- FBCCMZVIWNDFMO-UHFFFAOYSA-N dichloroacetyl chloride Chemical compound ClC(Cl)C(Cl)=O FBCCMZVIWNDFMO-UHFFFAOYSA-N 0.000 claims 1
- YWGHUJQYGPDNKT-UHFFFAOYSA-N hexanoyl chloride Chemical compound CCCCCC(Cl)=O YWGHUJQYGPDNKT-UHFFFAOYSA-N 0.000 claims 1
- RZWZRACFZGVKFM-UHFFFAOYSA-N propanoyl chloride Chemical compound CCC(Cl)=O RZWZRACFZGVKFM-UHFFFAOYSA-N 0.000 claims 1
- 230000001225 therapeutic effect Effects 0.000 abstract description 13
- 239000000203 mixture Substances 0.000 abstract description 11
- 206010028980 Neoplasm Diseases 0.000 abstract description 8
- 150000001454 anthracenes Chemical class 0.000 abstract description 6
- SGUDFHYGRVFRTA-UHFFFAOYSA-N 1,5-dichloroanthracene Chemical class C1=CC=C2C=C3C(Cl)=CC=CC3=CC2=C1Cl SGUDFHYGRVFRTA-UHFFFAOYSA-N 0.000 abstract description 4
- 125000005843 halogen group Chemical group 0.000 abstract 1
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 16
- 210000004027 cell Anatomy 0.000 description 12
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 9
- 230000002757 inflammatory effect Effects 0.000 description 9
- 230000005764 inhibitory process Effects 0.000 description 9
- 238000003556 assay Methods 0.000 description 8
- MQIUMARJCOGCIM-UHFFFAOYSA-N 1,5-dichloroanthracene-9,10-dione Chemical compound O=C1C2=C(Cl)C=CC=C2C(=O)C2=C1C=CC=C2Cl MQIUMARJCOGCIM-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- 230000001028 anti-proliverative effect Effects 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 210000004556 brain Anatomy 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 0 *C(=O)OC1=C2C(Cl)=CC=CC2=CC2=C1C=CC=C2Cl Chemical compound *C(=O)OC1=C2C(Cl)=CC=CC2=CC2=C1C=CC=C2Cl 0.000 description 4
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 4
- MRVNKBNZHOHVER-UHFFFAOYSA-N 2h-anthracen-1-one Chemical class C1=CC=C2C=C3C(=O)CC=CC3=CC2=C1 MRVNKBNZHOHVER-UHFFFAOYSA-N 0.000 description 4
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- GRVDJDISBSALJP-UHFFFAOYSA-N methyloxidanyl Chemical compound [O]C GRVDJDISBSALJP-UHFFFAOYSA-N 0.000 description 4
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- YIFTYCADRLOMRN-UHFFFAOYSA-N 1,5-dichloro-9-(4-methylphenoxy)anthracene Chemical compound C1=CC(C)=CC=C1OC1=C(C=CC=C2Cl)C2=CC2=CC=CC(Cl)=C12 YIFTYCADRLOMRN-UHFFFAOYSA-N 0.000 description 3
- RVBUGGBMJDPOST-UHFFFAOYSA-N 2-thiobarbituric acid Chemical compound O=C1CC(=O)NC(=S)N1 RVBUGGBMJDPOST-UHFFFAOYSA-N 0.000 description 3
- 206010012442 Dermatitis contact Diseases 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 201000004681 Psoriasis Diseases 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 108010017842 Telomerase Proteins 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 208000010247 contact dermatitis Diseases 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000008194 pharmaceutical composition Substances 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- QQUWJMVLRWQNHK-UHFFFAOYSA-N (1,5-dichloroanthracen-9-yl) acetate Chemical compound C1=CC(Cl)=C2C(OC(=O)C)=C(C=CC=C3Cl)C3=CC2=C1 QQUWJMVLRWQNHK-UHFFFAOYSA-N 0.000 description 2
- QGLCGEQADIFVBT-UHFFFAOYSA-N 1,5-dichloro-9-(3-methylphenoxy)anthracene Chemical compound CC1=CC=CC(OC=2C3=C(Cl)C=CC=C3C=C3C(Cl)=CC=CC3=2)=C1 QGLCGEQADIFVBT-UHFFFAOYSA-N 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- 206010027654 Allergic conditions Diseases 0.000 description 2
- 201000009030 Carcinoma Diseases 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 108010006785 Taq Polymerase Proteins 0.000 description 2
- 239000000524 Thiobarbituric Acid Reactive Substance Substances 0.000 description 2
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 2
- 230000000118 anti-neoplastic effect Effects 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 125000005251 aryl acyl group Chemical group 0.000 description 2
- 210000000845 cartilage Anatomy 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 238000005661 deetherification reaction Methods 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 229960004679 doxorubicin Drugs 0.000 description 2
- 150000002085 enols Chemical class 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 230000009036 growth inhibition Effects 0.000 description 2
- 230000003463 hyperproliferative effect Effects 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000008407 joint function Effects 0.000 description 2
- 230000003859 lipid peroxidation Effects 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229960001156 mitoxantrone Drugs 0.000 description 2
- 230000001613 neoplastic effect Effects 0.000 description 2
- 238000005502 peroxidation Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- AXZWODMDQAVCJE-UHFFFAOYSA-L tin(II) chloride (anhydrous) Chemical compound [Cl-].[Cl-].[Sn+2] AXZWODMDQAVCJE-UHFFFAOYSA-L 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- VOLGAXAGEUPBDM-UHFFFAOYSA-N $l^{1}-oxidanylethane Chemical compound CC[O] VOLGAXAGEUPBDM-UHFFFAOYSA-N 0.000 description 1
- GGEVZHVWHMDYNF-UHFFFAOYSA-N (1,5-dichloroanthracen-9-yl) benzoate Chemical compound C12=C(Cl)C=CC=C2C=C2C(Cl)=CC=CC2=C1OC(=O)C1=CC=CC=C1 GGEVZHVWHMDYNF-UHFFFAOYSA-N 0.000 description 1
- XHTYQFMRBQUCPX-UHFFFAOYSA-N 1,1,3,3-tetramethoxypropane Chemical compound COC(OC)CC(OC)OC XHTYQFMRBQUCPX-UHFFFAOYSA-N 0.000 description 1
- FFGSXKJJVBXWCY-UHFFFAOYSA-N 1,4-bis[2-(2-hydroxyethylamino)ethylamino]anthracene-9,10-dione Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO FFGSXKJJVBXWCY-UHFFFAOYSA-N 0.000 description 1
- KHUFHLFHOQVFGB-UHFFFAOYSA-N 1-aminoanthracene-9,10-dione Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2N KHUFHLFHOQVFGB-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- XVMSFILGAMDHEY-UHFFFAOYSA-N 6-(4-aminophenyl)sulfonylpyridin-3-amine Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=N1 XVMSFILGAMDHEY-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 206010014561 Emphysema Diseases 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- WSMYVTOQOOLQHP-UHFFFAOYSA-N Malondialdehyde Chemical compound O=CCC=O WSMYVTOQOOLQHP-UHFFFAOYSA-N 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 241000700157 Rattus norvegicus Species 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- RGCKGOZRHPZPFP-UHFFFAOYSA-N alizarin Chemical class C1=CC=C2C(=O)C3=C(O)C(O)=CC=C3C(=O)C2=C1 RGCKGOZRHPZPFP-UHFFFAOYSA-N 0.000 description 1
- 125000005257 alkyl acyl group Chemical group 0.000 description 1
- 229950011363 ametantrone Drugs 0.000 description 1
- 125000004103 aminoalkyl group Chemical group 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Natural products C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 1
- YUTJCNNFTOIOGT-UHFFFAOYSA-N anthracene-1,8,9-triol Chemical compound C1=CC(O)=C2C(O)=C3C(O)=CC=CC3=CC2=C1 YUTJCNNFTOIOGT-UHFFFAOYSA-N 0.000 description 1
- 229940045799 anthracyclines and related substance Drugs 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- RJGDLRCDCYRQOQ-UHFFFAOYSA-N anthrone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3CC2=C1 RJGDLRCDCYRQOQ-UHFFFAOYSA-N 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000002682 anti-psoriatic effect Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 230000002917 arthritic effect Effects 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 210000001638 cerebellum Anatomy 0.000 description 1
- 208000019065 cervical carcinoma Diseases 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 208000037976 chronic inflammation Diseases 0.000 description 1
- 208000037893 chronic inflammatory disorder Diseases 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003412 degenerative effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 229960002311 dithranol Drugs 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 210000001339 epidermal cell Anatomy 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 229910001448 ferrous ion Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 210000002429 large intestine Anatomy 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 238000010630 lipid peroxidation (MDA) assay Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 229940118019 malondialdehyde Drugs 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 238000006454 non catalyzed reaction Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 238000002135 phase contrast microscopy Methods 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 230000002476 tumorcidal effect Effects 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C205/00—Compounds containing nitro groups bound to a carbon skeleton
- C07C205/49—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups
- C07C205/57—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups having nitro groups and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/216—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acids having aromatic rings, e.g. benactizyne, clofibrate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/22—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
- A61K31/222—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin with compounds having aromatic groups, e.g. dipivefrine, ibopamine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/017—Esters of hydroxy compounds having the esterified hydroxy group bound to a carbon atom of a six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/62—Halogen-containing esters
- C07C69/63—Halogen-containing esters of saturated acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/76—Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/76—Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
- C07C69/78—Benzoic acid esters
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/76—Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
- C07C69/84—Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring
- C07C69/92—Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring with etherified hydroxyl groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2603/00—Systems containing at least three condensed rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2603/00—Systems containing at least three condensed rings
- C07C2603/02—Ortho- or ortho- and peri-condensed systems
- C07C2603/04—Ortho- or ortho- and peri-condensed systems containing three rings
- C07C2603/22—Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
- C07C2603/24—Anthracenes; Hydrogenated anthracenes
Definitions
- This invention relates to novel anthracene compounds useful in the treatment of allergic, inflammatory conditions, tumor conditions and therapeutic compositions containing such compounds.
- the invention relates also to the therapeutic compositions effective at low dose with low irritancy.
- These anthracene compounds possess antitumor, antiproliferative, antipsoriatic, antiinflammatory, or antioxidant activity.
- Drug-DNA binding constants for ametantrone (1), mitoxantrone (2) and related congeners with calf thymus DNA show a large sensitivity to the position and number of the OH substitutions and the nature of the charged side chain.
- telomere shortening results in telomere shortening and ultimately senescence.
- the loss of telomeric repeats after each round of cell division has been likened to a “biological clock” limiting the proliferative life span of normal somatic cells. Harley, C. B. et al., Nature, 345, 458-460 (1990). Consequently, telomerase has been proposed as a potentially highly selective target for the development of a novel class of antiproliferative agents.
- Anthraquinone-based compounds currently occupy a prominent position in cancer chemotherapy, with the naturally occurring aminoglycoside anthracycline doxorubicin and the aminoanthraquinone mitoxantrone both being in clinical use.
- These 1,5-dichloro-9(10H)-anthracenone compounds contain alkylacyl or arylacyl moieties at the C-9 position resulting in enhanced antiproliferative activity of the compounds.
- These blocked compounds may be further modified by introducing the phenolic form of the arylacyl or alkylacyl substituent.
- cancer is typically characterized by hyperproliferative component. There is thus a continuing need for effective compounds that address these aspects of cancer disease.
- the present invention is directed to novel 9-substituted-1,5-dichloroanthracene compounds and salts thereof having therapeutic utility with respect to allergic or inflammatory or tumor conditions.
- many of the improved anthracene compounds provided for according to the invention are effective at low concentrations for the treatment of patients suffering from allergic or inflammatory or tumor conditions. Because these compounds may be administered at low concentrations, the undesirable allergic or inflammatory effects caused in whole or in part by free radicals or active oxygen species that are generated by anthracenone compounds are substantially eliminated.
- an anthracene compound according to Formula III below, said compound containing a substituent R, wherein R represents a branched or straight chain alkyl group having from 1 to 4 carbon atoms, said alkyl group being substituted with at least one substituent selected from carboxyl, carboxyl ester, hydroxy, phenyl, benzyl, substituted benzyl and substituted phenyl groups.
- R represents a substituted phenyl group having at least one substituent selected from methyl, halogen and nitro groups.
- R represents a straight or branched chain alkyl group having 1 to 4 carbon atoms, which may contain a substituent selected from acyl and phenyl groups.
- compositions of the invention are effective at dosages that substantially eliminate the adverse inflammatory or irritancy effects associated with the use of anthracenone and related compounds. Accordingly, there is provided a therapeutic composition comprising a therapeutically effective amount of at least one compound of the invention and a pharmaceutically acceptable carrier. These compounds of the invention have antiproliferative effects and antineoplastic effects.
- FIG. 1 Shows the structure of prior art anthraquinonic derivatives.
- FIG. 2 is an outline of the synthesis of the 9-substituted-1,5-dichloroanthracene compounds.
- FIG. 3 Perspective view of the molecular structure of compound (3o).
- the compounds of the invention are 9-acyloxy-1,5-dichloroanthracene analogs. According to of the invention, there are provided 9-substituted-1,5-dichloroanthracene compounds according to Formula III.
- R represents a straight or branched chain alkyl group having 1 to 6 carbon atoms, phenyl or benzyl, wherein the alkyl group may be substituted with one or more groups R 1 and the phenyl or benzyl group may be substituted with one or two groups R 2 .
- R 1 is a group selected from halogen, NO 2 , CH 3 O, CH 3 CH 2 O, and CH 3 CH 2 CH 2 O.
- R 2 is a group selected from a straight or branched chain alkyl group having 1 to 4 carbon atoms, halogen, NO 2 , CH 3 O, CH 3 , CH 2 O, CH 3 CH 2 CH 2 O.
- R represents a straight or branched chain alkyl group having 1 to 4 carbon atoms which may be substituted with one or more groups R 1 , selected from Cl, NO 2 , CH 3 O.
- R is a phenyl or benzyl group having one or two substituents R 2 , selected from a straight or branched chain alkyl group having 1 to 4 carbon atoms, Cl, NO 2 , CH 3 O.
- R is a phenyl or benzyl group having one or two substituents R 2 , selected from a straight or branched chain alkyl group having 1 to 4 carbon atoms, Cl, NO 2 , CH 3 O.
- salts of 9-substituted-1,5-dichloroanthracene compounds are in particular salts with the pharmaceutically acceptable base.
- Excipients such as magnesium stearate, corn starch, starch, lactose, sodium hydroxymethylcellulose, ethanol, glycerol etc. may be added in the preparation of pharmaceutical compositions containing 1,5-dichloro-9-acyloxyanthracene derivatives of the present invention.
- the pharmaceutical compositions of the invention may be in an injectable form or formulated into tablet, pill or other solid preparation forms.
- the pH value for injectable forms may be adjusted with phosphate buffer.
- dosage used for injectable forms is 25-100 mg.
- an effective dosage is 3-500 mg, administered 2 to 3 times a day.
- the therapeutic compositions of the invention may be used in the treatment of a wide variety of cancers such as carcinomas, sarcomas, melanomas and lymphomas, which may affect a wide variety of organs, including, for example, the lungs, mammary tissue, prostate gland, small or large intestine, liver, heart, skin, pancreas and brain.
- the therapeutic compositions may be administered by injection (intravenously, intralesionally, peritoneally, subcutaneously), or by topical application and the like as would be suggested according to the routine practice of the art.
- Psoriasis is a widespread, chronic, inflammatory and scaling skin disease.
- Contact dermatitis in contrast, is a short term allergic condition characterized by scaling skin. Both psoriasis and contact dermatitis are characterized by increased epidermal cell proliferation at the affected site or sites, i.e. lesions. Muller, K., et al., J. Med. Chem., 39, 3132-3138 (1996).
- Rheumatoid arthritis is a chronic inflammatory disease, primarily of the joints, that may result in permanent loss of joint function. Irreversible loss of joint function is attributed to severe degradation of collagen, bone, ligament and tendon. Associated chronic intimation results, in part, from immune response at the affected joint, although the exact nature of the triggering antigens is unknown. The immune response may be autoimmune in origin. Mullins, D. E. and Rohrlich, S. T., Biochemica et Biophysica Acta, 695, 177-214 (1983). The etiology has been described is in detail. (pp. 192-193.) Briefly, there is a progressive loss of cartilage (a connective tissue) caused by invading cells. Both collagen and proteoglycan components of the cartilage are degraded by enzymes released at the affected site.
- cartilage a connective tissue
- the amount of 9-substituted-1,5-dichloroanthracene (or salt thereof) administered for the prevention or inhibition of an inflammatory or allergic condition, for antiproliferative or antineoplastic effect can be determined readily for any particular patient according to recognized procedures. Additional information useful in the selection of therapeutic compositions is provided as follows. For use in the treatment of inflammatory or degenerative conditions, as those term are recognized in the art, the therapeutic compositions may be administered, for example, by injection at the affected site, by aerosol inhalation (as in the case of emphysema or pneumonia), or by topical application or transdermal absorption as would also be suggested according to the routine practice of the art.
- the 9-substituted-1,5-dichloroanthracene may be incorporated into a pharmaceutically acceptable carrier or carriers for application (directly or indirectly) to the affected area.
- a pharmaceutically acceptable carrier or carriers for application (directly or indirectly) to the affected area.
- the nature of the carrier may vary widely and will depend on the intended location of application and other factors well known in the art.
- Such carriers of anthralin or anthracenone compounds are well known in the art. See, for example, Kammerau, B. et al., J. Investigative Dermatology, 64, 145-149 (1975).
- FIG. 2 is an outline of a synthesis of the 9-substituted-1,5-dichloroanthracene compounds (Formula III) according to the invention.
- FIG. 2 reduction of 1,5-dichloroanthraquinone (1) with SnCl 2 in boiling HCl and acetic acid proceeds with concomitant ether cleavage and leads to the corresponding 1,5-dichloro-9(10H)-anthracenone (II).
- II 1,5-dichloro-9(10H)-anthracenone
- 1,5-dichloroanthraquinone (1) was reduced with SnCl 2 in boiling HCl and acetic acid with ether cleavage to give the corresponding 1,5 dichloro-9(10H)-anthracenone (II).
- To a solution of 1,5-dichloro-9(10H)anthracenone (1 mmol) and 0. 1 mL of pyridine in dry CH 2 Cl 2 (20 mL) was added dropwise a solution of an appropriate acyl chloride (3 mmol) in dry CH 2 Cl 2 (10 mL) under N 2 .
- the reaction mixture was stirred at room temperature or refluxed for several hours.
- the solvent was removed and the residue purified by recrystallization and chromatography. This procedure was used to synthesize each of the compounds in Table 1.
- test compounds were prepared in DMSO and diluted with DMEM to give a final concentration of DMSO of 0.2%. Controls were performed with DMSO or with medium alone. The medium was removed and each well was rinsed with 100 ⁇ L PBS 48 hours after addition of the test compound to the culture. The cells were then incubated with sterile 0.5% trypsin, 0.2% EDTA in PBS for 20 minutes at 37° C. The detached cells from each well were suspended in DMEM and dispersed into single cells by gentle pipetting through an Eppendorf pipette and cell growth was determined directly by counting the cells in a Neubauer counting chamber using phase contrast microscopy.
- telomeres Prior to the evaluation of compounds in the PCR-based telomerase assay, the agents were tested for their ability to inhibit Taq polymerase in order to address the selectivity of polymerase/telomerase inhibition.
- Compounds were included at both 10 and 50 ⁇ M final concentrations in a PCR 50 ⁇ L master mix comprising 10 ng of pCI-neo mammalian expression vector (Promega, Southampton, U.K.), forward (CGAGTTCCGCGT-TACATAAC) and reverse (GTCTGCTCGAAGCATTAACC) primers (200 nmol), reaction buffer (75 mM Tris-HCl, pH 8.81, 20 mM (N 4 H 4 ) 2 SO 4 , 0.01% v/v Tween 20), 2.5 mM MgCl 2 , 200 ⁇ M of each deoxynucleotide triphosphate, and thermostable DNA polymerase (“red hot”, Advanced Biotechnologies, 1.25 units).
- a reaction mix containing water and no drug was used as a positive control, producing a product of approximately 1 kb.
- Amplification (30 cycles of 94° C. for 1 min, 55° C. for 1 min, and 72° C. for 2.5 min) were performed using a thermal cycler (Hybaid, U.K.). PCR products were then separated by electrophoresis on a 2% w/w agarose gel and visualized using ethidium bromide. The results of this assay are provided in Table 2.
- Rat brain homogenate was prepared from the brains of freshly killed Wistar rats and its peroxidation. In the presence of iron ions was measured by the thiobarbituric acid (TBA). Teng, C. M. et al., Eur. J. Pharmacol., 303, 129-139 (1996). Tetramethoxypropane was used as a standard, and the results were expressed as nanomoles of malondialdehyde equivalents per milligram of protein of rat brain homogenates.
- TAA thiobarbituric acid
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Emergency Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
- This Application is a continuation-in-part of U.S. patent application Ser. No. 09/290,865, filed on Apr. 14, 1999, which is herein incorporated by reference.
- 1. Field of the Invention
- This invention relates to novel anthracene compounds useful in the treatment of allergic, inflammatory conditions, tumor conditions and therapeutic compositions containing such compounds. The invention relates also to the therapeutic compositions effective at low dose with low irritancy. These anthracene compounds possess antitumor, antiproliferative, antipsoriatic, antiinflammatory, or antioxidant activity.
- 2. Description of the Prior Art
- The discovery of the antitumor activity of 1,4-bis[(aminoalkyl)amino]anthracene-9, 10-diones such as ametantrone (1) and mitoxantrone (2) (FIG. 1) (Zee-Cheng, R. K. V. et al., J. Med. Chem., 21, 291-294 (1978); Zee-Cheng, R. K. V. et al., J. Pharm. Sci., 71, 708-709 (1982); Murdock, K. C. et al., J. Med. Chem., 22, 1024-1030 (1979)) has led to numerous physicochemical and pharmacological studies on the tumoricidal mechanisms of these chemotypes. Krapcho, A. P. et al., J. Med. Chem., 341, 2373-2380 (1991); Morier-Teissier, E. et al., J. Med. Chem., 36, 2084-2090 (1993). Additional references disclose 1,4- and 2,6-disubstituted or regioisomeric amidoanthracene-9,10-dione derivatives as inhibitors of human telomerase. Perry, P. J. et al., J. Med. Chem., 41, 3253-3260 (1998) and Perry, P. J. et al., J. Med. Chem., 41, 4873-4884 (1998).
- Although the active mechanism of the antitumor activity of the anthracene-9,10-diones such as ametantrone (1) and mitoxantrone (2) is probably multimodal in nature, a number of studies have indicated that an intercalative interaction with DNA may be a major cellular event. Denny, W. A., Anti-Cancer Drug Design, 4, 241-263 (1989). Antitumor quinones represent the second largest class of clinically approved anticancer agents in the U.S.A., second only to the chloroethyl alkylating agents. They have been selected from the large number of naturally occurring quinones (Moore, H. W et al., Drugs Expl. Clin. Res., 12, 475-494, (1986)) and from synthetic quinones. Bruce, J. M. ed., Benzoquinones and Related Compounds, Vol. 3, Part 4, 1-306, (1974). The planar tricyclic system is known to intercalate into DNA base pairs and interfere in the transcription and replication processes of the cell. Johnson, R. K. et al., Cancer Treat. Rep., 63, 425-439 (1979); Lown, J. W. et al., Biochemisty, 24, 4028-4035 (1985). The DNA binding affinity (quantified as a binding affinity constant) and the dissociation rate constant for the DNA-ligand complex have been evaluated. Drug-DNA binding constants for ametantrone (1), mitoxantrone (2) and related congeners with calf thymus DNA show a large sensitivity to the position and number of the OH substitutions and the nature of the charged side chain. Denny, W A., Anti-Cancer Drug Design, 4, 241-263 (1989).
- Normal human cells undergo a finite number of cell divisions and ultimately enter a nondividing state called replicative senescence. During successive rounds of cell division, the end-replication problem results in telomere shortening and ultimately senescence. As such, the loss of telomeric repeats after each round of cell division has been likened to a “biological clock” limiting the proliferative life span of normal somatic cells. Harley, C. B. et al., Nature, 345, 458-460 (1990). Consequently, telomerase has been proposed as a potentially highly selective target for the development of a novel class of antiproliferative agents. However, in order for a therapeutic treatment to be effective, both the inflammatory and hyperproliferative aspects of the condition must be addressed. Substantial evidence suggests that free radicals and active oxygen species play a key role in both the therapeutic activity and side effects of anthracenone derivatives.
- Anthraquinone-based compounds currently occupy a prominent position in cancer chemotherapy, with the naturally occurring aminoglycoside anthracycline doxorubicin and the aminoanthraquinone mitoxantrone both being in clinical use. These 1,5-dichloro-9(10H)-anthracenone compounds contain alkylacyl or arylacyl moieties at the C-9 position resulting in enhanced antiproliferative activity of the compounds. These blocked compounds may be further modified by introducing the phenolic form of the arylacyl or alkylacyl substituent.
- As noted above, cancer is typically characterized by hyperproliferative component. There is thus a continuing need for effective compounds that address these aspects of cancer disease.
- The present invention is directed to novel 9-substituted-1,5-dichloroanthracene compounds and salts thereof having therapeutic utility with respect to allergic or inflammatory or tumor conditions. In particular, many of the improved anthracene compounds provided for according to the invention are effective at low concentrations for the treatment of patients suffering from allergic or inflammatory or tumor conditions. Because these compounds may be administered at low concentrations, the undesirable allergic or inflammatory effects caused in whole or in part by free radicals or active oxygen species that are generated by anthracenone compounds are substantially eliminated.
- Accordingly, in one embodiment of the invention, there is provided an anthracene compound according to Formula III below, said compound containing a substituent R, wherein R represents a branched or straight chain alkyl group having from 1 to 4 carbon atoms, said alkyl group being substituted with at least one substituent selected from carboxyl, carboxyl ester, hydroxy, phenyl, benzyl, substituted benzyl and substituted phenyl groups.
- In a preferred embodiment of the invention, R represents a substituted phenyl group having at least one substituent selected from methyl, halogen and nitro groups. In another preferred embodiment, R represents a straight or branched chain alkyl group having 1 to 4 carbon atoms, which may contain a substituent selected from acyl and phenyl groups. Additionally, there are provided compounds which are functional analogs of the compounds of Formula III.
- As aforementioned, therapeutic compositions of the invention are effective at dosages that substantially eliminate the adverse inflammatory or irritancy effects associated with the use of anthracenone and related compounds. Accordingly, there is provided a therapeutic composition comprising a therapeutically effective amount of at least one compound of the invention and a pharmaceutically acceptable carrier. These compounds of the invention have antiproliferative effects and antineoplastic effects.
- Further additional representative and preferred aspects of the invention are described below according to the following detailed description of the invention.
- FIG. 1 Shows the structure of prior art anthraquinonic derivatives.
- FIG. 2 is an outline of the synthesis of the 9-substituted-1,5-dichloroanthracene compounds.
- FIG. 3: Perspective view of the molecular structure of compound (3o).
-
- wherein R represents a straight or branched chain alkyl group having 1 to 6 carbon atoms, phenyl or benzyl, wherein the alkyl group may be substituted with one or more groups R 1 and the phenyl or benzyl group may be substituted with one or two groups R2. R1 is a group selected from halogen, NO2, CH3O, CH3CH2O, and CH3CH2CH2O. R2 is a group selected from a straight or branched chain alkyl group having 1 to 4 carbon atoms, halogen, NO2, CH3O, CH3, CH2O, CH3CH2CH2O.
- In preferred compounds according to the invention, R represents a straight or branched chain alkyl group having 1 to 4 carbon atoms which may be substituted with one or more groups R 1, selected from Cl, NO2, CH3O. In other preferred embodiments, R is a phenyl or benzyl group having one or two substituents R2, selected from a straight or branched chain alkyl group having 1 to 4 carbon atoms, Cl, NO2, CH3O. Suitable compounds of the invention described in Table 1 (infra).
- In the course of synthesis of the 9-substituted-1,5-dichloroanthracenes, it was found that the molecule reacted to the acylating agents in an unusual manner. Introduction of the 9-acyloxy functionality onto the anthracene nucleus (compounds 3a-w) was achieved by reaction of the appropriate acyl chlorides with 1,5-dichloroanthrone under weakly basic conditions, e.g. pyridine, where ester formation takes place at the C-9 oxygen via the enol tautomer (FIG. 2).
- For the pharmaceutical compositions according to the invention, salts of 9-substituted-1,5-dichloroanthracene compounds are in particular salts with the pharmaceutically acceptable base. Excipients such as magnesium stearate, corn starch, starch, lactose, sodium hydroxymethylcellulose, ethanol, glycerol etc. may be added in the preparation of pharmaceutical compositions containing 1,5-dichloro-9-acyloxyanthracene derivatives of the present invention. The pharmaceutical compositions of the invention may be in an injectable form or formulated into tablet, pill or other solid preparation forms. The pH value for injectable forms may be adjusted with phosphate buffer. Generally, dosage used for injectable forms is 25-100 mg. For solid preparations, an effective dosage is 3-500 mg, administered 2 to 3 times a day.
- The following conditions are selected for description herein as being representative of inflammatory, allergic, antioxidant, or neoplastic conditions that are suitable for treatment according to the practice of the invention. Each of these conditions involves intimation hyperproliferation and/or generation of free radicals and active oxygen species.
- Neoplastic Conditions
- The therapeutic compositions of the invention may be used in the treatment of a wide variety of cancers such as carcinomas, sarcomas, melanomas and lymphomas, which may affect a wide variety of organs, including, for example, the lungs, mammary tissue, prostate gland, small or large intestine, liver, heart, skin, pancreas and brain. The therapeutic compositions may be administered by injection (intravenously, intralesionally, peritoneally, subcutaneously), or by topical application and the like as would be suggested according to the routine practice of the art.
- Psoriasis and Contact Dermatitis
- Psoriasis is a widespread, chronic, inflammatory and scaling skin disease. Contact dermatitis, in contrast, is a short term allergic condition characterized by scaling skin. Both psoriasis and contact dermatitis are characterized by increased epidermal cell proliferation at the affected site or sites, i.e. lesions. Muller, K., et al., J. Med. Chem., 39, 3132-3138 (1996).
- Arthritic Disease
- Rheumatoid arthritis is a chronic inflammatory disease, primarily of the joints, that may result in permanent loss of joint function. Irreversible loss of joint function is attributed to severe degradation of collagen, bone, ligament and tendon. Associated chronic intimation results, in part, from immune response at the affected joint, although the exact nature of the triggering antigens is unknown. The immune response may be autoimmune in origin. Mullins, D. E. and Rohrlich, S. T., Biochemica et Biophysica Acta, 695, 177-214 (1983). The etiology has been described is in detail. (pp. 192-193.) Briefly, there is a progressive loss of cartilage (a connective tissue) caused by invading cells. Both collagen and proteoglycan components of the cartilage are degraded by enzymes released at the affected site.
- Therapeutic Compositions and Administration Thereof
- The amount of 9-substituted-1,5-dichloroanthracene (or salt thereof) administered for the prevention or inhibition of an inflammatory or allergic condition, for antiproliferative or antineoplastic effect, can be determined readily for any particular patient according to recognized procedures. Additional information useful in the selection of therapeutic compositions is provided as follows. For use in the treatment of inflammatory or degenerative conditions, as those term are recognized in the art, the therapeutic compositions may be administered, for example, by injection at the affected site, by aerosol inhalation (as in the case of emphysema or pneumonia), or by topical application or transdermal absorption as would also be suggested according to the routine practice of the art.
- As described above, the 9-substituted-1,5-dichloroanthracene (or salt thereof) may be incorporated into a pharmaceutically acceptable carrier or carriers for application (directly or indirectly) to the affected area. The nature of the carrier may vary widely and will depend on the intended location of application and other factors well known in the art. Such carriers of anthralin or anthracenone compounds are well known in the art. See, for example, Kammerau, B. et al., J. Investigative Dermatology, 64, 145-149 (1975).
- FIG. 2 is an outline of a synthesis of the 9-substituted-1,5-dichloroanthracene compounds (Formula III) according to the invention. As shown in FIG. 2, reduction of 1,5-dichloroanthraquinone (1) with SnCl 2 in boiling HCl and acetic acid proceeds with concomitant ether cleavage and leads to the corresponding 1,5-dichloro-9(10H)-anthracenone (II). In the course of synthesis of the 9-substituted-1,5-dichloroanthracene, it was found that the molecule reacted to the acylating agents in an unusual manner. Introduction of the 9-acyloxy functionality onto the anthracene nucleus (compounds 3a-w) was achieved by reaction of the appropriate acyl chlorides with 1,5-dichloro-9(10H)-anthrone under weakly basic conditions (pyridine), resulting in ester formation at the C-9 position via the enol tautomer (FIG. 2). When the anthrone was allowed to react with acyl chlorides in CH2Cl2 in the presence of a catalytic amount of pyridine, the reaction time is reduced compared to the noncatalyzed reaction. Specific methods for the preparation of several compounds according to the present invention are described below in Example 1. The structure of each of the synthesized compounds is confirmed by 1H-NMR spectrometry, mass spectrometry and elemental analysis as shown in Example 2. Procedures adapted from the descriptions and the following non-limiting examples will allow one skilled in the art to prepared similar compounds of the invention.
- The following non-limiting examples are representative of the practice of the invention.
- The novel 9-substituted-1,5-dichloroanthracene compounds described in Table 1 were produced as follows.
- 1,5-dichloroanthraquinone (1) was reduced with SnCl 2 in boiling HCl and acetic acid with ether cleavage to give the corresponding 1,5 dichloro-9(10H)-anthracenone (II). To a solution of 1,5-dichloro-9(10H)anthracenone (1 mmol) and 0. 1 mL of pyridine in dry CH2Cl2 (20 mL) was added dropwise a solution of an appropriate acyl chloride (3 mmol) in dry CH2Cl2 (10 mL) under N2. The reaction mixture was stirred at room temperature or refluxed for several hours. The solvent was removed and the residue purified by recrystallization and chromatography. This procedure was used to synthesize each of the compounds in Table 1.
- All temperatures are reported in degrees centigrade. Melting points were determined with a Büchi 530 melting point apparatus and are uncorrected. Chromatography refers to column chromatography using silica gel (E. Merck, 70-230 mesh). 1H-NMR spectra were recorded with a Varian GEMR-H-300 (300 MHz); δ values are in ppm relative to a tetramethylsilane internal standard. Fourier-transform IR spectra (KBr) were recorded on a Perkin-Elmer 983G spectrometer. Mass spectra (EI, 70 eV, unless otherwise stated) were obtained on a Finnigan MAT TSQ-46 and Finnigan MAT TSQ-700. UV spectra were recorded on a Shimadzu UV-160.
- (1) 1,5-Dichloro-9-acetyloxy-anthracene (3a)
- The compound was synthesized as in Example 1 and analyzed by 1H-NMR (500 MHz CDCl3), δ (ppm): 8.79 (H, s, H-10), 8.01 (H, d, J=8.4 Hz, H-2), 7.90 (H, d, J=8.8,H6), 7.62-7.58 (2H, m, H-4,8), 7.43-7.34 (2H, m, H-3,7), 2.60 (3H, s, COCH3); 13C-NMR: (75 MHz, CDCl3), δ (ppm): 170.58, 142.00, 134.51, 132.31, 130.54, 129.87, 129.61, 128.37, 126.97, 126.93, 126.80, 125.97, 123.81, 121.79, 121.67, 22. 1; MS m/z 304 (7), 262 (100); Anal. (Cl16H10O2Cl2); C, H.
- (2) 1,5-Dichloro-9-benzoyloxy-anthracene (3L)
- The compound was synthesized as in Example 1 and analyzed by 1H-NMR: (500 MHz, CDCl3), δ (ppm): 8.82 (H, s, H-10), 8.40 (2H, d, J=8.1 Hz, H-2′,6′), 8.01 (2H, d, J=8.4 Hz, H-2), 7.91 (H, d, J=8.8 Hz, H-6), 7.71 (H, t, J 7.5 Hz, H-4′), 7.61-7.58 (2H, m, H-4,8), 7.56-7.52 (2H, d, J=7.2 Hz, H-3′,5′), 7.37-7.33 (2H, m, H-3,7); 13C-NMR: (75 MHz, CDCl3), δ(ppm): 166.62, 142.41, 134.49, 132.64, 131.28, 130.43, 130.11, 129.98, 129.53, 129.40, 128.65, 127.24, 126.98, 126.00, 125.84, 122.45, 121.81; MS m/z 367 (10), 262 (7), 246 (4), 227 (5), 105 (100); Anal. (C21H12O2Cl2); C, H.
- (3) 1,5-Dichloro-9-(m-toluyloxy)-anthracene (3n)
- The compound was synthesized as in Example 1 and analyzed by 1H-NMR: (500 MHz, CDCl3), δ (ppm): 8.74 (H, s, H-10), 8.15 (H, d, J=7.4 Hz, H-2′,6′), 7.93 (H, d, J=8.8,H-2), 7.85 (H, dd, J=8.8, 0.9 Hz, H-6), 7.53-7.48 (2H, m, H-4,8), 7.46-7.39 (2H, m, H-4′,5′), 7.29-7.25 (2H, m, H-3,7), 2.42 (3H, S, COCH3); 13C-NMR: (75 MHz, CDCl3), 6 (ppm): 166.41, 142.98, 139.28, 135.31, 134.55, 132.58, 131.83, 130.40, 129.94, 129.90, 129.52, 129.31, 128.72, 128.55, 127.19, 126.94, 126.00, 123.79, 122.38,121.86,21.97; MS m/z 381 (13), 119 (100); Anal. (C22H14O2Cl2); C, H.
- (4) 1,5-Dichloro-9-(p-toluoxy)-anthracene (3o)
- The compound was synthesized as in Example I and analyzed by 1H-NMR: (500 MHz, CDCl3), δ (ppm): 8.81 (H, s, H-10), 8.28 (2H, d, J=8.1 Hz, H-2′,6′), 8.01 (H, d, J=8.4 Hz, H-4), 7.91 (H, d, J=8.8,H-5′), 7.36-7.32 (2H, m, H-3,7), 2.58 (3H, s, CH3); 13C-NMR: (75 MHz, CDCl3), δ (ppm): 166.28, 145.43, 143.43, 134.56, 132.56, 131.43, 130.38, 130.13, 129.91, 129.51, 128.76, 127.28, 127.24, 126.97, 126.91, 125.99, 123.74, 122.49, 121.89, 22.44; MS m/z 380 (4), 119 (100); Anal. (C22H14O2Cl2); C, H.
- The perspective view of the molecular structure of compound (3o) is shown in FIG. 3.
- Growth inhibition was measured in three human carcinoma cell lines (GBK KB and CHO) using a previously described in vivo assay. Hwang, J.-M. et al., Chin. Med. J (Taipei), 51, 166-175 (1993). Human oral epidermoid carcinoma cells (KB cell line), human cervical carcinoma cells of ME 180 (GBM8401) and Chinese hamster ovary (CHO) cells grown in plateau phase were used in all experiments. Each cell line was further divided into control and experimental groups, respectively.
- Stock solutions of the test compounds were prepared in DMSO and diluted with DMEM to give a final concentration of DMSO of 0.2%. Controls were performed with DMSO or with medium alone. The medium was removed and each well was rinsed with 100 μL PBS 48 hours after addition of the test compound to the culture. The cells were then incubated with sterile 0.5% trypsin, 0.2% EDTA in PBS for 20 minutes at 37° C. The detached cells from each well were suspended in DMEM and dispersed into single cells by gentle pipetting through an Eppendorf pipette and cell growth was determined directly by counting the cells in a Neubauer counting chamber using phase contrast microscopy. Inhibition was calculated by comparison of the mean values of the test compound (N=3) with the control (N=6-8) activity: (1-test compound/control)×100. Inhibition was statistically significant compared to that of control (Student's West; P=0.05). IC 50 values (concentration required to inhibit cell growth by 50%) were determined for each agent which was derived by interpolation of a log inhibitor concentration versus response plot using four or more different concentrations of the compound spanning the 50% inhibition point.
- Several compounds of the invention had an antiproliferative IC 50 value of less than 1.1 μM for GBM cell line. In particular, compounds 3g, 3j and A had IC50 values of 1.4, 1.1 and 1.2 μM respectively. In addition, each of compounds 3j and 3v showed an 1C50 value of 11.0 μM and 12.6 μM in the KB assay. The results of this assay are provided in Table 1.
- Prior to the evaluation of compounds in the PCR-based telomerase assay, the agents were tested for their ability to inhibit Taq polymerase in order to address the selectivity of polymerase/telomerase inhibition. Compounds were included at both 10 and 50 μM final concentrations in a PCR 50 μL master mix comprising 10 ng of pCI-neo mammalian expression vector (Promega, Southampton, U.K.), forward (CGAGTTCCGCGT-TACATAAC) and reverse (GTCTGCTCGAAGCATTAACC) primers (200 nmol), reaction buffer (75 mM Tris-HCl, pH 8.81, 20 mM (N 4H4)2SO4, 0.01% v/v Tween 20), 2.5 mM MgCl2, 200 μM of each deoxynucleotide triphosphate, and thermostable DNA polymerase (“red hot”, Advanced Biotechnologies, 1.25 units). A reaction mix containing water and no drug was used as a positive control, producing a product of approximately 1 kb. Amplification (30 cycles of 94° C. for 1 min, 55° C. for 1 min, and 72° C. for 2.5 min) were performed using a thermal cycler (Hybaid, U.K.). PCR products were then separated by electrophoresis on a 2% w/w agarose gel and visualized using ethidium bromide. The results of this assay are provided in Table 2.
- Rat brain homogenate was prepared from the brains of freshly killed Wistar rats and its peroxidation. In the presence of iron ions was measured by the thiobarbituric acid (TBA). Teng, C. M. et al., Eur. J. Pharmacol., 303, 129-139 (1996). Tetramethoxypropane was used as a standard, and the results were expressed as nanomoles of malondialdehyde equivalents per milligram of protein of rat brain homogenates.
- In brief, whole brain tissue, excluding the cerebellum, was washed and homogenized in 10 volumes of ice-cold Krebs buffer (10 mM N-2 hydroxyethyl-piperazine-N′-2-ethanesulfonic acid (Hepes), 10 mM glucose, 140 mM NaCl, 3.6 mM KCl, 1.5 mM CaCl 2, 1.4 mM KH2PO4, 0.7 mM MgSO4, pH 7.4) using a glass Dounce homogenizer. The homogenate was centrifuged at low speed (1000×g) for 10 min, and the resulting supernatant (adjusted to 2 mg/mL) was used immediately in lipid. peroxidation assays.
- The reaction mixture with test compounds or vehicle was incubated for 10 min, then stimulated by addition of ferrous ion (200 μM freshly prepared), and maintained at 37° C. for 30 min. The reactions were terminated by adding 10 μM of ice-cold trichloroacetic acid solution (4% (w/v) in 0.3 N HCl) and 200 μM, of thiobarbituric acid-reactive substance reagent (0.5% (w/v) thiobarbituric acid in 50% (v/v) acetic acid). After boiling for 15 min, the samples were cooled and extracted with n-butanol. The extent of lipid peroxidation was estimated as thiobarbituric acid-reactive substances and was read at 532 nm in a spectrophotometer (Shimadzu UV-160). The results of this assay are provided in Table 3.
- The contents of all patents, patent applications, published articles, books, reference manuals and abstracts cited herein are hereby incorporated by reference in their entirety to more fully describe the state of the art to which the invention pertains.
- As various changes can be made in the above-described subject matter without departing from the scope of the invention, it is intended that all subject matter contained in the above description, shown in the accompanying drawing, or defined in the appended claims, be interpreted as descriptive, illustrative, and non-limiting. Modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.
TABLE 1 In vitro cytotoxicity data for novel 1,5-dichioroanthracene compounds of the invention Comp'd mp IC50(μM)a No. R group Formula MW (° C.) GBM KB CHO 3a CH3 C16H10O2Cl2 305.16 164-166 48.1 472.8 114.5 3b CH2Br C16H9O2Cl2Br 384.06 180-181 19.2 136.0 1012.8 3c CH2Cl C16H9O2Cl3 339.60 181-182 105.6 527.5 1.2 3d CH2CH3 C17H12O2Cl2 319.18 134-135 17.2 470.8 1157.6 3e CH(CH3)2 C18H14O2Cl2 332.17 116-118 195.5 430.8 1314.2 3f CH(CH3)Cl C17H11O2Cl3 353.63 120-122 125.8 374.1 954.9 3g CHCl2 C16H8O2Cl4 374.05 138-140 1.4 527.8 1277.9 3h (CH2)2CH C18H14O2Cl2 333.21 132-134 572.2 544.3 0.1 3i (CH2)3Br C18H13O2BrCl2 412.11 118-120 205.2 457.3 109.9 3j (CH2)3Cl C18H13O2Cl3 367.65 130-132 1.1 11.0 1171.3 3k (CH2)4CH3 C20H18O2Cl2 361.26 120-121 1.2 316.8 55.1 3L C6H5 C21H12O2Cl2 367.23 166-168 226.3 813.2 1437.2 3m 2-CH3C6H4 C22H14O2Cl2 381.26 162-164 107.9 1136.4 1513.3 3n 3-CH3C6H4 C22H14O2Cl2 381.26 172-173 397.9 110.9 1199.2 3o 4-CH3C6H4 C22H14O2Cl2 381.26 204-206 11.2 865.2 11639 3p 3-ClC6H4 C21H11O2Cl3 401.67 172-174 11.7 1050.6 19840 3q 4-ClC6H4 C21H11O2Cl3 401.67 169-171 —b —b —b 3r 4-NO2C6H4 C21H11NO4Cl2 412.22 198-200 —b —b —b 3s 3-NO2C6H4 C21H11NO4Cl2 412.22 216-218 11.1 836.6 1481.7 3t 4-Cl C22H13O3Cl3 431.70 195-196 10.8 818.1 114.5 2-CH3O-C6H3 3u 2,4-Cl2C6H3 C22H10O2Cl4 436.12 190-192 87.7 107.5 1182.7 3v CH2C6H5 C22H14O2Cl2 381.25 152-154 109.8 12.6 1186.7 3w CH2CH2C6H5 C23H16O2Cl2 395.28 126-128 1734.8 936.3 1164.7 Doxorubicin 598.9 420.5 498.8 Mitomycin-C 1896.3 11720 2122.5 Methotrexate 9286.2 47180 9141.5 -
TABLE 2 Taq inhibition data for novel 1,5-dichloro-anthracenes Comp'd Taq Inhibition No. R group 1 mM 0.1 mM 0.01 mM 3b CH2Br + + + 3c CH2Cl − − − 3d CH2CH3 + + + 3g CHCl2 + + + 3h (CH2)2CH3 + + + 3i (CH2)3Br − − − 3j (CH2)3Cl + + − 3k (CH2)4CH3 + + + 3m 2-CH3C6H4 − − − 3n 3-CH3C6H4 + + − 3p 3-ClC6H4 + − − 3q 4-ClC6H4 + − − 3r 3-NO2C6H4 − − − 3s 4-NO2C6H4 − − − 3u 2,4-Cl2C6H3 + + − 3v CH2C6H5 + + − 3w CH2CH2C6H5 + + + -
TABLE 3 Inhibitory effects of novel 1,5-dichloro-anthracene compounds of the invention on iron-induced lipid peroxidation in rat brain homogenates % Inhibitiona % Inhibitiona Comp'd No. R group (10 μM) (1 μM) 3a CH3 34.4 25.5 3b CH2Br 100 100 3c CH2Cl 100 100 3d CH2CH3 100 100 3e CH(CH3)2 28.6 1.5 3f CH(CH3)Cl 60.6 9.8 3g CHCl2 100 61.7 3h (CH2)2CH3 17.7 11.8 3i (CH2)3Br 100 38.1 3j (CH2)3Cl 29.0 10.0 3k (CH2)4CH3 17.2 12.2 3L C6H5 14.0 4.6 3m 2-CH3C6H4 23.0 0 3n 3-CH3C6H4 22.4 10.9 3o 4-CH3C6H4 25.6 2.9 3p 3-ClC6H4 30.6 8.6 3q 4-ClC6H4 —b —b 3r 4-NO2C6H4 —b —b 3s 3-NO2C6H4 35.7 5.9 3t 4-Cl, 10.3 0 2-CH3O-C6H3 3u 2,4-Cl2C6H3 16.0 1.7 3v CH2C6H5 32.8 13.7 3w CH2CH2C6H5 36.6 29.3 (+)-a-Tocopherol 100 61.6
Claims (31)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/797,965 US6369246B2 (en) | 1999-04-14 | 2001-03-05 | Synthesis and pharmaceuticals of novel 9-substituted-1, 5-dichloroanthracene analogs |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US29086599A | 1999-04-14 | 1999-04-14 | |
| US09/797,965 US6369246B2 (en) | 1999-04-14 | 2001-03-05 | Synthesis and pharmaceuticals of novel 9-substituted-1, 5-dichloroanthracene analogs |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US29086599A Continuation-In-Part | 1999-04-14 | 1999-04-14 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20010018539A1 true US20010018539A1 (en) | 2001-08-30 |
| US6369246B2 US6369246B2 (en) | 2002-04-09 |
Family
ID=23117865
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/797,965 Expired - Fee Related US6369246B2 (en) | 1999-04-14 | 2001-03-05 | Synthesis and pharmaceuticals of novel 9-substituted-1, 5-dichloroanthracene analogs |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US6369246B2 (en) |
| AU (1) | AU4220900A (en) |
| WO (1) | WO2000061536A2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080077088A1 (en) * | 2006-09-25 | 2008-03-27 | Alsius Corporation | Method and apparatus for spinal cooling |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2580631B1 (en) * | 1985-04-17 | 1987-05-29 | Cird | HYDROXY-1 ACYLOXY-8 ACYL-10 ANTHRONES, THEIR PREPARATION PROCESS AND THEIR USE IN HUMAN OR VETERINARY MEDICINE AND IN COSMETICS |
| ES2100124B1 (en) * | 1994-08-01 | 1998-04-01 | Pharma Mar Sa | IMPROVEMENTS INTRODUCED IN IP 9401697 FOR TERPENO-QUINONAS WITH ANTITUMORAL ACTIVITY. |
-
2000
- 2000-04-10 AU AU42209/00A patent/AU4220900A/en not_active Abandoned
- 2000-04-10 WO PCT/US2000/009467 patent/WO2000061536A2/en not_active Ceased
-
2001
- 2001-03-05 US US09/797,965 patent/US6369246B2/en not_active Expired - Fee Related
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080077088A1 (en) * | 2006-09-25 | 2008-03-27 | Alsius Corporation | Method and apparatus for spinal cooling |
| US20080077206A1 (en) * | 2006-09-25 | 2008-03-27 | Collins Kenneth A | Method and apparatus for spinal cooling |
| US7822485B2 (en) * | 2006-09-25 | 2010-10-26 | Zoll Circulation, Inc. | Method and apparatus for spinal cooling |
| US9180042B2 (en) | 2006-09-25 | 2015-11-10 | Zoll Circulation, Inc. | Method and apparatus for spinal cooling |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2000061536A2 (en) | 2000-10-19 |
| AU4220900A (en) | 2000-11-14 |
| US6369246B2 (en) | 2002-04-09 |
| WO2000061536A3 (en) | 2001-04-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4929624A (en) | Olefinic 1H-imidazo(4,5-c)quinolin-4-amines | |
| KR100447539B1 (en) | Benzoimidazole compounds, pharmaceutical compositions comprising them and methods of treatment using the same | |
| US4757139A (en) | 5-fluoro-2'-deoxyuridine derivative, processes for preparing same and antitumor composition containing the same | |
| RU2144027C1 (en) | Isoquinolines, method of their synthesis and pharmaceutical composition based on thereof | |
| HU228937B1 (en) | Compositions for treating inflammatory response | |
| RU2282627C2 (en) | Coumarone derivatives eliciting comt-inhibiting activity | |
| HUT59920A (en) | Process for producing benzodiazepinones and pharmaceutical compositions containing them as active components | |
| WO2024193716A1 (en) | Triazolopyrimidine compound | |
| JPS6256851B2 (en) | ||
| US4448730A (en) | Hydroxybenzohydroxamic acids, benzamides and esters and related compounds as ribonucleotide reductase inhibitors | |
| EP2460810A1 (en) | Novel flavanone derivative | |
| EP0357403A2 (en) | Substituted beta-diketones | |
| US6369246B2 (en) | Synthesis and pharmaceuticals of novel 9-substituted-1, 5-dichloroanthracene analogs | |
| JPS63295566A (en) | Quinoxalinone derivatives | |
| HU211466A9 (en) | Therapeutic benzazepine compounds | |
| KR860001888B1 (en) | A method for preparing a derivative of dihydroxybenzoic acid | |
| US7465799B2 (en) | Methods and compositions for selectin inhibition | |
| US6372785B1 (en) | Synthesis of 1,8-dichloro-anthracene analogues and pharmaceutical compositions based thereon | |
| KR20060092220A (en) | Imidazopyridine Derivatives as Inducible NO-Synthase Inhibitors | |
| JP2001302669A (en) | Tricyclic phthalazinone derivative | |
| JPH01258667A (en) | Composition for treating hyperlipidemia | |
| HU183493B (en) | Process for preparing new adenine nucleoside derivatives | |
| US20050009924A1 (en) | Synthesis and pharmaceuticals of novel bis-substituted anthraquinone derivatives | |
| CN118908950B (en) | Medicine for treating cardiovascular diseases and preparation method thereof | |
| US4072753A (en) | Pharmaceutical method for the therapy of immune diseases |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: CHAN, KEITH, MARYLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HUANG, HSU-SHAN;REEL/FRAME:012533/0701 Effective date: 20000126 Owner name: GLOBOASIA, LLC, MARYLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HUANG, HSU-SHAN;REEL/FRAME:012533/0701 Effective date: 20000126 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Expired due to failure to pay maintenance fee |
Effective date: 20060409 |