US20010016700A1 - Transmyocardial implant with flow reduction - Google Patents
Transmyocardial implant with flow reduction Download PDFInfo
- Publication number
- US20010016700A1 US20010016700A1 US09/304,730 US30473099A US2001016700A1 US 20010016700 A1 US20010016700 A1 US 20010016700A1 US 30473099 A US30473099 A US 30473099A US 2001016700 A1 US2001016700 A1 US 2001016700A1
- Authority
- US
- United States
- Prior art keywords
- conduit
- wall
- blood flow
- vessel
- heart wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007943 implant Substances 0.000 title claims abstract description 40
- 210000002216 heart Anatomy 0.000 claims abstract description 41
- 230000017531 blood circulation Effects 0.000 claims abstract description 31
- 210000004351 coronary vessel Anatomy 0.000 claims abstract description 20
- 239000000463 material Substances 0.000 claims abstract description 18
- 230000037361 pathway Effects 0.000 claims abstract description 13
- 210000005242 cardiac chamber Anatomy 0.000 claims abstract description 5
- 230000008602 contraction Effects 0.000 claims abstract description 5
- 230000004044 response Effects 0.000 claims abstract description 4
- 230000008467 tissue growth Effects 0.000 claims description 20
- 230000001939 inductive effect Effects 0.000 claims description 11
- 239000004744 fabric Substances 0.000 claims description 9
- 208000014674 injury Diseases 0.000 claims description 4
- 230000008733 trauma Effects 0.000 claims description 4
- 239000000835 fiber Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 3
- 229920000728 polyester Polymers 0.000 claims description 2
- 210000005240 left ventricle Anatomy 0.000 description 10
- 210000001367 artery Anatomy 0.000 description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 208000007536 Thrombosis Diseases 0.000 description 2
- 230000003466 anti-cipated effect Effects 0.000 description 2
- 239000000560 biocompatible material Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 210000004165 myocardium Anatomy 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000002296 pyrolytic carbon Substances 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229920004934 Dacron® Polymers 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008321 arterial blood flow Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000002885 thrombogenetic effect Effects 0.000 description 1
- 230000003868 tissue accumulation Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/94—Stents retaining their form, i.e. not being deformable, after placement in the predetermined place
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2493—Transmyocardial revascularisation [TMR] devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/00234—Surgical instruments, devices or methods for minimally invasive surgery
- A61B2017/00238—Type of minimally invasive operation
- A61B2017/00243—Type of minimally invasive operation cardiac
- A61B2017/00247—Making holes in the wall of the heart, e.g. laser Myocardial revascularization
- A61B2017/00252—Making holes in the wall of the heart, e.g. laser Myocardial revascularization for by-pass connections, i.e. connections from heart chamber to blood vessel or from blood vessel to blood vessel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0075—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable
Definitions
- This invention pertains to an implant for passing blood flow directly between a chamber of the heart and a coronary vessel. More particularly, this invention pertains to such an implant with an enhance design for reducing a likelihood of damage to a coronary vessel from a high -velocity blood flow discharge.
- Implants such as those shown in the aforementioned patent and applications include a portion to be placed within a coronary vessel and a portion to be placed within the myocardium.
- the vessel When placing a portion of the implant in the coronary vessel, the vessel is incised a length sufficient to insert the implant.
- the implant When placed within the coronary vessel, the implant discharges flow axially into the vessel.
- a portion of an interior surface of the implant portion in the vessel acts as a deflection surface to prevent direct impingement of high velocity blood flow on a vessel wall.
- the L-shaped implant described in the foregoing is preferably placed through a surgical procedure (open chest or minimally invasively).
- the suitability of an implant for minimally invasive or percutaneous procedures is influenced, at least in part, by the external size and shape of the implant.
- the size can be reduced and shape enhanced by elimination of the vessel portion of the foregoing designs.
- a transmyocardial implant for establishing a blood flow path through a heart wall between a heart chamber and a lumen of a coronary vessel on the heart wall.
- the implant includes a hollow conduit having an open first end and an open second end.
- the conduit is dimensioned so as to extend at least from the vessel through said heart wall and into said chamber.
- the conduit has a conduit wall defining a blood flow pathway within an interior of said conduit between the first and second ends.
- the first and second ends are mutually positioned for the first end to reside within the vessel and opposing a wall of the vessel when the conduit is placed within the heart wall with the second end protruding into the chamber.
- the conduit wall is formed of a material sufficiently rigid to resist deformation and closure of the pathway in response to contraction of the heart wall.
- a flow restriction is formed in the pathway for reducing a discharge velocity of blood flow discharged from the first end.
- FIG. 1 is a schematic cross-sectional view of an implant according to the present invention in place in a heart wall to define a blood flow path from a left ventricle to a coronary artery distal to an obstruction.
- an implant 10 including a straight elongate, generally cylindrical tube or conduit 11 .
- the conduit 11 may be formed of titanium or other rigid biocompatible material such as pyrolytic carbon or may be titanium coated with pyrolytic carbon.
- the interior wall 13 of the conduit 11 is polished to a high degree of polish to reduce the likelihood of thrombus formation on the wall.
- the material of the conduit 11 is preferably a rigid material in order to withstand contraction forces of the heart wall, as will be described.
- the tube 11 will have an outside diameter Do of about 1 to 3 millimeters and an internal diameter D1 of about 0.5 to 2.5 millimeters to provide a wall thickness of about 0.5 millimeters.
- a specific D o may be 2.5 millimeters and a specific D1 may be 2.0 millimeters.
- the tube 11 has a first open end 12 which is sized to be received within the lumen of a coronary vessel such as the lumen 100 of a coronary artery 102 illustrated in FIG. 1.
- a coronary vessel such as the lumen 100 of a coronary artery 102 illustrated in FIG. 1.
- the term “vessel” refers to veins or arteries.
- the present invention is described with reference to bypassing a coronary artery with blood from a left ventricle. The invention is equally applicable to forming a blood flow path from other heart chamber to any other coronary vessel.
- the conduit 11 has a second open end 14 .
- the conduit 11 is sized to extend from the coronary artery 102 directly through the heart wall 104 and protrude into the left ventricle 106 of a patient's heart.
- the end 14 protrudes at least about 5 millimeters from an inner surface 103 of the heart wall 104 during maximum heart wall thickness during systole.
- Heart wall thickness varies from patient to patient and among locations on the heart.
- the length L of the conduit (measured as the axial distance between ends 12 and 14 ) will be between about 10 and 30 millimeters. With the foregoing specific example, for a heart wall 104 having a maximum systolic thickness of 20 millimeters, the length L of the conduit 11 is 25 millimeters.
- the openings 12 , 14 communicate with an interior 20 of the conduit 11 . Therefore, blood can freely flow through the conduit 11 between the left ventricle 106 and the lumen 100 of the coronary artery 102 .
- the conduit 11 is outwardly flared at 22 to act as a stop to limit insertion of the implant 10 into the heart wall 104 . Further, the flaring 22 acts as a smooth flow path for guiding blood flow out of end 12 .
- the tube 11 is preferably formed of titanium or other smooth biocompatible material in order to resist thrombus formation on the inner surface 13 of the conduit 11 .
- Titanium is a presently preferred material due its long-term use in the cardiovascular industry. Further, titanium is sufficiently rigid to withstand deformation forces caused by contraction of the heart wall 104 to avoid deformation of the tube 11 so that the tube 11 remains open during both diastole and systole. Also, the tube 11 is solid on its cylindrical inner surface 13 . Therefore, highly thrombogenic material from the heart wall 104 cannot pass into and contaminate the interior 20 of the conduit 11 .
- a completed implant 10 includes a sleeve 24 of tissue growth-inducing material secured to an exterior surface of the conduit 11 .
- the sleeve 24 is attached to the conduit 11 by a suture 23 tightly surrounding both the sleeve 24 and conduit 11 .
- the sleeve 24 surrounds the exterior surface of the tube 11 and is recessed back from both of ends 12 , 14 so that after placement the sleeve 24 resides solely in the heart wall 104 (although slight protrusion of sleeve 24 into the left ventricle can be tolerated). It is desired the sleeve not be so closely positioned near open ends 12 , 14 such that tissue growth on the sleeve 24 can grow over and occlude the open ends 12 , 14 . It is anticipated that tissue growth on and into the sleeve 24 could result in a buildup of tissue beyond the sleeve 24 to a thickness of about at least 1 millimeter. It is desirable that such tissue growth does not extend over ends 12 , 14 . Accordingly, the sleeve 24 is spaced from ends of the tube 11 by a distance greater than an anticipated thickness of tissue growth extension beyond the sleeve 24 .
- the sleeve 24 is selected to induce tissue growth and attachment.
- the sleeve 24 is formed of a fabric having biocompatible fibers defining interstitial spaces to receive tissue growth.
- a fabric is polyethylene terephthalate (such as polyester fabric sold by DuPont Company under the trademark Dacron).
- polyethylene terephthalate such as polyester fabric sold by DuPont Company under the trademark Dacron.
- Such a fabric permits rapid tissue integration into the fabric thereby anchoring the fabric and, hence, the tube 11 to the patient's tissue.
- the tissue growth inducing material could be sintered metal on the external surface of the tube 11 .
- Sintered metal results in a porous surface to receive tissue growth.
- the area of the sintered metal will be spaced from ends 12 , 14 to prevent tissue accumulation on the sintered area from growing over and blocking 12 , 14 .
- the exterior surface of the tube 11 can be roughened.
- the roughening can be in the form of a knurling or other roughened surface due to sandblasting or the application of sinter beads. The roughening results in surface protrusions and pitting, around which tissue may grow.
- the implant 10 is placed with the first end 12 placed within the artery lumen 100 distal to an obstruction 105 .
- Normal nourishing blood flow is in the direction of arrow A.
- the implant 10 passes through the heart wall 104 with the second end 14 positioned within the left ventricle 106 and spaced from the inner surface 103 of the heart wall 104 by 5 millimeters during periods of maximum heart wall thickness.
- the sleeve 24 is positioned opposing the heart wall 104 so that tissue from the heart wall 104 can grow into the sleeve 24 .
- the first opening 12 opposes a wall 102 a of the artery 102 .
- blood discharged from the opening 12 impinges directly upon the arterial wall 102 a .
- the artery wall 102 a is a fragile layer of cells and fibers. Direct impingement of blood flow on the wall 102 a can damage the artery wall 102 a . As a healing response to such damage, a cellular matrix may develop and proliferate to such an extent that opening 12 or lumen 100 could occlude.
- the present invention reduces the velocity of blood flow through the opening 12 .
- a flow restriction in the form of a narrowing 30 is placed within the conduit 11 .
- the restriction 30 reduces blood flow below a velocity which would otherwise cause occluding trauma to the artery wall 102 a.
- the restriction 30 results in a narrow interior diameter D of about 0 . 5 millimeters.
- the narrow restriction 30 is positioned about 8 millimeters from end 14 .
- the restriction 30 is formed by a venturi constriction formed within the conduit 11 adjacent end 14 .
- the venturi may be formed by machining the conduit 11 from a solid blank of titanium.
- the venturi 30 has a shallow ramp 31 on a downstream side to avoid turbulence. Since an upstream side 33 is adjacent end 14 , turbulence during reverse flow is not a serious concern.
- the blood flow velocity from end 12 is reduced to a velocity of normal blood flow within an artery 102 (about 30 ml/min.). Since the left ventricle 106 has a high maximum pressure, the pressure differential between the ventricle 106 and artery lumen 100 results in a higher than normal blood flow rate in the absence of the restriction 30 .
- the tube 11 is a cylinder with circular cross-section.
- the tube 11 could have an oval cross-section at end 12 to provide a larger flow area and further reduce flow velocity.
- the tube 11 is preferably straight, the tube 11 could be bent so that the direction of blood flow from end 12 is not perpendicular to the arterial blood flow direction A.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Cardiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Abstract
Description
- 1. Field of the Invention
- This invention pertains to an implant for passing blood flow directly between a chamber of the heart and a coronary vessel. More particularly, this invention pertains to such an implant with an enhance design for reducing a likelihood of damage to a coronary vessel from a high -velocity blood flow discharge.
- 2. Description of the Prior Art
- Commonly assigned U.S. Pat. No. 5,755,682 and PCT International Publication No. WO 98/06356 teach an implant for defining a blood flow conduit directly from a chamber of the heart to a lumen of a coronary vessel. An embodiment disclosed in the aforementioned patent and application teaches an L-shaped implant. The implant is a conduit having one leg sized to be received within a lumen of a coronary artery and a second leg sized to pass through the myocardium and extend into the left ventricle of the heart. As disclosed in the above-referenced patent and application, the conduit remains open for blood flow to pass through the conduit during both systole and diastole. The conduit penetrates into the left ventricle in order to prevent tissue growth and occlusions over an opening of the conduit.
- Commonly assigned and co-pending U.S. patent application Ser. No. 08/944,313 filed Oct. 6, 1997, entitled “Transmyocardial Implant”, and filed in the name of inventors Katherine S. Tweden, Guy P. Vanney and Thomas L. Odland, teaches an implant such as that shown in the aforementioned '682 patent with an enhanced fixation structure. The enhanced fixation structure includes a fabric surrounding at least a portion of the conduit to facilitate tissue growth on the exterior of the implant.
- Implants such as those shown in the aforementioned patent and applications include a portion to be placed within a coronary vessel and a portion to be placed within the myocardium. When placing a portion of the implant in the coronary vessel, the vessel is incised a length sufficient to insert the implant. When placed within the coronary vessel, the implant discharges flow axially into the vessel. A portion of an interior surface of the implant portion in the vessel acts as a deflection surface to prevent direct impingement of high velocity blood flow on a vessel wall.
- The L-shaped implant described in the foregoing is preferably placed through a surgical procedure (open chest or minimally invasively). The suitability of an implant for minimally invasive or percutaneous procedures is influenced, at least in part, by the external size and shape of the implant. The size can be reduced and shape enhanced by elimination of the vessel portion of the foregoing designs.
- According to a preferred embodiment of the present invention, a transmyocardial implant is disclosed for establishing a blood flow path through a heart wall between a heart chamber and a lumen of a coronary vessel on the heart wall. The implant includes a hollow conduit having an open first end and an open second end. The conduit is dimensioned so as to extend at least from the vessel through said heart wall and into said chamber. The conduit has a conduit wall defining a blood flow pathway within an interior of said conduit between the first and second ends. The first and second ends are mutually positioned for the first end to reside within the vessel and opposing a wall of the vessel when the conduit is placed within the heart wall with the second end protruding into the chamber. The conduit wall is formed of a material sufficiently rigid to resist deformation and closure of the pathway in response to contraction of the heart wall. A flow restriction is formed in the pathway for reducing a discharge velocity of blood flow discharged from the first end.
- FIG. 1 is a schematic cross-sectional view of an implant according to the present invention in place in a heart wall to define a blood flow path from a left ventricle to a coronary artery distal to an obstruction.
- With reference to FIG. 1, an implant 10 is shown including a straight elongate, generally cylindrical tube or conduit 11. The conduit 11 may be formed of titanium or other rigid biocompatible material such as pyrolytic carbon or may be titanium coated with pyrolytic carbon. Preferably, the
interior wall 13 of the conduit 11 is polished to a high degree of polish to reduce the likelihood of thrombus formation on the wall. The material of the conduit 11 is preferably a rigid material in order to withstand contraction forces of the heart wall, as will be described. - In the preferred embodiment, the tube 11 will have an outside diameter Do of about 1 to 3 millimeters and an internal diameter D1 of about 0.5 to 2.5 millimeters to provide a wall thickness of about 0.5 millimeters. By way of non-limiting example, a specific Do may be 2.5 millimeters and a specific D1 may be 2.0 millimeters.
- The size range given permits insertion of the conduit into a coronary vessel to be bypassed. Commonly, such vessels in an adult human have internal diameters of 1 to 3 millimeters when under the influence of normal pressurized blood flow.
- The tube 11 has a first
open end 12 which is sized to be received within the lumen of a coronary vessel such as thelumen 100 of acoronary artery 102 illustrated in FIG. 1. As used in this application, the term “vessel” refers to veins or arteries. The present invention is described with reference to bypassing a coronary artery with blood from a left ventricle. The invention is equally applicable to forming a blood flow path from other heart chamber to any other coronary vessel. - The conduit 11 has a second
open end 14. The conduit 11 is sized to extend from thecoronary artery 102 directly through theheart wall 104 and protrude into theleft ventricle 106 of a patient's heart. Preferably, theend 14 protrudes at least about 5 millimeters from aninner surface 103 of theheart wall 104 during maximum heart wall thickness during systole. Heart wall thickness varies from patient to patient and among locations on the heart. In a preferred embodiment of forming a flow path from the left ventricle to a coronary artery of an adult human, the length L of the conduit (measured as the axial distance betweenends 12 and 14) will be between about 10 and 30 millimeters. With the foregoing specific example, for aheart wall 104 having a maximum systolic thickness of 20 millimeters, the length L of the conduit 11 is 25 millimeters. - The
12, 14 communicate with anopenings interior 20 of the conduit 11. Therefore, blood can freely flow through the conduit 11 between theleft ventricle 106 and thelumen 100 of thecoronary artery 102. - At
first opening 12, the conduit 11 is outwardly flared at 22 to act as a stop to limit insertion of the implant 10 into theheart wall 104. Further, theflaring 22 acts as a smooth flow path for guiding blood flow out ofend 12. - As mentioned, the tube 11 is preferably formed of titanium or other smooth biocompatible material in order to resist thrombus formation on the
inner surface 13 of the conduit 11. Titanium is a presently preferred material due its long-term use in the cardiovascular industry. Further, titanium is sufficiently rigid to withstand deformation forces caused by contraction of theheart wall 104 to avoid deformation of the tube 11 so that the tube 11 remains open during both diastole and systole. Also, the tube 11 is solid on its cylindricalinner surface 13. Therefore, highly thrombogenic material from theheart wall 104 cannot pass into and contaminate theinterior 20 of the conduit 11. - While tissue will adhere to titanium, the adhesion may be inadequate when subjected to the shearing contracting forces of the
heart wall 104 due to the relative smoothness of extruded titanium. Therefore, a completed implant 10 includes asleeve 24 of tissue growth-inducing material secured to an exterior surface of the conduit 11. Thesleeve 24 is attached to the conduit 11 by asuture 23 tightly surrounding both thesleeve 24 and conduit 11. - The
sleeve 24 surrounds the exterior surface of the tube 11 and is recessed back from both of 12, 14 so that after placement theends sleeve 24 resides solely in the heart wall 104 (although slight protrusion ofsleeve 24 into the left ventricle can be tolerated). It is desired the sleeve not be so closely positioned near open ends 12, 14 such that tissue growth on thesleeve 24 can grow over and occlude the open ends 12, 14. It is anticipated that tissue growth on and into thesleeve 24 could result in a buildup of tissue beyond thesleeve 24 to a thickness of about at least 1 millimeter. It is desirable that such tissue growth does not extend over ends 12, 14. Accordingly, thesleeve 24 is spaced from ends of the tube 11 by a distance greater than an anticipated thickness of tissue growth extension beyond thesleeve 24. - The
sleeve 24 is selected to induce tissue growth and attachment. Preferably, thesleeve 24 is formed of a fabric having biocompatible fibers defining interstitial spaces to receive tissue growth. An example of such a fabric is polyethylene terephthalate (such as polyester fabric sold by DuPont Company under the trademark Dacron). Such a fabric permits rapid tissue integration into the fabric thereby anchoring the fabric and, hence, the tube 11 to the patient's tissue. - While a fabric tissue growth inducing material is illustrated, other materials could be used. For example, the tissue growth inducing material could be sintered metal on the external surface of the tube 11. Sintered metal results in a porous surface to receive tissue growth. The area of the sintered metal will be spaced from ends 12, 14 to prevent tissue accumulation on the sintered area from growing over and blocking 12, 14. Alternatively, the exterior surface of the tube 11 can be roughened. The roughening can be in the form of a knurling or other roughened surface due to sandblasting or the application of sinter beads. The roughening results in surface protrusions and pitting, around which tissue may grow.
- The implant 10 is placed with the
first end 12 placed within theartery lumen 100 distal to anobstruction 105. Normal nourishing blood flow is in the direction of arrow A. The implant 10 passes through theheart wall 104 with thesecond end 14 positioned within theleft ventricle 106 and spaced from theinner surface 103 of theheart wall 104 by 5 millimeters during periods of maximum heart wall thickness. Thesleeve 24 is positioned opposing theheart wall 104 so that tissue from theheart wall 104 can grow into thesleeve 24. - With the positioning thus described, the
first opening 12 opposes awall 102 a of theartery 102. As a result, blood discharged from theopening 12 impinges directly upon thearterial wall 102 a. - The
artery wall 102 a is a fragile layer of cells and fibers. Direct impingement of blood flow on thewall 102 a can damage theartery wall 102 a. As a healing response to such damage, a cellular matrix may develop and proliferate to such an extent that opening 12 orlumen 100 could occlude. - The present invention reduces the velocity of blood flow through the
opening 12. Specifically, a flow restriction in the form of a narrowing 30 is placed within the conduit 11. Therestriction 30 reduces blood flow below a velocity which would otherwise cause occluding trauma to theartery wall 102 a. - With the specific example given, the
restriction 30 results in a narrow interior diameter D of about 0.5 millimeters. Thenarrow restriction 30 is positioned about 8 millimeters fromend 14. Therestriction 30 is formed by a venturi constriction formed within the conduit 11adjacent end 14. The venturi may be formed by machining the conduit 11 from a solid blank of titanium. Theventuri 30 has ashallow ramp 31 on a downstream side to avoid turbulence. Since an upstream side 33 isadjacent end 14, turbulence during reverse flow is not a serious concern. - With the
restriction 30 as described, flow velocity out ofend 12 is reduced below a level which would otherwise cause occluding trauma to theartery wall 102 a. By avoiding such trauma, a straight implant 10 can be provided which is more susceptible to minimally invasive and percutaneous implantation as well as being suitable for traditional surgical approaches. - Preferably, the blood flow velocity from
end 12 is reduced to a velocity of normal blood flow within an artery 102 (about 30 ml/min.). Since theleft ventricle 106 has a high maximum pressure, the pressure differential between theventricle 106 andartery lumen 100 results in a higher than normal blood flow rate in the absence of therestriction 30. - Having disclosed the present invention in a preferred embodiment, it will be appreciated that modifications and equivalents may occur to one of ordinary skill in the art having the benefits of the teachings of the present invention. It is intended that such modifications shall be included within the scope of the claims appended hereto. For example, in the preferred embodiment shown, the tube 11 is a cylinder with circular cross-section. The tube 11 could have an oval cross-section at
end 12 to provide a larger flow area and further reduce flow velocity. Also, while the tube 11 is preferably straight, the tube 11 could be bent so that the direction of blood flow fromend 12 is not perpendicular to the arterial blood flow direction A.
Claims (12)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/304,730 US6409697B2 (en) | 1999-05-04 | 1999-05-04 | Transmyocardial implant with forward flow bias |
| US10/155,926 US6916304B2 (en) | 1999-05-04 | 2002-05-23 | Transmyocardial implant with flow reduction |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/304,730 US6409697B2 (en) | 1999-05-04 | 1999-05-04 | Transmyocardial implant with forward flow bias |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/155,926 Continuation US6916304B2 (en) | 1999-05-04 | 2002-05-23 | Transmyocardial implant with flow reduction |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20010016700A1 true US20010016700A1 (en) | 2001-08-23 |
| US6409697B2 US6409697B2 (en) | 2002-06-25 |
Family
ID=23177736
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/304,730 Expired - Fee Related US6409697B2 (en) | 1999-05-04 | 1999-05-04 | Transmyocardial implant with forward flow bias |
| US10/155,926 Expired - Fee Related US6916304B2 (en) | 1999-05-04 | 2002-05-23 | Transmyocardial implant with flow reduction |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/155,926 Expired - Fee Related US6916304B2 (en) | 1999-05-04 | 2002-05-23 | Transmyocardial implant with flow reduction |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US6409697B2 (en) |
Cited By (29)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002030325A3 (en) * | 2000-10-11 | 2002-08-22 | Heartstent Corp | Flexible transmyocardial implant |
| US6582444B2 (en) | 1999-08-04 | 2003-06-24 | Percardia, Inc. | Blood flow conduit delivery system and method of use |
| US6605053B1 (en) | 1999-09-10 | 2003-08-12 | Percardia, Inc. | Conduit designs and related methods for optimal flow control |
| US6605113B2 (en) | 1999-08-04 | 2003-08-12 | Percardia Inc. | Vascular graft bypass |
| US6610100B2 (en) | 1998-09-10 | 2003-08-26 | Percardia, Inc. | Designs for left ventricular conduit |
| US6641610B2 (en) | 1998-09-10 | 2003-11-04 | Percardia, Inc. | Valve designs for left ventricular conduits |
| US6694983B2 (en) | 1998-09-10 | 2004-02-24 | Percardia, Inc. | Delivery methods for left ventricular conduit |
| US6854467B2 (en) | 2000-05-04 | 2005-02-15 | Percardia, Inc. | Methods and devices for delivering a ventricular stent |
| US6881199B2 (en) | 1998-09-10 | 2005-04-19 | Percardia, Inc. | Left ventricular conduit with blood vessel graft |
| US6945949B2 (en) | 1998-01-30 | 2005-09-20 | Percardia, Inc. | Left ventricular conduits to coronary arteries and methods for coronary bypass |
| US6964652B2 (en) | 1999-08-04 | 2005-11-15 | Percardia, Inc. | Left ventricular conduits and methods for delivery |
| US6976990B2 (en) | 2001-01-25 | 2005-12-20 | Percardia, Inc. | Intravascular ventriculocoronary bypass via a septal passageway |
| US7008397B2 (en) | 2002-02-13 | 2006-03-07 | Percardia, Inc. | Cardiac implant and methods |
| US7033372B1 (en) | 1999-08-04 | 2006-04-25 | Percardia, Inc. | Corkscrew reinforced left ventricle to coronary artery channel |
| US20060272384A1 (en) * | 2004-05-21 | 2006-12-07 | Lewis Darren F | Flow sensor methods and apparatus |
| US7326219B2 (en) | 2002-09-09 | 2008-02-05 | Wilk Patent Development | Device for placing transmyocardial implant |
| US9295393B2 (en) | 2012-11-09 | 2016-03-29 | Elwha Llc | Embolism deflector |
| US10993805B2 (en) | 2008-02-26 | 2021-05-04 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
| US11065138B2 (en) | 2016-05-13 | 2021-07-20 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system |
| US11185405B2 (en) | 2013-08-30 | 2021-11-30 | Jenavalve Technology, Inc. | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
| US11197754B2 (en) | 2017-01-27 | 2021-12-14 | Jenavalve Technology, Inc. | Heart valve mimicry |
| US11337800B2 (en) | 2015-05-01 | 2022-05-24 | Jenavalve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
| US11357624B2 (en) | 2007-04-13 | 2022-06-14 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
| US11517431B2 (en) | 2005-01-20 | 2022-12-06 | Jenavalve Technology, Inc. | Catheter system for implantation of prosthetic heart valves |
| US11564794B2 (en) | 2008-02-26 | 2023-01-31 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
| US11589981B2 (en) | 2010-05-25 | 2023-02-28 | Jenavalve Technology, Inc. | Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent |
| US12121461B2 (en) | 2015-03-20 | 2024-10-22 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath |
| US12171658B2 (en) | 2022-11-09 | 2024-12-24 | Jenavalve Technology, Inc. | Catheter system for sequential deployment of an expandable implant |
| US12414854B2 (en) | 2010-05-20 | 2025-09-16 | Jenavalve Technology, Inc. | Catheter system for introducing an expandable stent into the body of a patient |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002524196A (en) | 1998-09-10 | 2002-08-06 | パーカーディア,インコーポレイティド | Transmyocardial shunt for left ventricular revascularization and its mounting mechanism |
| US6409697B2 (en) * | 1999-05-04 | 2002-06-25 | Heartstent Corporation | Transmyocardial implant with forward flow bias |
| US6949118B2 (en) | 2002-01-16 | 2005-09-27 | Percardia, Inc. | Encased implant and methods |
| US20030216801A1 (en) * | 2002-05-17 | 2003-11-20 | Heartstent Corporation | Transmyocardial implant with natural vessel graft and method |
| IES20030539A2 (en) * | 2003-07-22 | 2005-05-18 | Medtronic Vascular Connaught | Stents and stent delivery system |
| US8496629B2 (en) * | 2008-04-22 | 2013-07-30 | Becton, Dickinson And Company | Catheter hole having a flow breaking feature |
| US9211202B2 (en) * | 2008-10-24 | 2015-12-15 | Wisconsin Alumni Research Foundation | Apparatus and method for treating an aneurysm |
| US9381112B1 (en) | 2011-10-06 | 2016-07-05 | William Eric Sponsell | Bleb drainage device, ophthalmological product and methods |
| US8632489B1 (en) | 2011-12-22 | 2014-01-21 | A. Mateen Ahmed | Implantable medical assembly and methods |
| MX2021014197A (en) | 2019-05-21 | 2022-01-06 | Djo Llc | Height, depth and circumferential adjustment mechanisms for cervical collar. |
Family Cites Families (212)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4546499A (en) * | 1982-12-13 | 1985-10-15 | Possis Medical, Inc. | Method of supplying blood to blood receiving vessels |
| US4953553A (en) | 1989-05-11 | 1990-09-04 | Advanced Cardiovascular Systems, Inc. | Pressure monitoring guidewire with a flexible distal portion |
| US6004261A (en) | 1989-04-28 | 1999-12-21 | C. R. Bard, Inc. | Formed-in-place endovascular stent and delivery system |
| US5344426A (en) | 1990-04-25 | 1994-09-06 | Advanced Cardiovascular Systems, Inc. | Method and system for stent delivery |
| US5389096A (en) | 1990-12-18 | 1995-02-14 | Advanced Cardiovascular Systems | System and method for percutaneous myocardial revascularization |
| US5193546A (en) | 1991-05-15 | 1993-03-16 | Alexander Shaknovich | Coronary intravascular ultrasound imaging method and apparatus |
| CA2074304C (en) | 1991-08-02 | 1996-11-26 | Cyril J. Schweich, Jr. | Drug delivery catheter |
| CA2087132A1 (en) | 1992-01-31 | 1993-08-01 | Michael S. Williams | Stent capable of attachment within a body lumen |
| US5470320A (en) | 1992-04-10 | 1995-11-28 | Tiefenbrun; Jonathan | Method and related device for obtaining access to a hollow organ |
| US5758663A (en) | 1992-04-10 | 1998-06-02 | Wilk; Peter J. | Coronary artery by-pass method |
| US5330486A (en) | 1992-07-29 | 1994-07-19 | Wilk Peter J | Laparoscopic or endoscopic anastomosis technique and associated instruments |
| US5258008A (en) | 1992-07-29 | 1993-11-02 | Wilk Peter J | Surgical stapling device and associated method |
| US5409019A (en) | 1992-10-30 | 1995-04-25 | Wilk; Peter J. | Coronary artery by-pass method |
| US5287861A (en) | 1992-10-30 | 1994-02-22 | Wilk Peter J | Coronary artery by-pass method and associated catheter |
| US5429144A (en) | 1992-10-30 | 1995-07-04 | Wilk; Peter J. | Coronary artery by-pass method |
| US5797960A (en) | 1993-02-22 | 1998-08-25 | Stevens; John H. | Method and apparatus for thoracoscopic intracardiac procedures |
| AU689094B2 (en) | 1993-04-22 | 1998-03-26 | C.R. Bard Inc. | Non-migrating vascular prosthesis and minimally invasive placement system therefor |
| US5441515A (en) | 1993-04-23 | 1995-08-15 | Advanced Cardiovascular Systems, Inc. | Ratcheting stent |
| ES2135520T3 (en) | 1993-11-04 | 1999-11-01 | Bard Inc C R | NON-MIGRANT VASCULAR PROSTHESIS. |
| US5591197A (en) | 1995-03-14 | 1997-01-07 | Advanced Cardiovascular Systems, Inc. | Expandable stent forming projecting barbs and method for deploying |
| US5571168A (en) | 1995-04-05 | 1996-11-05 | Scimed Lifesystems Inc | Pull back stent delivery system |
| DE19514638C2 (en) | 1995-04-20 | 1998-06-04 | Peter Dr Med Boekstegers | Device for the selective suction and retroinfusion of a fluid from or into body veins controlled by venous pressure |
| WO1996035469A1 (en) | 1995-05-10 | 1996-11-14 | Cardiogenesis Corporation | System for treating or diagnosing heart tissue |
| US6251104B1 (en) | 1995-05-10 | 2001-06-26 | Eclipse Surgical Technologies, Inc. | Guiding catheter system for ablating heart tissue |
| US6322548B1 (en) | 1995-05-10 | 2001-11-27 | Eclipse Surgical Technologies | Delivery catheter system for heart chamber |
| WO1996039965A1 (en) | 1995-06-07 | 1996-12-19 | Cardiogenesis Corporation | Surgical channel forming device with penetration limiter |
| US5840059A (en) | 1995-06-07 | 1998-11-24 | Cardiogenesis Corporation | Therapeutic and diagnostic agent delivery |
| US6132451A (en) | 1995-06-07 | 2000-10-17 | Eclipse Surgical Technologies, Inc. | Optical fiber for myocardial channel formation |
| US5728091A (en) | 1995-06-07 | 1998-03-17 | Cardiogenesis Corporation | Optical fiber for myocardial channel formation |
| US6224584B1 (en) | 1997-01-14 | 2001-05-01 | Eclipse Surgical Technologies, Inc. | Therapeutic and diagnostic agent delivery |
| US6156031A (en) | 1995-08-09 | 2000-12-05 | Eclipse Surgical Technologies | Transmyocardial revascularization using radiofrequency energy |
| SE505125C2 (en) * | 1995-10-10 | 1997-06-30 | Gambro Ab | Catheter, especially for peritoneal dialysis |
| DE69633411T2 (en) | 1995-10-13 | 2005-10-20 | Transvascular, Inc., Menlo Park | METHOD AND DEVICE FOR PREVENTING ARTERIAL ATTRACTIONS AND / OR FOR CARRYING OUT OTHER TRANSVASCULAR INTERVENTIONS |
| US6302875B1 (en) | 1996-10-11 | 2001-10-16 | Transvascular, Inc. | Catheters and related devices for forming passageways between blood vessels or other anatomical structures |
| US6375615B1 (en) | 1995-10-13 | 2002-04-23 | Transvascular, Inc. | Tissue penetrating catheters having integral imaging transducers and their methods of use |
| US6283983B1 (en) | 1995-10-13 | 2001-09-04 | Transvascular, Inc. | Percutaneous in-situ coronary bypass method and apparatus |
| US6726677B1 (en) | 1995-10-13 | 2004-04-27 | Transvascular, Inc. | Stabilized tissue penetrating catheters |
| US6283951B1 (en) | 1996-10-11 | 2001-09-04 | Transvascular, Inc. | Systems and methods for delivering drugs to selected locations within the body |
| ATE440559T1 (en) | 1995-10-13 | 2009-09-15 | Medtronic Vascular Inc | DEVICE FOR INTERSTITIAL TRANSVASCULAR PROCEDURES |
| ATE248621T1 (en) | 1996-01-19 | 2003-09-15 | Scimed Life Systems Inc | CATHETER WITH AN INCREASING RADIUS CURVE |
| CA2244080A1 (en) | 1996-02-02 | 1997-08-07 | Transvascular, Inc. | Methods and apparatus for blocking flow through blood vessels |
| AU733341B2 (en) | 1996-02-02 | 2001-05-10 | Transvascular, Inc. | A device, system and method for interstitial transvascular intervention |
| US6709444B1 (en) | 1996-02-02 | 2004-03-23 | Transvascular, Inc. | Methods for bypassing total or near-total obstructions in arteries or other anatomical conduits |
| CN1216929A (en) | 1996-02-02 | 1999-05-19 | 血管转换公司 | Method and apparatus for blocking flow through blood vessels |
| US20030229366A1 (en) | 1996-02-02 | 2003-12-11 | Transvascular, Inc. | Implantable lumen occluding devices and methods |
| US5713894A (en) | 1996-02-27 | 1998-02-03 | Murphy-Chutorian; Douglas | Combined mechanical/optical system for transmyocardial revascularization |
| US5810836A (en) | 1996-03-04 | 1998-09-22 | Myocardial Stents, Inc. | Device and method for trans myocardial revascularization (TMR) |
| US5830224A (en) | 1996-03-15 | 1998-11-03 | Beth Israel Deaconess Medical Center | Catheter apparatus and methodology for generating a fistula on-demand between closely associated blood vessels at a pre-chosen anatomic site in-vivo |
| US5725523A (en) | 1996-03-29 | 1998-03-10 | Mueller; Richard L. | Lateral-and posterior-aspect method and apparatus for laser-assisted transmyocardial revascularization and other surgical applications |
| US5725521A (en) | 1996-03-29 | 1998-03-10 | Eclipse Surgical Technologies, Inc. | Depth stop apparatus and method for laser-assisted transmyocardial revascularization and other surgical applications |
| US6027497A (en) | 1996-03-29 | 2000-02-22 | Eclipse Surgical Technologies, Inc. | TMR energy delivery system |
| US5766164A (en) | 1996-07-03 | 1998-06-16 | Eclipse Surgical Technologies, Inc. | Contiguous, branched transmyocardial revascularization (TMR) channel, method and device |
| US5738680A (en) | 1996-04-05 | 1998-04-14 | Eclipse Surgical Technologies, Inc. | Laser device with piercing tip for transmyocardial revascularization procedures |
| US6152918A (en) | 1996-04-05 | 2000-11-28 | Eclipse Surgical Technologies, Inc. | Laser device with auto-piercing tip for myocardial revascularization procedures |
| US5782823A (en) | 1996-04-05 | 1998-07-21 | Eclipse Surgical Technologies, Inc. | Laser device for transmyocardial revascularization procedures including means for enabling a formation of a pilot hole in the epicardium |
| SE509388C2 (en) | 1996-05-17 | 1999-01-18 | Jan Otto Solem | Branching device for a blood vessel |
| US5662124A (en) | 1996-06-19 | 1997-09-02 | Wilk Patent Development Corp. | Coronary artery by-pass method |
| SE509389C2 (en) | 1996-07-24 | 1999-01-18 | Solem Jan Otto | Device for connecting the end of a first blood vessel to the side of a second blood vessel |
| US6569147B1 (en) | 1996-07-26 | 2003-05-27 | Kensey Nash Corporation | Systems and methods of use for delivering beneficial agents for revascularizing stenotic bypass grafts and other occluded blood vessels and for other purposes |
| US6080170A (en) | 1996-07-26 | 2000-06-27 | Kensey Nash Corporation | System and method of use for revascularizing stenotic bypass grafts and other occluded blood vessels |
| US6652546B1 (en) | 1996-07-26 | 2003-11-25 | Kensey Nash Corporation | System and method of use for revascularizing stenotic bypass grafts and other occluded blood vessels |
| US5755682A (en) | 1996-08-13 | 1998-05-26 | Heartstent Corporation | Method and apparatus for performing coronary artery bypass surgery |
| US6007543A (en) | 1996-08-23 | 1999-12-28 | Scimed Life Systems, Inc. | Stent delivery system with stent securement means |
| WO1998008456A1 (en) * | 1996-08-26 | 1998-03-05 | Transvascular, Inc. | Methods and apparatus for transmyocardial direct coronary revascularization |
| US5871495A (en) | 1996-09-13 | 1999-02-16 | Eclipse Surgical Technologies, Inc. | Method and apparatus for mechanical transmyocardial revascularization of the heart |
| US5976164A (en) | 1996-09-13 | 1999-11-02 | Eclipse Surgical Technologies, Inc. | Method and apparatus for myocardial revascularization and/or biopsy of the heart |
| US6186972B1 (en) | 1996-09-16 | 2001-02-13 | James A. Nelson | Methods and apparatus for treating ischemic heart disease by providing transvenous myocardial perfusion |
| US6447539B1 (en) | 1996-09-16 | 2002-09-10 | Transvascular, Inc. | Method and apparatus for treating ischemic heart disease by providing transvenous myocardial perfusion |
| US5655548A (en) | 1996-09-16 | 1997-08-12 | Circulation, Inc. | Method for treatment of ischemic heart disease by providing transvenous myocardial perfusion |
| US6379319B1 (en) | 1996-10-11 | 2002-04-30 | Transvascular, Inc. | Systems and methods for directing and snaring guidewires |
| US20020029079A1 (en) | 1996-10-11 | 2002-03-07 | Transvascular, Inc. | Devices for forming and/or maintaining connections between adjacent anatomical conduits |
| WO1998016161A1 (en) | 1996-10-11 | 1998-04-23 | Transvascular, Inc. | Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures |
| US6432127B1 (en) | 1996-10-11 | 2002-08-13 | Transvascular, Inc. | Devices for forming and/or maintaining connections between adjacent anatomical conduits |
| US5931834A (en) | 1996-10-15 | 1999-08-03 | Eclipse Surgical Technologies, Inc. | Method for non-synchronous laser-assisted myocardial revascularization |
| US5971993A (en) | 1996-11-07 | 1999-10-26 | Myocardial Stents, Inc. | System for delivery of a trans myocardial device to a heart wall |
| US6258119B1 (en) | 1996-11-07 | 2001-07-10 | Myocardial Stents, Inc. | Implant device for trans myocardial revascularization |
| US6053924A (en) | 1996-11-07 | 2000-04-25 | Hussein; Hany | Device and method for trans myocardial revascularization |
| US6102926A (en) | 1996-12-02 | 2000-08-15 | Angiotrax, Inc. | Apparatus for percutaneously performing myocardial revascularization having means for sensing tissue parameters and methods of use |
| US5910150A (en) | 1996-12-02 | 1999-06-08 | Angiotrax, Inc. | Apparatus for performing surgery |
| US5899915A (en) | 1996-12-02 | 1999-05-04 | Angiotrax, Inc. | Apparatus and method for intraoperatively performing surgery |
| US6120520A (en) | 1997-05-27 | 2000-09-19 | Angiotrax, Inc. | Apparatus and methods for stimulating revascularization and/or tissue growth |
| US6165188A (en) | 1996-12-02 | 2000-12-26 | Angiotrax, Inc. | Apparatus for percutaneously performing myocardial revascularization having controlled cutting depth and methods of use |
| US5925074A (en) | 1996-12-03 | 1999-07-20 | Atrium Medical Corporation | Vascular endoprosthesis and method |
| US5944716A (en) | 1996-12-09 | 1999-08-31 | Scimed Life Systems, Inc. | Radio frequency transmyocardial revascularization corer |
| US5807384A (en) | 1996-12-20 | 1998-09-15 | Eclipse Surgical Technologies, Inc. | Transmyocardial revascularization (TMR) enhanced treatment for coronary artery disease |
| US6067988A (en) | 1996-12-26 | 2000-05-30 | Eclipse Surgical Technologies, Inc. | Method for creation of drug delivery and/or stimulation pockets in myocardium |
| US5999678A (en) | 1996-12-27 | 1999-12-07 | Eclipse Surgical Technologies, Inc. | Laser delivery means adapted for drug delivery |
| US5925012A (en) | 1996-12-27 | 1999-07-20 | Eclipse Surgical Technologies, Inc. | Laser assisted drug delivery |
| CA2225521C (en) | 1996-12-27 | 2004-04-06 | Eclipse Surgical Technologies, Inc. | Laser assisted drug delivery apparatus |
| US20040088042A1 (en) | 1997-01-31 | 2004-05-06 | Transvascular, Inc. | Devices for forming and/or maintaining connections between adjacent anatomical conduits |
| US6508825B1 (en) | 1997-02-28 | 2003-01-21 | Lumend, Inc. | Apparatus for treating vascular occlusions |
| US6217549B1 (en) | 1997-02-28 | 2001-04-17 | Lumend, Inc. | Methods and apparatus for treating vascular occlusions |
| US6010449A (en) | 1997-02-28 | 2000-01-04 | Lumend, Inc. | Intravascular catheter system for treating a vascular occlusion |
| US5968064A (en) | 1997-02-28 | 1999-10-19 | Lumend, Inc. | Catheter system for treating a vascular occlusion |
| US5968059A (en) | 1997-03-06 | 1999-10-19 | Scimed Life Systems, Inc. | Transmyocardial revascularization catheter and method |
| US6155264A (en) | 1997-03-06 | 2000-12-05 | Scimed Life Systems, Inc. | Percutaneous bypass by tunneling through vessel wall |
| US6026814A (en) | 1997-03-06 | 2000-02-22 | Scimed Life Systems, Inc. | System and method for percutaneous coronary artery bypass |
| US5938632A (en) | 1997-03-06 | 1999-08-17 | Scimed Life Systems, Inc. | Radiofrequency transmyocardial revascularization apparatus and method |
| US6045565A (en) | 1997-11-04 | 2000-04-04 | Scimed Life Systems, Inc. | Percutaneous myocardial revascularization growth factor mediums and method |
| US6035856A (en) | 1997-03-06 | 2000-03-14 | Scimed Life Systems | Percutaneous bypass with branching vessel |
| US6086534A (en) | 1997-03-07 | 2000-07-11 | Cardiogenesis Corporation | Apparatus and method of myocardial revascularization using ultrasonic pulse-echo distance ranging |
| US6093177A (en) | 1997-03-07 | 2000-07-25 | Cardiogenesis Corporation | Catheter with flexible intermediate section |
| US5876373A (en) | 1997-04-04 | 1999-03-02 | Eclipse Surgical Technologies, Inc. | Steerable catheter |
| WO1998046115A2 (en) | 1997-04-11 | 1998-10-22 | Transvascular, Inc. | Methods and apparatus for transmyocardial direct coronary revascularization |
| US6024703A (en) | 1997-05-07 | 2000-02-15 | Eclipse Surgical Technologies, Inc. | Ultrasound device for axial ranging |
| WO1998049964A1 (en) | 1997-05-08 | 1998-11-12 | C. R. Bard, Inc. | Tmr stent and delivery system |
| US7329277B2 (en) | 1997-06-13 | 2008-02-12 | Orbusneich Medical, Inc. | Stent having helical elements |
| EP0884029B1 (en) | 1997-06-13 | 2004-12-22 | Gary J. Becker | Expandable intraluminal endoprosthesis |
| US6443158B1 (en) | 1997-06-19 | 2002-09-03 | Scimed Life Systems, Inc. | Percutaneous coronary artery bypass through a venous vessel |
| US6092526A (en) | 1997-06-19 | 2000-07-25 | Scimed Life Systems, Inc. | Percutaneous chamber-to-artery bypass |
| US6213126B1 (en) | 1997-06-19 | 2001-04-10 | Scimed Life Systems, Inc. | Percutaneous artery to artery bypass using heart tissue as a portion of a bypass conduit |
| US6071292A (en) | 1997-06-28 | 2000-06-06 | Transvascular, Inc. | Transluminal methods and devices for closing, forming attachments to, and/or forming anastomotic junctions in, luminal anatomical structures |
| EP1001708A1 (en) | 1997-08-07 | 2000-05-24 | Cardiogenesis Corporation | System and method of intra-operative myocardial revascularization using pulsed sonic energy |
| US5908029A (en) | 1997-08-15 | 1999-06-01 | Heartstent Corporation | Coronary artery bypass with reverse flow |
| US5922022A (en) | 1997-09-04 | 1999-07-13 | Kensey Nash Corporation | Bifurcated connector system for coronary bypass grafts and methods of use |
| US6565594B1 (en) | 1997-09-24 | 2003-05-20 | Atrium Medical Corporation | Tunneling device |
| CA2305333A1 (en) | 1997-10-02 | 1999-04-15 | Cardiogenesis Corporation | Transmyocardial revascularization using radiofrequency energy |
| US6102941A (en) | 1997-10-06 | 2000-08-15 | Heartstent Corporation | Transmyocardial implant with coronary ingrowth |
| US5984956A (en) * | 1997-10-06 | 1999-11-16 | Heartstent Corporation | Transmyocardial implant |
| US5980548A (en) | 1997-10-29 | 1999-11-09 | Kensey Nash Corporation | Transmyocardial revascularization system |
| US6063082A (en) | 1997-11-04 | 2000-05-16 | Scimed Life Systems, Inc. | Percutaneous myocardial revascularization basket delivery system and radiofrequency therapeutic device |
| US6416490B1 (en) | 1997-11-04 | 2002-07-09 | Scimed Life Systems, Inc. | PMR device and method |
| US6056743A (en) | 1997-11-04 | 2000-05-02 | Scimed Life Systems, Inc. | Percutaneous myocardial revascularization device and method |
| US6183432B1 (en) | 1997-11-13 | 2001-02-06 | Lumend, Inc. | Guidewire and catheter with rotating and reciprocating symmetrical or asymmetrical distal tip |
| US6330884B1 (en) | 1997-11-14 | 2001-12-18 | Transvascular, Inc. | Deformable scaffolding multicellular stent |
| US6156029A (en) | 1997-11-25 | 2000-12-05 | Eclipse Surgical Technologies, Inc. | Selective treatment of endocardial/myocardial boundary |
| US6764461B2 (en) | 1997-12-01 | 2004-07-20 | Scimed Life Systems, Inc. | Catheter system for the delivery of a low volume bolus |
| US6197324B1 (en) | 1997-12-18 | 2001-03-06 | C. R. Bard, Inc. | System and methods for local delivery of an agent |
| US6251418B1 (en) | 1997-12-18 | 2001-06-26 | C.R. Bard, Inc. | Systems and methods for local delivery of an agent |
| US6217527B1 (en) | 1998-09-30 | 2001-04-17 | Lumend, Inc. | Methods and apparatus for crossing vascular occlusions |
| US6231546B1 (en) | 1998-01-13 | 2001-05-15 | Lumend, Inc. | Methods and apparatus for crossing total occlusions in blood vessels |
| AU2004999A (en) | 1998-01-15 | 1999-08-02 | Lumend, Inc. | Catheter apparatus for guided transvascular treatment of arterial occlusions |
| US6081738A (en) | 1998-01-15 | 2000-06-27 | Lumend, Inc. | Method and apparatus for the guided bypass of coronary occlusions |
| AU1927399A (en) | 1998-01-16 | 1999-08-02 | Lumend, Inc. | Catheter apparatus for treating arterial occlusions |
| US6250305B1 (en) | 1998-01-20 | 2001-06-26 | Heartstent Corporation | Method for using a flexible transmyocardial implant |
| US6200311B1 (en) | 1998-01-20 | 2001-03-13 | Eclipse Surgical Technologies, Inc. | Minimally invasive TMR device |
| US6015405A (en) | 1998-01-20 | 2000-01-18 | Tricardia, L.L.C. | Device for forming holes in tissue |
| US6214041B1 (en) | 1998-01-20 | 2001-04-10 | Heartstent Corporation | Transmyocardial implant with septal perfusion |
| US6193734B1 (en) | 1998-01-23 | 2001-02-27 | Heartport, Inc. | System for performing vascular anastomoses |
| AU757647B2 (en) | 1998-01-30 | 2003-02-27 | Wilk Patent Development Corporation | Transmyocardial coronary artery bypass and revascularization |
| WO2000015275A2 (en) | 1998-09-10 | 2000-03-23 | Percardia, Inc. | Body fluid shunt device and method of use |
| US20020144696A1 (en) | 1998-02-13 | 2002-10-10 | A. Adam Sharkawy | Conduits for use in placing a target vessel in fluid communication with a source of blood |
| US20010041902A1 (en) | 1998-02-13 | 2001-11-15 | Michael J. Lynch | Anastomotic methods and devices for placing a target vessel in fluid communication with a source of blood |
| US6808498B2 (en) | 1998-02-13 | 2004-10-26 | Ventrica, Inc. | Placing a guide member into a heart chamber through a coronary vessel and delivering devices for placing the coronary vessel in communication with the heart chamber |
| US6352543B1 (en) | 2000-04-29 | 2002-03-05 | Ventrica, Inc. | Methods for forming anastomoses using magnetic force |
| WO1999040868A1 (en) | 1998-02-13 | 1999-08-19 | Ventrica, Inc. | Methods and devices providing transmyocardial blood flow to the arterial vascular system of the heart |
| US6651670B2 (en) | 1998-02-13 | 2003-11-25 | Ventrica, Inc. | Delivering a conduit into a heart wall to place a coronary vessel in communication with a heart chamber and removing tissue from the vessel or heart wall to facilitate such communication |
| US6398798B2 (en) | 1998-02-28 | 2002-06-04 | Lumend, Inc. | Catheter system for treating a vascular occlusion |
| US6093185A (en) | 1998-03-05 | 2000-07-25 | Scimed Life Systems, Inc. | Expandable PMR device and method |
| DE99911188T1 (en) | 1998-03-05 | 2005-06-23 | Boston Scientific Ltd., St. Michael | EXPANDABLE DEVICE FOR TRANSMYOCARDIAL REVASCULARIZATION AND METHOD |
| AU3453299A (en) | 1998-03-24 | 1999-10-18 | Lumend, Inc. | Improved guidewire, catheter and method of crossing tight intravascular occlusions using same |
| AU762604B2 (en) | 1998-03-31 | 2003-06-26 | Transvascular, Inc. | Catheters, systems and methods for percutaneous in situ arterio-venous bypass |
| US6561998B1 (en) | 1998-04-07 | 2003-05-13 | Transvascular, Inc. | Transluminal devices, systems and methods for enlarging interstitial penetration tracts |
| US6076529A (en) * | 1998-04-20 | 2000-06-20 | Heartstent Corporation | Transmyocardial implant with inserted vessel |
| US6029672A (en) | 1998-04-20 | 2000-02-29 | Heartstent Corporation | Transmyocardial implant procedure and tools |
| US6296655B1 (en) | 1998-04-27 | 2001-10-02 | Advanced Cardiovascular Systems, Inc. | Catheter balloon with biased multiple wings |
| US20010027287A1 (en) | 1998-05-26 | 2001-10-04 | Trans Vascular, Inc. | Apparatus for providing coronary retroperfusion and/or left ventricular assist and methods of use |
| US7083588B1 (en) | 1998-05-26 | 2006-08-01 | Medtronic Vascular, Inc. | Apparatus for providing coronary retroperfusion and methods of use |
| US6113823A (en) * | 1998-06-09 | 2000-09-05 | Heartstent Corporation | Pyrolytic carbon transmyocardial implant |
| US5980533A (en) | 1998-06-09 | 1999-11-09 | Scimed Life Systems, Inc. | Stent delivery system |
| US6285903B1 (en) | 1998-06-30 | 2001-09-04 | Eclipse Surgical Technologies, Inc. | Intracorporeal device with radiopaque marker |
| US6036697A (en) | 1998-07-09 | 2000-03-14 | Scimed Life Systems, Inc. | Balloon catheter with balloon inflation at distal end of balloon |
| US6171251B1 (en) | 1998-07-14 | 2001-01-09 | Eclipse Surgical Technologies, Inc. | Method and apparatus for optimizing direct vessel implants for myocardial revascularization |
| US6053942A (en) * | 1998-08-18 | 2000-04-25 | Heartstent Corporation | Transmyocardial implant with coronary stent |
| US6406488B1 (en) | 1998-08-27 | 2002-06-18 | Heartstent Corporation | Healing transmyocardial implant |
| US6139541A (en) | 1998-09-02 | 2000-10-31 | Heartstent Corporation | Guide for transmyocardial implant |
| US6251061B1 (en) | 1998-09-09 | 2001-06-26 | Scimed Life Systems, Inc. | Cardiac assist device using field controlled fluid |
| NO984143L (en) | 1998-09-09 | 2000-03-10 | Norsk Hydro As | New process for producing surface modifying substances |
| NO984144L (en) | 1998-09-09 | 2000-03-10 | Carmeda Ab | Composition comprising heparin as a non-thrombogenic surface coating |
| US6254564B1 (en) * | 1998-09-10 | 2001-07-03 | Percardia, Inc. | Left ventricular conduit with blood vessel graft |
| US6641610B2 (en) | 1998-09-10 | 2003-11-04 | Percardia, Inc. | Valve designs for left ventricular conduits |
| JP2002524196A (en) * | 1998-09-10 | 2002-08-06 | パーカーディア,インコーポレイティド | Transmyocardial shunt for left ventricular revascularization and its mounting mechanism |
| AU6384699A (en) * | 1998-09-10 | 2000-04-03 | Percardia, Inc. | Tmr shunt |
| US6290728B1 (en) * | 1998-09-10 | 2001-09-18 | Percardia, Inc. | Designs for left ventricular conduit |
| WO2000015146A1 (en) | 1998-09-10 | 2000-03-23 | Percardia, Inc. | Transmyocardial shunt for left ventricular revascularization |
| US6196230B1 (en) | 1998-09-10 | 2001-03-06 | Percardia, Inc. | Stent delivery system and method of use |
| US6261304B1 (en) | 1998-09-10 | 2001-07-17 | Percardia, Inc. | Delivery methods for left ventricular conduit |
| US6197050B1 (en) | 1998-09-14 | 2001-03-06 | Heartstent Corporation | Transmyocardial implant with compliance collar |
| WO2000018331A2 (en) | 1998-09-29 | 2000-04-06 | C. R. Bard, Inc. | Drug delivery systems |
| US6248112B1 (en) | 1998-09-30 | 2001-06-19 | C. R. Bard, Inc. | Implant delivery system |
| US6251079B1 (en) | 1998-09-30 | 2001-06-26 | C. R. Bard, Inc. | Transthoracic drug delivery device |
| US6432126B1 (en) | 1998-09-30 | 2002-08-13 | C.R. Bard, Inc. | Flexible vascular inducing implants |
| US6458092B1 (en) | 1998-09-30 | 2002-10-01 | C. R. Bard, Inc. | Vascular inducing implants |
| US6283935B1 (en) | 1998-09-30 | 2001-09-04 | Hearten Medical | Ultrasonic device for providing reversible tissue damage to heart muscle |
| EP1121067A1 (en) | 1998-10-13 | 2001-08-08 | Ventrica, Inc. | Devices and methods for use in performing transmyocardial coronary bypass |
| US6692520B1 (en) | 1998-12-15 | 2004-02-17 | C. R. Bard, Inc. | Systems and methods for imbedded intramuscular implants |
| US6363938B2 (en) | 1998-12-22 | 2002-04-02 | Angiotrax, Inc. | Methods and apparatus for perfusing tissue and/or stimulating revascularization and tissue growth |
| EP1027870B1 (en) | 1999-01-12 | 2005-03-30 | Orbus Medical Technologies, Inc. | Expandable intraluminal endoprosthesis |
| EP1020166A1 (en) | 1999-01-12 | 2000-07-19 | Orbus Medical Technologies, Inc. | Expandable intraluminal endoprosthesis |
| US6193726B1 (en) | 1999-01-15 | 2001-02-27 | Heartstent Corporation | Insertion tool for transmyocardial implant |
| US7025773B2 (en) | 1999-01-15 | 2006-04-11 | Medtronic, Inc. | Methods and devices for placing a conduit in fluid communication with a target vessel |
| CA2360587A1 (en) | 1999-01-15 | 2000-07-20 | Darin C. Gittings | Methods and devices for forming vascular anastomoses |
| AU2966900A (en) | 1999-01-15 | 2000-08-01 | Ventrica, Inc. | Methods and devices for bypassing an obstructed target vessel by placing the vessel in communication with a heart chamber containing blood |
| US7637886B2 (en) | 1999-01-25 | 2009-12-29 | Atrium Medical Corporation | Expandable fluoropolymer device and method of making |
| EP1148899B1 (en) | 1999-01-25 | 2006-04-05 | Atrium Medical Corporation | Expandable fluoropolymer device for delivery of therapeutic agents |
| US6395208B1 (en) | 1999-01-25 | 2002-05-28 | Atrium Medical Corporation | Method of making an expandable fluoropolymer device |
| US6475226B1 (en) | 1999-02-03 | 2002-11-05 | Scimed Life Systems, Inc. | Percutaneous bypass apparatus and method |
| WO2000049952A1 (en) | 1999-02-23 | 2000-08-31 | Scimed Life Systems, Inc. | Method of using focused pressure fronts in myocardial revascularization |
| US6217575B1 (en) | 1999-02-24 | 2001-04-17 | Scimed Life Systems, Inc. | PMR catheter |
| US6468271B1 (en) | 1999-02-24 | 2002-10-22 | Scimed Life Systems, Inc. | Device and method for percutaneous myocardial revascularization |
| US6231551B1 (en) | 1999-03-01 | 2001-05-15 | Coaxia, Inc. | Partial aortic occlusion devices and methods for cerebral perfusion augmentation |
| US5976155A (en) | 1999-03-05 | 1999-11-02 | Advanced Cardiovascular Systems, Inc. | System for removably securing a stent on a catheter assembly and method of use |
| US6432119B1 (en) | 1999-03-17 | 2002-08-13 | Angiotrax, Inc. | Apparatus and methods for performing percutaneous myocardial revascularization and stimulating angiogenesis using autologous materials |
| US6569145B1 (en) | 1999-03-25 | 2003-05-27 | Transvascular, Inc. | Pressure-controlled continuous coronary sinus occlusion device and methods of use |
| CA2372149A1 (en) | 1999-05-03 | 2000-11-09 | Dean F. Carson | Methods and devices for placing a conduit in fluid communication with a target vessel |
| AU4982500A (en) | 1999-05-03 | 2000-11-17 | Ventrica, Inc. | Methods and devices for forming a conduit between a target vessel and a blood source |
| US20040044392A1 (en) | 1999-05-03 | 2004-03-04 | Jomed Gmbh | Stent catheter system |
| US6409697B2 (en) * | 1999-05-04 | 2002-06-25 | Heartstent Corporation | Transmyocardial implant with forward flow bias |
| US6182668B1 (en) * | 1999-05-13 | 2001-02-06 | Heartstent Corporation | Transmyocardial implant with induced tissue flap |
| US6709427B1 (en) | 1999-08-05 | 2004-03-23 | Kensey Nash Corporation | Systems and methods for delivering agents into targeted tissue of a living being |
| US6605053B1 (en) | 1999-09-10 | 2003-08-12 | Percardia, Inc. | Conduit designs and related methods for optimal flow control |
| EP1088564A1 (en) | 1999-09-30 | 2001-04-04 | Orbus Medical Technologies, Inc. | Intraluminal device, coating for such device, as well as a method for preparing the intraluminal device |
-
1999
- 1999-05-04 US US09/304,730 patent/US6409697B2/en not_active Expired - Fee Related
-
2002
- 2002-05-23 US US10/155,926 patent/US6916304B2/en not_active Expired - Fee Related
Cited By (45)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6945949B2 (en) | 1998-01-30 | 2005-09-20 | Percardia, Inc. | Left ventricular conduits to coronary arteries and methods for coronary bypass |
| US7294115B1 (en) | 1998-01-30 | 2007-11-13 | Percardia, Inc. | Methods of providing direct blood flow between a heart chamber and a coronary vessel |
| US6949080B2 (en) | 1998-01-30 | 2005-09-27 | Percardia, Inc. | Left ventricular conduits to coronary arteries and methods for coronary bypass |
| US7704222B2 (en) | 1998-09-10 | 2010-04-27 | Jenavalve Technology, Inc. | Methods and conduits for flowing blood from a heart chamber to a blood vessel |
| US7011095B2 (en) | 1998-09-10 | 2006-03-14 | Percardia, Inc. | Valve designs for left ventricular conduits |
| US8597226B2 (en) | 1998-09-10 | 2013-12-03 | Jenavalve Technology, Inc. | Methods and conduits for flowing blood from a heart chamber to a blood vessel |
| US6694983B2 (en) | 1998-09-10 | 2004-02-24 | Percardia, Inc. | Delivery methods for left ventricular conduit |
| US7347867B2 (en) | 1998-09-10 | 2008-03-25 | Wilk Patent And Development Corporation | Designs for left ventricular conduit |
| US6881199B2 (en) | 1998-09-10 | 2005-04-19 | Percardia, Inc. | Left ventricular conduit with blood vessel graft |
| US8216174B2 (en) | 1998-09-10 | 2012-07-10 | Jenavalve Technology, Inc. | Methods and conduits for flowing blood from a heart chamber to a blood vessel |
| US6641610B2 (en) | 1998-09-10 | 2003-11-04 | Percardia, Inc. | Valve designs for left ventricular conduits |
| US6953481B2 (en) | 1998-09-10 | 2005-10-11 | Percardia, Inc. | Designs for left ventricular conduit |
| US6610100B2 (en) | 1998-09-10 | 2003-08-26 | Percardia, Inc. | Designs for left ventricular conduit |
| US7101402B2 (en) | 1998-09-10 | 2006-09-05 | Percardia, Inc. | Designs for left ventricular conduit |
| US7736327B2 (en) | 1998-09-10 | 2010-06-15 | Jenavalve Technology, Inc. | Methods and conduits for flowing blood from a heart chamber to a blood vessel |
| US6964652B2 (en) | 1999-08-04 | 2005-11-15 | Percardia, Inc. | Left ventricular conduits and methods for delivery |
| US7033372B1 (en) | 1999-08-04 | 2006-04-25 | Percardia, Inc. | Corkscrew reinforced left ventricle to coronary artery channel |
| US6582444B2 (en) | 1999-08-04 | 2003-06-24 | Percardia, Inc. | Blood flow conduit delivery system and method of use |
| US6605113B2 (en) | 1999-08-04 | 2003-08-12 | Percardia Inc. | Vascular graft bypass |
| US6605053B1 (en) | 1999-09-10 | 2003-08-12 | Percardia, Inc. | Conduit designs and related methods for optimal flow control |
| US6854467B2 (en) | 2000-05-04 | 2005-02-15 | Percardia, Inc. | Methods and devices for delivering a ventricular stent |
| WO2002030325A3 (en) * | 2000-10-11 | 2002-08-22 | Heartstent Corp | Flexible transmyocardial implant |
| US6976990B2 (en) | 2001-01-25 | 2005-12-20 | Percardia, Inc. | Intravascular ventriculocoronary bypass via a septal passageway |
| US7008397B2 (en) | 2002-02-13 | 2006-03-07 | Percardia, Inc. | Cardiac implant and methods |
| US7326219B2 (en) | 2002-09-09 | 2008-02-05 | Wilk Patent Development | Device for placing transmyocardial implant |
| US20060272384A1 (en) * | 2004-05-21 | 2006-12-07 | Lewis Darren F | Flow sensor methods and apparatus |
| US11517431B2 (en) | 2005-01-20 | 2022-12-06 | Jenavalve Technology, Inc. | Catheter system for implantation of prosthetic heart valves |
| US11357624B2 (en) | 2007-04-13 | 2022-06-14 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
| US11564794B2 (en) | 2008-02-26 | 2023-01-31 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
| US10993805B2 (en) | 2008-02-26 | 2021-05-04 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
| US11154398B2 (en) | 2008-02-26 | 2021-10-26 | JenaValve Technology. Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
| US12232957B2 (en) | 2008-02-26 | 2025-02-25 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
| US12414854B2 (en) | 2010-05-20 | 2025-09-16 | Jenavalve Technology, Inc. | Catheter system for introducing an expandable stent into the body of a patient |
| US11589981B2 (en) | 2010-05-25 | 2023-02-28 | Jenavalve Technology, Inc. | Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent |
| US9414752B2 (en) | 2012-11-09 | 2016-08-16 | Elwha Llc | Embolism deflector |
| US9295393B2 (en) | 2012-11-09 | 2016-03-29 | Elwha Llc | Embolism deflector |
| US11185405B2 (en) | 2013-08-30 | 2021-11-30 | Jenavalve Technology, Inc. | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
| US12318281B2 (en) | 2013-08-30 | 2025-06-03 | Jenavalve Technology, Inc. | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
| US12121461B2 (en) | 2015-03-20 | 2024-10-22 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath |
| US11337800B2 (en) | 2015-05-01 | 2022-05-24 | Jenavalve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
| US12343255B2 (en) | 2015-05-01 | 2025-07-01 | Jenavalve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
| US11065138B2 (en) | 2016-05-13 | 2021-07-20 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system |
| US11197754B2 (en) | 2017-01-27 | 2021-12-14 | Jenavalve Technology, Inc. | Heart valve mimicry |
| US12433745B2 (en) | 2017-01-27 | 2025-10-07 | Jenavalve Technology, Inc. | Heart valve mimicry |
| US12171658B2 (en) | 2022-11-09 | 2024-12-24 | Jenavalve Technology, Inc. | Catheter system for sequential deployment of an expandable implant |
Also Published As
| Publication number | Publication date |
|---|---|
| US6409697B2 (en) | 2002-06-25 |
| US20020143285A1 (en) | 2002-10-03 |
| US6916304B2 (en) | 2005-07-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6916304B2 (en) | Transmyocardial implant with flow reduction | |
| EP1021141B1 (en) | Transmyocardial implant | |
| US6102941A (en) | Transmyocardial implant with coronary ingrowth | |
| US6076529A (en) | Transmyocardial implant with inserted vessel | |
| US6182668B1 (en) | Transmyocardial implant with induced tissue flap | |
| US6053942A (en) | Transmyocardial implant with coronary stent | |
| US6582463B1 (en) | Autoanastomosis | |
| US6406488B1 (en) | Healing transmyocardial implant | |
| US6250305B1 (en) | Method for using a flexible transmyocardial implant | |
| US9132216B2 (en) | Devices, methods and systems for establishing supplemental blood flow in the circulatory system | |
| AU777443B2 (en) | Methods and apparatus for direct coronary revascularization | |
| US4893623A (en) | Method and apparatus for treating hypertrophy of the prostate gland | |
| AU767637B2 (en) | Improved intra-aortic balloon catheter and insertion sheath | |
| US6406491B1 (en) | Compliant transmyocardial implant | |
| US20020032478A1 (en) | Myocardial stents and related methods of providing direct blood flow from a heart chamber to a coronary vessel | |
| KR20070009544A (en) | Flanged occlusion device and method | |
| CA2599413A1 (en) | Apparatus and method for sensor deployment and fixation | |
| US8361101B2 (en) | Devices, systems and methods for controlling local blood pressure | |
| WO2022116727A1 (en) | Membrane-covered stent | |
| US20020103534A1 (en) | Flexible transmyocardial implant | |
| WO2002030325A2 (en) | Flexible transmyocardial implant | |
| WO2021070136A1 (en) | Device and method for closure of sinus venosus atrial septal defects | |
| JPH04336077A (en) | Blood vessel expanding member |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: HEARTSTENT CORPORATION, MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ENO, ROBERT A.;VANNEY, GUY P.;REEL/FRAME:009938/0278 Effective date: 19990427 |
|
| AS | Assignment |
Owner name: PERCARDIA, INC., NEW HAMPSHIRE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HEARTSTENT CORPORATION;REEL/FRAME:015788/0690 Effective date: 20031024 |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| AS | Assignment |
Owner name: HORIZON TECHNOLOGY FUNDING COMPANY LLC, CONNECTICU Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PERCARDIA, INC.;REEL/FRAME:018375/0912 Effective date: 20060701 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20100625 |