US20010014912A1 - Distributed security system for a communication network - Google Patents
Distributed security system for a communication network Download PDFInfo
- Publication number
- US20010014912A1 US20010014912A1 US08/977,768 US97776897A US2001014912A1 US 20010014912 A1 US20010014912 A1 US 20010014912A1 US 97776897 A US97776897 A US 97776897A US 2001014912 A1 US2001014912 A1 US 2001014912A1
- Authority
- US
- United States
- Prior art keywords
- nodes
- network
- node
- security
- communication network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004891 communication Methods 0.000 title claims abstract description 22
- 230000005540 biological transmission Effects 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 11
- 230000008878 coupling Effects 0.000 claims 3
- 238000010168 coupling process Methods 0.000 claims 3
- 238000005859 coupling reaction Methods 0.000 claims 3
- 238000004590 computer program Methods 0.000 claims 1
- 238000001514 detection method Methods 0.000 claims 1
- 238000001914 filtration Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000006855 networking Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/02—Network architectures or network communication protocols for network security for separating internal from external traffic, e.g. firewalls
- H04L63/0209—Architectural arrangements, e.g. perimeter networks or demilitarized zones
- H04L63/0218—Distributed architectures, e.g. distributed firewalls
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/10—Network architectures or network communication protocols for network security for controlling access to devices or network resources
Definitions
- the present invention relates to computers and computer networks and more specifically to a system for providing distributed security and protection in a computer network.
- FIG. 1 is a block diagram of a data network 10 having a conventional firewall node 12 at a gateway station.
- the firewall node 12 protects communications between an unprotected public network 14 (e.g., the Internet) and a private protected network 16 .
- the network 16 can be any of various private networks and it may be comprised of various computers, servers, systems, etc. 18 - 24 . As the size of each network increases so do the demands upon firewall unit 12 which must process all incoming and outgoing data traffic possibly from a vast global network.
- Routes in a network are provided to indicate reachability to destinations. They inform where to send to reach destinations.
- general networking practice is to send routes to every router in a network, to the entire (inter) corporate net or autonomous system and then at run time try to have built a firewall that is syntactically correct and fast enough to keep undesired traffic out. This is very difficult to begin with and doesn't even prevent all problems such as denial of service attacks and attacks which simply overwhelm the network links and/or the firewall devices and intermediate routers and bridges with more packets than they can filter per unit time, therefore effectively blocking out desired traffic and preventing legitimate users from using the system.
- U.S. Pat. No. 5,416,842 relates to a method and apparatus for a key-management scheme for use with internet protocols at site firewalls. It requires encryption and is very processor intensive. It is a centralized approach to the network security problem that is vulnerable to attacks that can overwhelm the unit.
- U.S. Pat. No. 5,623,601 relates to an apparatus and method for providing a secure gateway for communication and data exchanges between networks. This discusses a network security system that requires every communication to go through a single gateway that must perform all the processing and is vulnerable to overloading.
- the present situation can be improved upon by limiting access to nodes, routes and other networking devices.
- Routers, firewalls, ingress nodes, and switches could be informed which destination networks and routes should be allowed to which source nodes or networks.
- a security filtering system enables distributed granting of admission to transmission of signals on to the network, and means for providing distributed admission control, and for providing a distributed firewall.
- the distributed security system provides a protocol for transmitting to a node location and a list of nodes or networks that are allowed access to the various nodes and services.
- FIG. 1 is a block diagram of a data network having a conventional firewall node.
- FIG. 2 shows a data network having a distributed security system in accordance with the invention.
- FIG. 3 shows a security node comprising an information handling system in accordance with the invention.
- FIG. 3 shows a user node comprising an information handling system in accordance with the invention.
- FIG. 5 is a flow chart of an originating node modifying security protection in accordance with the invention.
- FIG. 6 is a flow chart of a receiving node modifying security protection in accordance with the invention.
- FIG. 2 shows a data network 40 having a distributed firewall in accordance with the invention.
- Network 40 comprises various subnetworks 42 , 44 , 46 , 48 , 52 , and 53 , and firewall units 43 , 45 , 46 , 47 , 49 , and 50 .
- the network 40 can be any network, such as the Internet, that links networks together.
- Each subnetwork can include a different protocol.
- Each firewall unit is a node that provides network access to at least one node in a secure subnetwork.
- units 43 , 45 , 46 , 47 , 49 , and 50 are servers operated by Internet Service Providers (ISPs).
- ISPs Internet Service Providers
- the network 40 the units 43 , 45 , 46 , 47 , 49 , and 50 each comprise a shared list setting forth a plurality of listed nodes and a set of access privileges for each listed node.
- Access privileges are the types of transmissions that a given node listed in the shared list is permitted to make.
- node B 1 is a computer or LAN at an accounting firm.
- the firm may want to restrict the nodes from which it receives or transmits E-mail or certain types of transmissions (i.e. File Transfer Protocol (FTP).
- FTP File Transfer Protocol
- the firm wishes to receive e-mail only form its clients Z 1 , Y 2 , and X 4 .
- Node B 1 would instruct node 45 to provide that the shared list residing at security node 45 would intercept all e-mail and only allow e-mail form nodes Z 1 , Y 2 and X 4 but in this distributed system, it is also possible for security node 49 to only allow e-mail from Y 2 , node 50 prohibits e-mail form Z 2 and so forth. Thus, with the cooperation of other nodes, it is virtually impossible to overwhelm node 45 with unpermitted transmissions.
- the shared list may provide with respect to any listed node that it can only transmit to certain other listed nodes and, with respect to those nodes it can transmit to, restrictions applicable to such transmissions.
- Nodes in the Internet are commonly populated by information handling units having commercial content that the operators of such nodes want to advertise. Accordingly, it is common for such nodes to transmit routes to other nodes, indicating how to reach the transmitting node. Such advertising reaches not only those targeted by the node operator but anyone else in the network 40 . This presents security problems because the widespread knowledge of the transmitting node's location provides an opportunity for users of other nodes to transmit undesirable signals or transmissions to the transmitting node.
- a protocol for the network 40 would provide for lists sent by each node indicating which other nodes are permitted to receive from, and transmit to it, and what types of access they are allowed. That information is detected by each firewall unit which limits transmissions the routes only to their intended destinations.
- the firewall units also have the capability to accept signals from the network for only certain defined purposes.
- the list of intended recipients can have any desired granularity.
- the situation can be improved upon by providing a set of firewall-type commands that include lists of which nodes, sources, networks are allowed to use certain destinations.
- These commands can be utilized by filtering devices and/or security devices such as firewalls, ingress nodes, switches, which would be informed which destination nodes, addresses, ports, are permitted to which source nodes or networks.
- filtering devices and /or security devices may be separate stand-alone components or their capability may be integrated into other, possibly already existing, devices.
- a network node that comprises an information handling unit comprising an information handling unit (e.g., a computer) comprising a processor unit 102 , a memory subsystem (including RAM, ROM, and/or hard disk storage) 104 , and a communication subsystem 110 which can be any of several well-known communication adapters for communicating with other nodes in the network.
- the memory 104 includes software such as network protocol program 106 , and an allowable sender and recipient list 108 for transmissions. This list can be maintained in the unit 100 or received from nodes on the network.
- a user node that comprises an information handling unit 200 comprising an information handling unit (e.g., a computer) comprising a processor unit 202 , a memory subsystem (including RAM, ROM, and/or hard disk storage) 204 , and a communication subsystem 208 which can be any of several well-known communication adapters and a modem for communicating with other nodes in the network.
- the memory 204 includes software such a network protocol program 206 , that includes the functionality shown in FIG. 4.
- FIG. 5 is a flow chart illustrating a method 300 in accordance with the invention.
- the method 300 may be performed in any node in the network authorized to modify the list.
- a request is made at a node to modify security or access protection.
- the node originates a new list with access protection.
- Step 306 updates the local list.
- Step 308 encrypts the list and step 310 transmits the encrypted list to other security devices on the network.
- FIG. 6 is a flow chart illustrating a method 400 in accordance with the invention.
- a node comprising a security device receives the encrypted list.
- the receiving security device decrypts the received list.
- a decision 406 is then made to determine whether the received list is newer than the local list. If it is not, the received list is discarded in step 408 . If the received list is newer than the local list, the received list is copied into the local database (i.e, storage) in step 410 . Then in step 412 , the security unit filters received transmissions in accordance with the most recent local list.
- the system presented allows for inter-firewall cooperation and sharing the load between various filtering and security devices. This provides for a distributed firewall capability and also permits (multiple) smaller firewalls and/or admission control points. It also allows sharing the load. Information on which networks and nodes should be granted access could be transmitted to the distributed elements.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Computer Security & Cryptography (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer And Data Communications (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
- The present invention relates to computers and computer networks and more specifically to a system for providing distributed security and protection in a computer network.
- Data communications is of great importance to businesses today. A principal function of computers is to perform communications functions over various computer networks such as local area networks (LANs), wide area networks (WANs) and the Internet. Given the critical nature of much of the information that is transmitted on networks, security has become a great concern to users of such networks. The magnitude of the concern has been increased by the popularity of the Internet with the advent of the World-Wide Web (WWW) which has provided access to thousands of users to a global network of computers and smaller networks all linked together.
- Thus, it is becoming increasingly important to provide network access that is reliable and has a higher degree of security. It is also desirable to provide control over the granting of “permission” to utilize the network. It is also important to provide protection against overutilization and unfair utilization of network resources and from the growing number and various types of “Denial of Service” attacks.
- One common solution to the security problem in networks has been to provide one large, complex, centralized firewall, that often has to deal with a very large amount of traffic coming through it from all the various paths from many networks. These firewall units are generally large computers having the means to filter information coming into the protected network and to limit access to the protected network. FIG. 1 is a block diagram of a
data network 10 having aconventional firewall node 12 at a gateway station. Thefirewall node 12 protects communications between an unprotected public network 14 (e.g., the Internet) and a private protectednetwork 16. Thenetwork 16 can be any of various private networks and it may be comprised of various computers, servers, systems, etc. 18-24. As the size of each network increases so do the demands uponfirewall unit 12 which must process all incoming and outgoing data traffic possibly from a vast global network. - Routes in a network are provided to indicate reachability to destinations. They inform where to send to reach destinations. Currently, general networking practice is to send routes to every router in a network, to the entire (inter) corporate net or autonomous system and then at run time try to have built a firewall that is syntactically correct and fast enough to keep undesired traffic out. This is very difficult to begin with and doesn't even prevent all problems such as denial of service attacks and attacks which simply overwhelm the network links and/or the firewall devices and intermediate routers and bridges with more packets than they can filter per unit time, therefore effectively blocking out desired traffic and preventing legitimate users from using the system.
- U.S. Pat. No. 5,416,842 relates to a method and apparatus for a key-management scheme for use with internet protocols at site firewalls. It requires encryption and is very processor intensive. It is a centralized approach to the network security problem that is vulnerable to attacks that can overwhelm the unit.
- U.S. Pat. No. 5,623,601 relates to an apparatus and method for providing a secure gateway for communication and data exchanges between networks. This discusses a network security system that requires every communication to go through a single gateway that must perform all the processing and is vulnerable to overloading.
- Most known network security systems depend on one centralized unit to handle communications for each network. One method seems to briefly recognize this as a significant limitation but does not really suggest a good solution and is a limited method anyway that is still subject to denial of service attacks. Publications IDPR (rfc 1479) and IDRP mention some methods that could increase security.
- Most need a device that has enough capacity to handle all traffic going into and out of the network. Most need complex setup protocols and/or security keys. Many require encryption. Most are not distributed and typically require higher level processing for each communication which is processor intensive and time consuming.
- Briefly, in accordance with the invention, the present situation can be improved upon by limiting access to nodes, routes and other networking devices. Routers, firewalls, ingress nodes, and switches could be informed which destination networks and routes should be allowed to which source nodes or networks. A security filtering system enables distributed granting of admission to transmission of signals on to the network, and means for providing distributed admission control, and for providing a distributed firewall. The distributed security system provides a protocol for transmitting to a node location and a list of nodes or networks that are allowed access to the various nodes and services.
- FIG. 1 is a block diagram of a data network having a conventional firewall node.
- FIG. 2 shows a data network having a distributed security system in accordance with the invention.
- FIG. 3 shows a security node comprising an information handling system in accordance with the invention.
- FIG. 3 shows a user node comprising an information handling system in accordance with the invention.
- FIG. 5 is a flow chart of an originating node modifying security protection in accordance with the invention.
- FIG. 6 is a flow chart of a receiving node modifying security protection in accordance with the invention.
- FIG. 2 shows a
data network 40 having a distributed firewall in accordance with the invention.Network 40 comprises 42, 44, 46, 48, 52, and 53, andvarious subnetworks 43, 45, 46, 47, 49, and 50. Thefirewall units network 40 can be any network, such as the Internet, that links networks together. Each subnetwork can include a different protocol. Each firewall unit is a node that provides network access to at least one node in a secure subnetwork. In one possible embodiment, 43, 45, 46, 47, 49, and 50 are servers operated by Internet Service Providers (ISPs). In accordance with the invention, theunits network 40 the 43, 45, 46, 47, 49, and 50 each comprise a shared list setting forth a plurality of listed nodes and a set of access privileges for each listed node. Access privileges are the types of transmissions that a given node listed in the shared list is permitted to make. For example, consider the case where node B1 is a computer or LAN at an accounting firm. The firm may want to restrict the nodes from which it receives or transmits E-mail or certain types of transmissions (i.e. File Transfer Protocol (FTP). In this case, the firm wishes to receive e-mail only form its clients Z1, Y2, and X4. Node B1 would instructunits node 45 to provide that the shared list residing atsecurity node 45 would intercept all e-mail and only allow e-mail form nodes Z1, Y2 and X4 but in this distributed system, it is also possible forsecurity node 49 to only allow e-mail from Y2,node 50 prohibits e-mail form Z2 and so forth. Thus, with the cooperation of other nodes, it is virtually impossible to overwhelmnode 45 with unpermitted transmissions. The shared list may provide with respect to any listed node that it can only transmit to certain other listed nodes and, with respect to those nodes it can transmit to, restrictions applicable to such transmissions. - Nodes in the Internet are commonly populated by information handling units having commercial content that the operators of such nodes want to advertise. Accordingly, it is common for such nodes to transmit routes to other nodes, indicating how to reach the transmitting node. Such advertising reaches not only those targeted by the node operator but anyone else in the
network 40. This presents security problems because the widespread knowledge of the transmitting node's location provides an opportunity for users of other nodes to transmit undesirable signals or transmissions to the transmitting node. In accordance with the invention, a protocol for thenetwork 40 would provide for lists sent by each node indicating which other nodes are permitted to receive from, and transmit to it, and what types of access they are allowed. That information is detected by each firewall unit which limits transmissions the routes only to their intended destinations. The firewall units also have the capability to accept signals from the network for only certain defined purposes. The list of intended recipients can have any desired granularity. The situation can be improved upon by providing a set of firewall-type commands that include lists of which nodes, sources, networks are allowed to use certain destinations. These commands can be utilized by filtering devices and/or security devices such as firewalls, ingress nodes, switches, which would be informed which destination nodes, addresses, ports, are permitted to which source nodes or networks. These filtering devices and /or security devices may be separate stand-alone components or their capability may be integrated into other, possibly already existing, devices. - Referring to FIG. 3, there is shown a network node that comprises an information handling unit comprising an information handling unit (e.g., a computer) comprising a
processor unit 102, a memory subsystem (including RAM, ROM, and/or hard disk storage) 104, and a communication subsystem 110 which can be any of several well-known communication adapters for communicating with other nodes in the network. Thememory 104 includes software such asnetwork protocol program 106, and an allowable sender andrecipient list 108 for transmissions. This list can be maintained in the unit 100 or received from nodes on the network. - Referring to FIG. 4, there is shown a user node that comprises an
information handling unit 200 comprising an information handling unit (e.g., a computer) comprising aprocessor unit 202, a memory subsystem (including RAM, ROM, and/or hard disk storage) 204, and acommunication subsystem 208 which can be any of several well-known communication adapters and a modem for communicating with other nodes in the network. Thememory 204 includes software such anetwork protocol program 206, that includes the functionality shown in FIG. 4. - FIG. 5 is a flow chart illustrating a
method 300 in accordance with the invention. Themethod 300 may be performed in any node in the network authorized to modify the list. Instep 302, a request is made at a node to modify security or access protection. Instep 304, the node originates a new list with access protection. Step 306 updates the local list. Step 308 encrypts the list and step 310 transmits the encrypted list to other security devices on the network. - FIG. 6 is a flow chart illustrating a
method 400 in accordance with the invention. Instep 402, a node comprising a security device receives the encrypted list. Instep 404, the receiving security device decrypts the received list. Adecision 406 is then made to determine whether the received list is newer than the local list. If it is not, the received list is discarded instep 408. If the received list is newer than the local list, the received list is copied into the local database (i.e, storage) instep 410. Then instep 412, the security unit filters received transmissions in accordance with the most recent local list. - The system presented allows for inter-firewall cooperation and sharing the load between various filtering and security devices. This provides for a distributed firewall capability and also permits (multiple) smaller firewalls and/or admission control points. It also allows sharing the load. Information on which networks and nodes should be granted access could be transmitted to the distributed elements.
- While the invention has been illustrated in connection with a preferred embodiment, it will be understood that many variations will occur to those of ordinary skill in the art, and that the scope of the invention is defined only by the claims appended hereto and equivalents.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US08/977,768 US6345299B2 (en) | 1997-11-26 | 1997-11-26 | Distributed security system for a communication network |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US08/977,768 US6345299B2 (en) | 1997-11-26 | 1997-11-26 | Distributed security system for a communication network |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20010014912A1 true US20010014912A1 (en) | 2001-08-16 |
| US6345299B2 US6345299B2 (en) | 2002-02-05 |
Family
ID=25525487
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/977,768 Expired - Fee Related US6345299B2 (en) | 1997-11-26 | 1997-11-26 | Distributed security system for a communication network |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US6345299B2 (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020023152A1 (en) * | 2000-04-04 | 2002-02-21 | Naoki Oguchi | Communication data relay system |
| US20020032854A1 (en) * | 2000-09-12 | 2002-03-14 | Chen Eric Yi-Hua | Distributed denial of service attack defense method and device |
| US20020087695A1 (en) * | 2000-11-14 | 2002-07-04 | Satoko Araki | Method and system for network management |
| US20020184525A1 (en) * | 2001-03-29 | 2002-12-05 | Lebin Cheng | Style sheet transformation driven firewall access list generation |
| US6901517B1 (en) * | 1999-07-16 | 2005-05-31 | Marconi Communications, Inc. | Hardware based security groups, firewall load sharing, and firewall redundancy |
| US20060075488A1 (en) * | 2004-10-04 | 2006-04-06 | American Express Travel Related Services Company, Inc. | System and method for monitoring and ensuring data integrity in an enterprise security system |
| US7779126B1 (en) * | 2000-10-26 | 2010-08-17 | Cisco Technology, Inc. | System and method for propagating filters |
| US20130145452A1 (en) * | 2011-11-14 | 2013-06-06 | Florida Power & Light Company | Systems and methods for managing advanced metering infrastructure |
| US12289308B2 (en) * | 2020-11-13 | 2025-04-29 | Cyberark Software Ltd. | Native remote access to target resources using secretless connections |
Families Citing this family (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9361243B2 (en) | 1998-07-31 | 2016-06-07 | Kom Networks Inc. | Method and system for providing restricted access to a storage medium |
| US8234477B2 (en) * | 1998-07-31 | 2012-07-31 | Kom Networks, Inc. | Method and system for providing restricted access to a storage medium |
| US6728885B1 (en) * | 1998-10-09 | 2004-04-27 | Networks Associates Technology, Inc. | System and method for network access control using adaptive proxies |
| US7881477B2 (en) * | 1999-02-05 | 2011-02-01 | Avaya Inc. | Method for key distribution in a hierarchical multicast traffic security system for an internetwork |
| US7076650B1 (en) * | 1999-12-24 | 2006-07-11 | Mcafee, Inc. | System and method for selective communication scanning at a firewall and a network node |
| US7020718B2 (en) * | 2000-05-15 | 2006-03-28 | Hewlett-Packard Development Company, L.P. | System and method of aggregating discontiguous address ranges into addresses and masks using a plurality of repeating address blocks |
| US20010037384A1 (en) * | 2000-05-15 | 2001-11-01 | Brian Jemes | System and method for implementing a virtual backbone on a common network infrastructure |
| US7024686B2 (en) * | 2000-05-15 | 2006-04-04 | Hewlett-Packard Development Company, L.P. | Secure network and method of establishing communication amongst network devices that have restricted network connectivity |
| US7263719B2 (en) * | 2000-05-15 | 2007-08-28 | Hewlett-Packard Development Company, L.P. | System and method for implementing network security policies on a common network infrastructure |
| GB2369202B (en) * | 2000-08-31 | 2003-03-19 | Sun Microsystems Inc | Computer system and method of operating a computer system |
| US7168092B2 (en) * | 2000-08-31 | 2007-01-23 | Sun Microsystems, Inc. | Configuring processing units |
| US7127738B1 (en) * | 2000-10-18 | 2006-10-24 | Nortel Networks Limited | Local firewall apparatus and method |
| JP2002190824A (en) * | 2000-12-21 | 2002-07-05 | Fujitsu Ltd | Router and IP packet transfer method |
| US20020124069A1 (en) * | 2000-12-28 | 2002-09-05 | Hatalkar Atul N. | Broadcast communication system with dynamic client-group memberships |
| US8327442B2 (en) * | 2002-12-24 | 2012-12-04 | Herz Frederick S M | System and method for a distributed application and network security system (SDI-SCAM) |
| US9503470B2 (en) | 2002-12-24 | 2016-11-22 | Fred Herz Patents, LLC | Distributed agent based model for security monitoring and response |
| US7299492B2 (en) * | 2003-06-12 | 2007-11-20 | International Business Machines Corporation | Multi-level multi-user web services security system and method |
| US7397922B2 (en) | 2003-06-27 | 2008-07-08 | Microsoft Corporation | Group security |
| US7523494B2 (en) * | 2004-02-05 | 2009-04-21 | International Business Machines Corporation | Determining blocking measures for processing communication traffic anomalies |
| US7594263B2 (en) | 2004-02-05 | 2009-09-22 | International Business Machines Corporation | Operating a communication network through use of blocking measures for responding to communication traffic anomalies |
| US7649492B2 (en) * | 2007-05-25 | 2010-01-19 | Niitek, Inc. | Systems and methods for providing delayed signals |
| JP4964735B2 (en) * | 2007-10-24 | 2012-07-04 | 株式会社日立製作所 | Network system, management computer, and filter reconfiguration method |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5828893A (en) * | 1992-12-24 | 1998-10-27 | Motorola, Inc. | System and method of communicating between trusted and untrusted computer systems |
| US5416842A (en) | 1994-06-10 | 1995-05-16 | Sun Microsystems, Inc. | Method and apparatus for key-management scheme for use with internet protocols at site firewalls |
| US5548646A (en) * | 1994-09-15 | 1996-08-20 | Sun Microsystems, Inc. | System for signatureless transmission and reception of data packets between computer networks |
| US5623601A (en) * | 1994-11-18 | 1997-04-22 | Milkway Networks Corporation | Apparatus and method for providing a secure gateway for communication and data exchanges between networks |
| US5748736A (en) * | 1996-06-14 | 1998-05-05 | Mittra; Suvo | System and method for secure group communications via multicast or broadcast |
-
1997
- 1997-11-26 US US08/977,768 patent/US6345299B2/en not_active Expired - Fee Related
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6901517B1 (en) * | 1999-07-16 | 2005-05-31 | Marconi Communications, Inc. | Hardware based security groups, firewall load sharing, and firewall redundancy |
| US20020023152A1 (en) * | 2000-04-04 | 2002-02-21 | Naoki Oguchi | Communication data relay system |
| US7574522B2 (en) * | 2000-04-04 | 2009-08-11 | Fujitsu Limited | Communication data relay system |
| US7188366B2 (en) * | 2000-09-12 | 2007-03-06 | Nippon Telegraph And Telephone Corporation | Distributed denial of service attack defense method and device |
| US20020032854A1 (en) * | 2000-09-12 | 2002-03-14 | Chen Eric Yi-Hua | Distributed denial of service attack defense method and device |
| US7779126B1 (en) * | 2000-10-26 | 2010-08-17 | Cisco Technology, Inc. | System and method for propagating filters |
| US20020087695A1 (en) * | 2000-11-14 | 2002-07-04 | Satoko Araki | Method and system for network management |
| US20020184525A1 (en) * | 2001-03-29 | 2002-12-05 | Lebin Cheng | Style sheet transformation driven firewall access list generation |
| US20060075488A1 (en) * | 2004-10-04 | 2006-04-06 | American Express Travel Related Services Company, Inc. | System and method for monitoring and ensuring data integrity in an enterprise security system |
| US7421739B2 (en) | 2004-10-04 | 2008-09-02 | American Express Travel Related Services Company, Inc. | System and method for monitoring and ensuring data integrity in an enterprise security system |
| US20130145452A1 (en) * | 2011-11-14 | 2013-06-06 | Florida Power & Light Company | Systems and methods for managing advanced metering infrastructure |
| US9967235B2 (en) * | 2011-11-14 | 2018-05-08 | Florida Power & Light Company | Systems and methods for managing advanced metering infrastructure |
| US12289308B2 (en) * | 2020-11-13 | 2025-04-29 | Cyberark Software Ltd. | Native remote access to target resources using secretless connections |
Also Published As
| Publication number | Publication date |
|---|---|
| US6345299B2 (en) | 2002-02-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6345299B2 (en) | Distributed security system for a communication network | |
| Bellovin | Distributed firewalls | |
| Douligeris et al. | Network security: current status and future directions | |
| US7536715B2 (en) | Distributed firewall system and method | |
| US10652210B2 (en) | System and method for redirected firewall discovery in a network environment | |
| CN103283202B (en) | Systems and methods for network-level protection against malware | |
| US7028179B2 (en) | Apparatus and method for secure, automated response to distributed denial of service attacks | |
| US9461975B2 (en) | Method and system for traffic engineering in secured networks | |
| EP1994673B1 (en) | Role aware network security enforcement | |
| EP1624644B1 (en) | Privileged network routing | |
| JP3298832B2 (en) | How to provide firewall service | |
| EP1134955A1 (en) | Enterprise network management using directory containing network addresses of users and devices providing access lists to routers and servers | |
| US20070192500A1 (en) | Network access control including dynamic policy enforcement point | |
| CN103875226A (en) | System and method for host-initiated firewall discovery in a network environment | |
| JPH11168511A (en) | Packet authentication method | |
| WO2005024567A2 (en) | Network communication security system, monitoring system and methods | |
| US6347338B1 (en) | Precomputed and distributed security system for a communication network | |
| KR200201184Y1 (en) | Network system with networking monitoring function | |
| US8688077B2 (en) | Communication system and method for providing a mobile communications service | |
| US6915351B2 (en) | Community separation control in a closed multi-community node | |
| JP3426832B2 (en) | Network access control method | |
| WO2001091418A2 (en) | Distributed firewall system and method | |
| Keromytis et al. | Designing firewalls: A survey | |
| WO2023199189A1 (en) | Methods and systems for implementing secure communication channels between systems over a network | |
| AU2237000A (en) | Enterprise network management using directory containing network addresses of users and devices providing access lists to routers and servers |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORP., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SEGAL, EDWARD R.;REEL/FRAME:008899/0232 Effective date: 19971124 |
|
| AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORP., NEW YORK Free format text: (ASSIGNMENT OF ASSIGNOR'S INTEREST) RE-RECORD TO CORRECT THE RECORDATION DATE OF 11-25-97 TO 11-26-97 PREVIOUSLY RECORDED AT REEL 8899, FRAME 0232.;ASSIGNOR:SEGAL, EDWARD R,;REEL/FRAME:009449/0004 Effective date: 19971124 |
|
| AS | Assignment |
Owner name: STMICROELECTRONICS S.A., FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DO, TIEN-DUNG;GUETTE, FRANCOIS;LISART, MATHIEU;REEL/FRAME:009679/0871 Effective date: 19980507 |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: CORRECTIVE ASSIGNMENT TO CORRECT APPLICATION NO 08977768 AND OWNER OF THE PATENT IS INTERNATIONAL BUSINESS MACHINES CORPORATION AND IS BOTH THE CONVEYING PARTY AND THE RECEIVING PARTY BECAUSE OWNERSHIP NEVER CHANGED AND ASSIGNMENT RECORDED AT REEL 009679, FRAME WAS ERRONEOUS;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:027225/0325 Effective date: 20111005 Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: CORRECTIVE ASSIGNMENT BY DECLARATION TO CORRECT APPLICATION NO 08977768 AND OWNER OF THE PATENT IS INTERNATIONAL BUSINESS MACHINES CORPORATION AND IS BOTH THE CONVEYING PARTY AND THE RECEIVING PARTY BECAUSE OWNERSHIP NEVER CHANGED AND ASSIGNMENT RECORDED AT REEL 009679, FRAME 871 WAS ERRONEOUS;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:027225/0325 Effective date: 20111005 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20140205 |