US20010014722A1 - Amino-group-containing polymer (salt) and production process therefor - Google Patents
Amino-group-containing polymer (salt) and production process therefor Download PDFInfo
- Publication number
- US20010014722A1 US20010014722A1 US09/779,261 US77926101A US2001014722A1 US 20010014722 A1 US20010014722 A1 US 20010014722A1 US 77926101 A US77926101 A US 77926101A US 2001014722 A1 US2001014722 A1 US 2001014722A1
- Authority
- US
- United States
- Prior art keywords
- group
- amino
- containing polymer
- salt
- unsaturated monomer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 125000003277 amino group Chemical group 0.000 title claims abstract description 107
- 229920000642 polymer Polymers 0.000 title claims abstract description 97
- 150000003839 salts Chemical class 0.000 title claims abstract description 48
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 239000000178 monomer Substances 0.000 claims abstract description 84
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims abstract description 68
- 150000001875 compounds Chemical class 0.000 claims abstract description 67
- 239000004721 Polyphenylene oxide Substances 0.000 claims abstract description 59
- 229920000570 polyether Polymers 0.000 claims abstract description 59
- 239000002253 acid Substances 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 25
- 238000007142 ring opening reaction Methods 0.000 claims abstract description 22
- 238000010559 graft polymerization reaction Methods 0.000 claims abstract description 20
- 150000007514 bases Chemical class 0.000 claims description 9
- 125000004432 carbon atom Chemical group C* 0.000 claims description 8
- 125000000217 alkyl group Chemical group 0.000 claims description 7
- 125000003118 aryl group Chemical group 0.000 claims description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 6
- 125000003342 alkenyl group Chemical group 0.000 claims description 5
- 229920000578 graft copolymer Polymers 0.000 abstract description 23
- 239000000835 fiber Substances 0.000 abstract description 7
- 125000002091 cationic group Chemical group 0.000 abstract description 5
- 230000009257 reactivity Effects 0.000 abstract description 5
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 abstract description 3
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 abstract description 2
- -1 triethylamine Chemical class 0.000 description 35
- 239000007787 solid Substances 0.000 description 28
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 25
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 21
- 239000003795 chemical substances by application Substances 0.000 description 21
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 20
- 150000001412 amines Chemical class 0.000 description 17
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 15
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 13
- 239000011541 reaction mixture Substances 0.000 description 13
- 239000002904 solvent Substances 0.000 description 13
- 238000003756 stirring Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 150000001451 organic peroxides Chemical class 0.000 description 11
- 239000000976 ink Substances 0.000 description 10
- 238000004448 titration Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 9
- 239000002270 dispersing agent Substances 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 235000011054 acetic acid Nutrition 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 6
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 150000001298 alcohols Chemical class 0.000 description 6
- 239000002801 charged material Substances 0.000 description 6
- 239000008367 deionised water Substances 0.000 description 6
- 229910021641 deionized water Inorganic materials 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 238000004817 gas chromatography Methods 0.000 description 6
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 6
- 125000001841 imino group Chemical group [H]N=* 0.000 description 6
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 6
- 239000011976 maleic acid Substances 0.000 description 6
- 239000003607 modifier Substances 0.000 description 6
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 5
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- FTACTAWTKDTQSA-UHFFFAOYSA-N COC(C)(C)C(C)(C)C Chemical compound COC(C)(C)C(C)(C)C FTACTAWTKDTQSA-UHFFFAOYSA-N 0.000 description 5
- 239000004593 Epoxy Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 5
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 150000004292 cyclic ethers Chemical class 0.000 description 5
- 239000003599 detergent Substances 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 4
- 239000004925 Acrylic resin Substances 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- WFDIJRYMOXRFFG-UHFFFAOYSA-N acetic acid anhydride Natural products CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 4
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 4
- 125000002947 alkylene group Chemical group 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000004568 cement Substances 0.000 description 4
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 4
- 238000005553 drilling Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000008394 flocculating agent Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 4
- 239000000049 pigment Substances 0.000 description 4
- 229920000058 polyacrylate Polymers 0.000 description 4
- 239000000376 reactant Substances 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 3
- 238000007259 addition reaction Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 150000003973 alkyl amines Chemical class 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- 238000004043 dyeing Methods 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 3
- 229910001507 metal halide Inorganic materials 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 229920000768 polyamine Polymers 0.000 description 3
- 239000002455 scale inhibitor Substances 0.000 description 3
- GJBRNHKUVLOCEB-UHFFFAOYSA-N tert-butyl benzenecarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1 GJBRNHKUVLOCEB-UHFFFAOYSA-N 0.000 description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- BEQKKZICTDFVMG-UHFFFAOYSA-N 1,2,3,4,6-pentaoxepane-5,7-dione Chemical compound O=C1OOOOC(=O)O1 BEQKKZICTDFVMG-UHFFFAOYSA-N 0.000 description 2
- UZKWTJUDCOPSNM-UHFFFAOYSA-N 1-ethenoxybutane Chemical compound CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 2
- ZBDWNQQYHKWYLZ-UHFFFAOYSA-N 2-(2-methoxypropoxy)propan-1-ol;oxirane Chemical compound C1CO1.COC(C)COC(C)CO ZBDWNQQYHKWYLZ-UHFFFAOYSA-N 0.000 description 2
- OZDGMOYKSFPLSE-UHFFFAOYSA-N 2-Methylaziridine Chemical compound CC1CN1 OZDGMOYKSFPLSE-UHFFFAOYSA-N 0.000 description 2
- PMNLUUOXGOOLSP-UHFFFAOYSA-N 2-mercaptopropanoic acid Chemical compound CC(S)C(O)=O PMNLUUOXGOOLSP-UHFFFAOYSA-N 0.000 description 2
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 2
- YGHRJJRRZDOVPD-UHFFFAOYSA-N 3-methylbutanal Chemical compound CC(C)CC=O YGHRJJRRZDOVPD-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- AMIMRNSIRUDHCM-UHFFFAOYSA-N Isopropylaldehyde Chemical compound CC(C)C=O AMIMRNSIRUDHCM-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 238000006845 Michael addition reaction Methods 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 2
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical class OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 150000001346 alkyl aryl ethers Chemical class 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000012459 cleaning agent Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 239000000490 cosmetic additive Substances 0.000 description 2
- 239000002761 deinking Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- ZQMIGQNCOMNODD-UHFFFAOYSA-N diacetyl peroxide Chemical compound CC(=O)OOC(C)=O ZQMIGQNCOMNODD-UHFFFAOYSA-N 0.000 description 2
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- IXQGCWUGDFDQMF-UHFFFAOYSA-N o-Hydroxyethylbenzene Natural products CCC1=CC=CC=C1O IXQGCWUGDFDQMF-UHFFFAOYSA-N 0.000 description 2
- 229940096129 odor eaters Drugs 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000003129 oil well Substances 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 235000019260 propionic acid Nutrition 0.000 description 2
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 239000011369 resultant mixture Substances 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000007784 solid electrolyte Substances 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- CWERGRDVMFNCDR-UHFFFAOYSA-N thioglycolic acid Chemical compound OC(=O)CS CWERGRDVMFNCDR-UHFFFAOYSA-N 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 239000004034 viscosity adjusting agent Substances 0.000 description 2
- WRXCBRHBHGNNQA-UHFFFAOYSA-N (2,4-dichlorobenzoyl) 2,4-dichlorobenzenecarboperoxoate Chemical compound ClC1=CC(Cl)=CC=C1C(=O)OOC(=O)C1=CC=C(Cl)C=C1Cl WRXCBRHBHGNNQA-UHFFFAOYSA-N 0.000 description 1
- HGXJDMCMYLEZMJ-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy 2,2-dimethylpropaneperoxoate Chemical compound CC(C)(C)OOOC(=O)C(C)(C)C HGXJDMCMYLEZMJ-UHFFFAOYSA-N 0.000 description 1
- XFJPESDYWYMVJQ-UHFFFAOYSA-N (3,3,5-trimethylcyclohexanecarbonyl) 3,3,5-trimethylcyclohexane-1-carboperoxoate Chemical compound C1C(C)(C)CC(C)CC1C(=O)OOC(=O)C1CC(C)(C)CC(C)C1 XFJPESDYWYMVJQ-UHFFFAOYSA-N 0.000 description 1
- ZORJPNCZZRLEDF-UHFFFAOYSA-N (3-methoxy-3-methylbutoxy)carbonyloxy (3-methoxy-3-methylbutyl) carbonate Chemical compound COC(C)(C)CCOC(=O)OOC(=O)OCCC(C)(C)OC ZORJPNCZZRLEDF-UHFFFAOYSA-N 0.000 description 1
- NLBJAOHLJABDAU-UHFFFAOYSA-N (3-methylbenzoyl) 3-methylbenzenecarboperoxoate Chemical compound CC1=CC=CC(C(=O)OOC(=O)C=2C=C(C)C=CC=2)=C1 NLBJAOHLJABDAU-UHFFFAOYSA-N 0.000 description 1
- NOBYOEQUFMGXBP-UHFFFAOYSA-N (4-tert-butylcyclohexyl) (4-tert-butylcyclohexyl)oxycarbonyloxy carbonate Chemical compound C1CC(C(C)(C)C)CCC1OC(=O)OOC(=O)OC1CCC(C(C)(C)C)CC1 NOBYOEQUFMGXBP-UHFFFAOYSA-N 0.000 description 1
- RIPYNJLMMFGZSX-UHFFFAOYSA-N (5-benzoylperoxy-2,5-dimethylhexan-2-yl) benzenecarboperoxoate Chemical compound C=1C=CC=CC=1C(=O)OOC(C)(C)CCC(C)(C)OOC(=O)C1=CC=CC=C1 RIPYNJLMMFGZSX-UHFFFAOYSA-N 0.000 description 1
- BLKRGXCGFRXRNQ-SNAWJCMRSA-N (z)-3-carbonoperoxoyl-4,4-dimethylpent-2-enoic acid Chemical compound OC(=O)/C=C(C(C)(C)C)\C(=O)OO BLKRGXCGFRXRNQ-SNAWJCMRSA-N 0.000 description 1
- FYRCDEARNUVZRG-UHFFFAOYSA-N 1,1,5-trimethyl-3,3-bis(2-methylpentan-2-ylperoxy)cyclohexane Chemical compound CCCC(C)(C)OOC1(OOC(C)(C)CCC)CC(C)CC(C)(C)C1 FYRCDEARNUVZRG-UHFFFAOYSA-N 0.000 description 1
- VBQCFYPTKHCPGI-UHFFFAOYSA-N 1,1-bis(2-methylpentan-2-ylperoxy)cyclohexane Chemical compound CCCC(C)(C)OOC1(OOC(C)(C)CCC)CCCCC1 VBQCFYPTKHCPGI-UHFFFAOYSA-N 0.000 description 1
- VTEYUPDBOLSXCD-UHFFFAOYSA-N 1,1-bis(tert-butylperoxy)-2-methylcyclohexane Chemical compound CC1CCCCC1(OOC(C)(C)C)OOC(C)(C)C VTEYUPDBOLSXCD-UHFFFAOYSA-N 0.000 description 1
- NALFRYPTRXKZPN-UHFFFAOYSA-N 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane Chemical compound CC1CC(C)(C)CC(OOC(C)(C)C)(OOC(C)(C)C)C1 NALFRYPTRXKZPN-UHFFFAOYSA-N 0.000 description 1
- HSLFISVKRDQEBY-UHFFFAOYSA-N 1,1-bis(tert-butylperoxy)cyclohexane Chemical compound CC(C)(C)OOC1(OOC(C)(C)C)CCCCC1 HSLFISVKRDQEBY-UHFFFAOYSA-N 0.000 description 1
- RBACIKXCRWGCBB-UHFFFAOYSA-N 1,2-Epoxybutane Chemical compound CCC1CO1 RBACIKXCRWGCBB-UHFFFAOYSA-N 0.000 description 1
- OKIRBHVFJGXOIS-UHFFFAOYSA-N 1,2-di(propan-2-yl)benzene Chemical compound CC(C)C1=CC=CC=C1C(C)C OKIRBHVFJGXOIS-UHFFFAOYSA-N 0.000 description 1
- GWQOYRSARAWVTC-UHFFFAOYSA-N 1,4-bis(2-tert-butylperoxypropan-2-yl)benzene Chemical compound CC(C)(C)OOC(C)(C)C1=CC=C(C(C)(C)OOC(C)(C)C)C=C1 GWQOYRSARAWVTC-UHFFFAOYSA-N 0.000 description 1
- UICXTANXZJJIBC-UHFFFAOYSA-N 1-(1-hydroperoxycyclohexyl)peroxycyclohexan-1-ol Chemical compound C1CCCCC1(O)OOC1(OO)CCCCC1 UICXTANXZJJIBC-UHFFFAOYSA-N 0.000 description 1
- XSZYESUNPWGWFQ-UHFFFAOYSA-N 1-(2-hydroperoxypropan-2-yl)-4-methylcyclohexane Chemical compound CC1CCC(C(C)(C)OO)CC1 XSZYESUNPWGWFQ-UHFFFAOYSA-N 0.000 description 1
- TWSQRKHIZGCEDS-UHFFFAOYSA-N 1-[5,8-dimethyl-8-(3-methylphenyl)peroxydodecan-5-yl]peroxy-3-methylbenzene Chemical compound C=1C=CC(C)=CC=1OOC(C)(CCCC)CCC(C)(CCCC)OOC1=CC=CC(C)=C1 TWSQRKHIZGCEDS-UHFFFAOYSA-N 0.000 description 1
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 1
- RUFPHBVGCFYCNW-UHFFFAOYSA-N 1-naphthylamine Chemical compound C1=CC=C2C(N)=CC=CC2=C1 RUFPHBVGCFYCNW-UHFFFAOYSA-N 0.000 description 1
- HQOVXPHOJANJBR-UHFFFAOYSA-N 2,2-bis(tert-butylperoxy)butane Chemical compound CC(C)(C)OOC(C)(CC)OOC(C)(C)C HQOVXPHOJANJBR-UHFFFAOYSA-N 0.000 description 1
- JPOUDZAPLMMUES-UHFFFAOYSA-N 2,2-bis(tert-butylperoxy)octane Chemical compound CCCCCCC(C)(OOC(C)(C)C)OOC(C)(C)C JPOUDZAPLMMUES-UHFFFAOYSA-N 0.000 description 1
- PQXKWPLDPFFDJP-UHFFFAOYSA-N 2,3-dimethyloxirane Chemical compound CC1OC1C PQXKWPLDPFFDJP-UHFFFAOYSA-N 0.000 description 1
- CRJIYMRJTJWVLU-UHFFFAOYSA-N 2,4,4-trimethylpentan-2-yl 3-(5,5-dimethylhexyl)dioxirane-3-carboxylate Chemical compound CC(C)(C)CCCCC1(C(=O)OC(C)(C)CC(C)(C)C)OO1 CRJIYMRJTJWVLU-UHFFFAOYSA-N 0.000 description 1
- DPGYCJUCJYUHTM-UHFFFAOYSA-N 2,4,4-trimethylpentan-2-yloxy 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOOC(C)(C)CC(C)(C)C DPGYCJUCJYUHTM-UHFFFAOYSA-N 0.000 description 1
- DMWVYCCGCQPJEA-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane Chemical compound CC(C)(C)OOC(C)(C)CCC(C)(C)OOC(C)(C)C DMWVYCCGCQPJEA-UHFFFAOYSA-N 0.000 description 1
- JGBAASVQPMTVHO-UHFFFAOYSA-N 2,5-dihydroperoxy-2,5-dimethylhexane Chemical compound OOC(C)(C)CCC(C)(C)OO JGBAASVQPMTVHO-UHFFFAOYSA-N 0.000 description 1
- YKTNISGZEGZHIS-UHFFFAOYSA-N 2-$l^{1}-oxidanyloxy-2-methylpropane Chemical group CC(C)(C)O[O] YKTNISGZEGZHIS-UHFFFAOYSA-N 0.000 description 1
- VYONOYYDEFODAJ-UHFFFAOYSA-N 2-(1-Aziridinyl)ethanol Chemical compound OCCN1CC1 VYONOYYDEFODAJ-UHFFFAOYSA-N 0.000 description 1
- STMDPCBYJCIZOD-UHFFFAOYSA-N 2-(2,4-dinitroanilino)-4-methylpentanoic acid Chemical compound CC(C)CC(C(O)=O)NC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O STMDPCBYJCIZOD-UHFFFAOYSA-N 0.000 description 1
- AQKDMKKMCVJJTC-UHFFFAOYSA-N 2-(2-methylpropoxymethyl)oxirane Chemical compound CC(C)COCC1CO1 AQKDMKKMCVJJTC-UHFFFAOYSA-N 0.000 description 1
- CJWNFAKWHDOUKL-UHFFFAOYSA-N 2-(2-phenylpropan-2-yl)phenol Chemical compound C=1C=CC=C(O)C=1C(C)(C)C1=CC=CC=C1 CJWNFAKWHDOUKL-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- LSDGFGPIFBOTJI-UHFFFAOYSA-N 2-(aziridin-1-yl)ethanamine Chemical compound NCCN1CC1 LSDGFGPIFBOTJI-UHFFFAOYSA-N 0.000 description 1
- KUBDPQJOLOUJRM-UHFFFAOYSA-N 2-(chloromethyl)oxirane;4-[2-(4-hydroxyphenyl)propan-2-yl]phenol Chemical compound ClCC1CO1.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 KUBDPQJOLOUJRM-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- LKMJVFRMDSNFRT-UHFFFAOYSA-N 2-(methoxymethyl)oxirane Chemical compound COCC1CO1 LKMJVFRMDSNFRT-UHFFFAOYSA-N 0.000 description 1
- 229920000536 2-Acrylamido-2-methylpropane sulfonic acid Polymers 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 1
- IEYASXGZDIWRMO-UHFFFAOYSA-N 2-bromo-4-(2-hydroxyethoxy)-5-methoxybenzonitrile Chemical compound COC1=CC(C#N)=C(Br)C=C1OCCO IEYASXGZDIWRMO-UHFFFAOYSA-N 0.000 description 1
- VSXHKKXYCVWKFG-UHFFFAOYSA-N 2-cyclohexylpropan-2-yl 7,7-dimethyloctaneperoxoate Chemical compound CC(C)(C)CCCCCC(=O)OOC(C)(C)C1CCCCC1 VSXHKKXYCVWKFG-UHFFFAOYSA-N 0.000 description 1
- KRDXTHSSNCTAGY-UHFFFAOYSA-N 2-cyclohexylpyrrolidine Chemical compound C1CCNC1C1CCCCC1 KRDXTHSSNCTAGY-UHFFFAOYSA-N 0.000 description 1
- VGZZAZYCLRYTNQ-UHFFFAOYSA-N 2-ethoxyethoxycarbonyloxy 2-ethoxyethyl carbonate Chemical compound CCOCCOC(=O)OOC(=O)OCCOCC VGZZAZYCLRYTNQ-UHFFFAOYSA-N 0.000 description 1
- BRQMAAFGEXNUOL-UHFFFAOYSA-N 2-ethylhexyl (2-methylpropan-2-yl)oxy carbonate Chemical compound CCCCC(CC)COC(=O)OOC(C)(C)C BRQMAAFGEXNUOL-UHFFFAOYSA-N 0.000 description 1
- GBHCABUWWQUMAJ-UHFFFAOYSA-N 2-hydrazinoethanol Chemical compound NNCCO GBHCABUWWQUMAJ-UHFFFAOYSA-N 0.000 description 1
- MIRQGKQPLPBZQM-UHFFFAOYSA-N 2-hydroperoxy-2,4,4-trimethylpentane Chemical compound CC(C)(C)CC(C)(C)OO MIRQGKQPLPBZQM-UHFFFAOYSA-N 0.000 description 1
- WFUGQJXVXHBTEM-UHFFFAOYSA-N 2-hydroperoxy-2-(2-hydroperoxybutan-2-ylperoxy)butane Chemical compound CCC(C)(OO)OOC(C)(CC)OO WFUGQJXVXHBTEM-UHFFFAOYSA-N 0.000 description 1
- BZGMEGUFFDTCNP-UHFFFAOYSA-N 2-hydroperoxy-2-methylpentane Chemical compound CCCC(C)(C)OO BZGMEGUFFDTCNP-UHFFFAOYSA-N 0.000 description 1
- BXYOLIGRUFQZKR-UHFFFAOYSA-N 2-hydroxybut-3-ene-1-sulfonic acid Chemical compound C=CC(O)CS(O)(=O)=O BXYOLIGRUFQZKR-UHFFFAOYSA-N 0.000 description 1
- RTEZVHMDMFEURJ-UHFFFAOYSA-N 2-methylpentan-2-yl 2,2-dimethylpropaneperoxoate Chemical compound CCCC(C)(C)OOC(=O)C(C)(C)C RTEZVHMDMFEURJ-UHFFFAOYSA-N 0.000 description 1
- SCUPJVKZFHVSDD-UHFFFAOYSA-N 2-methylpentan-2-yl 3,3-dimethylbutaneperoxoate Chemical compound CCCC(C)(C)OOC(=O)CC(C)(C)C SCUPJVKZFHVSDD-UHFFFAOYSA-N 0.000 description 1
- YMMLZUQDXYPNOG-UHFFFAOYSA-N 2-methylpentan-2-yl 7,7-dimethyloctaneperoxoate Chemical compound CCCC(C)(C)OOC(=O)CCCCCC(C)(C)C YMMLZUQDXYPNOG-UHFFFAOYSA-N 0.000 description 1
- WXDJDZIIPSOZAH-UHFFFAOYSA-N 2-methylpentan-2-yl benzenecarboperoxoate Chemical compound CCCC(C)(C)OOC(=O)C1=CC=CC=C1 WXDJDZIIPSOZAH-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- RPBWMJBZQXCSFW-UHFFFAOYSA-N 2-methylpropanoyl 2-methylpropaneperoxoate Chemical compound CC(C)C(=O)OOC(=O)C(C)C RPBWMJBZQXCSFW-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- WJQOZHYUIDYNHM-UHFFFAOYSA-N 2-tert-Butylphenol Chemical compound CC(C)(C)C1=CC=CC=C1O WJQOZHYUIDYNHM-UHFFFAOYSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- QCAHUFWKIQLBNB-UHFFFAOYSA-N 3-(3-methoxypropoxy)propan-1-ol Chemical compound COCCCOCCCO QCAHUFWKIQLBNB-UHFFFAOYSA-N 0.000 description 1
- XYFRHHAYSXIKGH-UHFFFAOYSA-N 3-(5-methoxy-2-methoxycarbonyl-1h-indol-3-yl)prop-2-enoic acid Chemical compound C1=C(OC)C=C2C(C=CC(O)=O)=C(C(=O)OC)NC2=C1 XYFRHHAYSXIKGH-UHFFFAOYSA-N 0.000 description 1
- BIUAFMCFYSTCLR-UHFFFAOYSA-N 3-(aziridin-1-yl)propan-1-amine Chemical compound NCCCN1CC1 BIUAFMCFYSTCLR-UHFFFAOYSA-N 0.000 description 1
- OUZLDCCUOMNCON-UHFFFAOYSA-N 3-(aziridin-1-yl)propanenitrile Chemical compound N#CCCN1CC1 OUZLDCCUOMNCON-UHFFFAOYSA-N 0.000 description 1
- UJTRCPVECIHPBG-UHFFFAOYSA-N 3-cyclohexylpyrrole-2,5-dione Chemical compound O=C1NC(=O)C(C2CCCCC2)=C1 UJTRCPVECIHPBG-UHFFFAOYSA-N 0.000 description 1
- WHNPOQXWAMXPTA-UHFFFAOYSA-N 3-methylbut-2-enamide Chemical compound CC(C)=CC(N)=O WHNPOQXWAMXPTA-UHFFFAOYSA-N 0.000 description 1
- IYMZEPRSPLASMS-UHFFFAOYSA-N 3-phenylpyrrole-2,5-dione Chemical compound O=C1NC(=O)C(C=2C=CC=CC=2)=C1 IYMZEPRSPLASMS-UHFFFAOYSA-N 0.000 description 1
- RBPBGWUCZJGOJF-UHFFFAOYSA-N 4,6-bis(tert-butylperoxy)benzene-1,3-dicarboxylic acid Chemical compound C(C)(C)(C)OOC1=CC(=C(C=C1C(=O)O)C(=O)O)OOC(C)(C)C RBPBGWUCZJGOJF-UHFFFAOYSA-N 0.000 description 1
- MKTOIPPVFPJEQO-UHFFFAOYSA-N 4-(3-carboxypropanoylperoxy)-4-oxobutanoic acid Chemical compound OC(=O)CCC(=O)OOC(=O)CCC(O)=O MKTOIPPVFPJEQO-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- CTKINSOISVBQLD-UHFFFAOYSA-N Glycidol Chemical compound OCC1CO1 CTKINSOISVBQLD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- FQYUMYWMJTYZTK-UHFFFAOYSA-N Phenyl glycidyl ether Chemical compound C1OC1COC1=CC=CC=C1 FQYUMYWMJTYZTK-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- KQKRYJFMZXWOBH-UHFFFAOYSA-N [8-(2-ethylhexanoylperoxy)-5,8-dimethyldodecan-5-yl] 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOC(C)(CCCC)CCC(C)(CCCC)OOC(=O)C(CC)CCCC KQKRYJFMZXWOBH-UHFFFAOYSA-N 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 125000004018 acid anhydride group Chemical group 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- NSGQRLUGQNBHLD-UHFFFAOYSA-N butan-2-yl butan-2-yloxycarbonyloxy carbonate Chemical compound CCC(C)OC(=O)OOC(=O)OC(C)CC NSGQRLUGQNBHLD-UHFFFAOYSA-N 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- BXIQXYOPGBXIEM-UHFFFAOYSA-N butyl 4,4-bis(tert-butylperoxy)pentanoate Chemical compound CCCCOC(=O)CCC(C)(OOC(C)(C)C)OOC(C)(C)C BXIQXYOPGBXIEM-UHFFFAOYSA-N 0.000 description 1
- HRYGOPGASPGRAD-UHFFFAOYSA-N carboxyoxy 1,2-dimethoxypropan-2-yl carbonate Chemical compound COCC(C)(OC)OC(=O)OOC(O)=O HRYGOPGASPGRAD-UHFFFAOYSA-N 0.000 description 1
- 238000010538 cationic polymerization reaction Methods 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012718 coordination polymerization Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229940120693 copper naphthenate Drugs 0.000 description 1
- SEVNKWFHTNVOLD-UHFFFAOYSA-L copper;3-(4-ethylcyclohexyl)propanoate;3-(3-ethylcyclopentyl)propanoate Chemical compound [Cu+2].CCC1CCC(CCC([O-])=O)C1.CCC1CCC(CCC([O-])=O)CC1 SEVNKWFHTNVOLD-UHFFFAOYSA-L 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- SPTHWAJJMLCAQF-UHFFFAOYSA-M ctk4f8481 Chemical compound [O-]O.CC(C)C1=CC=CC=C1C(C)C SPTHWAJJMLCAQF-UHFFFAOYSA-M 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- BSVQJWUUZCXSOL-UHFFFAOYSA-N cyclohexylsulfonyl ethaneperoxoate Chemical compound CC(=O)OOS(=O)(=O)C1CCCCC1 BSVQJWUUZCXSOL-UHFFFAOYSA-N 0.000 description 1
- 229960002887 deanol Drugs 0.000 description 1
- XJOBOFWTZOKMOH-UHFFFAOYSA-N decanoyl decaneperoxoate Chemical compound CCCCCCCCCC(=O)OOC(=O)CCCCCCCCC XJOBOFWTZOKMOH-UHFFFAOYSA-N 0.000 description 1
- 239000012933 diacyl peroxide Substances 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- POSWICCRDBKBMH-UHFFFAOYSA-N dihydroisophorone Natural products CC1CC(=O)CC(C)(C)C1 POSWICCRDBKBMH-UHFFFAOYSA-N 0.000 description 1
- HRKQOINLCJTGBK-UHFFFAOYSA-N dihydroxidosulfur Chemical class OSO HRKQOINLCJTGBK-UHFFFAOYSA-N 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethyl mercaptane Natural products CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011874 heated mixture Substances 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- QUPCNWFFTANZPX-UHFFFAOYSA-N hydrogen peroxide;1-methyl-4-propan-2-ylcyclohexane Chemical compound OO.CC(C)C1CCC(C)CC1 QUPCNWFFTANZPX-UHFFFAOYSA-N 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 229940035429 isobutyl alcohol Drugs 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 229960004592 isopropanol Drugs 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 239000004850 liquid epoxy resins (LERs) Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- SGGOJYZMTYGPCH-UHFFFAOYSA-L manganese(2+);naphthalene-2-carboxylate Chemical compound [Mn+2].C1=CC=CC2=CC(C(=O)[O-])=CC=C21.C1=CC=CC2=CC(C(=O)[O-])=CC=C21 SGGOJYZMTYGPCH-UHFFFAOYSA-L 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- GEMHFKXPOCTAIP-UHFFFAOYSA-N n,n-dimethyl-n'-phenylcarbamimidoyl chloride Chemical compound CN(C)C(Cl)=NC1=CC=CC=C1 GEMHFKXPOCTAIP-UHFFFAOYSA-N 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- QNILTEGFHQSKFF-UHFFFAOYSA-N n-propan-2-ylprop-2-enamide Chemical compound CC(C)NC(=O)C=C QNILTEGFHQSKFF-UHFFFAOYSA-N 0.000 description 1
- UIEKYBOPAVTZKW-UHFFFAOYSA-L naphthalene-2-carboxylate;nickel(2+) Chemical compound [Ni+2].C1=CC=CC2=CC(C(=O)[O-])=CC=C21.C1=CC=CC2=CC(C(=O)[O-])=CC=C21 UIEKYBOPAVTZKW-UHFFFAOYSA-L 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 125000002560 nitrile group Chemical group 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- XNTUJOTWIMFEQS-UHFFFAOYSA-N octadecanoyl octadecaneperoxoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCCCCCCCC XNTUJOTWIMFEQS-UHFFFAOYSA-N 0.000 description 1
- KZCOBXFFBQJQHH-UHFFFAOYSA-N octane-1-thiol Chemical compound CCCCCCCCS KZCOBXFFBQJQHH-UHFFFAOYSA-N 0.000 description 1
- SRSFOMHQIATOFV-UHFFFAOYSA-N octanoyl octaneperoxoate Chemical compound CCCCCCCC(=O)OOC(=O)CCCCCCC SRSFOMHQIATOFV-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 125000005634 peroxydicarbonate group Chemical group 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- UIIIBRHUICCMAI-UHFFFAOYSA-N prop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)CC=C UIIIBRHUICCMAI-UHFFFAOYSA-N 0.000 description 1
- BWJUFXUULUEGMA-UHFFFAOYSA-N propan-2-yl propan-2-yloxycarbonyloxy carbonate Chemical compound CC(C)OC(=O)OOC(=O)OC(C)C BWJUFXUULUEGMA-UHFFFAOYSA-N 0.000 description 1
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical compound CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 description 1
- KOODSCBKXPPKHE-UHFFFAOYSA-N propanethioic s-acid Chemical compound CCC(S)=O KOODSCBKXPPKHE-UHFFFAOYSA-N 0.000 description 1
- YPVDWEHVCUBACK-UHFFFAOYSA-N propoxycarbonyloxy propyl carbonate Chemical compound CCCOC(=O)OOC(=O)OCCC YPVDWEHVCUBACK-UHFFFAOYSA-N 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- ADXGNEYLLLSOAR-UHFFFAOYSA-N tasosartan Chemical compound C12=NC(C)=NC(C)=C2CCC(=O)N1CC(C=C1)=CC=C1C1=CC=CC=C1C=1N=NNN=1 ADXGNEYLLLSOAR-UHFFFAOYSA-N 0.000 description 1
- WYKYCHHWIJXDAO-UHFFFAOYSA-N tert-butyl 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOC(C)(C)C WYKYCHHWIJXDAO-UHFFFAOYSA-N 0.000 description 1
- PFBLRDXPNUJYJM-UHFFFAOYSA-N tert-butyl 2-methylpropaneperoxoate Chemical compound CC(C)C(=O)OOC(C)(C)C PFBLRDXPNUJYJM-UHFFFAOYSA-N 0.000 description 1
- NMOALOSNPWTWRH-UHFFFAOYSA-N tert-butyl 7,7-dimethyloctaneperoxoate Chemical compound CC(C)(C)CCCCCC(=O)OOC(C)(C)C NMOALOSNPWTWRH-UHFFFAOYSA-N 0.000 description 1
- JZFHXRUVMKEOFG-UHFFFAOYSA-N tert-butyl dodecaneperoxoate Chemical compound CCCCCCCCCCCC(=O)OOC(C)(C)C JZFHXRUVMKEOFG-UHFFFAOYSA-N 0.000 description 1
- XTXFUQOLBKQKJU-UHFFFAOYSA-N tert-butylperoxy(trimethyl)silane Chemical compound CC(C)(C)OO[Si](C)(C)C XTXFUQOLBKQKJU-UHFFFAOYSA-N 0.000 description 1
- 150000003509 tertiary alcohols Chemical class 0.000 description 1
- CSKKAINPUYTTRW-UHFFFAOYSA-N tetradecoxycarbonyloxy tetradecyl carbonate Chemical compound CCCCCCCCCCCCCCOC(=O)OOC(=O)OCCCCCCCCCCCCCC CSKKAINPUYTTRW-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000001149 thermolysis Methods 0.000 description 1
- 150000004764 thiosulfuric acid derivatives Chemical class 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 150000004072 triols Chemical class 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
- 150000003739 xylenols Chemical class 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F283/00—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
- C08F283/06—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/30—Introducing nitrogen atoms or nitrogen-containing groups
Definitions
- the present invention relates to a novel amino-group-containing polymer (salt) and a production process therefor wherein the amino-group-containing polymer (salt) is a product by a process including the step of introducing amino groups into a grafted polymer having a polyether skeleton.
- Grafted polymers obtained by carrying out a graft polymerization of unsaturated carboxylic monomers such as (meth)acrylic acid onto polyether compounds are, for example, utilized for uses, such as detergent builders, scale inhibitors, lubricants, dyeing assistants, fiber-treating agents, and dispersants for organic or inorganic particles, by taking advantage of the hydrophilicity of the grafted polymers.
- Such hydrophilic grafted polymers are, for example, disclosed in JP-A-208769/1996, JP-A-208770/1996, and JP-A-053645/1995.
- amino-group-containing polymers are known to display excellent performances due to the presence of the amino group, such as epoxy curability and reactivity to other functional groups.
- a curable resin composition comprising an amino-group-containing acrylic resin is disclosed in U.S. Pat. No. 3,705,076 and JP-A-056549/1988 wherein the amino-group-containing acrylic resin is obtained by carrying out a ring-opening addition of an alkylenimine to carboxyl group portions of a carboxyl-group-containing acrylic polymer; and a water-soluble resin comprising an acid-neutralized salt of an amino-group-containing acrylic resin is disclosed in U.S. Pat. No.
- amino-group-containing acrylic resin is obtained by carrying out a ring-opening addition of an alkylenimine to carboxyl group portions of a carboxyl-group-containing acrylic polymer; and an amino-group-containing acrylic polymer, obtained by carrying out a ring-opening addition of an alkylenimine to a part of carboxyl group portions of a carboxyl-group-containing acrylic polymer and then neutralizing the rest of the carboxyl group portions with basic compounds such as triethylamine, is disclosed in U.S. Pat. No.
- a curable resin composition obtained by Michael addition between a polyvalent amino compound, such as polyamine or polyamide, and a polyvalent acryloyl group is disclosed as an adhesive in JP-A-023615/1986; and a polymer with a side chain amino group, which is obtained by carrying out a reaction between a carboxyl group of a polymer and a polyamine, is disclosed as a paint in JP-B-061321/1988 wherein the raw polymer is obtained by carrying out a copolymerization of a carboxyl-group-containing unsaturated monomer with another copolymerizable unsaturated monomer and wherein the polyamine has an aliphatic amino group or both an aliphatic amino group and at least one ether group.
- An object of the present invention is to provide a novel amino-group-containing polymer (salt) and a production process therefor wherein the amino-group-containing polymer (salt) is a product by a process including the step of introducing amino groups into a grafted polymer having a polyether skeleton.
- an amino-group-containing polymer (salt), according to the present invention is a product by a process including the steps of:
- R 1 , R 2 , R 3 and R 4 denote at least one member selected from the group consisting of a hydrogen atom, alkyl groups, alkenyl groups, and aryl groups, and these groups may coexist in a molecule.
- a production process for an amino-group-containing polymer (salt), according to the present invention comprises the steps of:
- R 1 , R 2 , R 3 and R 4 denote at least one member selected from the group consisting of a hydrogen atom, alkyl groups, alkenyl groups, and aryl groups, and these groups may coexist in a molecule.
- the amino-group-containing polymer (salt), according to the present invention, is a product by a process including the steps of: carrying out a graft polymerization of a monoethylenically unsaturated monomer component onto a polyether compound; and carrying out a ring-opening addition of an alkylenimine to at least a part of carboxyl group portions of the monoethylenically unsaturated monomer component. More specifically, the amino-group-containing polymer (salt) is a product by a process including the steps of:
- R 1 , R 2 , R 3 and R 4 denote at least one member selected from the group consisting of a hydrogen atom, alkyl groups, alkenyl groups, and aryl groups, and these groups may coexist in a molecule.
- a more specific mode for the amino-group-containing polymer (salt), according to the present invention, is an amino-group-containing polymer (salt) which is a product by a process including the steps of: carrying out a graft polymerization of a monoethylenically unsaturated monomer component onto a polyether compound in order to obtain a grafted polymer, wherein the monoethylenically unsaturated monomer component includes an unsaturated carboxylic monomer as an essential component; and carrying out a ring-opening addition of an alkylenimine to at least a part of carboxyl group portions derived from the unsaturated carboxylic monomer of the monoethylenically unsaturated monomer component which forms a graft portion of the grafted polymer.
- the above-defined grafted polymer in the present invention may be a grafted polymer composition obtained by a process including the step of carrying out a graft polymerization of a monoethylenically unsaturated monomer component onto a polyether compound, wherein the monoethylenically unsaturated monomer component includes an unsaturated carboxylic monomer as an essential component.
- This grafted polymer composition comprises the above-mentioned grafted polymer as an essential component, and the content of the grafted polymer is not especially limited.
- the amino-group-containing polymer (salt) according to the present invention can be obtained by a process including the step of carrying out a ring-opening addition of an alkylenimine to the grafted polymer composition.
- the polyether compound is a compound having the repeating unit represented by the above general formula in a ratio of not less than 30 mol %, preferably not less than 50 mol %, of the entirety of the polyether compound.
- a polyether compound is, for example, obtained by a process including the step of polymerizing a cyclic ether by such as conventional methods in the presence of a reactant which serves as a polymerization initiation site, wherein the cyclic ether comprises at least one alkylene oxide selected from the group consisting of such as ethylene oxide, propylene oxide, 1-butene oxide, 2-butene oxide, styrene oxide, epichlorohydrin, glycidol, methyl glycidyl ether, ethyl glycidyl ether, iso-butyl glycidyl ether, methoxypolyethylene glycol monoglycidyl ether, phenoxypolyethylene glycol monoglycidyl ether, phenoxy
- ethylene oxide and/or propylene oxide as the essential component of the cyclic ether in consideration of the grafting efficiency of the monoethylenically unsaturated monomer component.
- the ethylene oxide and/or propylene oxide is preferably used in a ratio of not less than 30 mol %, more preferably not less than 50 mol %, of the entirety of the polyether compound.
- examples of other alkylene oxides include tetrahydrofuran and oxetane.
- the above reactant is a compound which serves as an initiation site of the polymerization of the cyclic ether, and is not especially limited in such as its kind and molecular weight.
- the reactant include: water; hydrogen; alcohols; phenols; hydrogen halides; ammonia; amines; hydroxylamine; carboxylic acids; acid halides; lactones; and aldehydes. These can be used either alone respectively or in combinations with each other. Of them, at least one member selected from the group consisting of water, alcohols, phenols, and amines is preferable as the reactant.
- Examples of the above-mentioned alcohol include: primary aliphatic alcohols having 1 to 22 carbon atoms, such as methanol, ethanol, n-propanol, and n-butanol; aromatic alcohols, such as phenol, cresol, ethylphenol, cumylphenol, xylenol, octylphenol, tert-butylphenol, nonylphenol, and naphthol; secondary alcohols having 3 to 18 carbon atoms, such as iso-propyl alcohol and alcohols obtained by a process including the step of oxidizing n-paraffin; tertiary alcohols, such as tert-butanol; diols, such as ethylene glycol, diethylene glycol, propanediol, butanediol, and propylene glycol; triols, such as glycerin and trimethylolpropane; and polyols, such as sorbitol. These can be used
- Examples of the above-mentioned amine include: aromatic amines, such as aniline and naphthylamine; alkylamines having 3 to 22 carbon atoms, such as dodecylamine and stearylamine; and alkyldiamines, such as ethylenediamine. These can be used either alone respectively or in combinations with each other.
- the reaction form of the polymerization of the cyclic ether is not especially limited, but, for example, may be any one of: (1) anionic polymerization by use of basic catalysts such as strong alkalis (e.g. hydroxides and alcoholates of alkaline metals) and alkylamines; (2) cationic polymerization by use of catalysts, such as metal halides, semi-metal halides, mineral acids, and acetic acid; and (3) coordination polymerization by use of combinations of such as metal (e.g. aluminum, iron, zinc) alkoxides, alkaline earth compounds, and Lewis acids.
- basic catalysts such as strong alkalis (e.g. hydroxides and alcoholates of alkaline metals) and alkylamines
- catalysts such as metal halides, semi-metal halides, mineral acids, and acetic acid
- coordination polymerization by use of combinations of such as metal (e.g. aluminum, iron, zinc) alkoxides, alkaline earth compounds, and Lewis acids
- the polyether compound may be a derivative from the polyether obtained by the above-mentioned polymerization.
- a derivative include: terminal-group-converted compounds obtained by a process including the step of converting a terminal functional group of the polyether; and crosslinked products obtained by a process including the step of reacting the polyether with a crosslinking agent having a plurality of groups such as carboxyl group, isocyanate group, epoxy group, acid anhydride group, and halogen group.
- terminal-group-converted compounds are as follows: products by a process including the step of esterifying at least one terminal hydroxyl group of the above-mentioned polyether with fatty acids having 2 to 22 carbon atoms or anhydrides thereof (such as acetic acid and acetic anhydride) or with dicarboxylic acids (such as succinic acid, succinic anhydride, and adipic acid); and products by a process including the step of mono- or dietherifying at least one terminal hydroxyl group of the above-mentioned polyether by what is called Williamson (A. W. Williamson)'s synthesis of ether process (process comprising the step of etherifying an alcoholic hydroxyl group with an alkali and an alkyl halide).
- Williamson A. W. Williamson
- the number-average molecular weight of the polyether compound is not less than 150.
- the upper limit of the number-average molecular weight is not especially limited, but is preferably not more than 100,000. In the case where the number-average molecular weight is less than 150, there are problems in that the grafting ratio is so low that a large amount of polyether compound remains unreacted. In the case where the number-average molecular weight exceeds 100,000, the viscosity tends to be high and it is therefore difficult to handle the polyether compound during the polymerization.
- the number of the repeating units of the above general formula in the polyether compound is not especially limited, but is preferably not smaller than 2, more preferably not smaller than 3, in the polyether compound.
- R 1 , R 2 , R 3 and R 4 in the above general formula representing the repeating unit at least one thereof is preferably a hydrogen atom.
- the monoethylenically unsaturated monomer component includes the unsaturated carboxylic monomer as an essential component and, if necessary, may further include another unsaturated monomer which is copolymerizable with the unsaturated carboxylic monomer.
- Examples of the unsaturated carboxylic monomer include ethylenically unsaturated carboxylic acids, such as (meth)acrylic acid, itaconic acid, maleic acid, fumaric acid, and maleic anhydride. These can be used either alone respectively or in combinations with each other. Of them, at least one member selected from the group consisting of (meth)acrylic acid, maleic acid, fumaric acid, and maleic anhydride is preferable in consideration of polymerizability.
- alkyl (meth)acrylates obtained by a process including the step of esterifying (meth)acrylic acid with alcohols having 1 to 18 carbon atoms, such as methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, and cyclohexyl (meth)acrylate; amide-group-containing monomers, such as (meth)acrylamide, dimethylacrylamide, and isopropylacrylamide; vinyl esters, such as vinyl acetate; alkenes, such as ethylene and propylene; aromatic vinyl monomers, such as styrene and styrenesulfonic acid; maleimide and derivatives therefrom such as phenylmaleimide and cyclohexyl
- the ratio of the unsaturated carboxylic monomer in the monoethylenically unsaturated monomer component is not especially limited, but is preferably not less than 30 weight %, more preferably not less than 40 weight %, most preferably not less than 50 weight %, per 100 weight % of the monoethylenically unsaturated monomer component in consideration of reactivity in the below-mentioned ring-opening addition of the alkylenimine.
- the monoethylenically unsaturated monomer component is preferably used in a ratio of 0.02 to 4 parts by weight, more preferably 0.1 to 2 parts by weight, per part by weight of the polyether compound. In the case where the ratio of the monoethylenically unsaturated monomer component is less than 0.02 parts by weight per part by weight of the polyether compound, it is difficult to exhibit properties derived from the amino group.
- the ratio of the monoethylenically unsaturated monomer component is more than 4 parts by weight per part by weight of the polyether compound, it tends to be difficult to structurally design the desired properties, such as balance between hydrophilicity and hydrophobicity of the polymer, on the basis of the polyether skeleton.
- an organic peroxide is preferably used as a polymerization initiator.
- the organic peroxide include:
- ketone peroxides such as cyclohexanone peroxide, methyl ethyl ketone peroxide, methylcyclohexanone peroxide, methylacetoacetate peroxide, and 3,3,5-trimethylcyclohexanone peroxide;
- peroxyketals such as 1,1-bis(tert-hexylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(tert-hexylperoxy)cyclohexane, 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(tert-butylperoxy)-2-methylcyclohexane, 1,1-bis(tert-butylperoxy)cyclohexane, 2,2-bis(tert-butylperoxy)butane, n-butyl-4,4-bis(tert-butylperoxy)valerate, and 2,2-bis(tert-butylperoxy)octane;
- hydroperoxides such as p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, tert-hexyl hydroperoxide, tert-butyl hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide and 2-(4-methylcyclohexyl)propane hydroperoxide;
- dialkyl peroxides such as ⁇ , ⁇ ′-bis(tert-butylperoxy)-p-diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-bis(tert-butylperoxy)hexane, tert-butylcumyl peroxide, di-tert-butyl peroxide, 2,5-dimethyl-2,5-bis(tert-butylperoxy)hexyne-3, and ⁇ , ⁇ ′-bis(tert-butylperoxy)-p-isopropylhexyne;
- diacyl peroxides such as isobutyryl peroxide, 3,3,5-trimethylcyclohexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, succinic acid peroxide, m-toluoyl peroxide, benzoyl peroxide, acetyl peroxide, decanoyl peroxide, and 2,4-dichlorobenzoyl peroxide;
- diacyl peroxides such as isobutyryl peroxide, 3,3,5-trimethylcyclohexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, succinic acid peroxide, m-toluoyl peroxide, benzoyl peroxide, acetyl peroxide, decanoyl peroxide, and 2,4-dichlorobenzoyl
- peroxydicarbonates such as di-n-propyl peroxydicarbonate, di-isopropyl peroxydicarbonate, bis-(4-tert-butylcyclohexyl) peroxydicarbonate, di-2-ethoxyethyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, di-3-methoxybutyl peroxydicarbonate, di-sec-butyl peroxydicarbonate, di(3-methyl-3-methoxybutyl) peroxydicarbonate, dimyristyl peroxydicarbonate, di-methoxyisopropyl peroxydicarbonate, and di-allyl peroxydicarbonate;
- peroxyesters such as ⁇ , ⁇ ′-bis(neodecanoperoxy)diisopropylbenzene, cumyl peroxyneodecanoate, 1,1,3,3-tetramethylbutyl peroxyneodecanoate, 1-cyclohexyl-1-methylethyl peroxyneodecanoate, tert-hexyl peroxyneodecanoate, tert-butyl peroxyneodecanoate, tert-hexyl peroxypivalate, tert-butyl peroxypivalate, 1,1,3,3-tetramethylbutyl peroxy-2-ethylhexanoate, 2,5-dibutyl-2,5-bis(2-ethylhexanoylperoxy)hexane, 1-cyclohexyl-1-methylethyl peroxy-2-ethylhexanoate, tert-hexyl
- organic peroxides such as tert-butyl peroxyallylcarbonate, tert-butyl trimethylsilyl peroxide, and acetylcyclohexylsulfonyl peroxide. These can be used either alone respectively or in combinations with each other.
- the amount of the organic peroxide as used is not especially limited, but is preferably in the range of 0.1 to 30 weight %, more preferably 0.5 to 20 weight %, of the monoethylenically unsaturated monomer component. In the case where the amount is smaller than 0.1 weight %, the ratio of grafting onto the polyether compound tends to be low. On the other hand, in the case where the amount exceeds 30 weight %, there are economical disadvantages because the organic peroxide is expensive. It is preferable that the organic peroxide is added simultaneously with addition of the ethylenically unsaturated monomer component and separately from the polyether compound without being premixed with the polyether compound. However, the organic peroxide may beforehand be added to either the polyether compound or monoethylenically unsaturated monomer component.
- a catalyst for decomposing the organic peroxide or a reducible compound may be used together with the organic peroxide.
- Examples of the catalyst for decomposing the organic peroxide include: metal halides such as lithium chloride and lithium bromide; metal oxides such as titanium oxide and silicon dioxide; metal salts of inorganic acids such as hydrochloric acid, hydrobromic acid, perchloric acid, sulfuric acid, and nitric acid; carboxylic acids, such as formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, and benzoic acid, and their esters and metal salts; and heterocyclic amines, such as pyridine, indole, imidazole, and carbazole, and derivatives therefrom. These can be used either alone respectively or in combinations with each other.
- metal halides such as lithium chloride and lithium bromide
- metal oxides such as titanium oxide and silicon dioxide
- metal salts of inorganic acids such as hydrochloric acid, hydrobromic acid, perchloric acid, sulfuric acid, and nitric acid
- carboxylic acids such as formic acid,
- Examples of the reducible compound include: organometallic compounds such as ferrocene; inorganic compounds which can generate metal ions (e.g. iron, copper, nickel, cobalt, manganese), such as iron naphthenate, copper naphthenate, nickel naphthenate, cobalt naphthenate, and manganese naphthenate; inorganic compounds, such as trifluoroborate-ether adduct, potassium permanganate, and perchloric acid; sulfur-containing compounds such as sulfur dioxide, sulfite salts, sulfate esters, bisulfite salts, thiosulfate salts, sulfoxylate salts, and aromatic sulfonic acid homologues (e.g.
- benzenesulfonic acid its substituted products, and p-toluenesulfonic acid
- mercapto compounds such as octylmercaptan, dodecylmercaptan, mercaptoethanol, ⁇ -mercaptopropionic acid, thioglycolic acid, thiopropionic acid, sodium ⁇ -thiopropionate sulfopropyl ester, and sodium ⁇ -thiopropionate sulfoethyl ester
- nitrogen-containing compounds such as hydrazine, ⁇ -hydroxyethylhydrazine and hydroxylamine
- aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, and isovaleraldehyde
- ascorbic acid can be used either alone respectively or in combinations with each other.
- the graft polymerization is preferably carried out substantially in the absence of solvent, but a solvent may be used in an amount of not larger than 20 weight % of the entirety of the reaction system. In the case where the amount of the solvent exceeds 20 weight % of the entirety of the reaction system, the grafting ratio of the monoethylenically unsaturated monomer component tends to be low. In the case where the reaction system has high viscosity, the use of a small amount of solvent might be preferable for handling, and the solvent may be distilled off after being added.
- the above solvent is not especially limited, but it is preferable to use, for example, a solvent such that the constant of chain transfer thereto of the monomer as used is as small as possible, or a solvent which has a boiling point of not lower than 80° C. so as to be usable for a reaction under normal pressure.
- Examples of such a solvent include: water; alcohols, such as iso-butyl alcohol, n-butyl alcohol, tert-butyl alcohol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, ethylene glycol monoalkyl ether, and propylene glycol monoalkyl ether; diethers, such as ethylene glycol dialkyl ether and propylene glycol dialkyl ether; and acetic compounds, such as acetic acid, ethyl acetate, propyl acetate, butyl acetate, ethylene glycol monoalkyl ether acetate, and propylene glycol monoalkyl ether acetate. These can be used either alone respectively or in combinations with each other.
- alkyl groups in the above-mentioned alcohols and diethers include methyl group, ethyl group, propyl group, and butyl group.
- the temperature of the graft polymerization is not especially limited, but is preferably not lower than 80° C., more preferably in the range of 90 to 160° C. In the case where the temperature is lower than 80° C., the graft polymerization is so difficult to proceed that the grafting ratio of the monoethylenically unsaturated monomer component tends to be low. On the other hand, in the case where the temperature exceeds 160° C., thermolysis of the polyether compound and the resultant grafted polymer might occur.
- the graft polymerization it is preferable to charge a portion or the entirety of the polyether compound in the initial stage.
- at least one monomer (A) selected from the group consisting of maleic acid, fumaric and, and maleic anhydride is graft-polymerized together with (meth)acrylic acid as the monoethylenically unsaturated monomer components onto the polyether compound
- Such a process enables to easily control the molecular weight of the resultant grafted polymer.
- the amino-group-containing polymer (salt), according to the present invention is a product by a process including the step of carrying out a ring-opening addition of an alkylenimine to carboxyl group portions of the graft-polymerized monoethylenically unsaturated monomer component.
- amino-group-containing polymer (salt) As to this amino-group-containing polymer (salt) according to the present invention, it is enough that the ring-opening addition of the alkylenimine to the carboxyl group portions of the graft-polymerized monoethylenically unsaturated monomer component is made to at least a part of the carboxyl group portions of the graft-polymerized monoethylenically unsaturated monomer component, and, as is mentioned below, the amino-group-containing polymer (salt) may be that in which a part of the carboxyl group portions of the graft-polymerized monoethylenically unsaturated monomer component are neutralized with a basic compound, and in which the alkylenimine is ring-opening-added to at least a part of the residual unneutralized carboxyl group portions.
- alkylenimine examples include ethylenimine, propylenimine, butylenimine, and N-(2-hydroxyethyl)aziridine.
- N-(aminoalkyl)-substituted alkylenimines such as N-(2-aminoethyl)aziridine, N-(3-aminopropyl)aziridine, and N-(2-aminopropyl)propylenimine, can also be used likewise.
- alkylenimine compounds obtained by Michael addition of alkylenimines to acryloyl-group-containing compounds such as methyl 3-aziridinopropionate obtained by addition of ethylenimine to the acryloyl group of methyl acrylate and N-(2-cyanoethyl)aziridine obtained by addition of ethylenimine to the double bond of acrylonitrile, can also be used likewise.
- alkylenimine compounds obtained by Michael addition of alkylenimines to acryloyl-group-containing compounds such as methyl 3-aziridinopropionate obtained by addition of ethylenimine to the acryloyl group of methyl acrylate and N-(2-cyanoethyl)aziridine obtained by addition of ethylenimine to the double bond of acrylonitrile, can also be used likewise.
- a compound having 2 to 8 carbon atoms particularly of the alkylenimines
- there are advantages also in respect to production cost because plenty of amino groups can
- the method for carrying out the ring-opening addition of the alkylenimine is not especially limited, but, for example, the ring-opening addition can easily be carried out by mixing the carboxyl-group-containing grafted polymer or the monoethylenically unsaturated monomer component with the alkylenimine by stirring them under temperature conditions of 10 to 150° C., preferably 40 to 100° C.
- this ring-opening addition reaction may be carried out in the absence of solvent, or can be carried out by use of the aforementioned solvent usable in the graft polymerization reaction.
- the amount of the alkylenimine as used is preferably in the range of 0.1 to 10 mols per mol of the carboxyl group of the monoethylenically unsaturated monomer component.
- the amount of the alkylenimine is smaller than 0.1 mol, it is difficult to exhibit properties derived from the amino group.
- the amount of the alkylenimine exceeds 10 mols, storage stability of the resultant amino-group-containing polymer (salt) tends to be inferior.
- the conversion of the carboxyl group of the monoethylenically unsaturated monomer component into the amino group by carrying out the ring-opening addition of the alkylenimine may fitly be selected so as to display properties according to use purposes. However, it is preferable that not less than 10 mol % of the carboxyl group of the monoethylenically unsaturated monomer component is converted into the amino group. In the case where this conversion is less than 10 mol %, it is difficult to display properties derived from the amino group.
- the amino-group-containing polymer (salt), according to the present invention preferably has an amine value of 0.1 to 12 mmols/g in terms of solid content by colloidal titration with poly(potassium vinyl sulfate). In the case where the amine value exceeds this range, the storage stability tends to be inferior. On the other hand, in the case where the amine value is lower than the above range, it is difficult to display properties derived from the amino group.
- the amino-group-containing polymer (salt) may be in the form of a salt in which at least a part of the remaining carboxyl group portions are neutralized with a basic compound.
- Examples of the basic compound, which is used to neutralize the carboxyl group portions include: inorganic basic compounds, such as sodium hydroxide and potassium hydroxide; ammonia; and organic basic compounds, such as methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, dimethylaminoethanol, and aniline. These can be used either alone respectively or in combinations with each other.
- inorganic basic compounds such as sodium hydroxide and potassium hydroxide
- ammonia such as sodium hydroxide and potassium hydroxide
- organic basic compounds such as methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, dimethylaminoethanol, and aniline.
- the amino-group-containing polymer (salt), according to the present invention may be in the form of a salt in which at least a part of the amino groups are neutralized with an acid.
- Such an amino-group-containing polymer salt is obtained by a process including the step of neutralizing the resultant amino-group-containing polymer with an acid compound.
- Examples of the above acid compound include: inorganic acids, such as hydrochloric acid, hydrobromic acid, phosphoric acid, and sulfuric acid; organic acids, such as formic acid, acetic acid, propionic acid, citric acid, lactic acid, (meth)acrylic acid, oxalic acid, succinic acid, maleic acid, poly((meth)acrylic acid) or its partial salts. These can be used either alone respectively or in combinations with each other.
- the amount of the acid compound as used may fitly be set according to uses and is not especially limited, but is preferably not larger than 5 mols per mol of the amino groups of the amino-group-containing polymer. In the case where the amount exceeds 5 mols per mol of the amino groups of the amino-group-containing polymer, there are disadvantages in that the pH might be so low as to deteriorate the stability.
- the process for the neutralization with the acid compound is not especially limited, but, for example, the amino-group-containing polymer and the acid compound may be mixed together by stirring them in the range of 0 to 120° C., preferably 10 to 80° C.
- the neutralization may be carried out either in the absence of solvent or in the presence of a solvent which is, for example, usable in the aforementioned graft polymerization reaction.
- amino-group-containing polymer (salt) As to the amino-group-containing polymer (salt) according to the present invention, it is easy to structurally design its desired properties, ranging from hydrophilicity to hydrophobicity or from softness to rigidness, due to possession of the polyether skeleton, and further it is possible to display various performances, such as curability useful for various uses and adsorbency onto films or fibers, due to possession of the amino group.
- amino groups of the amino-group-containing polymer (salt) according to the present invention can include at least primary amino groups and further, according to circumstances, secondary amino groups, so it is possible to easily add thereto further such as epoxy compounds, isocyanate compounds, acid anhydrides, acyl halide compounds, and acryloyl compounds, and the resultant product can also be a raw material for various derivatives.
- the amino-group-containing polymer (salt), according to the present invention can favorably be utilized for the wide range of uses such as epoxy curing agents, solid electrolytes for cells, enzyme fixers, water-retaining agents, sludge flocculants, flocculants, heavy metal collectors, soot collectors, chelating agents, ion-exchange resins, excavated-soil-treating agents, viscosity-adjusting agents, drilling mud additives for construction work and oil well drilling, pressure sensitive adhesives, sealants, paints, adhesives, anchor coating agents, primers, surface-treating agents, inks (e.g.
- the amino-group-containing polymer (salt), according to the present invention can make good use of the reactivity or cationic property of the primary amino group and further can display various performances, such as curability useful for various uses and adsorbency onto films or fibers. Specifically, antistatic effects, or effects such as the improvement of slippability and the endowment of hydrophilicity and surface activity, upon films or fibers are obtained. Particularly, this polymer (salt) is applicable also to conversion of such as polyester fibers into hydrophilic ones.
- the amino-group-containing polymer (salt), according to the present invention can favorably be utilized for the wide range of uses such as epoxy curing agents, solid electrolytes for cells, enzyme fixers, water-retaining agents, sludge flocculants, flocculants, heavy metal collectors, soot collectors, chelating agents, ion-exchange resins, excavated-soil-treating agents, viscosity-adjusting agents, drilling mud additives for construction work and oil well drilling, pressure sensitive adhesives, sealants, paints, adhesives, anchor coating agents, primers, surface-treating agents, inks (e.g.
- the acid value of the carboxyl-group-containing polymer in terms of solid content was measured by neutralization titration with an alkaline reagent; and the residual acid value of the amino-group-containing polymer in terms of solid content was measured by inverse colloidal titration involving addition of a certain amount of chitosan solution and use of poly(potassium vinyl sulfate); and the amine value of the amino-group-containing polymer in terms of solid content was measured by colloidal titration with poly(potassium vinyl sulfate).
- a glass reactor as equipped with a thermometer, a stirrer, a nitrogen-introducing tube, and a reflux condenser, was charged with 85 parts by weight of phenoxypolyethylene glycol having a number-average molecular weight of 530 (as obtained by an addition reaction of 10 mols on average of ethylene oxide to phenol), and then the charged material was heated to 128° C. while being stirred under a nitrogen gas stream.
- the residual acid value of the resultant amino-group-containing polymer was 0.23 mmols/g in terms of solid content. From this result, it was inferred that about 87% of the carboxyl groups had been converted by the ethylenimine. In addition, the amine value was 1.50 mmols/g in terms of solid content by colloidal titration. Incidentally, the resultant amino-group-containing polymer was analyzed by gas chromatography of which the detection limit was 1 ppm. As a result, no unreacted ethylenimine was detected.
- a glass reactor as equipped with a thermometer, a stirrer, a nitrogen-introducing tube, and a reflux condenser, was charged with 70 parts by weight of phenoxypolyethylene glycol having a number-average molecular weight of 970 (as obtained by an addition reaction of 20 mols on average of ethylene oxide to phenol) and 12 parts by weight of maleic acid, and then the charged materials were heated to 145° C. while being stirred under a nitrogen gas stream.
- the residual acid value of the resultant amino-group-containing polymer was 1.2 mmols/g in terms of solid content. From this result, it was inferred that about 61% of the carboxyl groups had been converted by the ethylenimine. In addition, the amine value was 1.61 mmols/g in terms of solid content by colloidal titration. Incidentally, the resultant amino-group-containing polymer was analyzed by gas chromatography of which the detection limit was 1 ppm. As a result, no unreacted ethylenimine was detected.
- a glass reactor as equipped with a thermometer, a stirrer, a nitrogen-introducing tube, and a reflux condenser, was charged with 80 parts by weight of methoxypolyethylene glycol having a number-average molecular weight of 2,000 (reagent made by Aldrich), and then the charged material was heated to 145° C. while being stirred under a nitrogen gas stream.
- 20 parts by weight of acrylic acid and 2.0 parts by weight of Perbutyl-D (di-tert-butyl peroxide, made by NOF CORPORATION) were dropwise added separately and continuously over a period of 2 hours while maintaining the temperature in the range of 140 to 145° C. Thereafter, stirring was continued for 1 hour, thus obtaining a carboxyl-group-containing polymer as a grafted polymer.
- the acid value of this carboxyl-group-containing polymer was 2.65 mmols/g in terms of solid content.
- the residual acid value of the resultant amino-group-containing polymer was 0.18 mmols/g in terms of solid content. From this result, it was inferred that about 92% of the carboxyl groups had been converted by the ethylenimine. In addition, the amine value was 2.92 mmols/g in terms of solid content by colloidal titration. Incidentally, the resultant amino-group-containing polymer was analyzed by gas chromatography of which the detection limit was 1 ppm. As a result, no unreacted ethylenimine was detected.
- a glass reactor as equipped with a thermometer, a stirrer, a nitrogen-introducing tube, and a reflux condenser, was charged with 80 parts by weight of methoxypolyethylene glycol having a number-average molecular weight of 500, and then the charged material was heated to 145° C. while being stirred under a nitrogen gas stream.
- 24 parts by weight of acrylic acid, 6 parts by weight of maleic acid, and 2.0 parts by weight of Perbutyl-D (di-tert-butyl peroxide, made by NOF CORPORATION) were dropwise added separately and continuously over a period of 2 hours while maintaining the temperature in the range of 140 to 145° C. Thereafter, stirring was continued for 1 hour, thus obtaining a carboxyl-group-containing polymer as a grafted polymer.
- the acid value of this carboxyl-group-containing polymer was 3.80 mmols/g in terms of solid content.
- the residual acid value of the resultant amino-group-containing polymer was 0.66 mmols/g in terms of solid content. From this result, it was inferred that about 80% of the carboxyl groups had been converted by the ethylenimine. In addition, the amine value was 3.20 mmols/g in terms of solid content by colloidal titration. Incidentally, the resultant amino-group-containing polymer was analyzed by gas chromatography of which the detection limit was 1 ppm. As a result, no unreacted ethylenimine was detected.
- the residual acid value of the resultant amino-group-containing polymer was 0.87 mmols/g in terms of solid content. From this result, it was inferred that about 73% of the carboxyl groups had been converted by the ethylenimine. In addition, the amine value was 2.90 mmols/g in terms of solid content by colloidal titration. Incidentally, the resultant amino-group-containing polymer was analyzed by gas chromatography of which the detection limit was 1 ppm. As a result, no unreacted ethylenimine was detected.
- the residual acid value of the resultant amino-group-containing polymer was 0.37 mmols/g in terms of solid content. From this result, it was inferred that about 85% of the carboxyl groups had been converted by the ethylenimine. In addition, the amine value was 2.35 mmols/g in terms of solid content by colloidal titration. Incidentally, the resultant amino-group-containing polymer was analyzed by gas chromatography of which the detection limit was 1 ppm. As a result, no unreacted ethylenimine was detected.
- the resultant coating film had the following properties:
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Graft Or Block Polymers (AREA)
Abstract
Description
- A. Technical Field
- The present invention relates to a novel amino-group-containing polymer (salt) and a production process therefor wherein the amino-group-containing polymer (salt) is a product by a process including the step of introducing amino groups into a grafted polymer having a polyether skeleton.
- B. Background Art
- Grafted polymers obtained by carrying out a graft polymerization of unsaturated carboxylic monomers such as (meth)acrylic acid onto polyether compounds are, for example, utilized for uses, such as detergent builders, scale inhibitors, lubricants, dyeing assistants, fiber-treating agents, and dispersants for organic or inorganic particles, by taking advantage of the hydrophilicity of the grafted polymers. Such hydrophilic grafted polymers are, for example, disclosed in JP-A-208769/1996, JP-A-208770/1996, and JP-A-053645/1995.
- On the other hand, amino-group-containing polymers are known to display excellent performances due to the presence of the amino group, such as epoxy curability and reactivity to other functional groups. For example, a curable resin composition comprising an amino-group-containing acrylic resin is disclosed in U.S. Pat. No. 3,705,076 and JP-A-056549/1988 wherein the amino-group-containing acrylic resin is obtained by carrying out a ring-opening addition of an alkylenimine to carboxyl group portions of a carboxyl-group-containing acrylic polymer; and a water-soluble resin comprising an acid-neutralized salt of an amino-group-containing acrylic resin is disclosed in U.S. Pat. No. 3,719,629 wherein the amino-group-containing acrylic resin is obtained by carrying out a ring-opening addition of an alkylenimine to carboxyl group portions of a carboxyl-group-containing acrylic polymer; and an amino-group-containing acrylic polymer, obtained by carrying out a ring-opening addition of an alkylenimine to a part of carboxyl group portions of a carboxyl-group-containing acrylic polymer and then neutralizing the rest of the carboxyl group portions with basic compounds such as triethylamine, is disclosed in U.S. Pat. No. 4,126,596; and a curable resin composition obtained by Michael addition between a polyvalent amino compound, such as polyamine or polyamide, and a polyvalent acryloyl group is disclosed as an adhesive in JP-A-023615/1986; and a polymer with a side chain amino group, which is obtained by carrying out a reaction between a carboxyl group of a polymer and a polyamine, is disclosed as a paint in JP-B-061321/1988 wherein the raw polymer is obtained by carrying out a copolymerization of a carboxyl-group-containing unsaturated monomer with another copolymerizable unsaturated monomer and wherein the polyamine has an aliphatic amino group or both an aliphatic amino group and at least one ether group.
- However, in consideration of the ionic aspect, it is a conventional idea that a polyether skeleton having the nonionic character is usually endowed with only either anionic or cationic character by introducing either an anionic or cationic group as a graft portion. It is difficult to lead to an idea of introducing an anionic carboxyl group and then converting it into a cationic group. Therefore, up to now, no polymers obtained by introducing the carboxyl group and further an amino group into a graft portion of a grafted polymer having a polyether skeleton have been studied, and there have been no reports as to such polymers, either.
- A. Object of the Invention
- An object of the present invention is to provide a novel amino-group-containing polymer (salt) and a production process therefor wherein the amino-group-containing polymer (salt) is a product by a process including the step of introducing amino groups into a grafted polymer having a polyether skeleton.
- B. Disclosure of the Invention
- That is to say, an amino-group-containing polymer (salt), according to the present invention, is a product by a process including the steps of:
- carrying out a graft polymerization of a monoethylenically unsaturated monomer component onto a polyether compound, wherein the monoethylenically unsaturated monomer component includes an unsaturated carboxylic monomer as an essential component, and wherein the polyether compound has a repeating unit of a general formula below in a ratio of not less than 30 mol % and has a number-average molecular weight of not less than 150; and
- introducing amino groups by carrying out a ring-opening addition of an alkylenimine to at least a part of carboxyl group portions of the monoethylenically unsaturated monomer component which has been graft-polymerized onto the polyether compound, wherein at least a part of the amino groups might be neutralized with an acid;
-
- wherein:
- R 1, R2, R3 and R4 denote at least one member selected from the group consisting of a hydrogen atom, alkyl groups, alkenyl groups, and aryl groups, and these groups may coexist in a molecule.
- A production process for an amino-group-containing polymer (salt), according to the present invention, comprises the steps of:
- carrying out a graft polymerization of a monoethylenically unsaturated monomer component onto a polyether compound, wherein the monoethylenically unsaturated monomer component includes an unsaturated carboxylic monomer as an essential component, and wherein the polyether compound has a repeating unit of a general formula below in a ratio of not less than 30 mol % and has a number-average molecular weight of not less than 150; and
- carrying out a ring-opening addition of an alkylenimine to at least a part of carboxyl group portions of the monoethylenically unsaturated monomer component;
-
- wherein:
- R 1, R2, R3 and R4 denote at least one member selected from the group consisting of a hydrogen atom, alkyl groups, alkenyl groups, and aryl groups, and these groups may coexist in a molecule.
- These and other objects and the advantages of the present invention will be more fully apparent from the following detailed disclosure.
- The amino-group-containing polymer (salt), according to the present invention, is a product by a process including the steps of: carrying out a graft polymerization of a monoethylenically unsaturated monomer component onto a polyether compound; and carrying out a ring-opening addition of an alkylenimine to at least a part of carboxyl group portions of the monoethylenically unsaturated monomer component. More specifically, the amino-group-containing polymer (salt) is a product by a process including the steps of:
- carrying out a graft polymerization of a monoethylenically unsaturated monomer component onto a polyether compound, wherein the monoethylenically unsaturated monomer component includes an unsaturated carboxylic monomer as an essential component, and wherein the polyether compound has a repeating unit of a general formula below in a ratio of not less than 30 mol % and has a number-average molecular weight of not less than 150; and
- carrying out a ring-opening addition of an alkylenimine to at least a part of carboxyl group portions of the monoethylenically unsaturated monomer component which has been graft-polymerized onto the polyether compound;
-
- wherein:
- R 1, R2, R3 and R4 denote at least one member selected from the group consisting of a hydrogen atom, alkyl groups, alkenyl groups, and aryl groups, and these groups may coexist in a molecule.
- A more specific mode for the amino-group-containing polymer (salt), according to the present invention, is an amino-group-containing polymer (salt) which is a product by a process including the steps of: carrying out a graft polymerization of a monoethylenically unsaturated monomer component onto a polyether compound in order to obtain a grafted polymer, wherein the monoethylenically unsaturated monomer component includes an unsaturated carboxylic monomer as an essential component; and carrying out a ring-opening addition of an alkylenimine to at least a part of carboxyl group portions derived from the unsaturated carboxylic monomer of the monoethylenically unsaturated monomer component which forms a graft portion of the grafted polymer.
- In addition, in the more specific mode for the present invention, the above-defined grafted polymer in the present invention may be a grafted polymer composition obtained by a process including the step of carrying out a graft polymerization of a monoethylenically unsaturated monomer component onto a polyether compound, wherein the monoethylenically unsaturated monomer component includes an unsaturated carboxylic monomer as an essential component. This grafted polymer composition comprises the above-mentioned grafted polymer as an essential component, and the content of the grafted polymer is not especially limited. In a preferred mode for the present invention, the amino-group-containing polymer (salt) according to the present invention can be obtained by a process including the step of carrying out a ring-opening addition of an alkylenimine to the grafted polymer composition.
- In the present invention, the polyether compound is a compound having the repeating unit represented by the above general formula in a ratio of not less than 30 mol %, preferably not less than 50 mol %, of the entirety of the polyether compound. Such a polyether compound is, for example, obtained by a process including the step of polymerizing a cyclic ether by such as conventional methods in the presence of a reactant which serves as a polymerization initiation site, wherein the cyclic ether comprises at least one alkylene oxide selected from the group consisting of such as ethylene oxide, propylene oxide, 1-butene oxide, 2-butene oxide, styrene oxide, epichlorohydrin, glycidol, methyl glycidyl ether, ethyl glycidyl ether, iso-butyl glycidyl ether, methoxypolyethylene glycol monoglycidyl ether, phenoxypolyethylene glycol monoglycidyl ether, allyl glycidyl ether, phenyl glycidyl ether, and α-olefin oxide as an essential component and, if necessary, further comprises another alkylene oxide which is copolymerizable with those alkylene oxides. Particularly, it is preferable to use ethylene oxide and/or propylene oxide as the essential component of the cyclic ether in consideration of the grafting efficiency of the monoethylenically unsaturated monomer component. Furthermore, the ethylene oxide and/or propylene oxide is preferably used in a ratio of not less than 30 mol %, more preferably not less than 50 mol %, of the entirety of the polyether compound. In addition, examples of other alkylene oxides include tetrahydrofuran and oxetane.
- The above reactant is a compound which serves as an initiation site of the polymerization of the cyclic ether, and is not especially limited in such as its kind and molecular weight. Examples of the reactant include: water; hydrogen; alcohols; phenols; hydrogen halides; ammonia; amines; hydroxylamine; carboxylic acids; acid halides; lactones; and aldehydes. These can be used either alone respectively or in combinations with each other. Of them, at least one member selected from the group consisting of water, alcohols, phenols, and amines is preferable as the reactant.
- Examples of the above-mentioned alcohol include: primary aliphatic alcohols having 1 to 22 carbon atoms, such as methanol, ethanol, n-propanol, and n-butanol; aromatic alcohols, such as phenol, cresol, ethylphenol, cumylphenol, xylenol, octylphenol, tert-butylphenol, nonylphenol, and naphthol; secondary alcohols having 3 to 18 carbon atoms, such as iso-propyl alcohol and alcohols obtained by a process including the step of oxidizing n-paraffin; tertiary alcohols, such as tert-butanol; diols, such as ethylene glycol, diethylene glycol, propanediol, butanediol, and propylene glycol; triols, such as glycerin and trimethylolpropane; and polyols, such as sorbitol. These can be used either alone respectively or in combinations with each other.
- Examples of the above-mentioned amine include: aromatic amines, such as aniline and naphthylamine; alkylamines having 3 to 22 carbon atoms, such as dodecylamine and stearylamine; and alkyldiamines, such as ethylenediamine. These can be used either alone respectively or in combinations with each other.
- The reaction form of the polymerization of the cyclic ether is not especially limited, but, for example, may be any one of: (1) anionic polymerization by use of basic catalysts such as strong alkalis (e.g. hydroxides and alcoholates of alkaline metals) and alkylamines; (2) cationic polymerization by use of catalysts, such as metal halides, semi-metal halides, mineral acids, and acetic acid; and (3) coordination polymerization by use of combinations of such as metal (e.g. aluminum, iron, zinc) alkoxides, alkaline earth compounds, and Lewis acids.
- The polyether compound may be a derivative from the polyether obtained by the above-mentioned polymerization. Examples of such a derivative include: terminal-group-converted compounds obtained by a process including the step of converting a terminal functional group of the polyether; and crosslinked products obtained by a process including the step of reacting the polyether with a crosslinking agent having a plurality of groups such as carboxyl group, isocyanate group, epoxy group, acid anhydride group, and halogen group. Preferable of the terminal-group-converted compounds are as follows: products by a process including the step of esterifying at least one terminal hydroxyl group of the above-mentioned polyether with fatty acids having 2 to 22 carbon atoms or anhydrides thereof (such as acetic acid and acetic anhydride) or with dicarboxylic acids (such as succinic acid, succinic anhydride, and adipic acid); and products by a process including the step of mono- or dietherifying at least one terminal hydroxyl group of the above-mentioned polyether by what is called Williamson (A. W. Williamson)'s synthesis of ether process (process comprising the step of etherifying an alcoholic hydroxyl group with an alkali and an alkyl halide).
- In the present invention, the number-average molecular weight of the polyether compound is not less than 150. The upper limit of the number-average molecular weight is not especially limited, but is preferably not more than 100,000. In the case where the number-average molecular weight is less than 150, there are problems in that the grafting ratio is so low that a large amount of polyether compound remains unreacted. In the case where the number-average molecular weight exceeds 100,000, the viscosity tends to be high and it is therefore difficult to handle the polyether compound during the polymerization.
- The number of the repeating units of the above general formula in the polyether compound is not especially limited, but is preferably not smaller than 2, more preferably not smaller than 3, in the polyether compound. As to R 1, R2, R3 and R4 in the above general formula representing the repeating unit, at least one thereof is preferably a hydrogen atom.
- In the present invention, the monoethylenically unsaturated monomer component includes the unsaturated carboxylic monomer as an essential component and, if necessary, may further include another unsaturated monomer which is copolymerizable with the unsaturated carboxylic monomer.
- Examples of the unsaturated carboxylic monomer include ethylenically unsaturated carboxylic acids, such as (meth)acrylic acid, itaconic acid, maleic acid, fumaric acid, and maleic anhydride. These can be used either alone respectively or in combinations with each other. Of them, at least one member selected from the group consisting of (meth)acrylic acid, maleic acid, fumaric acid, and maleic anhydride is preferable in consideration of polymerizability.
- There is no especial limitation in the above other unsaturated monomer copolymerizable with the unsaturated carboxylic monomer if it is a monomer other than the unsaturated carboxylic monomer. Examples thereof include: alkyl (meth)acrylates obtained by a process including the step of esterifying (meth)acrylic acid with alcohols having 1 to 18 carbon atoms, such as methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, and cyclohexyl (meth)acrylate; amide-group-containing monomers, such as (meth)acrylamide, dimethylacrylamide, and isopropylacrylamide; vinyl esters, such as vinyl acetate; alkenes, such as ethylene and propylene; aromatic vinyl monomers, such as styrene and styrenesulfonic acid; maleimide and derivatives therefrom such as phenylmaleimide and cyclohexylmaleimide; nitrile-group-containing vinyl monomers, such as (meth)acrylonitrile; aldehyde-group-containing vinyl monomers, such as (meth)acrolein; sulfonic-acid-group-containing monomers, such as 2-acrylamido-2-methylpropanesulfonic acid, allylsulfonic acid, vinylsulfonic acid, 2-hydroxy-3-allyloxy-1-propanesulfonic acid, and 2-hydroxy-3-butenesulfonic acid; alkyl vinyl ethers, such as methyl vinyl ether, ethyl vinyl ether, and butyl vinyl ether; and other-functional-group-containing monomers, such as vinyl chloride, vinylidene chloride, allyl alcohol, and vinylpyrrolidone. These can be used either alone respectively or in combinations with each other.
- The ratio of the unsaturated carboxylic monomer in the monoethylenically unsaturated monomer component is not especially limited, but is preferably not less than 30 weight %, more preferably not less than 40 weight %, most preferably not less than 50 weight %, per 100 weight % of the monoethylenically unsaturated monomer component in consideration of reactivity in the below-mentioned ring-opening addition of the alkylenimine.
- When the graft polymerization of the monoethylenically unsaturated monomer component onto the polyether compound is carried out, the monoethylenically unsaturated monomer component is preferably used in a ratio of 0.02 to 4 parts by weight, more preferably 0.1 to 2 parts by weight, per part by weight of the polyether compound. In the case where the ratio of the monoethylenically unsaturated monomer component is less than 0.02 parts by weight per part by weight of the polyether compound, it is difficult to exhibit properties derived from the amino group. On the other hand, in the case where the ratio of the monoethylenically unsaturated monomer component is more than 4 parts by weight per part by weight of the polyether compound, it tends to be difficult to structurally design the desired properties, such as balance between hydrophilicity and hydrophobicity of the polymer, on the basis of the polyether skeleton.
- When carrying out the graft polymerization of the monoethylenically unsaturated monomer component onto the polyether compound, an organic peroxide is preferably used as a polymerization initiator. Examples of the organic peroxide include:
-
- ketone peroxides, such as cyclohexanone peroxide, methyl ethyl ketone peroxide, methylcyclohexanone peroxide, methylacetoacetate peroxide, and 3,3,5-trimethylcyclohexanone peroxide;
- peroxyketals, such as 1,1-bis(tert-hexylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(tert-hexylperoxy)cyclohexane, 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(tert-butylperoxy)-2-methylcyclohexane, 1,1-bis(tert-butylperoxy)cyclohexane, 2,2-bis(tert-butylperoxy)butane, n-butyl-4,4-bis(tert-butylperoxy)valerate, and 2,2-bis(tert-butylperoxy)octane;
- hydroperoxides, such as p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, tert-hexyl hydroperoxide, tert-butyl hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide and 2-(4-methylcyclohexyl)propane hydroperoxide;
- dialkyl peroxides, such as α,α′-bis(tert-butylperoxy)-p-diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-bis(tert-butylperoxy)hexane, tert-butylcumyl peroxide, di-tert-butyl peroxide, 2,5-dimethyl-2,5-bis(tert-butylperoxy)hexyne-3, and α,α′-bis(tert-butylperoxy)-p-isopropylhexyne;
- diacyl peroxides, such as isobutyryl peroxide, 3,3,5-trimethylcyclohexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, succinic acid peroxide, m-toluoyl peroxide, benzoyl peroxide, acetyl peroxide, decanoyl peroxide, and 2,4-dichlorobenzoyl peroxide;
- peroxydicarbonates, such as di-n-propyl peroxydicarbonate, di-isopropyl peroxydicarbonate, bis-(4-tert-butylcyclohexyl) peroxydicarbonate, di-2-ethoxyethyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, di-3-methoxybutyl peroxydicarbonate, di-sec-butyl peroxydicarbonate, di(3-methyl-3-methoxybutyl) peroxydicarbonate, dimyristyl peroxydicarbonate, di-methoxyisopropyl peroxydicarbonate, and di-allyl peroxydicarbonate;
- peroxyesters, such as α,α′-bis(neodecanoperoxy)diisopropylbenzene, cumyl peroxyneodecanoate, 1,1,3,3-tetramethylbutyl peroxyneodecanoate, 1-cyclohexyl-1-methylethyl peroxyneodecanoate, tert-hexyl peroxyneodecanoate, tert-butyl peroxyneodecanoate, tert-hexyl peroxypivalate, tert-butyl peroxypivalate, 1,1,3,3-tetramethylbutyl peroxy-2-ethylhexanoate, 2,5-dibutyl-2,5-bis(2-ethylhexanoylperoxy)hexane, 1-cyclohexyl-1-methylethyl peroxy-2-ethylhexanoate, tert-hexyl peroxy-2-ethylhexanoate, tert-butyl peroxy-2-ethylhexanoate, tert-butyl peroxyisobutyrate, tert-hexyl peroxyisopropylmonocarbonate, tert-butyl peroxymaleic acid, tert-butyl peroxy-3,5,5-trimethylcyclohexanoate, tert-butyl peroxylaurate, 2,5-dibutyl-2,5-bis(m-tolylperoxy)hexane, tert-butyl peroxyisopropylmonocarbonate, tert-butyl peroxy-2-ethylhexylmonocarbonate, tert-hexyl peroxybenzoate, 2,5-dimethyl-2,5-bis(benzoylperoxy)hexane, tert-butyl peroxyacetate, tert-butyl peroxy-m-tolylbenzoate, tert-butyl peroxybenzoate, bis(tert-butylperoxy)isophthalate, cumyl peroxyoctanoate, tert-hexyl peroxyneohexanoate, and cumyl peroxyneohexanoate; and
- other organic peroxides, such as tert-butyl peroxyallylcarbonate, tert-butyl trimethylsilyl peroxide, and acetylcyclohexylsulfonyl peroxide. These can be used either alone respectively or in combinations with each other.
-
- The amount of the organic peroxide as used is not especially limited, but is preferably in the range of 0.1 to 30 weight %, more preferably 0.5 to 20 weight %, of the monoethylenically unsaturated monomer component. In the case where the amount is smaller than 0.1 weight %, the ratio of grafting onto the polyether compound tends to be low. On the other hand, in the case where the amount exceeds 30 weight %, there are economical disadvantages because the organic peroxide is expensive. It is preferable that the organic peroxide is added simultaneously with addition of the ethylenically unsaturated monomer component and separately from the polyether compound without being premixed with the polyether compound. However, the organic peroxide may beforehand be added to either the polyether compound or monoethylenically unsaturated monomer component.
- When the graft polymerization of the monoethylenically unsaturated monomer component onto the polyether compound is carried out, either a catalyst for decomposing the organic peroxide or a reducible compound may be used together with the organic peroxide.
- Examples of the catalyst for decomposing the organic peroxide include: metal halides such as lithium chloride and lithium bromide; metal oxides such as titanium oxide and silicon dioxide; metal salts of inorganic acids such as hydrochloric acid, hydrobromic acid, perchloric acid, sulfuric acid, and nitric acid; carboxylic acids, such as formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, and benzoic acid, and their esters and metal salts; and heterocyclic amines, such as pyridine, indole, imidazole, and carbazole, and derivatives therefrom. These can be used either alone respectively or in combinations with each other.
- Examples of the reducible compound include: organometallic compounds such as ferrocene; inorganic compounds which can generate metal ions (e.g. iron, copper, nickel, cobalt, manganese), such as iron naphthenate, copper naphthenate, nickel naphthenate, cobalt naphthenate, and manganese naphthenate; inorganic compounds, such as trifluoroborate-ether adduct, potassium permanganate, and perchloric acid; sulfur-containing compounds such as sulfur dioxide, sulfite salts, sulfate esters, bisulfite salts, thiosulfate salts, sulfoxylate salts, and aromatic sulfonic acid homologues (e.g. benzenesulfonic acid, its substituted products, and p-toluenesulfonic acid); mercapto compounds, such as octylmercaptan, dodecylmercaptan, mercaptoethanol, α-mercaptopropionic acid, thioglycolic acid, thiopropionic acid, sodium α-thiopropionate sulfopropyl ester, and sodium α-thiopropionate sulfoethyl ester; nitrogen-containing compounds, such as hydrazine, β-hydroxyethylhydrazine and hydroxylamine; aldehydes, such as formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, and isovaleraldehyde; and ascorbic acid. These can be used either alone respectively or in combinations with each other.
- The graft polymerization is preferably carried out substantially in the absence of solvent, but a solvent may be used in an amount of not larger than 20 weight % of the entirety of the reaction system. In the case where the amount of the solvent exceeds 20 weight % of the entirety of the reaction system, the grafting ratio of the monoethylenically unsaturated monomer component tends to be low. In the case where the reaction system has high viscosity, the use of a small amount of solvent might be preferable for handling, and the solvent may be distilled off after being added.
- The above solvent is not especially limited, but it is preferable to use, for example, a solvent such that the constant of chain transfer thereto of the monomer as used is as small as possible, or a solvent which has a boiling point of not lower than 80° C. so as to be usable for a reaction under normal pressure. Examples of such a solvent include: water; alcohols, such as iso-butyl alcohol, n-butyl alcohol, tert-butyl alcohol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, ethylene glycol monoalkyl ether, and propylene glycol monoalkyl ether; diethers, such as ethylene glycol dialkyl ether and propylene glycol dialkyl ether; and acetic compounds, such as acetic acid, ethyl acetate, propyl acetate, butyl acetate, ethylene glycol monoalkyl ether acetate, and propylene glycol monoalkyl ether acetate. These can be used either alone respectively or in combinations with each other. Examples of alkyl groups in the above-mentioned alcohols and diethers include methyl group, ethyl group, propyl group, and butyl group.
- The temperature of the graft polymerization is not especially limited, but is preferably not lower than 80° C., more preferably in the range of 90 to 160° C. In the case where the temperature is lower than 80° C., the graft polymerization is so difficult to proceed that the grafting ratio of the monoethylenically unsaturated monomer component tends to be low. On the other hand, in the case where the temperature exceeds 160° C., thermolysis of the polyether compound and the resultant grafted polymer might occur.
- When carrying out the graft polymerization, it is preferable to charge a portion or the entirety of the polyether compound in the initial stage. For example, in the case where at least one monomer (A) selected from the group consisting of maleic acid, fumaric and, and maleic anhydride is graft-polymerized together with (meth)acrylic acid as the monoethylenically unsaturated monomer components onto the polyether compound, it is preferable that: not less than half the monomer (A) is premixed with the polyether compound, and the resultant mixture is heated to not lower than 80° C., and then the residual monoethylenically unsaturated monomer components and the organic peroxide are separately added to the heated mixture to carry out the graft polymerization. Such a process enables to easily control the molecular weight of the resultant grafted polymer.
- The amino-group-containing polymer (salt), according to the present invention, is a product by a process including the step of carrying out a ring-opening addition of an alkylenimine to carboxyl group portions of the graft-polymerized monoethylenically unsaturated monomer component. As to this amino-group-containing polymer (salt) according to the present invention, it is enough that the ring-opening addition of the alkylenimine to the carboxyl group portions of the graft-polymerized monoethylenically unsaturated monomer component is made to at least a part of the carboxyl group portions of the graft-polymerized monoethylenically unsaturated monomer component, and, as is mentioned below, the amino-group-containing polymer (salt) may be that in which a part of the carboxyl group portions of the graft-polymerized monoethylenically unsaturated monomer component are neutralized with a basic compound, and in which the alkylenimine is ring-opening-added to at least a part of the residual unneutralized carboxyl group portions. In this case, a part or all of the residual carboxyl group portions in the amino-group-containing polymer (salt) are in the form neutralized with the above basic compound. In this way, the carboxyl group of the monoethylenically unsaturated monomer component can be converted into an amino group by carrying out the ring-opening addition of the alkylenimine.
- Examples of the alkylenimine include ethylenimine, propylenimine, butylenimine, and N-(2-hydroxyethyl)aziridine. In addition, N-(aminoalkyl)-substituted alkylenimines, such as N-(2-aminoethyl)aziridine, N-(3-aminopropyl)aziridine, and N-(2-aminopropyl)propylenimine, can also be used likewise. Furthermore, alkylenimine compounds obtained by Michael addition of alkylenimines to acryloyl-group-containing compounds, such as methyl 3-aziridinopropionate obtained by addition of ethylenimine to the acryloyl group of methyl acrylate and N-(2-cyanoethyl)aziridine obtained by addition of ethylenimine to the double bond of acrylonitrile, can also be used likewise. In the present invention, when a compound having 2 to 8 carbon atoms is used particularly of the alkylenimines, there are advantages also in respect to production cost because plenty of amino groups can be introduced by use of a small amount of alkylenimine and because the ring-opening addition can be carried out in a short time due to high reactivity.
- The method for carrying out the ring-opening addition of the alkylenimine is not especially limited, but, for example, the ring-opening addition can easily be carried out by mixing the carboxyl-group-containing grafted polymer or the monoethylenically unsaturated monomer component with the alkylenimine by stirring them under temperature conditions of 10 to 150° C., preferably 40 to 100° C. Incidentally, this ring-opening addition reaction may be carried out in the absence of solvent, or can be carried out by use of the aforementioned solvent usable in the graft polymerization reaction.
- When carrying out the ring-opening addition of the alkylenimine, the amount of the alkylenimine as used is preferably in the range of 0.1 to 10 mols per mol of the carboxyl group of the monoethylenically unsaturated monomer component. In the case where the amount of the alkylenimine is smaller than 0.1 mol, it is difficult to exhibit properties derived from the amino group. On the other hand, in the case where the amount of the alkylenimine exceeds 10 mols, storage stability of the resultant amino-group-containing polymer (salt) tends to be inferior.
- The conversion of the carboxyl group of the monoethylenically unsaturated monomer component into the amino group by carrying out the ring-opening addition of the alkylenimine may fitly be selected so as to display properties according to use purposes. However, it is preferable that not less than 10 mol % of the carboxyl group of the monoethylenically unsaturated monomer component is converted into the amino group. In the case where this conversion is less than 10 mol %, it is difficult to display properties derived from the amino group.
- The amino-group-containing polymer (salt), according to the present invention, preferably has an amine value of 0.1 to 12 mmols/g in terms of solid content by colloidal titration with poly(potassium vinyl sulfate). In the case where the amine value exceeds this range, the storage stability tends to be inferior. On the other hand, in the case where the amine value is lower than the above range, it is difficult to display properties derived from the amino group.
- When a part of the carboxyl group portions of the monoethylenically unsaturated monomer component which has been graft-polymerized onto the polyether compound remains or is intentionally made to remain in the amino-group-containing polymer (salt) according to the present invention, the amino-group-containing polymer (salt) may be in the form of a salt in which at least a part of the remaining carboxyl group portions are neutralized with a basic compound. Examples of the basic compound, which is used to neutralize the carboxyl group portions, include: inorganic basic compounds, such as sodium hydroxide and potassium hydroxide; ammonia; and organic basic compounds, such as methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, dimethylaminoethanol, and aniline. These can be used either alone respectively or in combinations with each other.
- The amino-group-containing polymer (salt), according to the present invention, may be in the form of a salt in which at least a part of the amino groups are neutralized with an acid. Such an amino-group-containing polymer salt is obtained by a process including the step of neutralizing the resultant amino-group-containing polymer with an acid compound.
- Examples of the above acid compound include: inorganic acids, such as hydrochloric acid, hydrobromic acid, phosphoric acid, and sulfuric acid; organic acids, such as formic acid, acetic acid, propionic acid, citric acid, lactic acid, (meth)acrylic acid, oxalic acid, succinic acid, maleic acid, poly((meth)acrylic acid) or its partial salts. These can be used either alone respectively or in combinations with each other. The amount of the acid compound as used may fitly be set according to uses and is not especially limited, but is preferably not larger than 5 mols per mol of the amino groups of the amino-group-containing polymer. In the case where the amount exceeds 5 mols per mol of the amino groups of the amino-group-containing polymer, there are disadvantages in that the pH might be so low as to deteriorate the stability.
- The process for the neutralization with the acid compound is not especially limited, but, for example, the amino-group-containing polymer and the acid compound may be mixed together by stirring them in the range of 0 to 120° C., preferably 10 to 80° C. Incidentally, the neutralization may be carried out either in the absence of solvent or in the presence of a solvent which is, for example, usable in the aforementioned graft polymerization reaction.
- As to the amino-group-containing polymer (salt) according to the present invention, it is easy to structurally design its desired properties, ranging from hydrophilicity to hydrophobicity or from softness to rigidness, due to possession of the polyether skeleton, and further it is possible to display various performances, such as curability useful for various uses and adsorbency onto films or fibers, due to possession of the amino group. In addition, the amino groups of the amino-group-containing polymer (salt) according to the present invention can include at least primary amino groups and further, according to circumstances, secondary amino groups, so it is possible to easily add thereto further such as epoxy compounds, isocyanate compounds, acid anhydrides, acyl halide compounds, and acryloyl compounds, and the resultant product can also be a raw material for various derivatives. Therefore, the amino-group-containing polymer (salt), according to the present invention, can favorably be utilized for the wide range of uses such as epoxy curing agents, solid electrolytes for cells, enzyme fixers, water-retaining agents, sludge flocculants, flocculants, heavy metal collectors, soot collectors, chelating agents, ion-exchange resins, excavated-soil-treating agents, viscosity-adjusting agents, drilling mud additives for construction work and oil well drilling, pressure sensitive adhesives, sealants, paints, adhesives, anchor coating agents, primers, surface-treating agents, inks (e.g. gravure inks, offset inks), ink jet inks, ceramic binders, anticorrosives, adsorbents, odor eaters, paper strength reinforcements, yield modifiers, water filterability modifiers, binders for pigment coating, dispersants for papermaking, deinking agents, hairdressings, cosmetic base agents, cosmetic additives, detergent additives, builders for powdery and liquid detergents, surfactants, emulsifiers, bubble conditioners, deemulsifiers, scale inhibitors, inorganic substance dispersants, pigment dispersants, cement dispersants (e.g. AE agents, water-reducing agents for cement), flotating agents, oil additives (e.g. viscosity index enhancing agents, cleaning agents), fiber-treating agents, dyeing modifiers, antistatic agents, fiber softeners, and crosslinking agents.
- (Effects and Advantages of the Invention):
- The amino-group-containing polymer (salt), according to the present invention, can make good use of the reactivity or cationic property of the primary amino group and further can display various performances, such as curability useful for various uses and adsorbency onto films or fibers. Specifically, antistatic effects, or effects such as the improvement of slippability and the endowment of hydrophilicity and surface activity, upon films or fibers are obtained. Particularly, this polymer (salt) is applicable also to conversion of such as polyester fibers into hydrophilic ones. Therefore, the amino-group-containing polymer (salt), according to the present invention, can favorably be utilized for the wide range of uses such as epoxy curing agents, solid electrolytes for cells, enzyme fixers, water-retaining agents, sludge flocculants, flocculants, heavy metal collectors, soot collectors, chelating agents, ion-exchange resins, excavated-soil-treating agents, viscosity-adjusting agents, drilling mud additives for construction work and oil well drilling, pressure sensitive adhesives, sealants, paints, adhesives, anchor coating agents, primers, surface-treating agents, inks (e.g. gravure inks, offset inks), ink jet inks, ceramic binders, anticorrosives, adsorbents, odor eaters, paper strength reinforcements, yield modifiers, water filterability modifiers, binders for pigment coating, dispersants for papermaking, deinking agents, hairdressings, cosmetic base agents, cosmetic additives, detergent additives, builders for powdery and liquid detergents, surfactants, emulsifiers, bubble conditioners, deemulsifiers, scale inhibitors, inorganic substance dispersants, pigment dispersants, cement dispersants (e.g. AE agents, water-reducing agents for cement), flotating agents, oil additives (e.g. viscosity index enhancing agents, cleaning agents), fiber-treating agents, dyeing modifiers, antistatic agents, fiber softeners, and crosslinking agents.
- Hereinafter, the present invention is more specifically illustrated by the following examples of some preferred embodiments in comparison with comparative examples not according to the invention. However, the invention is not limited thereto.
- Incidentally, the acid value of the carboxyl-group-containing polymer in terms of solid content was measured by neutralization titration with an alkaline reagent; and the residual acid value of the amino-group-containing polymer in terms of solid content was measured by inverse colloidal titration involving addition of a certain amount of chitosan solution and use of poly(potassium vinyl sulfate); and the amine value of the amino-group-containing polymer in terms of solid content was measured by colloidal titration with poly(potassium vinyl sulfate).
- A glass reactor, as equipped with a thermometer, a stirrer, a nitrogen-introducing tube, and a reflux condenser, was charged with 85 parts by weight of phenoxypolyethylene glycol having a number-average molecular weight of 530 (as obtained by an addition reaction of 10 mols on average of ethylene oxide to phenol), and then the charged material was heated to 128° C. while being stirred under a nitrogen gas stream. Next, 15 parts by weight of acrylic acid and 1.5 parts by weight of Perbutyl-Z (tert-butyl peroxybenzoate content: 98 weight %, made by NOF CORPORATION) were dropwise added separately and continuously over a period of 1 hour while maintaining the temperature in the range of 125 to 131° C. Thereafter, stirring was continued for 1 hour, thus obtaining a carboxyl-group-containing polymer as a grafted polymer. The acid value of this carboxyl-group-containing polymer was 1.91 mmols/g in terms of solid content.
- Next, 125 parts by weight of propylene glycol monomethyl ether and 25 parts by weight of deionized water were added to 50 parts by weight of the resultant carboxyl-group-containing polymer under stirred conditions in order to obtain a uniform solution. Thereafter, 4.4 parts by weight of ethylenimine (carboxyl group/imino group=1.0 in molar ratio) was added to the solution over a period of 10 minutes at room temperature. After being stirred for 1 hour in the range of 25 to 30° C., the resultant reaction mixture was heated to 85° C., and then stirring was continued for 5 hours while maintaining the temperature in the range of 82 to 88° C. Thereafter, the resultant reaction mixture was cooled, thus obtaining an amino-group-containing polymer.
- The residual acid value of the resultant amino-group-containing polymer was 0.23 mmols/g in terms of solid content. From this result, it was inferred that about 87% of the carboxyl groups had been converted by the ethylenimine. In addition, the amine value was 1.50 mmols/g in terms of solid content by colloidal titration. Incidentally, the resultant amino-group-containing polymer was analyzed by gas chromatography of which the detection limit was 1 ppm. As a result, no unreacted ethylenimine was detected.
- A glass reactor, as equipped with a thermometer, a stirrer, a nitrogen-introducing tube, and a reflux condenser, was charged with 70 parts by weight of phenoxypolyethylene glycol having a number-average molecular weight of 970 (as obtained by an addition reaction of 20 mols on average of ethylene oxide to phenol) and 12 parts by weight of maleic acid, and then the charged materials were heated to 145° C. while being stirred under a nitrogen gas stream. Next, 18 parts by weight of acrylic acid and 1.5 parts by weight of Perbutyl-D (di-tert-butyl peroxide, made by NOF CORPORATION) were dropwise added separately and continuously over a period of 2 hours while maintaining the temperature in the range of 140 to 145° C. Thereafter, stirring was continued for 1 hour, thus obtaining a carboxyl-group-containing polymer as a grafted polymer. The acid value of this carboxyl-group-containing polymer was 3.40 mmols/g in terms of solid content.
- Next, 90 parts by weight of propylene glycol monomethyl ether and 45 parts by weight of deionized water were added to 45 parts by weight of the resultant carboxyl-group-containing polymer under stirred conditions in order to obtain a uniform solution. Thereafter, 4.7 parts by weight of ethylenimine (carboxyl group/imino group=0.7 in molar ratio) was added to the solution over a period of 10 minutes at room temperature. After being stirred for 1 hour in the range of 25 to 30° C., the resultant reaction mixture was heated to 85° C., and then stirring was continued for 4 hours while maintaining the temperature in the range of 82 to 86° C. Thereafter, the resultant reaction mixture was cooled, thus obtaining an amino-group-containing polymer.
- The residual acid value of the resultant amino-group-containing polymer was 1.2 mmols/g in terms of solid content. From this result, it was inferred that about 61% of the carboxyl groups had been converted by the ethylenimine. In addition, the amine value was 1.61 mmols/g in terms of solid content by colloidal titration. Incidentally, the resultant amino-group-containing polymer was analyzed by gas chromatography of which the detection limit was 1 ppm. As a result, no unreacted ethylenimine was detected.
- A glass reactor, as equipped with a thermometer, a stirrer, a nitrogen-introducing tube, and a reflux condenser, was charged with 80 parts by weight of methoxypolyethylene glycol having a number-average molecular weight of 2,000 (reagent made by Aldrich), and then the charged material was heated to 145° C. while being stirred under a nitrogen gas stream. Next, 20 parts by weight of acrylic acid and 2.0 parts by weight of Perbutyl-D (di-tert-butyl peroxide, made by NOF CORPORATION) were dropwise added separately and continuously over a period of 2 hours while maintaining the temperature in the range of 140 to 145° C. Thereafter, stirring was continued for 1 hour, thus obtaining a carboxyl-group-containing polymer as a grafted polymer. The acid value of this carboxyl-group-containing polymer was 2.65 mmols/g in terms of solid content.
- Next, 200 parts by weight of propylene glycol monomethyl ether and 100 parts by weight of deionized water were added to 100 parts by weight of the resultant carboxyl-group-containing polymer under stirred conditions in order to obtain a uniform solution. Thereafter, 17.9 parts by weight of ethylenimine (carboxyl group/imino group=1.5 in molar ratio) was added to the solution over a period of 20 minutes at room temperature. After being stirred for 1 hour in the range of 25 to 30° C., the resultant reaction mixture was heated to 85° C., and then stirring was continued for 5 hours while maintaining the temperature in the range of 82 to 84° C. Thereafter, the resultant reaction mixture was cooled, thus obtaining an amino-group-containing polymer.
- The residual acid value of the resultant amino-group-containing polymer was 0.18 mmols/g in terms of solid content. From this result, it was inferred that about 92% of the carboxyl groups had been converted by the ethylenimine. In addition, the amine value was 2.92 mmols/g in terms of solid content by colloidal titration. Incidentally, the resultant amino-group-containing polymer was analyzed by gas chromatography of which the detection limit was 1 ppm. As a result, no unreacted ethylenimine was detected.
- A glass reactor, as equipped with a thermometer, a stirrer, a nitrogen-introducing tube, and a reflux condenser, was charged with 80 parts by weight of methoxypolyethylene glycol having a number-average molecular weight of 500, and then the charged material was heated to 145° C. while being stirred under a nitrogen gas stream. Next, 24 parts by weight of acrylic acid, 6 parts by weight of maleic acid, and 2.0 parts by weight of Perbutyl-D (di-tert-butyl peroxide, made by NOF CORPORATION) were dropwise added separately and continuously over a period of 2 hours while maintaining the temperature in the range of 140 to 145° C. Thereafter, stirring was continued for 1 hour, thus obtaining a carboxyl-group-containing polymer as a grafted polymer. The acid value of this carboxyl-group-containing polymer was 3.80 mmols/g in terms of solid content.
- Next, 50 parts by weight of propylene glycol monomethyl ether was added to 50 parts by weight of the resultant carboxyl-group-containing polymer under stirred conditions in order to obtain a uniform solution. Thereafter, 8.0 parts by weight of ethylenimine (carboxyl group/imino group=1.0 in molar ratio) was added to the solution over a period of 30 minutes at room temperature. After the addition had been completed, the resultant reaction mixture was heated to 50° C., and then stirring was continued for 8 hours while maintaining the temperature in the range of 48 to 52° C. Thereafter, the resultant reaction mixture was cooled, thus obtaining an amino-group-containing polymer.
- The residual acid value of the resultant amino-group-containing polymer was 0.66 mmols/g in terms of solid content. From this result, it was inferred that about 80% of the carboxyl groups had been converted by the ethylenimine. In addition, the amine value was 3.20 mmols/g in terms of solid content by colloidal titration. Incidentally, the resultant amino-group-containing polymer was analyzed by gas chromatography of which the detection limit was 1 ppm. As a result, no unreacted ethylenimine was detected.
- First, 50 parts by weight of deionized water was added to 50 parts by weight of a carboxyl-group-containing polymer (as obtained in the same way as of Example 4; acid value=3.80 mmols/g in terms of solid content) under stirred conditions in order to obtain a uniform solution. Thereafter, 8.0 parts by weight of ethylenimine (carboxyl group/imino group=1.0 in molar ratio) was added to the solution over a period of 30 minutes at room temperature. After the addition had been completed, the resultant reaction mixture was heated to 50° C., and then stirring was continued for 8 hours while maintaining the temperature in the range of 48 to 52° C. Thereafter, the resultant reaction mixture was cooled, thus obtaining an amino-group-containing polymer.
- The residual acid value of the resultant amino-group-containing polymer was 0.87 mmols/g in terms of solid content. From this result, it was inferred that about 73% of the carboxyl groups had been converted by the ethylenimine. In addition, the amine value was 2.90 mmols/g in terms of solid content by colloidal titration. Incidentally, the resultant amino-group-containing polymer was analyzed by gas chromatography of which the detection limit was 1 ppm. As a result, no unreacted ethylenimine was detected.
- An autoclave, as equipped with a thermometer, a stirrer, and a nitrogen-introducing tube, was charged with 74 parts by weight of dipropylene glycol monomethyl ether and 1 part by weight of sodium hydroxide powder, and the internal air of the autoclave was displaced with nitrogen, and then the charged materials were heated to 130° C. Next, 426 parts by weight of ethylene oxide was introduced into the autoclave over a period of 3 hours, and then the resultant reaction mixture was aged at 130° C. for 2 hours and then cooled, thus obtaining a dipropylene glycol monomethyl ether-ethylene oxide adduct (number-average molecular weight=1,000, average molar number of addition= 1.94).
- Next, a glass reactor, as equipped with a thermometer, a stirrer, a nitrogen-introducing tube, and a reflux condenser, was charged with 85 parts by weight of the above-obtained dipropylene glycol monomethyl ether-ethylene oxide adduct, and then the charged material was heated to 145° C. while being stirred under a nitrogen gas stream. Next, 15 parts by weight of acrylic acid and 2.0 parts by weight of Perbutyl-D (di-tert-butyl peroxide, made by NOF CORPORATION) were dropwise added separately and continuously over a period of 2 hours while maintaining the temperature in the range of 140 to 145° C. Thereafter, stirring was continued for 1 hour, thus obtaining a carboxyl-group-containing polymer as a grafted polymer. The acid value of this carboxyl-group-containing polymer was 2.71 mmols/g in terms of solid content.
- Next, 100 parts by weight of propylene glycol monomethyl ether and 50 parts by weight of deionized water were added to 50 parts by weight of the resultant carboxyl-group-containing polymer under stirred conditions in order to obtain a uniform solution. Thereafter, 6.0 parts by weight of ethylenimine (carboxyl group/imino group 1.0 in molar ratio) was added to the solution over a period of 10 minutes at room temperature. After being stirred for 1 hour in the range of 25 to 30° C., the resultant reaction mixture was heated to 85° C., and then stirring was continued for 5 hours while maintaining the temperature in the range of 82 to 88° C. Thereafter, the resultant reaction mixture was cooled, thus obtaining an amino-group-containing polymer.
- The residual acid value of the resultant amino-group-containing polymer was 0.37 mmols/g in terms of solid content. From this result, it was inferred that about 85% of the carboxyl groups had been converted by the ethylenimine. In addition, the amine value was 2.35 mmols/g in terms of solid content by colloidal titration. Incidentally, the resultant amino-group-containing polymer was analyzed by gas chromatography of which the detection limit was 1 ppm. As a result, no unreacted ethylenimine was detected.
- While the temperature was controlled in the range of 30 to 40° C., an aqueous hydrochloric acid solution was added to the amino-group-containing polymer as obtained in Example 5 (amine value=2.90 mmols/g in terms of solid content), wherein the amount of the aqueous hydrochloric acid solution corresponded to 0.8 times by mol of that of the amino groups of the amino-group-containing polymer. As a result, a hydrochloric-acid-neutralized salt of the amino-group-containing polymer was obtained.
- While the temperature was controlled in the range of 30 to 40° C., acetic acid was added to the amino-group-containing polymer as obtained in Example 5 (amine value=2.90 mmols/g in terms of solid content), wherein the amount of the acetic acid corresponded to 2 times by mol of that of the amino groups of the amino-group-containing polymer. As a result, an acetic-acid-neutralized salt of the amino-group-containing polymer was obtained.
- While the temperature was controlled in the range of 30 to 32° C., triethylamine was added to the amino-group-containing polymer as obtained in Example 5 (residual acid value=0.87 mmols/g in terms of solid content, amine value=2.90 mmols/g in terms of solid content), wherein the amount of the triethylamine corresponded to 0.5 times by mol of the residual acid value of the amino-group-containing polymer. As a result, a salt of the amino-group-containing polymer in which a part of the residual carboxyl groups were neutralized with the triethylamine was obtained.
- A mixture was prepared by well mixing 10 parts by weight of the amino-group-containing polymer as obtained in Example 4 (solid content=50%, amine value=3.20 mmols/g in terms of solid content) and 3.1 parts by weight of bisphenol A type liquid epoxy resin (Epikote 828, produced by Yuka Shell Epoxy Kabushiki Kaisha) together, and the resultant mixture was coated onto a steel sheet with an applicator and then dried by heating in a hot-air drying oven of 150° C. for 10 minutes to form a coating film. The resultant coating film had the following properties:
- dry coating film: 70 μm
- external appearance: transparent
- pencil scratching test (JIS-K5400): HB
- water resistance (rubbing test with deionized water): good.
- Various details of the invention may be changed without departing from its spirit not its scope. Furthermore, the foregoing description of the preferred embodiments according to the present invention is provided for the purpose of illustration only, and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
Claims (6)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000-034193 | 2000-02-10 | ||
| JP2000034193 | 2000-02-10 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20010014722A1 true US20010014722A1 (en) | 2001-08-16 |
| US6441102B2 US6441102B2 (en) | 2002-08-27 |
Family
ID=18558563
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/779,261 Expired - Fee Related US6441102B2 (en) | 2000-02-10 | 2001-02-08 | Amino-group-containing polymer (salt) and production process therefor |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US6441102B2 (en) |
| EP (1) | EP1123942B1 (en) |
| DE (1) | DE60103092T2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050192402A1 (en) * | 2004-02-26 | 2005-09-01 | Miroslav Antal | Epichlorohydrin-based polymers containing primary amino groups used as additives in papermaking |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SE0103084D0 (en) * | 2001-09-14 | 2001-09-14 | Amersham Pharm Biotech Ab | Generation of ion exchange media |
| ES2286419T3 (en) * | 2002-03-21 | 2007-12-01 | Basf Aktiengesellschaft | CATIONIC POLYMERS AND THEIR EMPLOYMENT IN COSMETIC FORMULATIONS. |
| US7216707B2 (en) * | 2004-06-21 | 2007-05-15 | Halliburton Energy Services, Inc. | Cement compositions with improved fluid loss characteristics and methods of cementing using such cement compositions |
| NZ588064A (en) * | 2005-01-04 | 2012-04-27 | Intezyne Technologies Inc | Synthesis of hybrid block copolymers and uses thereof |
| CN110228962B (en) * | 2019-05-29 | 2021-10-29 | 科之杰新材料集团有限公司 | Water-retention type wet-mixed mortar plasticizer and preparation method thereof |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3705076A (en) | 1962-08-20 | 1972-12-05 | Du Pont | Adhesive composition and laminating process |
| JPS436235Y1 (en) | 1967-04-11 | 1968-03-19 | ||
| BE795367A (en) * | 1971-03-31 | 1973-08-13 | Dow Chemical Co | COATING COMPOSITIONS BASED ON AMINOETHYL INTERPOLYMERS |
| US4120839A (en) | 1977-01-13 | 1978-10-17 | Rohm And Haas Company | Oligomeric amino-containing aminolysis products of polymethacrylates or polyacrylates, and epoxy resin coating compositions containing such aminolysis products as curing agents |
| JPS53105556A (en) | 1977-02-23 | 1978-09-13 | Ppg Industries Inc | Additive interpolymer of modified stability and twoocomponent composition composed of sacd additive interpolymer and polyepoxide |
| US4126596A (en) | 1977-02-23 | 1978-11-21 | Ppg Industries, Inc. | Two package polymeric epoxy compositions having improved potlife |
| JPS6123615A (en) | 1984-06-18 | 1986-02-01 | Takeda Chem Ind Ltd | Curable resin composition |
| JPS6356549A (en) | 1986-08-28 | 1988-03-11 | Nippon Shokubai Kagaku Kogyo Co Ltd | Curable resin composition having excellent weather resistance |
| JP2945822B2 (en) | 1993-08-18 | 1999-09-06 | 株式会社日本触媒 | Method for producing water-soluble graft polymer |
| EP0639592A1 (en) | 1993-08-18 | 1995-02-22 | Nippon Shokubai Co., Ltd. | Water-soluble graft polymers and production process thereof |
| JP2918799B2 (en) | 1995-02-07 | 1999-07-12 | 株式会社日本触媒 | Water-soluble graft polymer, its production method and use |
| DE69618507T2 (en) | 1995-02-03 | 2002-08-08 | Nippon Shokubai Co. Ltd., Osaka | WATER SOLUBLE POLYMER, METHOD FOR THE PRODUCTION THEREOF AND DETERGENT COMPOSITION CONTAINING THIS WATER SOLUBLE POLYMER |
| JP2918798B2 (en) | 1995-02-03 | 1999-07-12 | 株式会社日本触媒 | Water-soluble graft polymer, its production method and use |
| DE10005942A1 (en) | 2000-02-09 | 2001-08-16 | Basf Ag | Production of graft copolymers used e.g. as coatings by polymerizing vinyl esters in presence of solid polyether comprises using liquid polyalkylene glycol as solvent for radical initiator |
| EP1124541B1 (en) | 1998-09-30 | 2003-11-26 | Basf Aktiengesellschaft | Application of water-soluble or water-dispersible graft polymerizates which contain poly-ether and which are used as a coating agent, a binding agent and/or as a film-forming auxiliary agent in pharmaceutical forms of administration |
-
2001
- 2001-02-08 EP EP01102986A patent/EP1123942B1/en not_active Expired - Lifetime
- 2001-02-08 US US09/779,261 patent/US6441102B2/en not_active Expired - Fee Related
- 2001-02-08 DE DE60103092T patent/DE60103092T2/en not_active Expired - Fee Related
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050192402A1 (en) * | 2004-02-26 | 2005-09-01 | Miroslav Antal | Epichlorohydrin-based polymers containing primary amino groups used as additives in papermaking |
| US7431799B2 (en) | 2004-02-26 | 2008-10-07 | Fpinnovations | Epichlorohydrin-based polymers containing primary amino groups used as additives in papermaking |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1123942A2 (en) | 2001-08-16 |
| EP1123942B1 (en) | 2004-05-06 |
| EP1123942A3 (en) | 2002-03-27 |
| DE60103092D1 (en) | 2004-06-09 |
| US6441102B2 (en) | 2002-08-27 |
| DE60103092T2 (en) | 2005-04-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6166149A (en) | Hydrophilic graft polymer, production process therefor, composition containing the polymer, and use thereof | |
| US5212241A (en) | Glycidyl-epoxy-acrylic copolymers | |
| US5157078A (en) | Glycidyl-epoxy-acrylic copolymers | |
| JP5189982B2 (en) | Hydrophilic graft polymer | |
| US7569641B2 (en) | Poly(ethylene-butylene) (meth)acrylates and related compositions | |
| US6835708B2 (en) | Graft polymer composition and its production process and uses | |
| US6441102B2 (en) | Amino-group-containing polymer (salt) and production process therefor | |
| CN114891160B (en) | Asparagus resin and epoxy resin modified water-based resin hydroxy acrylic resin and its preparation method and application | |
| CN1995245A (en) | Method for preparing thermosetting acrylic ester emulsion coating under room temperature | |
| JP4782940B2 (en) | Method for producing hydrophilic graft polymer | |
| US6034157A (en) | Process for producing a coating composition | |
| KR100240849B1 (en) | Catalyst compositions | |
| JP2007246916A (en) | Hydrophilic graft polymer, method for producing the same and use thereof | |
| JP4057677B2 (en) | Hydrophilic graft polymer and its use | |
| JP3212696B2 (en) | Water-dispersed composition | |
| JP2001294616A (en) | Polymer (salt) containing amino group and method for producing the same | |
| JP3947405B2 (en) | Process for producing oxazoline group-containing polymer | |
| WO2006132385A1 (en) | Water-soluble polymer, production method thereof, and application thereof | |
| EP0979249B1 (en) | Process for producing a coating composition | |
| WO2004037884A1 (en) | Organic polymer having epoxy-group-containing silicon group at end and process for producing the same | |
| JP4337594B2 (en) | Process for producing polycarboxylic acid macromonomer composition | |
| JP3947396B2 (en) | Method for producing epoxy group-containing polymer | |
| JP4150196B2 (en) | Polymer | |
| JPH10287715A (en) | Aqueous resin, method for producing the same, and aqueous resin composition containing the same | |
| JP6986863B2 (en) | Graft polymer |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: NIPPON SHOKUBAI CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AKASAKI, ICHIMOTO;TAKAGI, MASAHITO;SAEKI, TAKUYA;AND OTHERS;REEL/FRAME:011557/0220 Effective date: 20010129 |
|
| FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20100827 |