US20010007879A1 - Fischer-tropsch processes using xerogel and aerogel catalysts by destabilizing aqueous colloids - Google Patents
Fischer-tropsch processes using xerogel and aerogel catalysts by destabilizing aqueous colloids Download PDFInfo
- Publication number
- US20010007879A1 US20010007879A1 US09/789,987 US78998701A US2001007879A1 US 20010007879 A1 US20010007879 A1 US 20010007879A1 US 78998701 A US78998701 A US 78998701A US 2001007879 A1 US2001007879 A1 US 2001007879A1
- Authority
- US
- United States
- Prior art keywords
- catalyst
- metal
- aluminum
- titanium
- mole percent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 141
- 238000000034 method Methods 0.000 title claims abstract description 86
- 230000008569 process Effects 0.000 title claims abstract description 58
- 239000000084 colloidal system Substances 0.000 title claims abstract description 29
- 230000000368 destabilizing effect Effects 0.000 title claims abstract description 7
- 239000004964 aerogel Substances 0.000 title claims description 9
- 229910052751 metal Inorganic materials 0.000 claims abstract description 98
- 239000002184 metal Substances 0.000 claims abstract description 98
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 52
- 239000010941 cobalt Substances 0.000 claims abstract description 52
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 52
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 46
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 45
- 238000006243 chemical reaction Methods 0.000 claims abstract description 43
- 239000010936 titanium Substances 0.000 claims abstract description 40
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 36
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 36
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims abstract description 35
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 34
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 28
- 239000001257 hydrogen Substances 0.000 claims abstract description 28
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 26
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052742 iron Inorganic materials 0.000 claims abstract description 18
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 14
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 13
- 229910000420 cerium oxide Inorganic materials 0.000 claims abstract description 13
- 238000001035 drying Methods 0.000 claims abstract description 13
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims abstract description 13
- 230000003197 catalytic effect Effects 0.000 claims abstract description 11
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 9
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 8
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims abstract description 7
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910001928 zirconium oxide Inorganic materials 0.000 claims abstract description 6
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims description 59
- 229910052782 aluminium Inorganic materials 0.000 claims description 42
- 239000011159 matrix material Substances 0.000 claims description 37
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 36
- 229910052719 titanium Inorganic materials 0.000 claims description 34
- 239000000463 material Substances 0.000 claims description 33
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 29
- 229910052702 rhenium Inorganic materials 0.000 claims description 26
- 229910052684 Cerium Inorganic materials 0.000 claims description 23
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical group [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 22
- 229910052710 silicon Inorganic materials 0.000 claims description 15
- 150000002739 metals Chemical class 0.000 claims description 13
- 239000010703 silicon Substances 0.000 claims description 13
- 239000002904 solvent Substances 0.000 claims description 13
- 229910052726 zirconium Inorganic materials 0.000 claims description 13
- 238000002360 preparation method Methods 0.000 claims description 11
- 150000004703 alkoxides Chemical class 0.000 claims description 10
- 150000003839 salts Chemical class 0.000 claims description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 7
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 7
- 239000012530 fluid Substances 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- 230000009467 reduction Effects 0.000 claims description 5
- 229910052788 barium Inorganic materials 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910052792 caesium Inorganic materials 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 238000000605 extraction Methods 0.000 claims description 4
- 229910052735 hafnium Inorganic materials 0.000 claims description 4
- 229910052741 iridium Inorganic materials 0.000 claims description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052762 osmium Inorganic materials 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229910052700 potassium Inorganic materials 0.000 claims description 4
- 229910052701 rubidium Inorganic materials 0.000 claims description 4
- 229910052706 scandium Inorganic materials 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- 229910052712 strontium Inorganic materials 0.000 claims description 4
- 229910052727 yttrium Inorganic materials 0.000 claims description 4
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 3
- 239000001569 carbon dioxide Substances 0.000 claims description 3
- 150000001805 chlorine compounds Chemical class 0.000 claims description 3
- 230000001687 destabilization Effects 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 claims description 2
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 claims description 2
- 150000002823 nitrates Chemical class 0.000 claims description 2
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 claims description 2
- XREXPQGDOPQPAH-QKUPJAQQSA-K trisodium;[(z)-18-[1,3-bis[[(z)-12-sulfonatooxyoctadec-9-enoyl]oxy]propan-2-yloxy]-18-oxooctadec-9-en-7-yl] sulfate Chemical compound [Na+].[Na+].[Na+].CCCCCCC(OS([O-])(=O)=O)C\C=C/CCCCCCCC(=O)OCC(OC(=O)CCCCCCC\C=C/CC(CCCCCC)OS([O-])(=O)=O)COC(=O)CCCCCCC\C=C/CC(CCCCCC)OS([O-])(=O)=O XREXPQGDOPQPAH-QKUPJAQQSA-K 0.000 claims description 2
- 238000001291 vacuum drying Methods 0.000 claims description 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims 17
- 238000000194 supercritical-fluid extraction Methods 0.000 claims 2
- 229910002651 NO3 Inorganic materials 0.000 claims 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims 1
- 230000032683 aging Effects 0.000 claims 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 28
- 239000000499 gel Substances 0.000 description 26
- 239000007864 aqueous solution Substances 0.000 description 23
- 239000007789 gas Substances 0.000 description 23
- 239000007788 liquid Substances 0.000 description 22
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 22
- 230000015572 biosynthetic process Effects 0.000 description 18
- 238000003786 synthesis reaction Methods 0.000 description 18
- 239000000047 product Substances 0.000 description 17
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- GFHNAMRJFCEERV-UHFFFAOYSA-L cobalt chloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Co+2] GFHNAMRJFCEERV-UHFFFAOYSA-L 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000004215 Carbon black (E152) Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 239000012071 phase Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- -1 aliphatic alcohols Chemical class 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 239000003345 natural gas Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910021580 Cobalt(II) chloride Inorganic materials 0.000 description 3
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000012808 vapor phase Substances 0.000 description 3
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 2
- XMPZTFVPEKAKFH-UHFFFAOYSA-P ceric ammonium nitrate Chemical compound [NH4+].[NH4+].[Ce+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O XMPZTFVPEKAKFH-UHFFFAOYSA-P 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000000352 supercritical drying Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical class O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 239000003922 charged colloid Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000003034 coal gas Substances 0.000 description 1
- MZZUATUOLXMCEY-UHFFFAOYSA-N cobalt manganese Chemical compound [Mn].[Co] MZZUATUOLXMCEY-UHFFFAOYSA-N 0.000 description 1
- VLWBWEUXNYUQKJ-UHFFFAOYSA-N cobalt ruthenium Chemical compound [Co].[Ru] VLWBWEUXNYUQKJ-UHFFFAOYSA-N 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000011960 computer-aided design Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- LAIZPRYFQUWUBN-UHFFFAOYSA-L nickel chloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Ni+2] LAIZPRYFQUWUBN-UHFFFAOYSA-L 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000001935 peptisation Methods 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000012256 powdered iron Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000011369 resultant mixture Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- RTHYXYOJKHGZJT-UHFFFAOYSA-N rubidium nitrate Inorganic materials [Rb+].[O-][N+]([O-])=O RTHYXYOJKHGZJT-UHFFFAOYSA-N 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- KHAUBYTYGDOYRU-IRXASZMISA-N trospectomycin Chemical compound CN[C@H]([C@H]1O2)[C@@H](O)[C@@H](NC)[C@H](O)[C@H]1O[C@H]1[C@]2(O)C(=O)C[C@@H](CCCC)O1 KHAUBYTYGDOYRU-IRXASZMISA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8933—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/894—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/066—Zirconium or hafnium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/462—Ruthenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8913—Cobalt and noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8933—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/03—Catalysts comprising molecular sieves not having base-exchange properties
- B01J29/0308—Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/041—Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/20—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
- B01J35/23—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0236—Drying, e.g. preparing a suspension, adding a soluble salt and drying
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/02—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
- C07C1/04—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
- C07C1/0425—Catalysts; their physical properties
- C07C1/043—Catalysts; their physical properties characterised by the composition
- C07C1/0435—Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2/00—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
- C10G2/30—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
- C10G2/32—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
- C10G2/33—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
- C10G2/331—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2/00—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
- C10G2/30—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
- C10G2/32—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
- C10G2/33—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
- C10G2/331—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
- C10G2/332—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2/00—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
- C10G2/30—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
- C10G2/32—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
- C10G2/33—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
- C10G2/331—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
- C10G2/333—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the platinum-group
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2/00—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
- C10G2/30—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
- C10G2/32—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
- C10G2/33—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
- C10G2/334—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing molecular sieve catalysts
Definitions
- the present invention relates to a process for the preparation of hydrocarbons from synthesis gas, (i.e., a mixture of carbon monoxide and hydrogen), typically labeled the Fischer-Tropsch process.
- this invention relates to catalysts containing a xerogel or aerogel matrix, containing cerium oxide, titanium oxide, zirconium oxide or aluminum oxide, for the Fischer-Tropsch process.
- methane the main component of natural gas
- Methane can be used as a starting material for the production of hydrocarbons.
- the conversion of methane to hydrocarbons is typically carried out in two steps. In the first step methane is reformed with water or partially oxidized with oxygen to produce carbon monoxide and hydrogen (i.e., synthesis gas or syngas). In a second step, the syngas is converted to hydrocarbons.
- the preparation of hydrocarbons from synthesis gas is well known in the art and is usually referred to as Fischer-Tropsch synthesis, the Fischer-Tropsch process, or Fischer-Tropsch reaction(s).
- Catalysts for use in such synthesis usually contain a catalytically active Group VIII (CAS) metal.
- CAS catalytically active Group VIII
- iron, cobalt, nickel, and ruthenium have been abundantly used as the catalytically active metals.
- Cobalt and ruthenium have been found to be most suitable for catalyzing a process in which synthesis gas is converted to primarily hydrocarbons having five or more carbon atoms (i.e., where the C 5 + selectivity of the catalyst is high).
- the catalysts often contain one or more promoters and a support or carrier material. Rhenium is a widely used promoter.
- the Fischer-Tropsch reaction involves the catalytic hydrogenation of carbon monoxide to produce a variety of products ranging from methane to higher aliphatic alcohols.
- the methanation reaction was first described in the early 1900's, and the later work by Fischer and Tropsch dealing with higher hydrocarbon synthesis was described in the 1920's.
- the Fischer-Tropsch synthesis reactions are highly exothermic and reaction vessels must be designed for adequate heat exchange capacity. Because the feed streams to Fischer-Tropsch reaction vessels are gases while the product streams include liquids, the reaction vessels must have the ability to continuously produce and remove the desired range of liquid hydrocarbon products.
- the process has been considered for the conversion of carbonaceous feedstock, e.g., coal or natural gas, to higher value liquid fuel or petrochemicals.
- the first major commercial use of the Fischer-Tropsch process was in Germany during the 1930's. More than 10,000 B/D (barrels per day) of products were manufactured with a cobalt based catalyst in a fixed-bed reactor. This work has been described by Fischer and Pichler in Ger. Pat. No. 731,295 issued Aug. 2, 1936.
- Catalyst supports for catalysts used in Fischer-Tropsch synthesis of hydrocarbons have typically been oxides (e.g., silica, alumina, titania, zirconia or mixtures thereof, such as silica-alumina). It has been claimed that the Fischer-Tropsch synthesis reaction is only weakly dependent on the chemical identity of the metal oxide support (see E. Iglesia et al. 1993, In: “Computer-Aided Design of Catalysts,” ed. E. R. Becker et al., p. 215, New York, Marcel Dekker, Inc.). The products prepared by using these catalysts usually have a very wide range of molecular weights.
- oxides e.g., silica, alumina, titania, zirconia or mixtures thereof, such as silica-alumina.
- U.S. Pat. No. 4,477,595 discloses ruthenium on titania as a hydrocarbon synthesis catalyst for the production of C 5 to C 40 hydrocarbons, with a majority of paraffins in the C 5 to C 20 range.
- U.S. Pat. No. 4,542,122 discloses a cobalt or cobalt-thoria on titania having a preferred ratio of rutile to anatase, as a hydrocarbon synthesis catalyst.
- U.S. Pat. No. 4,088,671 discloses a cobalt-ruthenium catalyst where the support can be titania but preferably is alumina for economic reasons.
- 4,413,064 discloses an alumina supported catalyst having cobalt, ruthenium and a Group IIIA or Group IVB metal oxide, e.g., thoria.
- European Patent No. 142,887 discloses a silica supported cobalt catalyst together with zirconium, titanium, ruthenium and/or chromium.
- U.S. Pat. No. 4,801,573 discloses a promoted cobalt and rhenium catalyst, preferably supported on alumina that is characterized by low acidity, high surface area, and high purity, which properties are said to be necessary for high activity, low deactivation, and high molecular weight products.
- the amount of cobalt is most preferably about 10 to 40 wt % of the catalyst.
- the content of rhenium is most preferably about 2 to 20 wt % of the cobalt content.
- Related U.S. Pat. No. 4,857,559 discloses a catalyst most preferably having 10 to 45 wt % cobalt and a rhenium content of about 2 to 20 wt % of the cobalt content. In both of the above patents the method of depositing the active metals and promoter on the alumina support is described as not critical.
- U.S. Pat. No. 5,545,674 discloses a cobalt-based catalyst wherein the active metal is dispersed as a very thin film on the surface of a particulate support, preferably silica or titania or a titania-containing support.
- the catalyst may be prepared by spray techniques.
- U.S. Pat. No. 5,028,634 discloses supported cobalt-based catalysts, preferably supported on high surface area aluminas.
- High surface area supports are said to be preferred because greater cobalt dispersion can be achieved as cobalt is added, with less tendency for one crystal of cobalt to fall on another crystal of cobalt.
- the cobalt loading on a titania support is preferably 10 to 25 wt %, while the preferred cobalt loading on an alumina support is 5 to 45 wt %.
- U.S. Pat. No. 5,248,701 discloses a copper promoted cobalt-manganese spinel that is said to be useful as a Fischer-Tropsch catalyst with selectivity for olefins and higher paraffins.
- U.S. Pat. No. 5,302,622 discloses a supported cobalt and ruthenium based catalyst including other components and preferably prepared by a gelling procedure to incorporate the catalyst components in an alcogel formed from a hydrolyzable compound of silicon, and/or aluminum, and optional compounds.
- the cobalt content after calcination is preferably between 14 and 40 wt % of the catalyst.
- UK Patent Application GB 2,258,414A published Feb. 10, 1993, discloses a supported catalyst containing cobalt, molybdenum and/or tungsten, and an additional element.
- the support is preferably one or more oxides of the elements Si, Al, Ti, Zr, Sn, Zn, Mg, and elements with atomic numbers from 57 to 71.
- the preferred cobalt content is from 5 to 40 wt % of the catalyst.
- a preferred method of preparation of the catalyst includes the preparation of a gel containing the cobalt and other elements.
- This invention provides a process and catalyst for producing hydrocarbons, and a method for preparing the catalyst.
- the process comprises contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising hydrocarbons
- the catalyst comprises a catalytically active metal selected from the group consisting of iron, cobalt, nickel, ruthenium, and combinations thereof dispersed in a matrix material comprising a derivative of a destabilized aquasol comprising a colloidal oxide of a matrix metal selected from the group consisting of cerium, zirconium, titanium, aluminum, silicon, and combinations thereof.
- another catalyst used in the process comprises a reduced aerogel or xerogel formed from the destabilization of a colloidal mixture comprising a catalytically active metal selected from the group consisting of iron, cobalt, nickel, ruthenium, aluminum, and combinations thereof and a colloidal sol of a matrix metal selected from the group consisting of cerium, zirconium, titanium, aluminum, silicon, and combinations thereof.
- a catalytically active metal selected from the group consisting of iron, cobalt, nickel, ruthenium, aluminum, and combinations thereof
- a colloidal sol of a matrix metal selected from the group consisting of cerium, zirconium, titanium, aluminum, silicon, and combinations thereof.
- This invention also includes a method for the preparation of a Fischer-Tropsch catalyst comprising comprising mixing a colloidal sol of an oxide of a metal selected from the group consisting of cerium, zirconium, titanium, aluminum, silicon, and combinations thereof with a soluble salt of one or more catalytically active metals selected from the group consisting of iron, cobalt, nickel, and ruthenium, destabilizing the colloid to form a gel, and removing solvent from the gel.
- This invention also provides a process for producing hydrocarbons by contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising the hydrocarbons.
- the process of this invention is characterized by using a catalyst prepared by a method comprising (1) forming a catalyst gel by destabilizing an aqueous colloid comprising (a) at least one catalytic metal for Fischer-Tropsch reactions (e.g., at least one metal selected from the group consisting of iron, cobalt, nickel and ruthenium), (b) at least one colloidal oxide selected from the group consisting of cerium oxide, zirconium oxide, titanium oxide and aluminum oxide, and optionally (c) at least one alkoxide selected from the group consisting of Al(OR) 3 , Si(OR) 4 , Ti(OR) 4 and Zr(OR) 4 , where each R is an alkyl group having from 1 to 6 carbon atoms; and (2) drying the gel.
- the feed gases charged to the process of the invention comprise hydrogen, or a hydrogen source, and carbon monoxide.
- H 2 /CO mixtures suitable as a feedstock for conversion to hydrocarbons according to the process of this invention can be obtained from light hydrocarbons such as methane by means of steam reforming, partial oxidation, or other processes known in the art.
- the hydrogen is preferably provided by free hydrogen, although some Fischer-Tropsch catalysts have sufficient water gas shift activity to convert some water to hydrogen for use in the Fischer-Tropsch process. It is preferred that the molar ratio of hydrogen to carbon monoxide in the feed be greater than 0.5:1 (e.g., from about 0.67 to 2.5).
- the feed gas stream preferably contains hydrogen and carbon monoxide in a molar ratio of about 2:1.
- the feed gas stream preferably contains hydrogen and carbon monoxide in a molar ratio of about 0.67:1.
- the feed gas may also contain carbon dioxide.
- the feed gas stream should contain a low concentration of compounds or elements that have a deleterious effect on the catalyst, such as poisons.
- the feed gas may need to be pre-treated to ensure that it contains low concentrations of sulfur or nitrogen compounds, such as hydrogen sulfide, ammonia and carbonyl sulfides.
- the feed gas is contacted with the catalyst in a reaction zone.
- Mechanical arrangements of conventional design may be employed as the reaction zone including, for example, fixed bed, fluidized bed, slurry phase, slurry bubble column or ebullating bed reactors, among others, may be used. Accordingly, the size and physical form of the catalyst particles may vary depending on the reactor in which they are to be used.
- a component of the catalysts used in this invention is the matrix material, which is essentially derived from at least one colloidal oxide and optionally at least one metal alkoxide, and which incorporates at least one catalytic metal for Fischer-Tropsch reactions.
- a matrix is a skeletal framework of oxides and oxyhydroxides which in the present invention is derived from the colloids used.
- the framework typically comprises 35% or more, by weight, of the total catalyst composition.
- the matrix material i.e., cerium oxide, zirconium oxide, titanium oxide and/or aluminum oxide and optionally silicon oxide
- the matrix is cerium oxide, titanium oxide or a mixture of titanium and aluminum oxides (e.g., a mixture wherein the Ti:Al atomic ratio is between about 5:95 and 95:1).
- a gel may be described as a coherent, rigid three-dimensional polymeric network.
- the present gels are formed in a liquid medium, usually water, alcohol, or a mixture thereof.
- the term “alcogel” describes gels in which the pores are filled with predominantly alcohol. Gels whose pores are filled primarily with water may be referred to as aquagels or hydrogels.
- a “xerogel” is a gel from which the liquid medium has been removed and replaced by a gas.
- the structure is compressed and the porosity reduced significantly by the surface tension forces that occur as the liquid is removed.
- surface tension creates concave menisci in the gel's pores.
- the menisci retreat into the gel body, compressive forces build up around its perimeter, and the perimeter contracts, drawing the gel body inward.
- surface tension causes significant collapse of the gel body and a reduction of volume, often as much as two-thirds or more of the original volume. This shrinkage causes a significant reduction in the porosity, often as much as 90 to 95 percent depending on the system and pore sizes.
- an “aerogel” is a gel from which the liquid has been removed in such a way as to prevent significant collapse or change in the structure as liquid is removed. This is typically accomplished by heating the liquid-filled gel in an autoclave while maintaining the prevailing pressure above the vapor pressure of the liquid until the critical temperature of the liquid has been exceeded, and then gradually releasing the vapor, usually by gradually reducing the pressure either incrementally or continuously, while maintaining the temperature above the critical temperature.
- the critical temperature is the temperature above which it is impossible to liquefy a gas, regardless of how much pressure is applied. At temperatures above the critical temperature, the distinction between liquid and gas phases disappears and so do the physical manifestations of the gas/liquid interface.
- Aerogels produced by supercritical drying typically have high porosities, on the order of from 50 to 99 percent by volume.
- one or more inorganic metal colloids may be used as starting material for preparing the gels.
- colloids include colloidal alumina sols, colloidal ceria sols, colloidal zirconia sols or their mixtures.
- the colloidal sols are commercially available.
- Colloid formation involves either nucleation and growth, or subdivision or dispersion processes.
- hydrous titanium dioxide sols can be prepared by adding ammonia hydroxide to a solution of a tetravalent titanium salt, followed by peptization (re-dispersion) by dilute alkalis.
- Zirconium oxide sol can be prepared by dialysis of sodium oxychlorides.
- Cerium oxide sol can be prepared by dialysis of a solution of ceric ammonium nitrate.
- alkoxides such as tetraethylorthosilicate and TyzorTM organic titanate esters
- inorganic alkoxides can be prepared by various routes. Examples include direct reaction of zero valent metal with alcohols in the presence of a suitable catalyst; and the reaction of metal halides with alcohols.
- Alkoxy derivatives can be synthesized by the reaction of the alkoxide with alcohol in a ligand interchange reaction. Direct reactions of metal dialkamides with alcohol also form alkoxide derivatives. Additional examples are disclosed in D. C. Bradley et al., “Metal Alkoxides” (Academic Press, 1978).
- preformed colloidal sols in water, or aquasols are used.
- the aquasols are comprised of colloidal particles ranging in size from 2 to 50 nanometers. In general, the smaller primary particle sizes (2 to 5 nm) are preferred.
- the pre-formed colloids contain from 10 to 35 weight % of colloidal oxides or other materials, depending on the method of stabilization. Generally, after addition of the active (for Fischer-Tropsch reactions, either as a catalyst or promoter) metal components, the final destabilized colloids can possess from about 1 to 35 weight % solids, preferably from about 1 to 20 weight %.
- colloidal oxides or their mixtures are destabilized during the addition of soluble salts of the primary and promoter cation species by the addition of acids or bases or by solvent removal, both of which alter pH. These changes modify the colloidal particle's electrical double layer.
- Each colloidal particle possesses a double layer when suspended in a liquid medium. For instance, a negatively charged colloid causes some of the positive ions to form a firmly attached layer around the surface of a colloid. Additional positive ions are still attracted by the negative colloid, but now they are repelled by the primary positive layer as well as the positive ions, and form a diffuse layer of counterions. The primary layer and the diffuse layer are referred to as the double layer.
- the tendencies of a colloid to either agglomerate (flocculate and precipitate) or polymerize when destabilized will depend on the properties of this double layer.
- the double layer, and resulting electrostatic forces can be modified by altering the ionic environment, or pH, liquid concentration, or by adding a surface active material directly to affect the charge of the colloid.
- the colloids which are originally stable heterogeneous dispersions of oxides and other species in solvents, are destabilized to produce colloidal gels.
- Destabilization is induced, in some cases, by the addition of soluble salts, e.g., chlorides or nitrates, which change the pH and the ionic strength of the colloidal suspensions; by the addition of acids or bases; or by solvent removal. pH changes generally accompany the addition of soluble salts; in general, this is preferred over solvent removal.
- a pH range of from about 0 to about 12 can be used to destabilize the colloids; however, very large extremes in pH (such as pH 12) can cause flocculation and precipitation. For this reason, a pH range of from about 2 to 8 is generally preferred.
- the medium utilized in this process is typically aqueous, although non-aqueous colloids can also be used.
- the additional metal or inorganic reagents e.g., salts of Ru, Co, or promoters
- Removal of solvent from the gels can be accomplished by several methods. Removal by vacuum drying or heating in air results in the formation of a xerogel.
- An aerogel of the material can typically be formed by charging in a pressurized system such as an autoclave.
- water solvent which may be present in the gels formed
- the solvent-containing gel which is formed in the practice of the invention is placed in an autoclave, where it can be contacted with a fluid above its critical temperature and pressure by allowing the supercritical fluid to flow through the gel material until the solvent is no longer being extracted by the supercritical fluid.
- various fluids can be utilized at their critical temperature and pressure.
- fluorochlorocarbons typified by Freon® fluorochloromethanes (e.g., Freon® 11 (CCl 3 F), 12 (CCl 2 F 2 ) or 114 (CClF 2 CClF 2 ), ammonia and carbon dioxide are all suitable for this process.
- the extraction fluids are gases at atmospheric conditions, so that pore collapse due to the capillary forces at the liquid/solid interface is avoided during drying.
- the material dried under supercritical conditions will, in most cases, possess a higher surface area than the materials dried by other means.
- the catalytic metal is preferably selected from iron, cobalt, nickel and/or ruthenium. Normally, the metal component on the support or matrix is reduced to provide elemental metal (e.g., elemental iron, cobalt, nickel and/or ruthenium) before use.
- the catalyst must contain a catalytically effective amount of the metal component(s).
- the catalyst comprises from about 0.1 to 50 mole % (as the metal) of total supported iron, cobalt, nickel and/or ruthenium per total moles of catalytic metal and matrix metal (i.e., Ce, Zr, Ti, Al and Si), preferably from about 5 to 50 mole %.
- each of the catalytic metals can be used individually or in combination, especially cobalt and ruthenium.
- catalysts of this invention comprise from about 10 to 50 mole percent of a combination of cobalt and ruthenium where the ruthenium content is from about 0.001 to about 5 mole percent. Also preferred are embodiments where these combinations are combined with a matrix of titanium oxide, cerium oxide, aluminum oxide, a mixture of cerium and aluminum oxides, or a mixture of titanium and aluminum oxides.
- the catalysts of the present invention may comprise one or more additional promoters or modifiers known to those skilled in the art.
- suitable promoters include at least one metal selected from the group consisting of Group IA (CAS) metals (i.e., Na, K, Rb, Cs), Group IIA metals (i.e., Mg, Ca, Sr, Ba), Group IB metals (i.e., Cu, Ag, and Au) Group IIIB metals (i.e., Sc, Y and La), Group IVB metals (i.e., Ti, Zr and Hf), Group VB metals (i.e., V, Nb and Ta), and Rh, Pd, Os, Ir, Pt, Mn, B, P, and Re.
- any additional promoters for the cobalt and/or ruthenium are selected from Sc, Y, La, Ti, Zr, Hf, Rh, Pd, Os, Ir, Pt, Re, Nb, Cu, Ag, Mn, B, P, and Ta.
- any additional promoters for the iron catalysts are selected from Na, K, Rb, Cs, Mg, Ca, Sr and Ba.
- the amount of additional promoter is typically between 0.001 and 20 mole %, preferably from 2 to 5 mole %. More preferably, the catalysts comprise from about 5 to about 50 mole percent of a combination of cobalt and rhenium where the rhenium content is from about 0.001 to about 5 mole percent; and catalysts comprising from about 5 to about 50 mole percent a combination of cobalt and both rhenium and ruthenium where the rhenium and ruthenium together total from about 0.001 to about 5 mole percent.
- these combinations are combined with a matrix of titanium oxide, cerium oxide, aluminum oxide, a mixture of cerium and aluminum oxides, a mixture of titanium and aluminum oxides, or a mixture of silicon and aluminum oxides.
- the most preferred method of preparation may vary among those skilled in the art, depending for example on the desired catalyst particle size. Those skilled in the art are able to select the most suitable method for a given set of requirements.
- the metal(s) of the catalytic metal component (a) of the catalysts of the present invention is present in a reduced state (i.e., in the metallic state). Therefore, it is normally advantageous to activate the catalyst prior to use by a reduction treatment, in the presence of hydrogen at an elevated temperature.
- the catalyst is treated with hydrogen at a temperature in the range of from about 75° C. to about 500° C., for about 0.5 to about 24 hours at a pressure of about 1 to about 75 atm. Pure hydrogen may be used in the reduction treatment, as well as a mixture of hydrogen and an inert gas such as nitrogen.
- the amount of hydrogen may range from about 1% to about 100% by volume.
- the Fischer-Tropsch process is typically run in a continuous mode.
- the gas hourly space velocity through the reaction zone typically may range from about 100 volumes/hour/volume catalyst (v/hr/v) to about 10,000 v/hr/v, preferably from about 300 v/hr/v to about 2,000 v/hr/v.
- the reaction zone temperature is typically in the range from about 160° C. to about 300° C.
- the reaction zone is operated at conversion promoting conditions at temperatures from about 190° C. to about 260° C.
- the reaction zone pressure is typically in the range of about 80 psig (653 kPa) to about 1000 psig (6994 kPa), preferably, from 80 psig (653 kPa) to about 600 psig (4237 kPa), and still more preferably, from about 140 psig (1066 kPa) to about 400 psig (2858 kPa).
- the products resulting from the process will have a great range of molecular weights.
- the carbon number range of the product hydrocarbons will start at methane and continue to the limits observable by modern analysis, about 50 to 100 carbons per molecule.
- the process is particularly useful for making hydrocarbons having five or more carbon atoms, especially when the above-referenced preferred space velocity, temperature and pressure ranges are employed.
- the effluent stream of the reaction zone will often be a mixed phase stream including liquid and vapor phase products.
- the effluent stream of the reaction zone may be cooled to effect the condensation of additional amounts of hydrocarbons and passed into a vapor-liquid separation zone separating the liquid and vapor phase products.
- the vapor phase material may be passed into a second stage of cooling for recovery of additional hydrocarbons.
- the liquid phase material from the initial vapor-liquid separation zone, together with any liquid from a subsequent separation zone, may be fed into a fractionation column.
- a stripping column is employed first to remove light hydrocarbons such as propane and butane.
- the remaining hydrocarbons may be passed into a fractionation column where they are separated by boiling point range into products such as naphtha, kerosene and fuel oils.
- Hydrocarbons recovered from the reaction zone and having a boiling point above that of the desired products may be passed into conventional processing equipment such as a hydrocracking zone in order to reduce their molecular weight.
- the gas phase recovered from the reactor zone effluent stream after hydrocarbon recovery may be partially recycled if it contains a sufficient quantity of hydrogen and/or carbon monoxide.
- Each of the catalyst samples was treated with hydrogen prior to use in the Fischer-Tropsch reaction.
- the catalyst sample was placed in a small quartz crucible in a chamber and purged with 500 sccm (8.3 ⁇ 10 ⁇ 6 m 3 /s) nitrogen at room temperature for 15 minutes.
- the sample was then heated under 100 sccm (1.7 ⁇ 10 ⁇ 6 m 3 /s) hydrogen at 1° C./minute to 100° C. and held at 100° C. for one hour.
- the catalysts were then heated at 1° C./minute to 400° C. and held at 400° C. for four hours under 100 sccm (1.7 ⁇ 10 ⁇ 6 m 3 /s) hydrogen.
- the samples were cooled in hydrogen and purged with nitrogen before use.
- a 2 mL pressure vessel was heated at either 225° C. under 1000 psig (6994 kPa) of H 2 :CO (2:1) and maintained at that temperature and pressure for 1 hour.
- H 2 :CO 2:1
- the reactor vessel was cooled in ice, vented, and an internal standard of di-n-butylether was added.
- the reaction product was analyzed on an HP6890 gas chromatograph. Hydrocarbons in the range of C 11 -C 40 were analyzed relative to the internal standard. The lower hydrocarbons were not analyzed since they are masked by the solvent and are also vented as the pressure is reduced.
- a C 11 + Productivity (g C 11 + /hour/kg catalyst) was calculated based on the integrated production of the C 11 -C 40 hydrocarbons per kg of catalyst per hour.
- the logarithm of the weight fraction for each carbon number ln(Wn/n) was plotted as the ordinate vs. number of carbon atoms in (Wn/n) as the abscissa. From the slope, a value of alpha was obtained. Some runs displayed a double alpha as shown in the tables. The results of runs over a variety of catalysts at 225° C. are shown in Table 1.
- the final xerogel had a nominal composition of Ru (0.05)/Co (0.45)/Al (0.5).
- the final xerogel had a nominal composition Ru (0.0495)/Co (0.445)/Cs (0.01)/Al (0.495).
- the final xerogel had a nominal composition of Ru (0.0475)/Co (0.4275)/Li (0.05)/Al (0.475).
- the final xerogel had a nominal composition of Ru (0.0475)/Co (0.4275)/Rb (0.05)/Al (0.475).
- the final xerogel had a nominal composition Ru (0.0475)/Co (0.4275)/Na (0.05)/Al (0.475).
- ruthenium (III) chloride (17.072 mL of a 0.1151 M aqueous solution), cobalt (II) chloride hexahydrate (CoCl 2 .6H 2 O, 17.685 mL of a 1.0 M aqueous solution) and colloidal alumina sol (4.209 mL, 4.668 M or 20 wt. %) were simultaneously combined.
- 1.034 mL of 2.0 M aqueous potassium chloride (KCl) solution were added.
- the colloid was destabilized to form a red gel-like material. The material was aged for five days before drying under vacuum at 150° C. for 5 hours.
- the final xerogel had a nominal composition of Ru (0.0475)/Co (0.4275)/K (0.05)/Al (0.475).
- the final xerogel had a nominal composition of Ru (0.0475)/Co (0.4275)/K (0.05)/Al (0.475).
- the final xerogel had a nominal composition of Ru (0.01)/Co (0.4)/Al (0.059)/Si (0.531).
- a red-brown 1.0 M aqueous nickel chloride hexahydrate (NiCl 2 .6H 2 O) was added with swirling. The final pH of the mixture was 1.32. A red-brown homogeneous, clear gel formed. The material was aged for four days, and dried under vacuum at 120° C. for 5 hours.
- the final xerogel had a nominal composition of Ru (0.05)/Ni (0.1)/Ce (0.425)/Al (0.425).
- the final xerogel had a nominal composition of Ru (0.005)/Co (0.145)/Ce (0.425)/Al (0.425).
- the final xerogel had a nominal composition of Ru (0.05)/Co (0.050/Ni (0.05)/Ce (0.425)/Al (0.425).
- the final xerogel had a nominal composition of Ru (0.05)/Ni (0.45)/Ce (0.25)/Al (0.25).
- the final xerogel had a nominal composition of Ru (0.05)/Co (0.45)/Ce (0.5).
- TABLE 1 (225° C.) Ex. C 11 + No. Catalyst Productivity Alpha 1 Ru (0.05)/Co (0.45)/Al (0.5) 368 0.88 2 Ru (0.0495)/Co (0.445)/Cs (0.01)/ 153 0.8 Al (0.495) 3 Ru (0.0475)/Co (0.4275)/Li (0.05)/ 208 0.78 Al (0.475) 4 Ru (0.0475)/Co (0.4275)/Rb (0.05)/ 260 0.8 Al (0.475) 5 Ru (0.0475)/Co (0.4275)/Na (0.05)/ 256 0.77 Al (0.475) 6 Ru (0.0475)/Co (0.4275)/K (0.05)/ 166 0.76 Al (0.475) 7 Ru (0.0475)/Co (0.4275)/Cs (0.05)/ 159 0.81 Al (0.475) 8 Ru (0.01)/Co (0.4)/A
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
- This application claims the benefit of U.S. provisional patent application Ser. No. 60/097,192, filed Aug. 20, 1998, U.S. provisional patent application Ser. No. 60/097,193, filed Aug. 20, 1998, and U.S. provisional patent application Ser. No. 60/097,194, filed Aug. 20, 1998, all of which are incorporated herein by reference in their entirety.
- The present invention relates to a process for the preparation of hydrocarbons from synthesis gas, (i.e., a mixture of carbon monoxide and hydrogen), typically labeled the Fischer-Tropsch process. Particularly, this invention relates to catalysts containing a xerogel or aerogel matrix, containing cerium oxide, titanium oxide, zirconium oxide or aluminum oxide, for the Fischer-Tropsch process.
- Large quantities of methane, the main component of natural gas, are available in many areas of the world. Methane can be used as a starting material for the production of hydrocarbons. The conversion of methane to hydrocarbons is typically carried out in two steps. In the first step methane is reformed with water or partially oxidized with oxygen to produce carbon monoxide and hydrogen (i.e., synthesis gas or syngas). In a second step, the syngas is converted to hydrocarbons.
- The preparation of hydrocarbons from synthesis gas is well known in the art and is usually referred to as Fischer-Tropsch synthesis, the Fischer-Tropsch process, or Fischer-Tropsch reaction(s). Catalysts for use in such synthesis usually contain a catalytically active Group VIII (CAS) metal. In particular, iron, cobalt, nickel, and ruthenium have been abundantly used as the catalytically active metals. Cobalt and ruthenium have been found to be most suitable for catalyzing a process in which synthesis gas is converted to primarily hydrocarbons having five or more carbon atoms (i.e., where the C 5 + selectivity of the catalyst is high). Additionally, the catalysts often contain one or more promoters and a support or carrier material. Rhenium is a widely used promoter.
- The Fischer-Tropsch reaction involves the catalytic hydrogenation of carbon monoxide to produce a variety of products ranging from methane to higher aliphatic alcohols. The methanation reaction was first described in the early 1900's, and the later work by Fischer and Tropsch dealing with higher hydrocarbon synthesis was described in the 1920's.
- The Fischer-Tropsch synthesis reactions are highly exothermic and reaction vessels must be designed for adequate heat exchange capacity. Because the feed streams to Fischer-Tropsch reaction vessels are gases while the product streams include liquids, the reaction vessels must have the ability to continuously produce and remove the desired range of liquid hydrocarbon products. The process has been considered for the conversion of carbonaceous feedstock, e.g., coal or natural gas, to higher value liquid fuel or petrochemicals. The first major commercial use of the Fischer-Tropsch process was in Germany during the 1930's. More than 10,000 B/D (barrels per day) of products were manufactured with a cobalt based catalyst in a fixed-bed reactor. This work has been described by Fischer and Pichler in Ger. Pat. No. 731,295 issued Aug. 2, 1936.
- Motivated by production of high-grade gasoline from natural gas, research on the possible use of the fluidized bed for Fischer-Tropsch synthesis was conducted in the United States in the mid-1940s. Based on laboratory results, Hydrocarbon Research, Inc. constructed a dense-phase fluidized bed reactor, the Hydrocol unit, at Carthage, Tex., using powdered iron as the catalyst. Due to disappointing levels of conversion, scale-up problems, and rising natural gas prices, operations at this plant were suspended in 1957. Research has continued, however, on developing Fischer-Tropsch reactors such as slurry-bubble columns, as disclosed in U.S. Pat. No. 5,348,982 issued Sep. 20, 1994.
- Commercial practice of the Fischer-Tropsch process has continued from 1954 to the present day in South Africa in the SASOL plants. These plants use iron-based catalysts, and produce gasoline in relatively high-temperature fluid-bed reactors and wax in relatively low-temperature fixed-bed reactors.
- Research is likewise continuing on the development of more efficient Fischer-Tropsch catalyst systems and reaction systems that increase the selectivity for high-value hydrocarbons in the Fischer-Tropsch product stream. In particular, a number of studies describe the behavior of iron, cobalt or ruthenium based catalysts in various reactor types, together with the development of catalyst compositions and preparations.
- There are significant differences in the molecular weight distributions of the hydrocarbon products from Fischer-Tropsch reaction systems. Product distribution or product selectivity depends heavily on the type and structure of the catalysts and on the reactor type and operating conditions. Accordingly, it is highly desirable to maximize the selectivity of the Fischer-Tropsch synthesis to the production of high-value liquid hydrocarbons, such as hydrocarbons with five or more carbon atoms per hydrocarbon chain.
- U.S. Pat. No. 4,659,681 issued on Apr. 21, 1987, describes the laser synthesis of iron based catalyst particles in the 1-100 micron particle size range for use in a slurry reactor for Fischer-Tropsch synthesis.
- U.S. Pat. No. 4,619,910 issued on Oct. 28, 1986, U.S. Pat. No. 4,670,472 issued on Jun. 2, 1987, and U.S. Pat. No. 4,681,867 issued on Jul. 21, 1987, describe a series of catalysts for use in a slurry Fischer-Tropsch process in which synthesis gas is selectively converted to higher hydrocarbons of relatively narrow carbon number range. Reactions of the catalyst with air and water and calcination are specifically avoided in the catalyst preparation procedure. The catalysts are activated in a fixed-bed reactor by reaction with CO+H 2 prior to slurrying in the oil phase in the absence of air.
- Catalyst supports for catalysts used in Fischer-Tropsch synthesis of hydrocarbons have typically been oxides (e.g., silica, alumina, titania, zirconia or mixtures thereof, such as silica-alumina). It has been claimed that the Fischer-Tropsch synthesis reaction is only weakly dependent on the chemical identity of the metal oxide support (see E. Iglesia et al. 1993, In: “Computer-Aided Design of Catalysts,” ed. E. R. Becker et al., p. 215, New York, Marcel Dekker, Inc.). The products prepared by using these catalysts usually have a very wide range of molecular weights.
- U.S. Pat. No. 4,477,595 discloses ruthenium on titania as a hydrocarbon synthesis catalyst for the production of C 5 to C40 hydrocarbons, with a majority of paraffins in the C5 to C20 range. U.S. Pat. No. 4,542,122 discloses a cobalt or cobalt-thoria on titania having a preferred ratio of rutile to anatase, as a hydrocarbon synthesis catalyst. U.S. Pat. No. 4,088,671 discloses a cobalt-ruthenium catalyst where the support can be titania but preferably is alumina for economic reasons. U.S. Pat. No. 4,413,064 discloses an alumina supported catalyst having cobalt, ruthenium and a Group IIIA or Group IVB metal oxide, e.g., thoria. European Patent No. 142,887 discloses a silica supported cobalt catalyst together with zirconium, titanium, ruthenium and/or chromium.
- U.S. Pat. No. 4,801,573 discloses a promoted cobalt and rhenium catalyst, preferably supported on alumina that is characterized by low acidity, high surface area, and high purity, which properties are said to be necessary for high activity, low deactivation, and high molecular weight products. The amount of cobalt is most preferably about 10 to 40 wt % of the catalyst. The content of rhenium is most preferably about 2 to 20 wt % of the cobalt content. Related U.S. Pat. No. 4,857,559 discloses a catalyst most preferably having 10 to 45 wt % cobalt and a rhenium content of about 2 to 20 wt % of the cobalt content. In both of the above patents the method of depositing the active metals and promoter on the alumina support is described as not critical.
- U.S. Pat. No. 5,545,674 discloses a cobalt-based catalyst wherein the active metal is dispersed as a very thin film on the surface of a particulate support, preferably silica or titania or a titania-containing support. The catalyst may be prepared by spray techniques.
- U.S. Pat. No. 5,028,634 discloses supported cobalt-based catalysts, preferably supported on high surface area aluminas. High surface area supports are said to be preferred because greater cobalt dispersion can be achieved as cobalt is added, with less tendency for one crystal of cobalt to fall on another crystal of cobalt. The cobalt loading on a titania support is preferably 10 to 25 wt %, while the preferred cobalt loading on an alumina support is 5 to 45 wt %.
- International Publication Nos. WO 98/47618 and WO 98/47620 disclose the use of rhenium promoters and describe several functions served by the rhenium.
- U.S. Pat. No. 5,248,701 discloses a copper promoted cobalt-manganese spinel that is said to be useful as a Fischer-Tropsch catalyst with selectivity for olefins and higher paraffins.
- U.S. Pat. No. 5,302,622 discloses a supported cobalt and ruthenium based catalyst including other components and preferably prepared by a gelling procedure to incorporate the catalyst components in an alcogel formed from a hydrolyzable compound of silicon, and/or aluminum, and optional compounds. The cobalt content after calcination is preferably between 14 and 40 wt % of the catalyst.
- UK Patent Application GB 2,258,414A, published Feb. 10, 1993, discloses a supported catalyst containing cobalt, molybdenum and/or tungsten, and an additional element. The support is preferably one or more oxides of the elements Si, Al, Ti, Zr, Sn, Zn, Mg, and elements with atomic numbers from 57 to 71. After calcination, the preferred cobalt content is from 5 to 40 wt % of the catalyst. A preferred method of preparation of the catalyst includes the preparation of a gel containing the cobalt and other elements.
- International Publication No. WO 96/19289 discloses active metal coated catalysts supported on an inorganic oxide, and notes that dispersion of the active metal on Fischer-Tropsch catalysts has essential effects on the activity of the catalyst and on the composition of the hydrocarbons obtained.
- Despite the vast amount of research effort in this field, there is still a great need for new catalysts for Fischer-Tropsch synthesis, particularly catalysts that provide high C 5 + hydrocarbon selectivities to maximize the value of the hydrocarbons produced and thus enhance the process economics.
- This invention provides a process and catalyst for producing hydrocarbons, and a method for preparing the catalyst. The process comprises contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising hydrocarbons wherein the catalyst comprises a catalytically active metal selected from the group consisting of iron, cobalt, nickel, ruthenium, and combinations thereof dispersed in a matrix material comprising a derivative of a destabilized aquasol comprising a colloidal oxide of a matrix metal selected from the group consisting of cerium, zirconium, titanium, aluminum, silicon, and combinations thereof.
- In accordance with this invention, another catalyst used in the process comprises a reduced aerogel or xerogel formed from the destabilization of a colloidal mixture comprising a catalytically active metal selected from the group consisting of iron, cobalt, nickel, ruthenium, aluminum, and combinations thereof and a colloidal sol of a matrix metal selected from the group consisting of cerium, zirconium, titanium, aluminum, silicon, and combinations thereof.
- This invention also includes a method for the preparation of a Fischer-Tropsch catalyst comprising comprising mixing a colloidal sol of an oxide of a metal selected from the group consisting of cerium, zirconium, titanium, aluminum, silicon, and combinations thereof with a soluble salt of one or more catalytically active metals selected from the group consisting of iron, cobalt, nickel, and ruthenium, destabilizing the colloid to form a gel, and removing solvent from the gel.
- This invention also provides a process for producing hydrocarbons by contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising the hydrocarbons. The process of this invention is characterized by using a catalyst prepared by a method comprising (1) forming a catalyst gel by destabilizing an aqueous colloid comprising (a) at least one catalytic metal for Fischer-Tropsch reactions (e.g., at least one metal selected from the group consisting of iron, cobalt, nickel and ruthenium), (b) at least one colloidal oxide selected from the group consisting of cerium oxide, zirconium oxide, titanium oxide and aluminum oxide, and optionally (c) at least one alkoxide selected from the group consisting of Al(OR) 3, Si(OR)4, Ti(OR)4 and Zr(OR)4, where each R is an alkyl group having from 1 to 6 carbon atoms; and (2) drying the gel.
- The feed gases charged to the process of the invention comprise hydrogen, or a hydrogen source, and carbon monoxide. H 2/CO mixtures suitable as a feedstock for conversion to hydrocarbons according to the process of this invention can be obtained from light hydrocarbons such as methane by means of steam reforming, partial oxidation, or other processes known in the art. The hydrogen is preferably provided by free hydrogen, although some Fischer-Tropsch catalysts have sufficient water gas shift activity to convert some water to hydrogen for use in the Fischer-Tropsch process. It is preferred that the molar ratio of hydrogen to carbon monoxide in the feed be greater than 0.5:1 (e.g., from about 0.67 to 2.5). When cobalt, nickel, and/or ruthenium catalysts are used, the feed gas stream preferably contains hydrogen and carbon monoxide in a molar ratio of about 2:1. When iron catalysts are used, the feed gas stream preferably contains hydrogen and carbon monoxide in a molar ratio of about 0.67:1. The feed gas may also contain carbon dioxide. The feed gas stream should contain a low concentration of compounds or elements that have a deleterious effect on the catalyst, such as poisons. For example, the feed gas may need to be pre-treated to ensure that it contains low concentrations of sulfur or nitrogen compounds, such as hydrogen sulfide, ammonia and carbonyl sulfides.
- The feed gas is contacted with the catalyst in a reaction zone. Mechanical arrangements of conventional design may be employed as the reaction zone including, for example, fixed bed, fluidized bed, slurry phase, slurry bubble column or ebullating bed reactors, among others, may be used. Accordingly, the size and physical form of the catalyst particles may vary depending on the reactor in which they are to be used.
- Catalyst Preparation
- A component of the catalysts used in this invention is the matrix material, which is essentially derived from at least one colloidal oxide and optionally at least one metal alkoxide, and which incorporates at least one catalytic metal for Fischer-Tropsch reactions.
- A matrix is a skeletal framework of oxides and oxyhydroxides which in the present invention is derived from the colloids used. The framework typically comprises 35% or more, by weight, of the total catalyst composition. Preferably, the matrix material (i.e., cerium oxide, zirconium oxide, titanium oxide and/or aluminum oxide and optionally silicon oxide) totals from 99.9 to 35 mole %, preferably from 50 to 85 mole % of the catalyst composition. More preferable are combinations where the matrix is cerium oxide, titanium oxide or a mixture of titanium and aluminum oxides (e.g., a mixture wherein the Ti:Al atomic ratio is between about 5:95 and 95:1).
- A gel may be described as a coherent, rigid three-dimensional polymeric network. The present gels are formed in a liquid medium, usually water, alcohol, or a mixture thereof. The term “alcogel” describes gels in which the pores are filled with predominantly alcohol. Gels whose pores are filled primarily with water may be referred to as aquagels or hydrogels.
- A “xerogel” is a gel from which the liquid medium has been removed and replaced by a gas. In general, the structure is compressed and the porosity reduced significantly by the surface tension forces that occur as the liquid is removed. As soon as liquid begins to evaporate from a gel at temperatures below the critical temperature, surface tension creates concave menisci in the gel's pores. As evaporation continues, the menisci retreat into the gel body, compressive forces build up around its perimeter, and the perimeter contracts, drawing the gel body inward. Eventually, surface tension causes significant collapse of the gel body and a reduction of volume, often as much as two-thirds or more of the original volume. This shrinkage causes a significant reduction in the porosity, often as much as 90 to 95 percent depending on the system and pore sizes.
- In contrast, an “aerogel” is a gel from which the liquid has been removed in such a way as to prevent significant collapse or change in the structure as liquid is removed. This is typically accomplished by heating the liquid-filled gel in an autoclave while maintaining the prevailing pressure above the vapor pressure of the liquid until the critical temperature of the liquid has been exceeded, and then gradually releasing the vapor, usually by gradually reducing the pressure either incrementally or continuously, while maintaining the temperature above the critical temperature. The critical temperature is the temperature above which it is impossible to liquefy a gas, regardless of how much pressure is applied. At temperatures above the critical temperature, the distinction between liquid and gas phases disappears and so do the physical manifestations of the gas/liquid interface. In the absence of an interface between liquid and gas phases, there is no surface tension and hence no surface tension forces to collapse the gel. Such a process may be termed “supercritical drying.” Aerogels produced by supercritical drying typically have high porosities, on the order of from 50 to 99 percent by volume.
- In the practice of this invention one or more inorganic metal colloids may be used as starting material for preparing the gels. These colloids include colloidal alumina sols, colloidal ceria sols, colloidal zirconia sols or their mixtures. The colloidal sols are commercially available. There are also several methods of preparing colloids, as described in “Inorganic Colloid Chemistry”, Volumes 1, 2 and 3, J. Wiley and Sons, Inc., 1935. Colloid formation involves either nucleation and growth, or subdivision or dispersion processes. For example, hydrous titanium dioxide sols can be prepared by adding ammonia hydroxide to a solution of a tetravalent titanium salt, followed by peptization (re-dispersion) by dilute alkalis. Zirconium oxide sol can be prepared by dialysis of sodium oxychlorides. Cerium oxide sol can be prepared by dialysis of a solution of ceric ammonium nitrate.
- Commercially available alkoxides, such as tetraethylorthosilicate and Tyzor™ organic titanate esters, can be used. However, inorganic alkoxides can be prepared by various routes. Examples include direct reaction of zero valent metal with alcohols in the presence of a suitable catalyst; and the reaction of metal halides with alcohols. Alkoxy derivatives can be synthesized by the reaction of the alkoxide with alcohol in a ligand interchange reaction. Direct reactions of metal dialkamides with alcohol also form alkoxide derivatives. Additional examples are disclosed in D. C. Bradley et al., “Metal Alkoxides” (Academic Press, 1978).
- In a preferred embodiment of the process of this invention, preformed colloidal sols in water, or aquasols, are used. The aquasols are comprised of colloidal particles ranging in size from 2 to 50 nanometers. In general, the smaller primary particle sizes (2 to 5 nm) are preferred. The pre-formed colloids contain from 10 to 35 weight % of colloidal oxides or other materials, depending on the method of stabilization. Generally, after addition of the active (for Fischer-Tropsch reactions, either as a catalyst or promoter) metal components, the final destabilized colloids can possess from about 1 to 35 weight % solids, preferably from about 1 to 20 weight %.
- The colloidal oxides or their mixtures are destabilized during the addition of soluble salts of the primary and promoter cation species by the addition of acids or bases or by solvent removal, both of which alter pH. These changes modify the colloidal particle's electrical double layer. Each colloidal particle possesses a double layer when suspended in a liquid medium. For instance, a negatively charged colloid causes some of the positive ions to form a firmly attached layer around the surface of a colloid. Additional positive ions are still attracted by the negative colloid, but now they are repelled by the primary positive layer as well as the positive ions, and form a diffuse layer of counterions. The primary layer and the diffuse layer are referred to as the double layer. The tendencies of a colloid to either agglomerate (flocculate and precipitate) or polymerize when destabilized will depend on the properties of this double layer. The double layer, and resulting electrostatic forces can be modified by altering the ionic environment, or pH, liquid concentration, or by adding a surface active material directly to affect the charge of the colloid.
- Once the particles come in close enough contact when destabilized, polymerization and crosslinking reaction between surface functional groups, such as surface hydroxyls, can occur. In this invention, the colloids, which are originally stable heterogeneous dispersions of oxides and other species in solvents, are destabilized to produce colloidal gels. Destabilization is induced, in some cases, by the addition of soluble salts, e.g., chlorides or nitrates, which change the pH and the ionic strength of the colloidal suspensions; by the addition of acids or bases; or by solvent removal. pH changes generally accompany the addition of soluble salts; in general, this is preferred over solvent removal. Generally, a pH range of from about 0 to about 12 can be used to destabilize the colloids; however, very large extremes in pH (such as pH 12) can cause flocculation and precipitation. For this reason, a pH range of from about 2 to 8 is generally preferred.
- The medium utilized in this process is typically aqueous, although non-aqueous colloids can also be used. The additional metal or inorganic reagents (e.g., salts of Ru, Co, or promoters) used should be soluble in the appropriate aqueous and non-aqueous media.
- Removal of solvent from the gels can be accomplished by several methods. Removal by vacuum drying or heating in air results in the formation of a xerogel. An aerogel of the material can typically be formed by charging in a pressurized system such as an autoclave. In some cases, water solvent (which may be present in the gels formed) may need to be exchanged with a non-aqueous solvent prior to supercritical pressure extraction. The solvent-containing gel which is formed in the practice of the invention is placed in an autoclave, where it can be contacted with a fluid above its critical temperature and pressure by allowing the supercritical fluid to flow through the gel material until the solvent is no longer being extracted by the supercritical fluid. In performing this extraction to produce an aerogel material, various fluids can be utilized at their critical temperature and pressure. For instance, fluorochlorocarbons typified by Freon® fluorochloromethanes (e.g., Freon® 11 (CCl 3F), 12 (CCl2F2) or 114 (CClF2CClF2), ammonia and carbon dioxide are all suitable for this process. Typically, the extraction fluids are gases at atmospheric conditions, so that pore collapse due to the capillary forces at the liquid/solid interface is avoided during drying. The material dried under supercritical conditions will, in most cases, possess a higher surface area than the materials dried by other means.
- Catalytically Active Metals
- Another component of the catalyst of the present invention is the catalytic metal. The catalytic metal is preferably selected from iron, cobalt, nickel and/or ruthenium. Normally, the metal component on the support or matrix is reduced to provide elemental metal (e.g., elemental iron, cobalt, nickel and/or ruthenium) before use. The catalyst must contain a catalytically effective amount of the metal component(s). Typically, the catalyst comprises from about 0.1 to 50 mole % (as the metal) of total supported iron, cobalt, nickel and/or ruthenium per total moles of catalytic metal and matrix metal (i.e., Ce, Zr, Ti, Al and Si), preferably from about 5 to 50 mole %.
- Each of the catalytic metals can be used individually or in combination, especially cobalt and ruthenium. In one preferred embodiment, catalysts of this invention comprise from about 10 to 50 mole percent of a combination of cobalt and ruthenium where the ruthenium content is from about 0.001 to about 5 mole percent. Also preferred are embodiments where these combinations are combined with a matrix of titanium oxide, cerium oxide, aluminum oxide, a mixture of cerium and aluminum oxides, or a mixture of titanium and aluminum oxides.
- In another preferred embodiment, the catalysts of the present invention may comprise one or more additional promoters or modifiers known to those skilled in the art. When the catalytic metal is iron, cobalt, nickel and/or ruthenium, suitable promoters include at least one metal selected from the group consisting of Group IA (CAS) metals (i.e., Na, K, Rb, Cs), Group IIA metals (i.e., Mg, Ca, Sr, Ba), Group IB metals (i.e., Cu, Ag, and Au) Group IIIB metals (i.e., Sc, Y and La), Group IVB metals (i.e., Ti, Zr and Hf), Group VB metals (i.e., V, Nb and Ta), and Rh, Pd, Os, Ir, Pt, Mn, B, P, and Re. Preferably, any additional promoters for the cobalt and/or ruthenium are selected from Sc, Y, La, Ti, Zr, Hf, Rh, Pd, Os, Ir, Pt, Re, Nb, Cu, Ag, Mn, B, P, and Ta. Preferably, any additional promoters for the iron catalysts are selected from Na, K, Rb, Cs, Mg, Ca, Sr and Ba.
- The amount of additional promoter, if present, is typically between 0.001 and 20 mole %, preferably from 2 to 5 mole %. More preferably, the catalysts comprise from about 5 to about 50 mole percent of a combination of cobalt and rhenium where the rhenium content is from about 0.001 to about 5 mole percent; and catalysts comprising from about 5 to about 50 mole percent a combination of cobalt and both rhenium and ruthenium where the rhenium and ruthenium together total from about 0.001 to about 5 mole percent. Preferably, these combinations are combined with a matrix of titanium oxide, cerium oxide, aluminum oxide, a mixture of cerium and aluminum oxides, a mixture of titanium and aluminum oxides, or a mixture of silicon and aluminum oxides.
- The most preferred method of preparation may vary among those skilled in the art, depending for example on the desired catalyst particle size. Those skilled in the art are able to select the most suitable method for a given set of requirements.
- Process and Conditions
- Typically, at least a portion of the metal(s) of the catalytic metal component (a) of the catalysts of the present invention is present in a reduced state (i.e., in the metallic state). Therefore, it is normally advantageous to activate the catalyst prior to use by a reduction treatment, in the presence of hydrogen at an elevated temperature. Typically, the catalyst is treated with hydrogen at a temperature in the range of from about 75° C. to about 500° C., for about 0.5 to about 24 hours at a pressure of about 1 to about 75 atm. Pure hydrogen may be used in the reduction treatment, as well as a mixture of hydrogen and an inert gas such as nitrogen. The amount of hydrogen may range from about 1% to about 100% by volume.
- The Fischer-Tropsch process is typically run in a continuous mode. In this mode, the gas hourly space velocity through the reaction zone typically may range from about 100 volumes/hour/volume catalyst (v/hr/v) to about 10,000 v/hr/v, preferably from about 300 v/hr/v to about 2,000 v/hr/v. The reaction zone temperature is typically in the range from about 160° C. to about 300° C. Preferably, the reaction zone is operated at conversion promoting conditions at temperatures from about 190° C. to about 260° C. The reaction zone pressure is typically in the range of about 80 psig (653 kPa) to about 1000 psig (6994 kPa), preferably, from 80 psig (653 kPa) to about 600 psig (4237 kPa), and still more preferably, from about 140 psig (1066 kPa) to about 400 psig (2858 kPa).
- The products resulting from the process will have a great range of molecular weights. Typically, the carbon number range of the product hydrocarbons will start at methane and continue to the limits observable by modern analysis, about 50 to 100 carbons per molecule. The process is particularly useful for making hydrocarbons having five or more carbon atoms, especially when the above-referenced preferred space velocity, temperature and pressure ranges are employed.
- The wide range of hydrocarbons produced in the reaction zone will typically afford liquid phase products at the reaction zone operating conditions. Therefore, the effluent stream of the reaction zone will often be a mixed phase stream including liquid and vapor phase products. The effluent stream of the reaction zone may be cooled to effect the condensation of additional amounts of hydrocarbons and passed into a vapor-liquid separation zone separating the liquid and vapor phase products. The vapor phase material may be passed into a second stage of cooling for recovery of additional hydrocarbons. The liquid phase material from the initial vapor-liquid separation zone, together with any liquid from a subsequent separation zone, may be fed into a fractionation column. Typically, a stripping column is employed first to remove light hydrocarbons such as propane and butane. The remaining hydrocarbons may be passed into a fractionation column where they are separated by boiling point range into products such as naphtha, kerosene and fuel oils. Hydrocarbons recovered from the reaction zone and having a boiling point above that of the desired products may be passed into conventional processing equipment such as a hydrocracking zone in order to reduce their molecular weight. The gas phase recovered from the reactor zone effluent stream after hydrocarbon recovery may be partially recycled if it contains a sufficient quantity of hydrogen and/or carbon monoxide.
- Without further elaboration, it is believed that one skilled in the art can, using the description herein, utilize the present invention to its fullest extent. The following embodiments are to be construed as illustrative, and not as constraining the scope of the present invention in any way whatsoever.
- Each of the catalyst samples was treated with hydrogen prior to use in the Fischer-Tropsch reaction. The catalyst sample was placed in a small quartz crucible in a chamber and purged with 500 sccm (8.3×10 −6 m3/s) nitrogen at room temperature for 15 minutes. The sample was then heated under 100 sccm (1.7×10−6 m3/s) hydrogen at 1° C./minute to 100° C. and held at 100° C. for one hour. The catalysts were then heated at 1° C./minute to 400° C. and held at 400° C. for four hours under 100 sccm (1.7×10−6 m3/s) hydrogen. The samples were cooled in hydrogen and purged with nitrogen before use.
- A 2 mL pressure vessel was heated at either 225° C. under 1000 psig (6994 kPa) of H 2:CO (2:1) and maintained at that temperature and pressure for 1 hour. In a typical run, roughly 50 mg of the hydrogen catalyst and 1 mL of n-octane was added to the vessel. After one hour, the reactor vessel was cooled in ice, vented, and an internal standard of di-n-butylether was added. The reaction product was analyzed on an HP6890 gas chromatograph. Hydrocarbons in the range of C11-C40 were analyzed relative to the internal standard. The lower hydrocarbons were not analyzed since they are masked by the solvent and are also vented as the pressure is reduced.
- A C 11 + Productivity (g C11 +/hour/kg catalyst) was calculated based on the integrated production of the C11-C40 hydrocarbons per kg of catalyst per hour. The logarithm of the weight fraction for each carbon number ln(Wn/n) was plotted as the ordinate vs. number of carbon atoms in (Wn/n) as the abscissa. From the slope, a value of alpha was obtained. Some runs displayed a double alpha as shown in the tables. The results of runs over a variety of catalysts at 225° C. are shown in Table 1.
- The catalyst compositions are given in atomic ratios except where otherwise noted.
- To a 150 mL petri dish, ruthenium (III) chloride (17.525 mL of a 0.1151 M aqueous solution), cobalt (II) chloride (18.154 mL of a 1.0 M aqueous solution) and colloidal alumina sol (4.321 mL, 4.668 M or 20 wt. %) were simultaneously combined. The pH of the alumina sol was 4.0. The pH of the resultant mixture, after addition of the reagents, was approximately 1.37. At that point the colloid was destabilized to form a dark gel-like material. The material was aged for five days before drying under vacuum at 150° C. for 5 hours.
- The final xerogel had a nominal composition of Ru (0.05)/Co (0.45)/Al (0.5).
- To a 150 mL petri dish, ruthenium (III) chloride (17.357 mL of a 0.1151 M aqueous solution), cobalt (II) chloride hexahydrate (COCl 2*6H2O, 17.960 mL of a 1.0 M aqueous solution) and colloidal alumina sol (4.280 mL, 4.668 M or 20 wt. %) were simultaneously combined. In a second step, 0.404 mL of a 1.0 M cesium chloride solution was added. The colloid was destabilized to form a dark red gel-like material. The material was aged for five days before drying under vacuum at 150° C. for 5 hours.
- The final xerogel had a nominal composition Ru (0.0495)/Co (0.445)/Cs (0.01)/Al (0.495).
- To a 150 mL petri dish, ruthenium (III) chloride (16.641 mL of a 0.1151 M aqueous solution), cobalt (II) chloride hexahydrate (CoCl 2.6H2O, 17.239 mL of a 1.0 M aqueous solution) and colloidal alumina sol (4.103 mL, 4.668 M or 20 wt. %) were simultaneously combined. In a second step, 2.016 mL of a 1 M aqueous lithium nitrate (LiNO3) solution were added. The colloid was destabilized to form a dark red gel-like material. The material was aged for five days before drying under vacuum at 150° C. for 5 hours.
- The final xerogel had a nominal composition of Ru (0.0475)/Co (0.4275)/Li (0.05)/Al (0.475).
- To a 150 mL petri dish, ruthenium (III) chloride (16.641 mL of a 0.1151 M aqueous solution), cobalt (II) chloride hexahydrate (COCl 2.6H2O, 17.239 mL of a 1.0 M aqueous solution) and colloidal alumina sol (4.103 mL, 4.668 M or 20 wt. %) were simultaneously combined. In a second step, 2.016 mL of a 1 M aqueous solution of rubidium nitrate were added. The colloid was destabilized to form a dark red gel-like material. The material was aged for five days before drying under vacuum at 150° C. for 5 hours.
- The final xerogel had a nominal composition of Ru (0.0475)/Co (0.4275)/Rb (0.05)/Al (0.475).
- To a 150 mL petri dish, ruthenium (III) chloride (17.072 mL of a 0.1151 M aqueous solution), cobalt (II) chloride hexahydrate (COCl 2.6H2O, 17.685 mL of a 1.0 M aqueous solution) and colloidal alumina sol (4.209 mL, 4.668 M or 20 wt. %) were simultaneously combined. In a second step, 1.034 mL of a 2.0 M aqueous sodium chloride solution were added. The colloid was destabilized to form a dark red gel-like material. The material was aged for five days before drying under vacuum at 150° C. for 5 hours.
- The final xerogel had a nominal composition Ru (0.0475)/Co (0.4275)/Na (0.05)/Al (0.475).
- To a 150 mL petri dish, ruthenium (III) chloride (17.072 mL of a 0.1151 M aqueous solution), cobalt (II) chloride hexahydrate (CoCl 2.6H2O, 17.685 mL of a 1.0 M aqueous solution) and colloidal alumina sol (4.209 mL, 4.668 M or 20 wt. %) were simultaneously combined. In a second step, 1.034 mL of 2.0 M aqueous potassium chloride (KCl) solution were added. The colloid was destabilized to form a red gel-like material. The material was aged for five days before drying under vacuum at 150° C. for 5 hours.
- The final xerogel had a nominal composition of Ru (0.0475)/Co (0.4275)/K (0.05)/Al (0.475).
- To a 150mL petri dish, ruthenium (III) chloride (16.641 mL of a 0.1151 M aqueous solution), cobalt (II) chloride hexahydrate (CoCl 2.6H2O, 17.239 mL of a 1.0 M aqueous solution) and colloidal alumina sol (4.103 mL, 4.668 M or 20 wt. %) were simultaneously combined. In a second step, 2.016 mL of 1.0 M aqueous cesium chloride solution were added. The colloid was destabilized to form a red gel-like material. The material was aged for five days before drying under vacuum at 150° C. for 5 hours.
- The final xerogel had a nominal composition of Ru (0.0475)/Co (0.4275)/K (0.05)/Al (0.475).
- An aqueous solution of ruthenium (III) chloride (4.951 mL, 0.1151 M), an aqueous solution of cobalt (II) chloride (22.793 mL, 1 M), tetraethylorthosilicate (11.248 mL) and 0.72 mL of colloidal alumina sol (20 wt. %) were combined in a 150 mL petri dish under an inert atmosphere. In a second step, aqueous HCl (0.288 mL, 1.0 M) was added with swirling. The final pH of the mixture was 1.51. A red homogeneous, clear gel formed after several hours. The material was aged for four days, and dried under vacuum at 120° C. for 5 hours.
- The final xerogel had a nominal composition of Ru (0.01)/Co (0.4)/Al (0.059)/Si (0.531).
- An aqueous solution of ruthenium (III) chloride (5.202 mL, 0.1151 M), an aqueous solution of cobalt (II) chloride (23.950 mL, 1 M), tetraethylorthosilicate (60 volume % solution in absolute ethanol, 1.313 mL) and 6.811 mL of colloidal alumina sol (4.668 M or 20 wt. %) were combined in a 150 mL petri dish under an inert atmosphere. In a second step, aqueous HCl (2.724 mL, 1.0 M) was added with swirling. The final pH of the mixture was 1.00. A red-brown 1.0 M aqueous nickel chloride hexahydrate (NiCl 2.6H2O) was added with swirling. The final pH of the mixture was 1.32. A red-brown homogeneous, clear gel formed. The material was aged for four days, and dried under vacuum at 120° C. for 5 hours.
- The final xerogel had a nominal composition of Ru (0.05)/Ni (0.1)/Ce (0.425)/Al (0.425).
- An aqueous solution of ruthenium (III) chloride (3.00 mL, 0.1151 M), 20.701 mL of colloidal cerium oxide (1.4177 M), 6.287 mL of colloidal alumina sol (4.668 M or 20 wt. %), and 10.013 mL of 1.0 M aqueous cobalt chloride hexahydrate solution (CoCl 2.6H2O) were combined in a 150 mL petri dish under an inert atmosphere. The final pH of the mixture was 1.97. A dark gel-like material formed. The material was aged for four days, and dried under vacuum at 120° C. for 5 hours.
- The final xerogel had a nominal composition of Ru (0.005)/Co (0.145)/Ce (0.425)/Al (0.425).
- An aqueous solution of ruthenium (III) chloride (18.78 mL, 0.1151 M), 12.960 mL of colloidal cerium oxide (1.4177 M), 3.936 mL of colloidal alumina sol (4.668 M or 20 wt. %), and 2.162 mL of 1.0 M aqueous cobalt chloride hexahydrate solution (CoCl 2.6H2O) were combined in a 150 mL petri dish under an inert atmosphere. In a second step, 2.162 mL of 1 M aqueous nickel chloride solution (NiCl2.6H2O) were added. The final pH of the mixture was 1.34. A gel-like material formed. The material was aged for four days, and dried under vacuum at 120° C. for 5 hours.
- The final xerogel had a nominal composition of Ru (0.05)/Co (0.050/Ni (0.05)/Ce (0.425)/Al (0.425).
- An aqueous solution of ruthenium (III) chloride (15.5394 mL, 0.1151 M), 6.330 mL of colloidal cerium oxide (1.4177 M) and 1.922 mL of colloidal alumina sol (4.668 M or 20 wt. %) were combined in a 150 mL petri dish under an inert atmosphere. In a second step, 16.154 mL of a 1 M aqueous nickel chloride solution (NiCl 2.6H2O) were added. The final pH of the mixture was 1.34. A gel-like material formed. The material was aged for four days, and dried under vacuum at 120° C. for 5 hours.
- The final xerogel had a nominal composition of Ru (0.05)/Ni (0.45)/Ce (0.25)/Al (0.25).
- An aqueous solution of ruthenium (III) chloride (14.046 mL, 0.1151 M), 11.404 mL of colloidal cerium oxide (1.4177 M) and 14.550 mL of 1.0 M aqueous cobalt chloride hexahydrate solution (CoCl 2.6H2O) were combined in a 150 mL petri dish under an inert atmosphere. The final pH of the mixture was 1.51. A gel-like material formed. The material was aged for four days, and dried under vacuum at 120° C. for 5 hours.
- The final xerogel had a nominal composition of Ru (0.05)/Co (0.45)/Ce (0.5).
TABLE 1 (225° C.) Ex. C11 + No. Catalyst Productivity Alpha 1 Ru (0.05)/Co (0.45)/Al (0.5) 368 0.88 2 Ru (0.0495)/Co (0.445)/Cs (0.01)/ 153 0.8 Al (0.495) 3 Ru (0.0475)/Co (0.4275)/Li (0.05)/ 208 0.78 Al (0.475) 4 Ru (0.0475)/Co (0.4275)/Rb (0.05)/ 260 0.8 Al (0.475) 5 Ru (0.0475)/Co (0.4275)/Na (0.05)/ 256 0.77 Al (0.475) 6 Ru (0.0475)/Co (0.4275)/K (0.05)/ 166 0.76 Al (0.475) 7 Ru (0.0475)/Co (0.4275)/Cs (0.05)/ 159 0.81 Al (0.475) 8 Ru (0.01)/Co (0.4)/Al (0.059)/Si (0.531) 110 0.78/0.92 9 Ru (0.01)/Co (0.4)/Al (0.531)/Si (0.059) 88 0.79/0.89 10 Ru (0.01)/Co (0.4)/Zr (0.059)/ 69 0.77/0.89 Al (0.531) 11 Ru (0.05)/Ce (0.425)/Al (0.425) 53 0.78/0.9 12 Ru (0.05)/Ni (0.1)/Ce (0.425)/ 6 0.76/0.9 Al (0.475) 13 Ru (0.005)/Co (0.145)/Ce (0.425)/ 11 0.81 Al (0.475) 14 Ru (0.05)/Co (0.050/Ni (0.05)/ 13 0.83 Ce (0.425)/Al (0.425) 15 Ru (0.05)/Ni (0.45)/Ce (0.25)/Al (0.25) 11 0.77 16 Ru (0.05)/Co (0.45)/Ce (0.5) 115 0.81 - While a preferred embodiment of the present invention has been shown and described, it will be understood that variations can be made to the preferred embodiment without departing from the scope of, and which are equivalent to, the present invention. For example, the structure and composition of the catalyst can be modified and the process steps can be varied.
- The complete disclosures of all patents, patent documents, and publications cited herein are incorporated by reference in their entirety. U.S. patent application Ser. No. ______, entitled Fischer-Tropsch Processes Using Xerogel and Aerogel Catalysts, and U.S. patent application Ser. No. ______, entitled Fischer-Tropsch Processes Using Catalysts on Mesoporous Supports, both filed concurrently herewith on Aug. 18, 1999, are hereby incorporated herein by reference in their entirety.
- U.S. patent application No. 09/314,921, entitled Fischer-Tropsch Processes and Catalysts Using Fluorided Supports, filed May 19, 1999, U.S. patent application No. 09/314,920, entitled Fischer-Tropsch Processes and Catalysts Using Fluorided Alumina Supports, filed May 19, 1999, and U.S. patent application No. 09/314,811, entitled Fischer-Tropsch Processes and Catalysts With Promoters, filed May 19, 1999, are hereby incorporated herein by reference in their entirety.
- The foregoing detailed description and examples have been given for clarity of understanding only. No unnecessary limitations are to be understood therefrom. The invention is not limited to the exact details shown and described, for variations obvious to one skilled in the art will be included within the invention by the claims.
Claims (53)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/789,987 US6353035B2 (en) | 1998-08-20 | 2001-02-21 | Fischer-tropsch processes using xerogel and aerogel catalysts by destabilizing aqueous colloids |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US9719498P | 1998-08-20 | 1998-08-20 | |
| US9719298P | 1998-08-20 | 1998-08-20 | |
| US9719398P | 1998-08-20 | 1998-08-20 | |
| US09/377,008 US6235677B1 (en) | 1998-08-20 | 1999-08-18 | Fischer-Tropsch processes using xerogel and aerogel catalysts by destabilizing aqueous colloids |
| US09/789,987 US6353035B2 (en) | 1998-08-20 | 2001-02-21 | Fischer-tropsch processes using xerogel and aerogel catalysts by destabilizing aqueous colloids |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/377,008 Division US6235677B1 (en) | 1998-08-20 | 1999-08-18 | Fischer-Tropsch processes using xerogel and aerogel catalysts by destabilizing aqueous colloids |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20010007879A1 true US20010007879A1 (en) | 2001-07-12 |
| US6353035B2 US6353035B2 (en) | 2002-03-05 |
Family
ID=27492894
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/377,008 Expired - Fee Related US6235677B1 (en) | 1998-08-20 | 1999-08-18 | Fischer-Tropsch processes using xerogel and aerogel catalysts by destabilizing aqueous colloids |
| US09/789,987 Expired - Fee Related US6353035B2 (en) | 1998-08-20 | 2001-02-21 | Fischer-tropsch processes using xerogel and aerogel catalysts by destabilizing aqueous colloids |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/377,008 Expired - Fee Related US6235677B1 (en) | 1998-08-20 | 1999-08-18 | Fischer-Tropsch processes using xerogel and aerogel catalysts by destabilizing aqueous colloids |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US6235677B1 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2853904A1 (en) * | 2003-04-15 | 2004-10-22 | Air Liquide | Production of liquid hydrocarbons by a Fischer-Tropsch process includes a stage of treatment and valorisation of residual gases produced in the process |
| US20060035783A1 (en) * | 2004-08-14 | 2006-02-16 | Todd Osbourne | Fluid/slurry bed cobalt-alumina catalyst made by compounding and spray drying |
| US20100152036A1 (en) * | 2007-08-10 | 2010-06-17 | Rentech, Inc. | Precipitated iron catalyst for hydrogenation of carbon monoxide |
| WO2010143783A3 (en) * | 2009-06-12 | 2011-03-31 | Korea Research Institute Of Chemical Technology | Iron-based catalyst for fischer-tropsch synthesis and preparation method thereof |
| CN103263901A (en) * | 2013-05-09 | 2013-08-28 | 天津城市建设学院 | Micron-sized molecular sieve supported nano-iron material preparation method |
Families Citing this family (82)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6686310B1 (en) * | 1999-02-09 | 2004-02-03 | E. I. Du Pont De Nemours And Company | High surface area sol-gel route prepared hydrogenation catalysts |
| DE19909176A1 (en) * | 1999-03-03 | 2000-09-07 | Kataleuna Gmbh Catalysts | Hydrogenation catalyst and process for its manufacture |
| US6841512B1 (en) * | 1999-04-12 | 2005-01-11 | Ovonic Battery Company, Inc. | Finely divided metal catalyst and method for making same |
| US6313062B1 (en) * | 1999-10-29 | 2001-11-06 | Exxon Reserach And Engineering Company | Process for the preparation of high activity carbon monoxide hydrogenation catalysts; the catalyst composition, use of the catalysts for conducting such reactions, and the products of such reactions |
| US6696388B2 (en) * | 2000-01-24 | 2004-02-24 | E. I. Du Pont De Nemours And Company | Gel catalysts and process for preparing thereof |
| IT1317868B1 (en) * | 2000-03-02 | 2003-07-15 | Eni Spa | SUPPORTED COBALT CATALYST, PARTICULARLY USEFUL IN THE REACTION OF FISCHER-TROPSCH. |
| CN1097483C (en) * | 2000-03-29 | 2003-01-01 | 福州大学化肥催化剂国家工程研究中心 | Chromium-free iron-base catalyst for high temperature Co transformation and its preparation |
| RU2179954C1 (en) * | 2000-06-22 | 2002-02-27 | Стремилова Нина Николаевна | Composition for treatment of natural water and waste waters and a method for preparing composition for treatment of natural and waste waters |
| US6706661B1 (en) * | 2000-09-01 | 2004-03-16 | Exxonmobil Research And Engineering Company | Fischer-Tropsch catalyst enhancement |
| AU2001296249A1 (en) | 2000-09-14 | 2002-03-26 | Conoco Inc. | Catalyst and method of making micrometer sized spherical particles |
| DE10124600A1 (en) * | 2001-05-21 | 2002-11-28 | Basf Ag | Production of supported nickel catalyst, useful for hydrogenation of nitroaromatic compound, involves co-precipitating nickel and at least one other metal on titania support |
| US7468342B2 (en) * | 2001-05-22 | 2008-12-23 | Mitsubishi Gas Chemical Company, Inc. | Catalysts and process for producing aromatic amines |
| US20030008929A1 (en) * | 2001-07-03 | 2003-01-09 | Conoco Inc. | Surface active agent use in catalyst preparation |
| US6713032B2 (en) | 2002-04-12 | 2004-03-30 | Matsushita Electric Works, Ltd. | Catalyst for removing carbon monoxide in hydrogen rich gas and production method therefor |
| EP1356864A1 (en) * | 2002-04-18 | 2003-10-29 | Ford Global Technologies, Inc., A subsidiary of Ford Motor Company | Platinum-group-metal free catalytic washcoats for particulate exhaust gas filter applications |
| JP4316323B2 (en) * | 2002-10-04 | 2009-08-19 | 独立行政法人石油天然ガス・金属鉱物資源機構 | Hydrocarbon reforming catalyst and method for producing the same |
| US20040127352A1 (en) * | 2002-10-16 | 2004-07-01 | Conocophillips Company | High hydrothermal stability catalyst support |
| US7030053B2 (en) * | 2002-11-06 | 2006-04-18 | Conocophillips Company | Catalyst composition comprising ruthenium and a treated silica support component and processes therefor and therewith for preparing high molecular weight hydrocarbons such as polymethylene |
| CN1729050A (en) * | 2002-12-20 | 2006-02-01 | 本田技研工业株式会社 | Platinum-ruthenium-containing catalyst formulations for hydrogen generation |
| WO2004058633A2 (en) * | 2002-12-20 | 2004-07-15 | Honda Giken Kogyo Kabushiki Kaisha | Platinum-free ruthenium-cobalt catalyst formulations for hydrogen generation |
| US6830725B2 (en) * | 2003-04-01 | 2004-12-14 | Texaco Ovonic Battery Systems, Llc | Hydrogen storage alloys having a high porosity surface layer |
| US7253136B2 (en) * | 2003-04-11 | 2007-08-07 | Exxonmobile Research And Engineering Company | Preparation of titania and cobalt aluminate catalyst supports and their use in Fischer-Tropsch synthesis |
| US8580211B2 (en) * | 2003-05-16 | 2013-11-12 | Velocys, Inc. | Microchannel with internal fin support for catalyst or sorption medium |
| US7152609B2 (en) * | 2003-06-13 | 2006-12-26 | Philip Morris Usa Inc. | Catalyst to reduce carbon monoxide and nitric oxide from the mainstream smoke of a cigarette |
| US7165553B2 (en) * | 2003-06-13 | 2007-01-23 | Philip Morris Usa Inc. | Nanoscale catalyst particles/aluminosilicate to reduce carbon monoxide in the mainstream smoke of a cigarette |
| US9107452B2 (en) * | 2003-06-13 | 2015-08-18 | Philip Morris Usa Inc. | Catalyst to reduce carbon monoxide in the mainstream smoke of a cigarette |
| US7243658B2 (en) * | 2003-06-13 | 2007-07-17 | Philip Morris Usa Inc. | Nanoscale composite catalyst to reduce carbon monoxide in the mainstream smoke of a cigarette |
| US20060180464A1 (en) * | 2003-08-19 | 2006-08-17 | Linnard Griffin | Apparatus and method for the controllable production of hydrogen at an accelerated rate |
| US20050042150A1 (en) * | 2003-08-19 | 2005-02-24 | Linnard Griffin | Apparatus and method for the production of hydrogen |
| US20060188436A1 (en) * | 2005-02-18 | 2006-08-24 | Linnard Griffin | Apparatus and method for the production of hydrogen |
| US20050109162A1 (en) * | 2003-11-24 | 2005-05-26 | Linnard Griffin | Apparatus and method for the reduction of metals |
| US20050119118A1 (en) * | 2003-12-02 | 2005-06-02 | Walsh Troy L. | Water gas shift catalyst for fuel cells application |
| BRPI0417133A (en) * | 2003-12-12 | 2007-03-06 | Syntroleum Corp | catalyst composition, method for treating a catalyst support, fischer-tropsch product, methods for reducing the occurrence and intensity of friction and breakdown of catalyst support material |
| US20050233898A1 (en) * | 2003-12-12 | 2005-10-20 | Robota Heinz J | Modified catalyst supports |
| US7452843B2 (en) * | 2003-12-29 | 2008-11-18 | Umicore Ag & Co. Kg | Exhaust treatment devices, catalyst, and methods of making and using the same |
| US9023900B2 (en) | 2004-01-28 | 2015-05-05 | Velocys, Inc. | Fischer-Tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor |
| US7084180B2 (en) | 2004-01-28 | 2006-08-01 | Velocys, Inc. | Fischer-tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor |
| US20050245394A1 (en) * | 2004-03-12 | 2005-11-03 | Dahar Stephen L | Spray dried alumina for catalyst carrier |
| CN100402150C (en) * | 2004-04-01 | 2008-07-16 | 丰田自动车株式会社 | Carbon monoxide removal catalyst, method for producing same, and device for removing carbon monoxide |
| MY142111A (en) * | 2004-04-16 | 2010-09-15 | Nippon Oil Corp | Catalyst for fischer-tropsch synthesis and process for producing hydrocarbons |
| DE102005019103B4 (en) * | 2004-04-26 | 2023-09-21 | Sasol Technology (Proprietary) Ltd. | Process for producing a cobalt-based catalyst for Fischer-Tropsch synthesis and process for producing a Fischer-Tropsch hydrocarbon product |
| US7743772B2 (en) * | 2004-06-16 | 2010-06-29 | Philip Morris Usa Inc. | Silver and silver oxide catalysts for the oxidation of carbon monoxide in cigarette smoke |
| US7429404B2 (en) * | 2004-07-30 | 2008-09-30 | University Of Utah Research Foundation | Methods of selectively incorporating metals onto substrates |
| GB0418934D0 (en) * | 2004-08-25 | 2004-09-29 | Johnson Matthey Plc | Catalysts |
| US7358211B2 (en) * | 2004-11-24 | 2008-04-15 | E.I. Du Pont De Nemours And Company | Catalyst for the production of 1,3-propanediol by catalytic hydrogenation of 3-hydroxypropanal |
| FR2882531B1 (en) * | 2005-02-25 | 2007-04-27 | Inst Francais Du Petrole | PROCESS FOR THE PREPARATION OF MULTIMETALLIC CATALYSTS FOR USE IN HYDROCARBON PROCESSING REACTIONS |
| US20070004810A1 (en) * | 2005-06-30 | 2007-01-04 | Yong Wang | Novel catalyst and fischer-tropsch synthesis process using same |
| JP4724860B2 (en) * | 2005-10-19 | 2011-07-13 | 国立大学法人 大分大学 | Method for producing hydrogen production catalyst |
| US7709541B2 (en) * | 2006-07-14 | 2010-05-04 | Headwaters Technology Innovation, Llc | Fischer-Tropsch catalysts incorporating promoter for increasing yields of C5+ hydrocarbons and methods for making and using same |
| JP4935604B2 (en) * | 2006-11-27 | 2012-05-23 | 住友化学株式会社 | Method for producing supported ruthenium oxide |
| CN101657524B (en) | 2007-01-19 | 2013-02-13 | 万罗赛斯公司 | Process and apparatus for converting natural gas to higher molecular weight hydrocarbons using microchannel process technology |
| US20080260631A1 (en) | 2007-04-18 | 2008-10-23 | H2Gen Innovations, Inc. | Hydrogen production process |
| BRPI0705939A2 (en) * | 2007-10-29 | 2009-06-23 | Petroleo Brasileiro Sa | process for the production of hybrid catalysts for fischer-tropsch synthesis and hybrid catalyst produced according to the process |
| KR100918105B1 (en) * | 2008-03-27 | 2009-09-22 | 한국화학연구원 | Process for preparing cobalt / zirconium-phosphorus / silica catalyst wire for fischer-Tropsch synthesis |
| EP2352585B1 (en) * | 2008-10-06 | 2020-06-17 | Union Carbide Corporation | Low metal loaded, alumina supported, catalyst compositions and amination process |
| WO2010042159A1 (en) * | 2008-10-06 | 2010-04-15 | Union Carbide Chemicals & Plastics Technology Llc | Methods of making cyclic, n-amino functional triamines |
| US8188318B2 (en) * | 2008-10-06 | 2012-05-29 | Union Carbide Chemicals & Plastics Technology Llc | Method of manufacturing ethyleneamines |
| CN102227258B (en) | 2008-10-06 | 2014-02-19 | 联合碳化化学品及塑料技术公司 | Low metal (nickel and rhenium) catalyst compositions including acidic mixed metal oxide as carrier |
| CN102171179B (en) * | 2008-10-06 | 2014-04-30 | 联合碳化化学品及塑料技术公司 | Transalkoxylation of nucleophilic compounds |
| JP5612583B2 (en) * | 2008-10-06 | 2014-10-22 | ダウ グローバル テクノロジーズ エルエルシー | Process for producing ethanolamine and ethyleneamine from ethylene oxide and ammonia and related process |
| CN102171178B (en) * | 2008-10-06 | 2015-07-29 | 联合碳化化学品及塑料技术公司 | The Continuance ammine group-transfer of quadrol and other ethyleneamines |
| EP2367754A1 (en) * | 2008-12-23 | 2011-09-28 | Shell Oil Company | Catalysts for the production of hydrogen |
| US8168686B2 (en) | 2010-12-22 | 2012-05-01 | Rentech, Inc. | Integrated biorefinery for production of liquid fuels |
| US8093306B2 (en) * | 2010-12-22 | 2012-01-10 | Rentech, Inc. | Integrated biorefinery for production of liquid fuels |
| WO2012134492A1 (en) * | 2011-04-01 | 2012-10-04 | Dow Global Technologies Llc | Catalysts for the conversion of synthesis gas to alcohols |
| CN105854958A (en) * | 2011-04-01 | 2016-08-17 | 陶氏环球技术有限责任公司 | Catalyst for converting synthesis gas into alcohol |
| US8367741B2 (en) | 2011-05-19 | 2013-02-05 | Rentech, Inc. | Biomass high efficiency hydrothermal reformer |
| US9127220B2 (en) | 2011-05-19 | 2015-09-08 | Res Usa, Llc | Biomass high efficiency hydrothermal reformer |
| CN104220379B (en) * | 2012-04-27 | 2016-12-14 | 丰田自动车株式会社 | Iron oxide-zirconia-based composite oxide, method for producing same, and catalyst for purifying exhaust gas |
| GB201214122D0 (en) | 2012-08-07 | 2012-09-19 | Oxford Catalysts Ltd | Treating of catalyst support |
| EP2740534A1 (en) | 2012-12-04 | 2014-06-11 | Total Raffinage Marketing | Core-shell particles with catalytic activity and the proces of their preparation. Method of preparation of Fischer-Tropsch catalyst comprising said paricles. |
| FR3006325B1 (en) * | 2013-05-30 | 2016-05-27 | Ifp Energies Now | FISCHER-TROPSCH PROCESS USING A CATALYST BASED ON A GROUP VIII METAL PREPARED IN SUPERCRITICAL FLUID |
| US9290425B2 (en) * | 2013-06-20 | 2016-03-22 | Standard Alcohol Company Of America, Inc. | Production of mixed alcohols from synthesis gas |
| US10875820B2 (en) | 2013-06-20 | 2020-12-29 | Standard Alcohol Company Of America, Inc. | Catalyst for converting syngas to mixed alcohols |
| WO2015010941A1 (en) * | 2013-07-24 | 2015-01-29 | Shell Internationale Research Maatschappij B.V. | Process for preparing a chlorine comprising catalyst, the prepared catalyst, and its use |
| EP3077444B1 (en) | 2013-12-02 | 2018-04-25 | Dow Global Technologies LLC | Preparation of high molecular weight, branched, acyclic polyalkyleneamines and mixtures thereof |
| CN104624192B (en) * | 2015-01-23 | 2017-04-12 | 武汉凯迪工程技术研究总院有限公司 | Cobalt-based fischer-tropsch synthesis catalyst and preparation method and application |
| WO2016201218A2 (en) | 2015-06-12 | 2016-12-15 | Velocys, Inc. | Synthesis gas conversion process |
| US10543470B2 (en) | 2017-04-28 | 2020-01-28 | Intramicron, Inc. | Reactors and methods for processes involving partial oxidation reactions |
| US10544371B2 (en) | 2018-05-11 | 2020-01-28 | Intramicron, Inc. | Channel reactors |
| CN109603847B (en) * | 2018-11-30 | 2021-07-27 | 常州大学 | A NiAg@TiO2 hydrodeoxygenation catalyst embedded on both sides of SiO2 ultra-thin film and its preparation method |
| EP3934804A4 (en) * | 2019-03-05 | 2022-12-07 | Commonwealth Scientific and Industrial Research Organisation | RUTHENIUM PROMOTER CATALYST COMPOSITIONS |
Family Cites Families (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2196193B1 (en) | 1972-08-18 | 1977-08-26 | Anvar | |
| US3977993A (en) | 1975-03-12 | 1976-08-31 | Gulf Research & Development Company | Metal oxide aerogels |
| US4191637A (en) | 1977-10-14 | 1980-03-04 | Union Oil Company Of California | Aromatization process and catalyst |
| JPS601056B2 (en) | 1980-02-19 | 1985-01-11 | 千代田化工建設株式会社 | Hydrotreatment of heavy hydrocarbon oils containing asphaltenes |
| US4469814A (en) | 1982-12-10 | 1984-09-04 | Coal Industry (Patents) Limited | Catalysts |
| US4469816A (en) * | 1982-12-14 | 1984-09-04 | Allied Corporation | Palladium on alumina aerogel catalyst composition and process for making same |
| US4717708A (en) | 1983-12-27 | 1988-01-05 | Stauffer Chemical Company | Inorganic oxide aerogels and their preparation |
| US4619908A (en) * | 1984-12-24 | 1986-10-28 | Stauffer Chemical Company | Non-aged inorganic oxide-containing aerogels and their preparation |
| US5080872A (en) | 1985-09-26 | 1992-01-14 | Amoco Corporation | Temperature regulating reactor apparatus and method |
| US5021385A (en) * | 1987-09-18 | 1991-06-04 | American Cyanamid Company | Catalyst comprising a titania-zirconia support and supported catalyst prepared by a process |
| US5134109A (en) | 1989-07-07 | 1992-07-28 | Idemitsu Kosan Company Limited | Catalyst for reforming hydrocarbon with steam |
| FR2677992B1 (en) | 1991-06-19 | 1994-09-09 | Inst Francais Du Petrole | PROCESS FOR THE SYNTHESIS OF HYDROCARBONS FROM SYNTHESIS GAS IN THE PRESENCE OF A COBALT-BASED CATALYST. |
| DE4204260A1 (en) * | 1992-02-13 | 1993-08-19 | Basf Ag | PHILLIPS CATALYST AND ITS USE FOR PRODUCING ETHYLENE (ALPHA) OLEFIN COPOLYMERISATS |
| FR2694013B1 (en) * | 1992-07-27 | 1994-09-30 | Inst Francais Du Petrole | Cobalt-based catalyst and process for converting synthesis gas to hydrocarbons. |
| US5395805A (en) | 1993-03-25 | 1995-03-07 | Regents Of The University Of California | Method for making monolithic metal oxide aerogels |
| DE4319909C2 (en) * | 1993-06-16 | 1996-11-07 | Solvay Deutschland | Airgel supported catalyst comprising palladium, platinum, nickel, cobalt and / or copper, process for its production and use of a palladium airgel supported catalyst |
| DE4422912A1 (en) * | 1994-06-30 | 1996-01-11 | Hoechst Ag | Xerogels, processes for their manufacture and their use |
| US5658497A (en) | 1995-12-05 | 1997-08-19 | Shell Oil Company | Process for the catalytic partial oxidation of hydrocarbons using a certain catalyst support |
| US5718878A (en) * | 1996-07-12 | 1998-02-17 | Akzo Nobel N.V. | Mesoporous titania and process for its preparation |
| US5958363A (en) | 1998-10-29 | 1999-09-28 | The Regents Of The University Of California | Method for making monolithic metal oxide aerogels |
-
1999
- 1999-08-18 US US09/377,008 patent/US6235677B1/en not_active Expired - Fee Related
-
2001
- 2001-02-21 US US09/789,987 patent/US6353035B2/en not_active Expired - Fee Related
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2853904A1 (en) * | 2003-04-15 | 2004-10-22 | Air Liquide | Production of liquid hydrocarbons by a Fischer-Tropsch process includes a stage of treatment and valorisation of residual gases produced in the process |
| US20060035783A1 (en) * | 2004-08-14 | 2006-02-16 | Todd Osbourne | Fluid/slurry bed cobalt-alumina catalyst made by compounding and spray drying |
| WO2006020648A1 (en) * | 2004-08-14 | 2006-02-23 | Sud-Chemie Inc. | Fluid/slurry bed cobalt-alumina catalyst made by compounding and spray drying |
| US7560412B2 (en) | 2004-08-14 | 2009-07-14 | Sud-Chemie Inc. | Fluid/slurry bed cobalt-alumina catalyst made by compounding and spray drying |
| US20100152036A1 (en) * | 2007-08-10 | 2010-06-17 | Rentech, Inc. | Precipitated iron catalyst for hydrogenation of carbon monoxide |
| US20100152307A1 (en) * | 2007-08-10 | 2010-06-17 | Rentech, Inc. | Precipitated iron catalyst for hydrogenation of carbon monoxide |
| US7968611B2 (en) * | 2007-08-10 | 2011-06-28 | Rentech, Inc. | Precipitated iron catalyst for hydrogenation of carbon monoxide |
| US8138115B2 (en) | 2007-08-10 | 2012-03-20 | Rentech, Inc. | Precipitated iron catalyst for hydrogenation of carbon monoxide |
| WO2010143783A3 (en) * | 2009-06-12 | 2011-03-31 | Korea Research Institute Of Chemical Technology | Iron-based catalyst for fischer-tropsch synthesis and preparation method thereof |
| CN103263901A (en) * | 2013-05-09 | 2013-08-28 | 天津城市建设学院 | Micron-sized molecular sieve supported nano-iron material preparation method |
Also Published As
| Publication number | Publication date |
|---|---|
| US6235677B1 (en) | 2001-05-22 |
| US6353035B2 (en) | 2002-03-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6235677B1 (en) | Fischer-Tropsch processes using xerogel and aerogel catalysts by destabilizing aqueous colloids | |
| US6319872B1 (en) | Fischer-Tropsch processes using catalysts on mesoporous supports | |
| CA2274688C (en) | Process for the preparation of hydrocarbons | |
| AU2006240440B2 (en) | Stabilized boehmite-derived catalyst supports, catalysts, methods of making and using | |
| CA2264534C (en) | Catalytic composition suitable for the fischer-tropsch process | |
| AU746882B2 (en) | Fischer-tropsch processes using xerogel and aerogel catalysts by destabilizing aqueous colloids | |
| US20040132833A1 (en) | Fischer-Tropsch processes and catalysts made from a material comprising boehmite | |
| ZA200502659B (en) | Fischer-Tropsch processes and cayalysts using stabilizeed support | |
| WO1999061400A1 (en) | Fischer-tropsch processes and catalysts using fluorided supports | |
| WO2005037745A1 (en) | Silica-alumina catalyst support with bimodal pore distribution, catalysts, methods of making and using same | |
| ZA200602545B (en) | A method for forming a Fischer-Tropsch catalyst using a boehmite support material | |
| AU4309799A (en) | Fischer-tropsch processes and catalysts using fluorided alumina supports | |
| WO2002059232A2 (en) | Process for operating a fischer-tropsch reactor | |
| US6121190A (en) | Catalytic composition useful in the Fischer-Tropsch reaction | |
| AU2002216754A1 (en) | Fischer-tropsch processes and catalysts using aluminum borate supports | |
| AU2003297442A1 (en) | Attrition resistant bulk metal catalysts and methods of making and using same | |
| ZA200101413B (en) | Fischer-Tropsch processes using xerogel and aerogel catalysts by destabilizing aqueous colloids. | |
| ZA200101412B (en) | Fischer-Tropsch process using catalysts on mesoporous supports. | |
| ZA200305171B (en) | Baron promoted catalysts and fischer-tropsch processes. |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: CONOCO INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MANZER, LEO E.;KOURTAKIS, KOSTANTINOS;REEL/FRAME:011602/0307;SIGNING DATES FROM 19991103 TO 19991110 |
|
| AS | Assignment |
Owner name: CONOCOPHILLIPS COMPANY, TEXAS Free format text: MERGER;ASSIGNOR:CONOCO INC.;REEL/FRAME:015676/0305 Effective date: 20021231 |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20100305 |