US2079805A - Process for extracting molybdenum from wulfenite ore - Google Patents
Process for extracting molybdenum from wulfenite ore Download PDFInfo
- Publication number
- US2079805A US2079805A US729766A US72976634A US2079805A US 2079805 A US2079805 A US 2079805A US 729766 A US729766 A US 729766A US 72976634 A US72976634 A US 72976634A US 2079805 A US2079805 A US 2079805A
- Authority
- US
- United States
- Prior art keywords
- ore
- solution
- sodium
- molybdenum
- wulfenite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 title description 23
- 229910052750 molybdenum Inorganic materials 0.000 title description 23
- 239000011733 molybdenum Substances 0.000 title description 23
- 238000000034 method Methods 0.000 title description 11
- 239000000243 solution Substances 0.000 description 26
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 21
- 239000011684 sodium molybdate Substances 0.000 description 19
- 235000015393 sodium molybdate Nutrition 0.000 description 19
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 description 19
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 16
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 14
- 150000003388 sodium compounds Chemical class 0.000 description 9
- 238000001914 filtration Methods 0.000 description 8
- 229910001629 magnesium chloride Inorganic materials 0.000 description 8
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 235000011121 sodium hydroxide Nutrition 0.000 description 7
- 239000004317 sodium nitrate Substances 0.000 description 7
- 235000010344 sodium nitrate Nutrition 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 230000003472 neutralizing effect Effects 0.000 description 5
- DJHGAFSJWGLOIV-UHFFFAOYSA-K Arsenate3- Chemical compound [O-][As]([O-])([O-])=O DJHGAFSJWGLOIV-UHFFFAOYSA-K 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000002386 leaching Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 229940000489 arsenate Drugs 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 150000002611 lead compounds Chemical class 0.000 description 3
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 3
- 239000004137 magnesium phosphate Substances 0.000 description 3
- 229960002261 magnesium phosphate Drugs 0.000 description 3
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 3
- 235000010994 magnesium phosphates Nutrition 0.000 description 3
- -1 or other Chemical compound 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 241000549556 Nanos Species 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000005078 molybdenum compound Substances 0.000 description 2
- 150000002752 molybdenum compounds Chemical class 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910004647 CaMoO4 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- BIOOACNPATUQFW-UHFFFAOYSA-N calcium;dioxido(dioxo)molybdenum Chemical compound [Ca+2].[O-][Mo]([O-])(=O)=O BIOOACNPATUQFW-UHFFFAOYSA-N 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 244000213578 camo Species 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 150000002681 magnesium compounds Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/30—Obtaining chromium, molybdenum or tungsten
- C22B34/34—Obtaining molybdenum
Definitions
- the present invention relates to ore treatments, and more particularly to improved methods of producing molybdenum compounds from wulfenite ores by reacting these ores with sodium compounds.
- An object of this invention is to produce substantially pure molybdenum compounds from wulfenite ore in a more economic and efficient manner.
- Another object ofthe invention is to treat wulfenite ore with sodium compounds in such a manner that any undecomposed excess of the reagent used produces no insoluble or contamin- .ating compound in the product obtained.
- a further object of this invention is to extract molybdenum from wulfenite ore, with a high percentage yield of extraction, without requiring the high degree of comminution necessary heretofore.
- the ore is first pulverized to 60. to 80 mesh, and then mixed with dry sodium compound, preferably Chile saltpeter (NaNOs).
- dry sodium compound preferably Chile saltpeter (NaNOs).
- a sufficient amount of the nitrate is about five times the weight of molybdenum present in. the ore.
- caustic soda is used, a suitable amount is about 2.5 times the weight of the molybdenum present in the ore.
- a preferred method of employing the latter reagent is to dissolve it in the least amount of water required to moisten the ore uniformly, when thoroughly mixed therewith.
- the mixture obtained by either of the above methods is then heated at least to the temperature of reaction of the sodium compound, to produce sodium molybdate.
- I have found 700 C. to be satisfactory in the case of NaNOz. This temperature is maintained until the formation of sodium molybdate is completed.
- the time required has been found to be about one hour. It is not necessary to stir or rabble the ore mixture during this step.
- the sintered ore is then leached with water and filtered. It has been found to be unnecessary to remove the last traces of solid matter at this stage.
- Magnesium chloride preferably in aqueous solution, is then added to the extracted molybdevnum solution which is vigorously agitated, while heating, until the sodium molybdate solution is almost neutral, and until carbon dioxide (if present) is entirely eliminated.
- the magnesium chloride may be partly replaced by some other neutralizing agent, such as nitric acid, which may be economically obtained by suitable treatment of the fumes escaping from the sintering furnace when employing sodium nitrate as decomposition agent. It is not usually advisable, however, to dispense entirely with magnesium chloride as neutralizing agent, since one of its functions is to form insoluble magnesium compounds of arsenic and phosphorus, and thus eliminate these objectionable impurities from the molybdenum solution.
- the molybdenum solution is then filtered free from the mixed precipitate formed, and calcium, iron, or other chloride is added to the sodium molybdate solution.
- the solution is heated to boiling temperature and simultaneously agitated, until the molybdenum present is substantially all precipitated as calcium, iron, or other, molybdate.
- the molybdate precipitated is then filtered, washed and dried.
- NaOH has a larger proportion of available sodium.
- Process for extracting molybdenum from wulfenite ore which comprises comminuting and roasting the ore; mixing said roasted ore with a sodium compound selected from the group consisting of sodium nitrate and sodium hydroxide, said sodium compound being present in sufficient proportion to combine with substantially all of the molybdenum contained in the ore to form a water soluble compound of molybdenum; heatinglsaid mixture to an elevated reaction temperature; leaching the resultant mass with water to dissolve sodium molybdate therefrom; filtering oil", the clear impure solution of sodium molybdate; neutralizing said solution; adding thereto a quantity of magnesium chloride, sufficient to precipitate magnesium phosphate and arsenate; filteringofi the, purified sodium molybdate solution; .and precipitating a substantially pure molybdate compound by .adding to the solution a quantity of a water-soluble chloride of a metal which forms an insoluble molybdate, sufficient to precipitate substantially all of the molybdenum contained in said
- Process for extracting molybdenum from wulfenite ore which comprises comminuting and roasting the ore; mixing said roasted ore with a quantity of sodium nitrate sufiicient-to combine with substantially all of the molybdenum contained in the ore to form sodium molybdate; heating said mixture to a temperature of about 700 C.
- sufii'cient to ensure chemical reaction; leaching the resultant mass with water to dissolve sodium molybdate therefrom, filtering off the impure solution of sodium molybdate; neutralizing said solution and adding thereto a quantity of magnesium chloride sufiicient to precipitate magnesium phosphate and arsenate; filtering odf the purified sodium molybdate solution; and adding calcium chloride to said solution to precipitate therefrom substantially pure calcium molybdate.
- Process for extracting molybdenum from wulfenite ore which comprises comminuting and roasting the ore; mixing said roasted ore with a quantity of sodium hydroxide suificient to'combine with substantially all of the molybdenum contained in the ore to form sodium molybdate; heating said mixture to a temperature suflicient to ensure chemical reaction; leaching the resultant mass with water to dissolve sodium molybdate therefrom; filtering ofi the impure solution of sodium molybdate; neutralizing said solution and adding thereto a quantity of magnesium chloride sufiicient to precipitate magnesium phosphate and arsenate; filtering ofithepurified so-' dium molybdate solution; and adding ferric chloride tosaidsolution to precipitate therefrom substantially pure ferric molybate.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
Mayll, 1937.
E. K. JUDD PROCESS FOR EXTRACTING MOLYBDENUM FROM WULFENITE ORE Filed June 9, 1954 CRUHSHING ORETO 60-80 MESH MIXING ORE WITH NaNOa OR WITH NaOH HEATING MIXTURE TO ABOUT 700C (DECOMPOSING) LEACHING VVIVTH WATERj FILTERING NQMQQ SOLUTION AGITATED WITH SOLUTION OF Mg Clz Mo- SOLUTION ADDING CaClz, OR FeClz, OR OTHER CHLORIDES; HEATING AND AGITATING INSOLUBLE RESIDUES HYDROXIDES OF Fe,A|,Zn,Cu, Mn, Pb,-
ALSO Au AND Ag IF ORIGINALLY PRESENT WASTE (MIXED PRECIPITATES) CONTAIN\NG P, AS, ETC
FILTERING DESIRED PRODUCT 1' CALCIUM, IRON, OR OTHE R MOLYBDATE TA'ILINGS SOLUTION INVENTOR EDWARD K. J'UDD ATTORNEY III Patented May 11, 1937 PATENT osrlclz PROCESS FGR EXTRACTING MOLYBDENUM FROM WULFENETE ORE Edward K. Judd, Palisade, N. J., assignor, by
mesne assignments, to Union Carbide and Carbon Gorporation, a corporation of New York Application June 9, 1934, Serial No. 729,766
4 Claims.
The present invention relates to ore treatments, and more particularly to improved methods of producing molybdenum compounds from wulfenite ores by reacting these ores with sodium compounds.
An object of this invention is to produce substantially pure molybdenum compounds from wulfenite ore in a more economic and efficient manner.
Another object ofthe invention is to treat wulfenite ore with sodium compounds in such a manner that any undecomposed excess of the reagent used produces no insoluble or contamin- .ating compound in the product obtained.
A further object of this invention is to extract molybdenum from wulfenite ore, with a high percentage yield of extraction, without requiring the high degree of comminution necessary heretofore.
Heretofore when treating molybdenum ores such as wulfenite (PbMOO i) with aqueous solutions of NaOI-l, NazCOs, or NazS, the lead contained in the ore was converted into an insoluble lead compound which formed an envelope on the surface of the wulfenite grains. This envelope considerably retarded or entirely prevented the solution reaction. In order partly to overcome this, it was necessary to crush the ore to a grain size of about 200 mesh more or less.
I have discovered that it is possible to obtain a 100% extraction of the molybdenum contained in wulfenite, without its being necessary to crush the ore to a fineness beyond 60 to 80 mesh (0.246 to 0.175 millimeter sieve opening), while at the same time the molybdate obtained is purer than that obtained by prior art methods' This improved result may be due to the fact that there is no formation of an interfering lead compound during the first step in the process as practiced by me. Such a water-insoluble lead compound is formed in the case of sulphide, sulphate and carbonate reagents used heretofore. However, this explanation of the reason why it is not necessary to crush the ore fine is merely a theory, and the advantageous results may be due to other causes.
The above objects of this invention are attained by treating the molybdenum ore with certain sodium compounds, preferably with sodium nitrate or sodium hydroxide, for example, and heating the mixture to the temperature range which is necessary to promote the desired reaction. In the case of sodium nitrate this temperature is considerably above the melting point of the salt. In this manner sodium molybdate is obtained which is then extracted and purified as described below.
One example of the present invention is set forth diagrammatically in the accompanying drawing in which the invention is more particularly described as applied to the treatment of wulfenite.
The ore is first pulverized to 60. to 80 mesh, and then mixed with dry sodium compound, preferably Chile saltpeter (NaNOs). I have found that a sufficient amount of the nitrate is about five times the weight of molybdenum present in. the ore. When caustic soda is used, a suitable amount is about 2.5 times the weight of the molybdenum present in the ore. A preferred method of employing the latter reagent is to dissolve it in the least amount of water required to moisten the ore uniformly, when thoroughly mixed therewith.
The mixture obtained by either of the above methods is then heated at least to the temperature of reaction of the sodium compound, to produce sodium molybdate. I have found 700 C. to be satisfactory in the case of NaNOz. This temperature is maintained until the formation of sodium molybdate is completed. The time required has been found to be about one hour. It is not necessary to stir or rabble the ore mixture during this step.
The sintered ore is then leached with water and filtered. It has been found to be unnecessary to remove the last traces of solid matter at this stage.
Magnesium chloride, preferably in aqueous solution, is then added to the extracted molybdevnum solution which is vigorously agitated, while heating, until the sodium molybdate solution is almost neutral, and until carbon dioxide (if present) is entirely eliminated. Alternatively, the magnesium chloride may be partly replaced by some other neutralizing agent, such as nitric acid, which may be economically obtained by suitable treatment of the fumes escaping from the sintering furnace when employing sodium nitrate as decomposition agent. It is not usually advisable, however, to dispense entirely with magnesium chloride as neutralizing agent, since one of its functions is to form insoluble magnesium compounds of arsenic and phosphorus, and thus eliminate these objectionable impurities from the molybdenum solution.
The molybdenum solution is then filtered free from the mixed precipitate formed, and calcium, iron, or other chloride is added to the sodium molybdate solution. The solution is heated to boiling temperature and simultaneously agitated, until the molybdenum present is substantially all precipitated as calcium, iron, or other, molybdate. The molybdate precipitated is then filtered, washed and dried.
If an objectionably large proportion of sulphur is present, it is advantageous to wash the precipitated molybdate with a considerable volume of both of which are particularly objectionable in CaMoO4; but NaNOs is also almost equally advantageous as compared with carbonate or hydroxide reagents, by avoiding the formation of 'CaCOe or Ca(OH)z during the precipitation of CaMo'O4 by CaClz.
Important advantages of the use of sodium hydroxide as compared with sodium carbonam are as follows: First, NaOH has a larger proportion of available sodium. Second, it has a lower melting point and is chemically more active. Third, iteasier to decompose by magnesium chloride prior to the calcium chloride treatment; this is of considerable practical importance because any carbon dioxide entering the finally purified sodium molybdate solution will cause dilution of the product ,by calcium carbonate.
I claim:
1. Process for extracting molybdenum from wulfenite ore which comprises comminuting and roasting the ore; mixing said roasted ore with a sodium compound selected from the group consisting of sodium nitrate and sodium hydroxide, said sodium compound being present in sufficient proportion to combine with substantially all of the molybdenum contained in the ore to form a water soluble compound of molybdenum; heatinglsaid mixture to an elevated reaction temperature; leaching the resultant mass with water to dissolve sodium molybdate therefrom; filtering oil", the clear impure solution of sodium molybdate; neutralizing said solution; adding thereto a quantity of magnesium chloride, sufficient to precipitate magnesium phosphate and arsenate; filteringofi the, purified sodium molybdate solution; .and precipitating a substantially pure molybdate compound by .adding to the solution a quantity of a water-soluble chloride of a metal which forms an insoluble molybdate, sufficient to precipitate substantially all of the molybdenum contained in said solution.
2. Process for extracting molybdenum from wulfenite ore which comprises comminuting and roasting the ore; mixing said roasted ore with a sodium compound selected from the group consisting of sodium nitrate and sodium hydroxide, said sodium compound being present in suflicient proportion to combine with substantially all of the molybdenum contained in the ore to form a water soluble compound of molybdenum; heating said mixture to an elevated reaction temperature; leaching the resultant mass with water to dissolve sodium molybdate therefrom; filtering ofi the clear impure solution of sodium molybdate; adding thereto magnesium chloride in an amount sufficient to neutralize the solution and to precipitate therefrom substantially all carbonates, phosphates, and arsenates; filtering off the purified sodium molybdate solution; and precipitating a substantially pure molybdate compound by adding to the solution a quantity of a water-soluble chloride of a metal which forms an insoluble molybdate, sufficient to precipitate substantially all of the molybdenum contained in said solution.
3. Process for extracting molybdenum from wulfenite ore which comprises comminuting and roasting the ore; mixing said roasted ore with a quantity of sodium nitrate sufiicient-to combine with substantially all of the molybdenum contained in the ore to form sodium molybdate; heating said mixture to a temperature of about 700 C. sufii'cient to ensure chemical reaction; leaching the resultant mass with water to dissolve sodium molybdate therefrom, filtering off the impure solution of sodium molybdate; neutralizing said solution and adding thereto a quantity of magnesium chloride sufiicient to precipitate magnesium phosphate and arsenate; filtering odf the purified sodium molybdate solution; and adding calcium chloride to said solution to precipitate therefrom substantially pure calcium molybdate.
4. Process for extracting molybdenum from wulfenite ore which comprises comminuting and roasting the ore; mixing said roasted ore with a quantity of sodium hydroxide suificient to'combine with substantially all of the molybdenum contained in the ore to form sodium molybdate; heating said mixture to a temperature suflicient to ensure chemical reaction; leaching the resultant mass with water to dissolve sodium molybdate therefrom; filtering ofi the impure solution of sodium molybdate; neutralizing said solution and adding thereto a quantity of magnesium chloride sufiicient to precipitate magnesium phosphate and arsenate; filtering ofithepurified so-' dium molybdate solution; and adding ferric chloride tosaidsolution to precipitate therefrom substantially pure ferric molybate.
EDWARD -K. J U'DD.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US729766A US2079805A (en) | 1934-06-09 | 1934-06-09 | Process for extracting molybdenum from wulfenite ore |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US729766A US2079805A (en) | 1934-06-09 | 1934-06-09 | Process for extracting molybdenum from wulfenite ore |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2079805A true US2079805A (en) | 1937-05-11 |
Family
ID=24932523
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US729766A Expired - Lifetime US2079805A (en) | 1934-06-09 | 1934-06-09 | Process for extracting molybdenum from wulfenite ore |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2079805A (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2460975A (en) * | 1944-12-28 | 1949-02-08 | Us Vanadium Corp | Recovery of molybdenum compounds |
| US2460974A (en) * | 1944-12-28 | 1949-02-08 | Us Vanadium Corp | Preparation of molybdenum compounds |
| US2974014A (en) * | 1955-11-14 | 1961-03-07 | Columbia Southern Chem Corp | Treatment of metallic ores |
| US4211753A (en) * | 1978-11-20 | 1980-07-08 | Kennecott Copper Corporation | Recovery of molybdenum values from dilute solutions |
| FR2510540A2 (en) * | 1977-09-30 | 1983-02-04 | Pechiney Ugine Kuhlmann Uran | Arsenic removal from uranium and vanadium leaching solns. - by addn. of magnesium cpd. prior to soln. purification for recycling |
| FR2510611A2 (en) * | 1979-07-27 | 1983-02-04 | Pechiney Aluminium | Arsenic removal from uranium leaching solns. - by addn. of magnesium cpd. to ppte. magnesium arsenate |
| FR2510609A1 (en) * | 1981-07-29 | 1983-02-04 | Pechiney Aluminium | SELECTIVE PURIFICATION OF ARSENICAL MATERIAL DURING AN ALKALI PROCESS OF TREATING A URANIFEROUS AND / OR MOLYBDENIFER ORE USING A MAGNESIUM COMPOUND |
| US4374100A (en) * | 1981-03-18 | 1983-02-15 | Amax Inc. | Recovery and recycle of molybdenum values from coal liquefaction residue |
-
1934
- 1934-06-09 US US729766A patent/US2079805A/en not_active Expired - Lifetime
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2460975A (en) * | 1944-12-28 | 1949-02-08 | Us Vanadium Corp | Recovery of molybdenum compounds |
| US2460974A (en) * | 1944-12-28 | 1949-02-08 | Us Vanadium Corp | Preparation of molybdenum compounds |
| US2974014A (en) * | 1955-11-14 | 1961-03-07 | Columbia Southern Chem Corp | Treatment of metallic ores |
| FR2510540A2 (en) * | 1977-09-30 | 1983-02-04 | Pechiney Ugine Kuhlmann Uran | Arsenic removal from uranium and vanadium leaching solns. - by addn. of magnesium cpd. prior to soln. purification for recycling |
| US4211753A (en) * | 1978-11-20 | 1980-07-08 | Kennecott Copper Corporation | Recovery of molybdenum values from dilute solutions |
| FR2510611A2 (en) * | 1979-07-27 | 1983-02-04 | Pechiney Aluminium | Arsenic removal from uranium leaching solns. - by addn. of magnesium cpd. to ppte. magnesium arsenate |
| US4374100A (en) * | 1981-03-18 | 1983-02-15 | Amax Inc. | Recovery and recycle of molybdenum values from coal liquefaction residue |
| FR2510609A1 (en) * | 1981-07-29 | 1983-02-04 | Pechiney Aluminium | SELECTIVE PURIFICATION OF ARSENICAL MATERIAL DURING AN ALKALI PROCESS OF TREATING A URANIFEROUS AND / OR MOLYBDENIFER ORE USING A MAGNESIUM COMPOUND |
| WO1983000509A1 (en) * | 1981-07-29 | 1983-02-17 | Maurel, Pierre | Selective purification of arsenical material during an alkaline process for the treatment of a uranium-bearing and/or molybdenum-bearing mineral by means of a magnesium compound |
| US4634579A (en) * | 1981-07-29 | 1987-01-06 | Aluminium Pechiney | Selective removal of arsenical material in the course of an alkaline process for treating a uraniferous and/or molybdeniferous ore by means of a magnesium compound |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4369061A (en) | Recovery of precious metals from difficult ores | |
| US3849121A (en) | Zinc oxide recovery process | |
| US2339888A (en) | Recovery of molybdenum and tungsten from ores | |
| US3880981A (en) | Cyclic acid leaching of nickel bearing oxide and silicate ores with subsequent iron removal from leach liquor | |
| US2398493A (en) | Production of magnesium chloride from serpentine | |
| US3238038A (en) | Precious metal recovery | |
| DE2650224A1 (en) | PROCESS FOR THE PRODUCTION OF SODIUM-LIME GLASS | |
| US2079805A (en) | Process for extracting molybdenum from wulfenite ore | |
| US3699208A (en) | Extraction of beryllium from ores | |
| US1388857A (en) | Process of extracting tungsten and similar metals from their ores | |
| JP3102331B2 (en) | Method for recovering valuable metals from waste Ni catalyst | |
| US1293404A (en) | Process of extracting tungsten and similar metals from their ores. | |
| US2176609A (en) | Process of extracting values from complex ores of vanadium and uranium | |
| US2757080A (en) | Separation of nickel from solutions containing nickel and cobalt | |
| US3288597A (en) | Process for the recovery of certain metallic and non-metallic constituents of waste slag from reverberatory refining of copper pyritic type ores | |
| US1438357A (en) | Process for the extraction of vanadium, uranium, and radium from certain ores | |
| DE2229256C3 (en) | Extraction of materials containing refractory metals | |
| US2109755A (en) | Method of making lead compounds | |
| US2134528A (en) | Treatment of lead bearing cres and the preparation of compounds therefrom | |
| US1504627A (en) | James graham lamb | |
| US2007233A (en) | Process for making zinc sulphate and iron oxide | |
| US3168375A (en) | Process for the treatment of an aqueous solution containing various metal sulphate salts for the recovery of metal values, particularly of cobalt, therefrom | |
| US3376104A (en) | Extraction of rhenium and production of molybdic oxide from sulfide ore materials | |
| US1261383A (en) | Extraction of metals from their ores. | |
| US1399246A (en) | Process for the extraction of vanadium, uranium, and radium from certain ores |