US2052004A - Process of separating mixed materials - Google Patents
Process of separating mixed materials Download PDFInfo
- Publication number
- US2052004A US2052004A US545510A US54551031A US2052004A US 2052004 A US2052004 A US 2052004A US 545510 A US545510 A US 545510A US 54551031 A US54551031 A US 54551031A US 2052004 A US2052004 A US 2052004A
- Authority
- US
- United States
- Prior art keywords
- particles
- coal
- mass
- water
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 title description 18
- 238000000034 method Methods 0.000 title description 18
- 239000002245 particle Substances 0.000 description 27
- 239000003245 coal Substances 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 239000012530 fluid Substances 0.000 description 13
- 239000010454 slate Substances 0.000 description 8
- 230000005484 gravity Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 2
- -1 as for instance Substances 0.000 description 1
- DERZBLKQOCDDDZ-JLHYYAGUSA-N cinnarizine Chemical compound C1CN(C(C=2C=CC=CC=2)C=2C=CC=CC=2)CCN1C\C=C\C1=CC=CC=C1 DERZBLKQOCDDDZ-JLHYYAGUSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03B—SEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
- B03B13/00—Control arrangements specially adapted for wet-separating apparatus or for dressing plant, using physical effects
- B03B13/005—Methods or arrangements for controlling the physical properties of heavy media, e.g. density, concentration or viscosity
Definitions
- My invention consists in a new and useful improvement in process of-separating mixed mate rials, and is de'signed'for separating materials of different specific gravity, and more particularly for separatingcoal from slate or other non-combustible materialswith which the coal is mixed. and also for separating ore from the various substances with which it is mixed.
- My invention involves the use. of hydraulic classification in which the two materials of different specific gravity become separated in a fluid medium, and the particularly novel and valuable feature of my invention is the control of the density of this classifying fluid medium whereby the separation of the materials is facilitated.
- a Fig. 1 is a side elevation of my apparatus.
- Fig. 2 is a top plan-view of my apparatus.
- Fig. 3 is a vertical section on line 3-3 of Fig. 2.
- My improved apparatus may be suitably mounted in a frame-work formed of U-beams having the base of side beams I and end beams 2, the
- the beams B Suitably mounted on uprights 3 about midway between the side beams l and 4 are the beams B to which are attached the beams 1 on which is mounted the tank .B'having the overflow launder it with the dischargeopening l0.
- I provide any suitable form of support II for the" rotatable shaft I2 upon the lower end of which and suitably disposed ln the tank 8 is the five-way pipe joint l3 carrying four distributing pipes l 4 having thereon depending nozzles l5 disposed at an angle to the bottom I6 of the tank 8.
- the lower end of the joint l3 has the depending pipe I! engaged over the upper end of the inlet pipe i8 extending upwardiy through the bottom l6 of the tank 8.
- I provide a sump S mounted-upon cross-beams IS on the beams l, and connected tancefrom the discharge openingto the pipe at the bottom of the sump S, and its upper edge 10 a 24 spaced a short distance below the discharge opening 2
- I provide an overflow opening 25 for the sump S.
- I provide an inclined shaker screen 26 suitably supported above the hopper H and below the disl5 charge opening i 0 of the tank 8, by flexible straps 21 attached to the beams 4.
- a shaft 28 mounted in journals 29 on the end uprights 3 has the eccentric shaker rod 30 attached to the screen 28.
- a V pulley 31 is provided on the shaft 28 driven by 20 the belt 32 from the motor M-l mounted on th beams 33 on the top side beam 4.
- I Suitably disposed adjacent the bottom It of the tank 8, I provide a discharge chute 34 leading from the interior of the tank 8 to the bottom of 25 the scraper elevator 35, and having the slide valve 36 with the control lever 31. I provide a motor M 2 on a. bracket 38'on one of the updischarge opening it of the tank 8, and material discharged on the screen 26 from the chute 42 of the elevator 35.
- the mixed materials as for instance, coal and slate are fed into the open top of the tank 8 by any suitable means.
- By hydraulic classification and particles of the material of lesser specific gravity, coal are carriedupwardly by the flowing current of water and overflow on to the screen 26, while the particles of the material of greater specific gravity, slate, sink to the bottom iii of the tank 8.
- the mixed materials are run into the tank 8 with a certain amount of additional water, whichadditional water escapes from the overflow 25 of the sump S.
- coal particles When the coal particles are received upon the screen 26, those of a sufliciently large size as to be desirable are retained by the screen 26 and by its shaking action are caused to pass over and oh of the screen 26 to be stored by any suitable means.
- the coal undersize particles pass with the water through the screen it and hopper H into the sump S, and a. certain proportion'of these coal particles escape from the sump S with the overflow water at 25.'
Landscapes
- Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
Description
Aug. 25, 1936. w. L. REMICK 2,052,004
PROCESS OF SBPARATING MIXED MATERIALS Filed June 19, 1931 :s Sheets-Sheet; 1
r--. In
smut
A0925, 1936. w. L. REMICk 0 2,004
PROCESS OF SEPARATING MIXED MATERIALS FilecLJune 19, 1931 a Sheets-Sheet 2 FIG. 2.
25, 1936. w. REMICK I 2,052,004
PROCESS OF SEPARATING MIXED MATERIALS Patented 'Au 25; 1936 v UN STATES PATENT F C v H og ig f z mG MIXED IALS Walter L. Remick Hazleton, Pa-., assignor to By drotator Company,
ration of Delaware Cleveland, Ohio, at corpo- Applioationlune 19,1931, Serial No. 545,510 8 Claims. '(01. zoo-11s) My invention consists in a new and useful improvement in process of-separating mixed mate rials, and is de'signed'for separating materials of different specific gravity, and more particularly for separatingcoal from slate or other non-combustible materialswith which the coal is mixed. and also for separating ore from the various substances with which it is mixed. My invention involves the use. of hydraulic classification in which the two materials of different specific gravity become separated in a fluid medium, and the particularly novel and valuable feature of my invention is the control of the density of this classifying fluid medium whereby the separation of the materials is facilitated.
While I have hereinafter fully described improved process and one specific embodiment of apparatus for practicing my process as fully illustrated in the drawings filed herewith, it is to be vention of both process and appwatus to the claims appended hereto. o
In the drawings: a Fig. 1 is a side elevation of my apparatus. Fig. 2 is a top plan-view of my apparatus. Fig. 3 is a vertical section on line 3-3 of Fig. 2. My improved apparatus may be suitably mounted in a frame-work formed of U-beams having the base of side beams I and end beams 2, the
uprights 3', the top side beams 4 and cross braces.
ll. Suitably mounted on uprights 3 about midway between the side beams l and 4 are the beams B to which are attached the beams 1 on which is mounted the tank .B'having the overflow launder it with the dischargeopening l0. Suitably positioned above the tank'li, I provide any suitable form of support II for the" rotatable shaft I2 upon the lower end of which and suitably disposed ln the tank 8 is the five-way pipe joint l3 carrying four distributing pipes l 4 having thereon depending nozzles l5 disposed at an angle to the bottom I6 of the tank 8. The lower end of the joint l3 has the depending pipe I! engaged over the upper end of the inlet pipe i8 extending upwardiy through the bottom l6 of the tank 8. To
this pipe it'there is connected the discharge side escape of liquid from the tank 8 through the pipe I is when the pumpP is not in operation. I provide any suitable means for driving the pump P,
as a motor M. I provide a sump S mounted-upon cross-beams IS on the beams l, and connected tancefrom the discharge openingto the pipe at the bottom of the sump S, and its upper edge 10 a 24 spaced a short distance below the discharge opening 2| of the hopper H. I provide an overflow opening 25 for the sump S. .I provide an inclined shaker screen 26 suitably supported above the hopper H and below the disl5 charge opening i 0 of the tank 8, by flexible straps 21 attached to the beams 4. A shaft 28 mounted in journals 29 on the end uprights 3 has the eccentric shaker rod 30 attached to the screen 28. A V pulley 31 is provided on the shaft 28 driven by 20 the belt 32 from the motor M-l mounted on th beams 33 on the top side beam 4. i
Suitably disposed adjacent the bottom It of the tank 8, I provide a discharge chute 34 leading from the interior of the tank 8 to the bottom of 25 the scraper elevator 35, and having the slide valve 36 with the control lever 31. I provide a motor M 2 on a. bracket 38'on one of the updischarge opening it of the tank 8, and material discharged on the screen 26 from the chute 42 of the elevator 35.
From the foregoing description of the details of construction of my improved apparatus, its operation in the practice of my improved process will be obvious. The sump S being filled. with water by any suitable means of supply, the pump P fllls the tank 8, the supply of water being made 1 sufficient to completely flll both the sump S and J the tank 8. Thereafter, the continued operation of the pump '3? will cause the water to overflow the tank't from the discharge it of the launder t and pass through the screen 2t and hopper H to return to the sump S. It is to be noted that the baflie plate 22 prevents the water, pouring down into the sump S from the hopperlH, from entering directly into the pipe 20 to the pump P. This is done to prevent any air bubbles, caused'by' the fall of the water from the hopper H, from entering the pump P. The water flowing over the upper end to of the baffle it then flows downwardly to the pipe it to the pump P.
The mixed materials, as for instance, coal and slate are fed into the open top of the tank 8 by any suitable means. By hydraulic classification and particles of the material of lesser specific gravity, coal, are carriedupwardly by the flowing current of water and overflow on to the screen 26, while the particles of the material of greater specific gravity, slate, sink to the bottom iii of the tank 8.
It is to be noted that the mixed materials are run into the tank 8 with a certain amount of additional water, whichadditional water escapes from the overflow 25 of the sump S.
When the coal particles are received upon the screen 26, those of a sufliciently large size as to be desirable are retained by the screen 26 and by its shaking action are caused to pass over and oh of the screen 26 to be stored by any suitable means. The coal undersize particles pass with the water through the screen it and hopper H into the sump S, and a. certain proportion'of these coal particles escape from the sump S with the overflow water at 25.'
When a sufficient quantity ofslate particles has become deposited on the bottom Id of the tank 8, the slide valve 36 is opened, allowing the slate to pass through the chute 3 into the elevator 85 by which it is raised to the chute 42 through which it is conveyed to the screen 26. By the action of the screen 26, the large particles of slate are disposed of," and the slate undersize particles pass with the water through the screen 26 and hopper E into the sump S and are therefrom returned. to the fluid classifying medium in the tank 8. It is obvious that in discharging both the coal und slate on the screen 26, I return both coal and slate undersize particles-with the circulatin: water. Thus I use higher gravity material in: tank with the circulating water.
'forbuilding up the density of the fluid medium, which is a distinct advantage. In actual operation, I have proven that after operating for a while the proportion of heavy undersize in circulation increases with resultant improvement in the gravity separation. The overflow in the sump 8 of e under-sire coal particles accounts for the gradual increase in the proportion of heavy undcrsize which does not overflow the sump S as freely as the undersize cool.
It is to be noted that variation in the size of the openings in the screen It through which the water must pass in returning to the sump S has a decided influence on the operation of my improved process. It controls the size and quantity of solid materialretuming to the classify- This vanation in the size and quantity affects the density of the classifying medium. This density facttgr constitutes the control of the gravity sepan on.
.angving described my invention, what 1 claim 1. The process of separating mixed materials which consists in subjecting them to the classifyingcflectof cnupwardlyflowingcurrent of a fluid medium: treotingthe mm of over-flowed particles to mate thcrcfroma definite proportion. of said mass, compoaedof particles havin! I. definite size range; and introducing such proportionate man into mid fluid medium.
2. The process of spending mixed materials aotaooe which consists in subjecting them to the c1essi=- tying efiect of an upwardly flowing current of a fluid medium; treating the mass of settled particles to segregate therefrom a definite proportion, of said mass, composed of particles having a definite size range; and introducing such proportionate mass into said fluid medium.
3. The process of separating mixed materials which consists in subjecting them to the classiflying effect of an upwardly flowing current of a fluid medium; treating the mass of overfiowed particles to segregate therefrom a definite proportion, of said mass, composed of particles hav ing a definite size range; introducing such pro-. portionate mass into said fluid medium; treating the mass of settled particles to segregate therefrom a definite proportion, of said mass, composed of particles having a definite size range; and introducing such proportionate mass into said fluid medium.
4. The process of separating mixed materials which consists in subjecting them to the classifying efiect of an'upwardly flowing current of a fluid medium; treating the mass of overflowed particles to segregate therefrom a definite proportion, of said mass, composed of particles having a definite size range, subjecting such proportionate mass to the classifying eifect of a second upwardly flowing current of a fluid medium, whereby a portion of said proportionate mass is overflowed; and introducing the remainder of such proportionate mass into said first current.
5. The process of separating coal from its associated refuse which consists in subjecting the mixed coal and refuse to the classifying effect of an upwardly flowing current of water; treating the mass of overflowed coal to separate therefrom a definite proportion thereof comprising coal particles having a definite size range; and introducing said coal particles into the current of water.
6. The process of separating coal from its associated refuse which consists in subjecting the mixed coal and refuse to the classifying effect of an upwardly flowing current of water; treating the mass of settled refuse to separate therefrom a definite proportion thereof comprising refuse particles having a definite size range; and introducing said refuse particles into the current of water.
'7. The process of separating coal from its associated refuse which consists in subjecting the mixed coal and refuse to the classifying effect of an upwardly flowing current of water; treating the mass of overflowcd coal to separate therefrom a definite proportion thereof comprising coal particles having a. deflnite size range; introducing said coal particles into the current of werate therefrom a. definite proportion thereof comter; treating the settled mass of refuse to scpoo0 prising refuse particles having a .f'deflnite size range: and introducing said refuse particles into the current of water.
8. The process of separating coal from its associated refuse which consists in subjecting the tied refuse. a determined proportion of eachmo commingling such separated portions in a determined ratio; and introducing said commingled mass into said currentjofwater.
whom n .nmcx.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US545510A US2052004A (en) | 1931-06-19 | 1931-06-19 | Process of separating mixed materials |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US545510A US2052004A (en) | 1931-06-19 | 1931-06-19 | Process of separating mixed materials |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2052004A true US2052004A (en) | 1936-08-25 |
Family
ID=24176534
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US545510A Expired - Lifetime US2052004A (en) | 1931-06-19 | 1931-06-19 | Process of separating mixed materials |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2052004A (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2417660A (en) * | 1942-05-23 | 1947-03-18 | Walter L Remick | Hydraulic separation of solids |
| US2422203A (en) * | 1942-10-12 | 1947-06-17 | Harry L Mcneill | Specific gravity separation of solids in liquid suspension |
| US2428777A (en) * | 1943-08-16 | 1947-10-14 | Colorado Iron Works Co | Method and apparatus for heavymedia separation |
| US2479945A (en) * | 1944-09-13 | 1949-08-23 | Allis Chalmers Mfg Co | Screen with adjustable longitudinal partition |
| US2487845A (en) * | 1945-02-21 | 1949-11-15 | Jeffrey Mfg Co | Jigging apparatus and method |
| US2497790A (en) * | 1943-11-09 | 1950-02-14 | Valenciennoise De Gestion Soc | Sink and float process for the separation of coal from its impurities |
| US2543689A (en) * | 1942-07-21 | 1951-02-27 | Directie Staatsmijnen Nl | Process for the separation of solids of different specific gravity and grain size |
| US2590691A (en) * | 1945-07-31 | 1952-03-25 | Directie Staatsmijnen Nl | Process for the separation of solid substances of different specific gravity and grain size |
-
1931
- 1931-06-19 US US545510A patent/US2052004A/en not_active Expired - Lifetime
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2417660A (en) * | 1942-05-23 | 1947-03-18 | Walter L Remick | Hydraulic separation of solids |
| US2543689A (en) * | 1942-07-21 | 1951-02-27 | Directie Staatsmijnen Nl | Process for the separation of solids of different specific gravity and grain size |
| US2422203A (en) * | 1942-10-12 | 1947-06-17 | Harry L Mcneill | Specific gravity separation of solids in liquid suspension |
| US2428777A (en) * | 1943-08-16 | 1947-10-14 | Colorado Iron Works Co | Method and apparatus for heavymedia separation |
| US2497790A (en) * | 1943-11-09 | 1950-02-14 | Valenciennoise De Gestion Soc | Sink and float process for the separation of coal from its impurities |
| US2479945A (en) * | 1944-09-13 | 1949-08-23 | Allis Chalmers Mfg Co | Screen with adjustable longitudinal partition |
| US2487845A (en) * | 1945-02-21 | 1949-11-15 | Jeffrey Mfg Co | Jigging apparatus and method |
| US2590691A (en) * | 1945-07-31 | 1952-03-25 | Directie Staatsmijnen Nl | Process for the separation of solid substances of different specific gravity and grain size |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2052004A (en) | Process of separating mixed materials | |
| US2007190A (en) | Process of and apparatus for separating mixed materials | |
| US2854136A (en) | Method and apparatus for separating solid materials of different specific gravities | |
| US2631726A (en) | Hydraulic classifier | |
| USRE16674E (en) | Method and apparatus for sep abating materials of different | |
| US2368416A (en) | Method of concentrating minerals | |
| US2074977A (en) | Launder method for separating and sorting materials | |
| US2496703A (en) | Three-way gravity liquid separation | |
| US1545636A (en) | Method for separating materials of different specific gravities | |
| US1559937A (en) | Method and apparatus for separating materials of different specific gravities | |
| US1710568A (en) | Hydraulic separator | |
| US1392401A (en) | Method and apparatus for classifying materials | |
| US2319457A (en) | Apparatus for gravity separation of granular material | |
| US2422203A (en) | Specific gravity separation of solids in liquid suspension | |
| US1885988A (en) | Quality grading | |
| US2417660A (en) | Hydraulic separation of solids | |
| US1990129A (en) | Apparatus for separating materials of different specific gravities | |
| US143219A (en) | Improvement in separators for coal, ores | |
| US1605172A (en) | Method and apparatus for coal washing and ore concentration | |
| US2966262A (en) | Method and apparatus for separating ores | |
| US2533655A (en) | Apparatus for separating materials of different specific gravities | |
| US1360116A (en) | Jig for separating coal and like material prom foreign matter | |
| US1685521A (en) | Separation of materials of different specific gravities | |
| US1198404A (en) | Dewatering and screening apparatus. | |
| US2136281A (en) | Apparatus for recovering ozocerite |