US1847783A - Resinous product and process of making - Google Patents
Resinous product and process of making Download PDFInfo
- Publication number
- US1847783A US1847783A US371684A US37168429A US1847783A US 1847783 A US1847783 A US 1847783A US 371684 A US371684 A US 371684A US 37168429 A US37168429 A US 37168429A US 1847783 A US1847783 A US 1847783A
- Authority
- US
- United States
- Prior art keywords
- film
- resin
- glycerine
- ethylene glycol
- phthalic anhydride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title description 5
- 239000012262 resinous product Substances 0.000 title description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 53
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 44
- 229920005989 resin Polymers 0.000 description 39
- 239000011347 resin Substances 0.000 description 39
- 235000014113 dietary fatty acids Nutrition 0.000 description 28
- 229930195729 fatty acid Natural products 0.000 description 28
- 239000000194 fatty acid Substances 0.000 description 28
- 150000004665 fatty acids Chemical class 0.000 description 24
- 235000011187 glycerol Nutrition 0.000 description 22
- 239000000203 mixture Substances 0.000 description 21
- 239000000344 soap Substances 0.000 description 19
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 16
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 14
- 229920000180 alkyd Polymers 0.000 description 14
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 14
- 239000004922 lacquer Substances 0.000 description 11
- 239000003973 paint Substances 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 10
- 239000005977 Ethylene Substances 0.000 description 9
- 239000002253 acid Substances 0.000 description 9
- 150000007519 polyprotic acids Polymers 0.000 description 9
- 238000009833 condensation Methods 0.000 description 8
- 230000005494 condensation Effects 0.000 description 8
- 150000007513 acids Chemical class 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 230000032050 esterification Effects 0.000 description 7
- 238000005886 esterification reaction Methods 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 235000019198 oils Nutrition 0.000 description 7
- QLEITUFVKZSFRB-UHFFFAOYSA-N 2-benzofuran-1,3-dione;propane-1,2,3-triol Chemical compound OCC(O)CO.C1=CC=C2C(=O)OC(=O)C2=C1 QLEITUFVKZSFRB-UHFFFAOYSA-N 0.000 description 6
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 6
- 239000002585 base Substances 0.000 description 5
- 238000009835 boiling Methods 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 150000005846 sugar alcohols Polymers 0.000 description 5
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- 238000007605 air drying Methods 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 239000000944 linseed oil Substances 0.000 description 4
- 235000021388 linseed oil Nutrition 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- 239000002383 tung oil Substances 0.000 description 3
- KAKCFUFVUPINQH-UHFFFAOYSA-N 2-benzofuran-1,3-dione;ethane-1,2-diol Chemical compound OCCO.C1=CC=C2C(=O)OC(=O)C2=C1 KAKCFUFVUPINQH-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000007859 condensation product Substances 0.000 description 2
- -1 fatty acid modified glycerine-phthalic anhydride Chemical class 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- ZLBFMYQIKPWYBC-UHFFFAOYSA-N 2-benzofuran-1,3-dione;2-(2-hydroxyethoxy)ethanol Chemical compound OCCOCCO.C1=CC=C2C(=O)OC(=O)C2=C1 ZLBFMYQIKPWYBC-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 1
- 241000518994 Conta Species 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- 241000360590 Erythrites Species 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 241001527806 Iti Species 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004902 Softening Agent Substances 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 1
- YMBNBZFZTXCWDV-UHFFFAOYSA-N ethane-1,2-diol;propane-1,2,3-triol Chemical compound OCCO.OCC(O)CO YMBNBZFZTXCWDV-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 235000021323 fish oil Nutrition 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical class CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-N palmitic acid group Chemical group C(CCCCCCCCCCCCCCC)(=O)O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 1
- VYMDGNCVAMGZFE-UHFFFAOYSA-N phenylbutazonum Chemical compound O=C1C(CCCC)C(=O)N(C=2C=CC=CC=2)N1C1=CC=CC=C1 VYMDGNCVAMGZFE-UHFFFAOYSA-N 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000012260 resinous material Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 235000013547 stew Nutrition 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/20—Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/66—Polyesters containing oxygen in the form of ether groups
- C08G63/668—Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
Definitions
- the present invention relates to a resinous product and the process of making it, and more especially to a resinous condensation product of the type formed fromthe combination and condensation of polyhydric alcohols and organic polybasic acids, and particularly adapted for forming a flexible waterproof and soap resistant film.
- the 1nvention has been developed in connection with the production of film's suitable as a protective or decorative coating for floor coverings, such as linoleum and felt base goods, Wall coverings, etc., and especially a film for such purposes which can be set to a soap resistant condition with or without heat or prolonged stoving or baking.
- an alkyd resin When molecular proportions of a polyhydric alcohol and an organic polybasic acid are heated together, a resinous condensation product is obtained known as an alkyd resin.
- One of the more common alkyd resins is made by condensing glycerine and phthalic anhydride, and is hereinafter referred to as a phthalic anhydride-glyoerine resin.
- a modified alkyd or phthalic anhydride-glycerine resin may be produced by. the addition of a fatty acid or acids to the polyhydric alcohol and polybasic acid mixture, or to the glycerine and phthalic anhydride mixture, during the formation of the resin.
- the fatty acid or acids employed for this purpose are generally those obtained from siccative oils, such as the so-called drying oils, linseed oil and China-wood oil, and the so-called semi-drying oils, such as fish oil,
- soya bean oil etc.
- the acids in linseed oil are principally linolic, linolenic, isolinolepilc,
- a modified phthalic anhydride-glycerine resin lacquer may be made by heating together a mixture of glycerine, phthalic anhy- 1829. Serial N0. 871,384.
- ings such as linoleum and felt base oodsgthat the lacquer or paint be alkali resistaii because of the common practice of washing floors with soap.
- glycerine and phthalic anhydride are used as the basis of the resin, it is necessary to employ a considerable proportion of a fatty acid or acids to soften and impart flexibility to the material.
- the fatty acid content commonly amounts to 50% to 75% of the resinous product. This relatively large proportion fatty acid tends to increase the solubility of the film and prevents a nick setting of'the film. particularly if the atty acid is employed in a raw or but partially oxidized condition. The continued oxida-.
- an eth lene glycol compound such as 5 the mono-ct ylene glycol, commonly called ethylene glycol, or a polyethylene glycol, such as dl-ethylene glycol or tri-et ylene gl col, but preferably a mixture of monoetliylene glycol and di-ethylene glycol, be substituted for a art of the glycerine, cerj .tain desirable qua ities are imparted to the resinous product which-particularly adapts it for forming protective films.
- the film is rendered more soap and alkali resistant, and when the combination of ethylene glycol and di-ethylene glycol is employed, a film can be Y 3 produced which will'air-dry without continued heat to a soap resistant condition.
- V l substitution of one or more of the ethylene 99 gl c0ls, i. e., mono-ethylene glycol or a polyet ylene -glycol tends toincrease the softness I and 'flexibilityof the film and allows a considerable reduction in the amount of fatty acids employed, thus increasing the stability fiof the film and-aiding in quick setting.
- v amodified 'glyptal resin formed of parts glycerine, parts phthalic anhydride. 50. linseed oil fatty 1 acids, and' .15 parts Chinawood oil fatty acids.
- a lacquer m my resin as hereinafteidescribed, can be set to a soap resist- 7 ant conditionby air-drying with the appli tion of heat only long enough i remove the volatilesolvent.
- the resin thus produced is then dissolved in a solvent to form a lacquer or paint.
- lacquer or aint gives a film which will airdry to an a ali andsoap resistant condition and which has a ness.
- the various constituents apparently. i mhigh flexibility and toughpart the following qualitiesto the resin:
- the ethylene glycol-phthalic anhydride combination gives a tough resin but with some tendency toward tackiness; It also aprs to' have inherently good-soap resist-- qualities.
- the glycerine-phthalic anhydride combination tends to .give a bi h gloss and counteracts tackiness.
- ethylene glycol-phthalic anhydride combination gives flexibility, and its tackiness is counteracted by the glycerine-phthalic anhydride combination. While the di-ethylene glycol-phthalic anhydride combination does not apparently have inherent good soa resisting qualities,'it,' in combination wit the other constituents, enhances the soa and water resistance, apparently due to tter esterification.
- the di-eth lene glycol assists in the esterification of t e lycerme and ethylene glycol with the phtha ic anhydride, and that such esterification is, in part at least, responsible for the soap resistant flexible a glycerine-phthalic qualities imparted by the use of the di-ethylene lycol, and thereby forms a composition whifii can be air-dried to a soap resistant Apparentl when glycerine and hthalic anhydri e are combined in the ormation of a resin, esterification is not complete and long continued stoving at relativehigh temperatures is required to complete I believe that the susof the air-dried films as t e esterification.
- the fatty acids are used in considerably less amount than is required to soften and render anhydride resin, and this is due, I believe, to the inherent flexibilizing qualities of the ethylene glycol compounds used.
- it is of advantage to thus reduce the amount of modifying fatty acids required, particularly when an air-dryin or quickly setting film is desired. It may stated in general that the smaller the amount of fatty acid used, the less time required to set the film. On .the other hand, if it is desired to form a film which will not dry as quickly, more fatty acid may be added, since this will require a longer time to mature. Thus, a control of the drying time of the film may be secured.
- ethylene glycol While it is preferred to use both the diethylene glycol and the mono-ethylene glycol in order to get their peculiar coaction in rendering the film air-drying to a soap resistant condition, one of these ethylene glycol compounds may be employed alone as a modifying or softening agent and thus reduce the amount of fatty acid required.
- Tri-ethylene glycol has effects similar to those of (ii-ethylene glycol, particularly in promoting better esterification in ,an alkyd resin to which it may be added. It may be Cellosolve, boiling In using my resinous compound as a base for lacquers and paints,there is quite afield of solvents from which'to select.
- the partlcular solvent or solvents selected deternunedby the renditions under which the film is applied.
- the solvents are selected largely with reference to their boiling points. For example, the following solvents with the r boilin points noted, may be used in venous com 1nations:
- Ethylene glycol mono-ethyl ether commonly known y the trade name of Cellosolva, boiling point 128 to 137 centigra e; I
- Ethylenegl col mono-methyl ether commonly known y the trade name of Methyl oint 125 centigrade; The acetate of ellosolve, boiling point 154 c entigrade; Y
- the dissolved resin may be used as such as a clear lacquer or varnish, or igments may be added to form a paint.
- he lacquer or paint maiyl be applied in any of the usual Ways, suc as by brushing or by spraying or by printing with floor covering printing machines.
- the film may be air-dried, such as by passing the lacquered or painted floor covering through a drying chamber, preferably heated to accelerate the evaporation of the solvent.
- the film as thus air-dried is not tacky and has good soap or alkali resistant qualities.
- the goods to which such air-drying film is applied ma be immediately rolled up for shipment.
- the film may be modified to increase its drying time by increasing the fatty acid modifier content, so that the resin undercoat film may require about the same length of time to dry as is required by the oil paint decoration acts its tackines, other lyh dric alcohols may be substituted for e g ycerine, such,
- alkyd resin formed by the combination and con ensation of a mixture containing phthalic anhydride, glycerine, ethylene lycol, and apoly-ethylene glycol.
- e resin formed by the comalkydt bination and con ensation of a mixture containin phthalic anhydride, glycerine, ethylene ycol, and (ii-ethylene glycol.
- alkyd resin formed by the combination and con ensation of a mixture containin phthalic anhydride, glycerine, one of the et ylene lycols and a fatty acid.
- An ty resin formed by the combination an con nsation of a mixture containin -phthalic anhydride, glycerine, ethylene g ycol, .di-ethylene glycol, and a fatty acid.
- a t resin orm y t e combination and cdiiii ensation of phthalic anhydride, glycerine, eth lene gl col and diethylene glycol, and a tty aci modifier in an amount less than that required by a phthalic anhydride-glycerine resin of comparable softness and flexibility.
- rodu the herein col m an amount greater than that of ei er the glycerine or the poly-ethylene gl col.
- 15.-An alkyd type. resin form by the combination and condensation of a mixture containing phthalic anh dride, glycerine, diethylene glycol, and e ylene glycol. in an amount greater than that of eit er the glycerine or the di-ethylene glycol.
- An alkyd type resin formed by the combination and condensation of a mixture containing phthalic anhydride, glycerine ethylene glycol and (ii-ethylene glycol, an
- An alkyd type resin formed by the combination and condensation of a mixture containing phthalic anh dride,. glycerine, ethylene glycol, a poly-ct ylene glycol, and a fatty aci I 19.
- the process of reducing the herein described resinous'p uct which comprises heating a mixture containing an organic polybasic acid a pol hydric alcohol eth lene glycol a ly-ethy ene glycol and a fztty acid.
- An alkyd type resin formed by the combination and condensation of a mixture containing an organic polybasic acid, a polyhydric alcohol, ethylene glycol, and di-ethylene glycol.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Paints Or Removers (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Catching Or Destruction (AREA)
Description
' oleic, and palmitic and stearic acids.
Patented Mar. 1, 1932 UNITED STATES PATENT OFFICE ERNEST J. PIEPER, OF LANCASTER, PENNSYLVANIA, ABSIGNOB TO ARMSTRONG CORK COMPANY, OF LANCASTER, PENNSYLVANIA, A CORPORATION 01' PENNSYLVANIA RESINOUS PRODUCT PROCESS OF MAKING No Drawing. Application fled June 11,
The present invention relates to a resinous product and the process of making it, and more especially to a resinous condensation product of the type formed fromthe combination and condensation of polyhydric alcohols and organic polybasic acids, and particularly adapted for forming a flexible waterproof and soap resistant film. The 1nvention has been developed in connection with the production of film's suitable as a protective or decorative coating for floor coverings, such as linoleum and felt base goods, Wall coverings, etc., and especially a film for such purposes which can be set to a soap resistant condition with or without heat or prolonged stoving or baking.
When molecular proportions of a polyhydric alcohol and an organic polybasic acid are heated together, a resinous condensation product is obtained known as an alkyd resin. One of the more common alkyd resins is made by condensing glycerine and phthalic anhydride, and is hereinafter referred to as a phthalic anhydride-glyoerine resin. A modified alkyd or phthalic anhydride-glycerine resin may be produced by. the addition of a fatty acid or acids to the polyhydric alcohol and polybasic acid mixture, or to the glycerine and phthalic anhydride mixture, during the formation of the resin.
The fatty acid or acids employed for this purpose are generally those obtained from siccative oils, such as the so-called drying oils, linseed oil and China-wood oil, and the so-called semi-drying oils, such as fish oil,
soya bean oil, etc. The acids in linseed oil are principally linolic, linolenic, isolinolepilc,
e addition of such fatty acids softens and increases the flexibility of the resin, which is important when the resin is used as the basis for a lacquer, varnish or paint.
A modified phthalic anhydride-glycerine resin lacquer may be made by heating together a mixture of glycerine, phthalic anhy- 1829. Serial N0. 871,384.
ings, such as linoleum and felt base oodsgthat the lacquer or paint be alkali resistaii because of the common practice of washing floors with soap.
It has been found that it is necessary, in order to produce a soa resistant film from a phthalic anhydride-g ycerine resin formed of glycerine, phthalic anhydride and fatty acids, to heat the film after it is applied for aconsiderable period at about 140 to 180 Fahrenheit, or perhaps for a shorter time at higher temperatures, say, about 300 to 400 Fahrenheit. In the floor covering industry these higher baking temperatures are prohibitive since the materials, such as linoleum and felt base goods, cannot withstand these higher temperatures. When lower temperatures are used a fairly satisfactory film may be obtained by long continued heating, but. this involves delay in the operation and considerable expense. In cases where the film is air-dried or heat is .used simply to eva orate the solvent, soa resistance is not 0 tained in a film forme of the fatty acid modified glycerine-phthalic anhydride resin.
When glycerine and phthalic anhydride are used as the basis of the resin, it is necessary to employ a considerable proportion of a fatty acid or acids to soften and impart flexibility to the material. The fatty acid content commonly amounts to 50% to 75% of the resinous product. This relatively large proportion fatty acid tends to increase the solubility of the film and prevents a nick setting of'the film. particularly if the atty acid is employed in a raw or but partially oxidized condition. The continued oxida-.
- v Assn examp d or paint film formed fro gtion of an unsaturated fatty acid which ma take place after the film is in use also ten to make the flexibility of the film less stable. If an eth lene glycol compound, such as 5 the mono-ct ylene glycol, commonly called ethylene glycol, or a polyethylene glycol, such as dl-ethylene glycol or tri-et ylene gl col, but preferably a mixture of monoetliylene glycol and di-ethylene glycol, be substituted for a art of the glycerine, cerj .tain desirable qua ities are imparted to the resinous product which-particularly adapts it for forming protective films. The film is rendered more soap and alkali resistant, and when the combination of ethylene glycol and di-ethylene glycol is employed, a film can be Y 3 produced which will'air-dry without continued heat to a soap resistant condition. The
V l substitution of one or more of the ethylene 99 gl c0ls, i. e., mono-ethylene glycol or a polyet ylene -glycol tends toincrease the softness I and 'flexibilityof the film and allows a considerable reduction in the amount of fatty acids employed, thus increasing the stability fiof the film and-aiding in quick setting.
, Some of the advantages of the invention may be seen reference to former practice,
e ofthe prior practice, reference may be had to v amodified 'glyptal resin formed of parts glycerine, parts phthalic anhydride. 50. linseed oil fatty 1 acids, and' .15 parts Chinawood oil fatty acids.
The formed'fro'mthese constituents is dissolved in asuitable solvent and applied 8 to form alacquer'or paintrfilm. Inorder to set such film 'to a' soap'resistant condition requires from one to three days stoving, at about 140 to. 180 Fahrenheit. As contrasted with such former practice, a lacquer m my resin, as hereinafteidescribed, can be set to a soap resist- 7 ant conditionby air-drying with the appli tion of heat only long enough i remove the volatilesolvent. p r
The characteristics of the materials employed and their observed-behaviorwill now described, together with what I believe to 31s the chemical reactlfi 'ons involves. llltigleear ,roportion's. o ycerine an p t a ic anhydiide when heate produce-a hardglossy resin film having no tackinessand having a tendency to brittle. If suflicient fatty acid is added and condensed with the glycerine and phthalic anhydride to obtain the requisite t flexibility, the film is not quick setting and has a poor-soap resistance, unless it is subjected f to an elevated temperature over a considerable period of time. In general, the more required to mature the Air-drying is net suflicient. V
. Molecular proportions of di-ethylene glycol and phthalic anhydride whenheatefd pro duce a gummy balsam-like resin which is soft and-tacky. It softens and imparts flexibility fattyacid-used,1thelonger the heating time to the materials to which it may be added. The film formed of the di-ethylene lycol and phthalic anhydride resin is not, of itself, in-
erently soap resistant.
Molecular proportions of ethylene gl col and phthalic anhydride when heated prodhce a resin which looks as hard and brittle and feels at first touch much the same as the glycerine phthalic anhydride resin. In reality it is not so hard and brittle but will make a slightly tacky film. It has excellent soap resistant qualities. Suflicient flexibility for film use-may be secured with as low as about 5% of fatty acid, and when modified with this amount of fatty acid a highly soap resistant film is formed butone which, however. will be slightly tacky unless heat is applied to set it. q
The following is a specific example of the proportions of ingredients'employed in making a resin suitable. for a lacquer or paint base:
35'parts ethylene glycol 3% to 7% parts di-ethylene glycol; 8 to l3 arts glycerine; parts phthalic anhydri' e and -10' to 20 parts drying oil acids, such as the acids obtained from linseed oil; Chinawood oil. etc.
- This mixture is heated to about 180 to 230 centigrade. until the constituents comvbine'and condense to form the resin'in its carried to a point just under the gelation point, which point I regard as being the time at which a violent reaction sets in and the resinous material would stew up and froth over. w
. The resin thus produced is then dissolved in a solvent to form a lacquer or paint. The
lacquer or aint gives a film which will airdry to an a ali andsoap resistant condition and which has a ness. w
The various constituents apparently. i mhigh flexibility and toughpart the following qualitiesto the resin: The ethylene glycol-phthalic anhydride combination gives a tough resin but with some tendency toward tackiness; It also aprs to' have inherently good-soap resist-- qualities. The glycerine-phthalic anhydride combination tends to .give a bi h gloss and counteracts tackiness. The
ethylene glycol-phthalic anhydride combination gives flexibility, and its tackiness is counteracted by the glycerine-phthalic anhydride combination. While the di-ethylene glycol-phthalic anhydride combination does not apparently have inherent good soa resisting qualities,'it,' in combination wit the other constituents, enhances the soa and water resistance, apparently due to tter esterification.
It is believed that the di-eth lene glycol assists in the esterification of t e lycerme and ethylene glycol with the phtha ic anhydride, and that such esterification is, in part at least, responsible for the soap resistant flexible a glycerine-phthalic qualities imparted by the use of the di-ethylene lycol, and thereby forms a composition whifii can be air-dried to a soap resistant Apparentl when glycerine and hthalic anhydri e are combined in the ormation of a resin, esterification is not complete and long continued stoving at relativehigh temperatures is required to complete I believe that the susof the air-dried films as t e esterification. ceptibility to soa heretofore forms from the fatty acid modi-gi fied glycerinehthalic anhydride glyptal; resin is due to ree hydroxyl resulting froiir incomplete esterification. It is found that if too much glycerine 1 too little is used the film is tack other hand, if too much di-ethy ene glycol uct will be too soft. The referred proportionsgiven above seem to e about ri ht for producing a tough glossy but flexib e soap and alkali resistant film.
It will be noted that in the above formula the fatty acids are used in considerably less amount than is required to soften and render anhydride resin, and this is due, I believe, to the inherent flexibilizing qualities of the ethylene glycol compounds used. As above pointed out, it is of advantage to thus reduce the amount of modifying fatty acids required, particularly when an air-dryin or quickly setting film is desired. It may stated in general that the smaller the amount of fatty acid used, the less time required to set the film. On .the other hand, if it is desired to form a film which will not dry as quickly, more fatty acid may be added, since this will require a longer time to mature. Thus, a control of the drying time of the film may be secured.
While it is preferred to use both the diethylene glycol and the mono-ethylene glycol in order to get their peculiar coaction in rendering the film air-drying to a soap resistant condition, one of these ethylene glycol compounds may be employed alone as a modifying or softening agent and thus reduce the amount of fatty acid required.
Tri-ethylene glycol has effects similar to those of (ii-ethylene glycol, particularly in promoting better esterification in ,an alkyd resin to which it may be added. It may be Cellosolve, boiling In using my resinous compound as a base for lacquers and paints,there is quite afield of solvents from which'to select. The partlcular solvent or solvents selected deternunedby the renditions under which the film is applied. The solvents are selected largely with reference to their boiling points. For example, the following solvents with the r boilin points noted, may be used in venous com 1nations:
Ethylene glycol mono-ethyl ether, commonly known y the trade name of Cellosolva, boiling point 128 to 137 centigra e; I
Ethylenegl col mono-methyl ether, commonly known y the trade name of Methyl oint 125 centigrade; The acetate of ellosolve, boiling point 154 c entigrade; Y
fDi-ethy ene glycol mono-ethyl ether co monly known by the trade name of barbi- .tol;?, boil ingpoint 186 centigrade;
The butyl Cellosolve or ethyl glycol ,xiiono-butylether, boiling point 163 to 174 used the film 1s not soap resistant, (and n t e e'entigrade .Solvent nalphtha composed of benzol, toli101 and xylo is added to produce soap resistance, the prod A mixture of half and half solvent naphthe and ethyl acetate.
The dissolved resin may be used as such as a clear lacquer or varnish, or igments may be added to form a paint. he lacquer or paint maiyl be applied in any of the usual Ways, suc as by brushing or by spraying or by printing with floor covering printing machines.
After the lacquer or paint is applied, the film may be air-dried, such as by passing the lacquered or painted floor covering through a drying chamber, preferably heated to accelerate the evaporation of the solvent. The film as thus air-dried is not tacky and has good soap or alkali resistant qualities. The goods to which such air-drying film is applied ma be immediately rolled up for shipment. n case a slower drying film is required, such for example, as an undercoat to be printedover with an oil paint, the film may be modified to increase its drying time by increasing the fatty acid modifier content, so that the resin undercoat film may require about the same length of time to dry as is required by the oil paint decoration acts its tackines, other lyh dric alcohols may be substituted for e g ycerine, such,
. for example, as the firolyglycerides, erythrite,
nta-e hrite, manmte. whil l have sp cifi zally described the preferred embodimentof my invention and have attempted to'explain to the best of my understanding the properties of the constituents used and the chemical theory, it is to be understood that the invention is not limited to such specific embodiments or such explanations, but that the invention may be a fa%aci 1 4. alkyd type remn formed by the combination and con ensation of a mixture conta an organic polybasic acid a polyhydric cohol, one of the-ethylene 'g lycols and a fa acid.
6. alkyd resin formed by the combination and con ensation of a mixture containing phthalic anhydride, glycerine, ethylene lycol, and apoly-ethylene glycol.
e resin formed by the comalkydt bination and con ensation of a mixture containin phthalic anhydride, glycerine, ethylene ycol, and (ii-ethylene glycol.
- 7. alkyd resin formed by the combination and con ensation of a mixture containin phthalic anhydride, glycerine, one of the et ylene lycols and a fatty acid.
8. An ty resin formed by the combination an con nsation of a mixture containin -phthalic anhydride, glycerine, ethylene g ycol, .di-ethylene glycol, and a fatty acid.
9. An a d resin formed by the combination an con ensation of a mixture containing an or nic polybasic acid, g1 cerine and one of t e ethylene lycols, an fatty acid in an amount less than that required by a modified phthalic anhydrideglycerine resin of comparable softness and exibility 10. -a t resin orm y t e combination and cdiiii ensation of phthalic anhydride, glycerine, eth lene gl col and diethylene glycol, and a tty aci modifier in an amount less than that required by a phthalic anhydride-glycerine resin of comparable softness and flexibility.
ylene glycol, and
lybasic acid and efilycerine.
iin moi rod thehenein described resinous p uctwhi, comprises.
heatinga-mixturecontammf' ano 'c l-' basic acid, glycerine once the ylene glgcolsanda attyacid. I.
rodu the herein col m an amount greater than that of ei er the glycerine or the poly-ethylene gl col.
15.-An alkyd type. resin form by the combination and condensation of a mixture containing phthalic anh dride, glycerine, diethylene glycol, and e ylene glycol. in an amount greater than that of eit er the glycerine or the di-ethylene glycol.
16. An alkyd type resin formed by the combination and condensation of a mixture containing phthalic anhydride, glycerine ethylene glycol and (ii-ethylene glycol, an
gass than 50 per cent of a fatty acid modi- 17. An alkyd type resin'formed by combination and condensation of atlmlxture1 containing an organic p0 asic aci a po yhydric alcohol, ethylene glycol, a poly-ethylene glycol, and a fatty acid.
18. An alkyd type resin formed by the combination and condensation of a mixture containing phthalic anh dride,. glycerine, ethylene glycol, a poly-ct ylene glycol, and a fatty aci I 19. The process of reducing the herein described resinous'p uct, which comprises heating a mixture containing an organic polybasic acid a pol hydric alcohol eth lene glycol a ly-ethy ene glycol and a fztty acid.
20. e process of reducing the herein described resinous pro uct, which comprises heating a mixture 'containin an organic polybasic acid, glycerine, ethy ene poly-ethylene glycol, and a fatty aci 21. An alkyd type resin formed by the combination and condensation of a mixture containing an organic polybasic acid, a polyhydric alcohol ethylene glycol and a polyethylene glycol.
22. An alkyd type resin formed by the combination and condensation of a mixture containing an organic polybasic acid, a polyhydric alcohol, ethylene glycol, and di-ethylene glycol.
23. An alkyd type resin formed by the combination and condensation of a mixture conthe 111 hand.
y ERNEST J. PIEPER.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US371684A US1847783A (en) | 1929-06-17 | 1929-06-17 | Resinous product and process of making |
| GB18041/30A GB360930A (en) | 1929-06-17 | 1930-06-12 | Improvements in or relating to resinous products and process of making same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US371684A US1847783A (en) | 1929-06-17 | 1929-06-17 | Resinous product and process of making |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US1847783A true US1847783A (en) | 1932-03-01 |
Family
ID=23464992
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US371684A Expired - Lifetime US1847783A (en) | 1929-06-17 | 1929-06-17 | Resinous product and process of making |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US1847783A (en) |
| GB (1) | GB360930A (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2418721A (en) * | 1943-07-27 | 1947-04-08 | Interchem Corp | Resinous reaction product of ethylene glycol, glycerol, and succinic anhydride |
| US2437046A (en) * | 1943-10-15 | 1948-03-02 | Resinous Prod & Chemical Co | Stabilization of polyesters |
| US2445431A (en) * | 1943-08-26 | 1948-07-20 | Westinghouse Electric Corp | Soldering with resin fluxes |
| US2647092A (en) * | 1948-08-05 | 1953-07-28 | Reichhold Chemicals Inc | Styrene modified alkyds and process of producing the same |
| US2686164A (en) * | 1949-12-02 | 1954-08-10 | Sherwin Williams Co | Polyesters from alkylidene polaryloxyalcohols |
| US5612445A (en) * | 1995-02-15 | 1997-03-18 | Arizona Chemical Co. | Ultraviolet curable epoxidized alkyds |
-
1929
- 1929-06-17 US US371684A patent/US1847783A/en not_active Expired - Lifetime
-
1930
- 1930-06-12 GB GB18041/30A patent/GB360930A/en not_active Expired
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2418721A (en) * | 1943-07-27 | 1947-04-08 | Interchem Corp | Resinous reaction product of ethylene glycol, glycerol, and succinic anhydride |
| US2445431A (en) * | 1943-08-26 | 1948-07-20 | Westinghouse Electric Corp | Soldering with resin fluxes |
| US2437046A (en) * | 1943-10-15 | 1948-03-02 | Resinous Prod & Chemical Co | Stabilization of polyesters |
| US2647092A (en) * | 1948-08-05 | 1953-07-28 | Reichhold Chemicals Inc | Styrene modified alkyds and process of producing the same |
| US2686164A (en) * | 1949-12-02 | 1954-08-10 | Sherwin Williams Co | Polyesters from alkylidene polaryloxyalcohols |
| US5612445A (en) * | 1995-02-15 | 1997-03-18 | Arizona Chemical Co. | Ultraviolet curable epoxidized alkyds |
| US5821324A (en) * | 1995-02-15 | 1998-10-13 | International Paper Company | Ultraviolet curable epoxidized alkyds |
Also Published As
| Publication number | Publication date |
|---|---|
| GB360930A (en) | 1931-11-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US1975246A (en) | Alkyd resin | |
| US3600459A (en) | Coating compositions containing a polyester composition,an epoxy resin and an aminoplast resin | |
| US2395550A (en) | Modified alkyd resins | |
| US1950468A (en) | Alkyd resinous composition | |
| DE864426C (en) | Process for the production of drying polyesters | |
| DE3115071A1 (en) | METHOD FOR PRODUCING POLYESTERS USING MANNITE OR SORBITE DERIVATIVES, MIXTURES OF POLYESTERS AND THESE MANNITE OR SORBITE DERIVATIVES AND THEIR USE FOR THE PRODUCTION OF AQUEOUS BURNING VARNISHES | |
| DE1445209A1 (en) | Process for the preparation of alkyd resins and resin compositions comprising resin prepared by this process | |
| US2035528A (en) | Synthetic resin | |
| US1847783A (en) | Resinous product and process of making | |
| US3493414A (en) | Epoxy/polyester compositions | |
| US1975569A (en) | Improvements in and relating to resinous compositions derived from polyhydric alcohols and polybasic acids | |
| EP0023979B1 (en) | Water-soluble air-drying alkyd resins, process for their production and their use as base for non yellowing lacquers | |
| CA1051572A (en) | Process for the production of water-dilutable binders based on air-drying short-oil alkyd resins | |
| CA2280635C (en) | Material containing polyreaction products for the top coat of fabrics | |
| US1667189A (en) | Signors to e | |
| US2606883A (en) | Resinous materials | |
| US1890668A (en) | Polyhydric alcohol-polybasic acid resin | |
| US2409332A (en) | Resinous composition and method for producing the same | |
| US1942757A (en) | Resinous coating composition | |
| US2319507A (en) | Composition containing wood oil ob | |
| US2123206A (en) | Synthetic resins and compositions containing them | |
| US2059850A (en) | Synthetic resins | |
| US1824757A (en) | Coating composition | |
| Carrick | Vegetable oil paints | |
| US2110085A (en) | Resinous coating compositions |