US1717469A - Bearing metal and method of making same - Google Patents
Bearing metal and method of making same Download PDFInfo
- Publication number
- US1717469A US1717469A US97334A US9733426A US1717469A US 1717469 A US1717469 A US 1717469A US 97334 A US97334 A US 97334A US 9733426 A US9733426 A US 9733426A US 1717469 A US1717469 A US 1717469A
- Authority
- US
- United States
- Prior art keywords
- sodium
- lead
- calcium
- alloy
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title description 5
- 229910000897 Babbitt (metal) Inorganic materials 0.000 title 1
- 229910052751 metal Inorganic materials 0.000 description 22
- 239000002184 metal Substances 0.000 description 22
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 19
- 229910052708 sodium Inorganic materials 0.000 description 19
- 239000011734 sodium Substances 0.000 description 19
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 17
- 229910052791 calcium Inorganic materials 0.000 description 17
- 239000011575 calcium Substances 0.000 description 17
- 229910045601 alloy Inorganic materials 0.000 description 13
- 239000000956 alloy Substances 0.000 description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 11
- 235000010210 aluminium Nutrition 0.000 description 11
- 150000002739 metals Chemical class 0.000 description 11
- 238000002844 melting Methods 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 8
- 230000008018 melting Effects 0.000 description 7
- 238000005266 casting Methods 0.000 description 4
- 238000013329 compounding Methods 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 235000011121 sodium hydroxide Nutrition 0.000 description 4
- 229910000528 Na alloy Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 2
- 229910000978 Pb alloy Inorganic materials 0.000 description 2
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- -1 halogen salt Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- QVRVXSZKCXFBTE-UHFFFAOYSA-N n-[4-(6,7-dimethoxy-3,4-dihydro-1h-isoquinolin-2-yl)butyl]-2-(2-fluoroethoxy)-5-methylbenzamide Chemical compound C1C=2C=C(OC)C(OC)=CC=2CCN1CCCCNC(=O)C1=CC(C)=CC=C1OCCF QVRVXSZKCXFBTE-UHFFFAOYSA-N 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- SYOKIDBDQMKNDQ-XWTIBIIYSA-N vildagliptin Chemical compound C1C(O)(C2)CC(C3)CC1CC32NCC(=O)N1CCC[C@H]1C#N SYOKIDBDQMKNDQ-XWTIBIIYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C11/00—Alloys based on lead
- C22C11/02—Alloys based on lead with an alkali or an alkaline earth metal as the next major constituent
Definitions
- ROBERT JAY SHOEMAKER OF CHICAGO, ILLINOIS, ASSIGNOR TO s. a :r. METAL oom- PANY, OF CHICAGO, ILLINOIS, A CORPORATION OF ILLINOIS.
- a further object is to provide an alloy, the alloying metals of which will not oxidize When the metal is exposed to the atmosphere.
- the alloy of my invention can be made according to twosomewhat different methods, dependent upon whether the product requires primarily and articularly strength, toughness andload caring capacity, where, for example, it is to be usedfor forming the 30 bearing element as. a whole; or requires to .be soldered as, for example, where it is to be used merely as a lining, in which latter case strength isof relatively less importance but the metal must be of such character that it can be made to adhere by soldering to the base to which it is attached.
- the primary hardening agent used is sodium and very small quantities of sodium will sufiice to give the lead hardness and toughness rovided the sodium is retained in the lead.
- the lead for example, when the alloy is melted for casting, and to oxidize on exposure of the alloy to the atmosphere. I have discovered that this drossing out can be prevented by the use of small amounts of calcium and aluminum; tin, also, preferably used contributing to the same result, which metals may, therefore, be termed anti-drossing metals.
- the method of compounding is preferably carried out as follows: The lead is heated to odium alone tends to dross out of Application filed March 25, 1928. Serial Ilia-97,334. v
- the melted lead is covered with a supernatant flux or coverin which will not burn at this temperature, which will exclude oxygen and which will-be neutral tothe metals, cal- 0mm and aluminum, to be introduced.
- the priaferred covering consists of calcium chlor1 e.
- the calcium and aluminum are introduced into the lead while .under this covering and the tin also if employed.
- the melt is then cooled to a temperature somewhat above the melting point of lead, that is, to a temperature, preferably, of between 650 and 700 Fahrenheit.
- the'metal may be, poured into ingots and afterward re-heated for the addition of the sodium.
- the melting of the lead and the addition of the sodium takes place under a supernatant covering consisting of sodium hydrate and rosin, soap, fuel oil or other organic substance which will create a reducing atmosphere or at least exclude oxygen.
- the sodium hydrate and rosin, or its e uivalent may be used in substantially equa proportions.
- the quantity of each may be approximately 1% of the melt.
- the quantity of sodium hydrate should be small so as to prevent reaction between it and the calcium in the alloy. .
- Themetallic sodium is put into the flux or supernatant covering and .then
- the final alloy is then poured into ingots. It can be melted for casting without drossing to any substantial extent.
- the alloy may be improved by using small quantities of tin which may be mixed with the lead in the first melting operation as stated.
- the ingredient metals are used preferably in the following) proportions by weight.
- the amount of calcium used may be small.
- the amount of calcium in the cast bearing should be not less than 0.1% and, as the queum acts to a certain extent as a hardening agent, if it is present in a greater amount than approximately 1.0%, the metal will be too hard and brittle. 0.3% to 0.4% of calcium is preferred. If a rigid metal for bearing a heavy load is required there should be at least 0.3% of calcium in the finished article; for metals of lower strength and higher lubricating properties'0.2% of calcium might suflice.
- Aluminum from 0.02% to 0.1%. A small amount of aluminum will suflice, and if it is used in uanttities substantially in excess of 0.1% it rosses out and also tends to make the metal viscous.
- Tin 2.0% to 5.0% The tin is anoptional but preferred ingredient. It tends to make the metal more fluid and tougher and to a certain extent aids in preventing the drossi'ng out of the other ingredients. If used in amounts substantially greater than 5% it tends to make the alloy too brittle. If the article itself is heated say to dull-red the tin tends to prevent the burning out of the calcium and sodium.
- the alloy thus formed is-of value for other purposes than for bearings because of its unexpectedly high tensile strength and ductility.
- an alloy consisting of sodium 0.8%, calcium 0.3%, tin 2.0%, aluminum 0.02%, balance lead has a tensile strength of 15,000 pounds persquare inch and an. elongation of 7% for a two inch gether and the sodium added with the melt at a temperature approximatelythe melting temperature of lead and covered with a flux, as described, neutral to sodium and of a character to exclude oxygen.
- Method of making a lead-sodium alloy which comprises introducing an anti-drossing metal into the molten lead heated to a point to melt said anti-drossing metal, allowing the melt to cool, and introducing sodium into the same while at a temperature between the melting point of sodium and its vaporizing point.
- a lead allo containing a small quantity of tin and rom 0.3% to 1.0% sodium, 0.3% to 1.0% calcium and 0.02% to 0.1% aluminum.
- Method of compounding a lead sodium alloy which comprises introducing small quantities of calcium and aluminum into molten lead covered with a molten stratum of a halogen salt of an alkaline earth metal.
- Method of compounding a lead sodium alloy which comprises introducing small quantities of calcium and aluminum into molten lead covered with a molten stratum of calcium chloride.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Sliding-Contact Bearings (AREA)
Description
Patented June '18, 1929.
ROBERT JAY SHOEMAKER, OF CHICAGO, ILLINOIS, ASSIGNOR TO s. a :r. METAL oom- PANY, OF CHICAGO, ILLINOIS, A CORPORATION OF ILLINOIS.
BEARING METAL AND mamon or Maxine same.
No Drawing.
My invention relates to the production of lead base metal alloys and its object is to provide a lead alloy of such character that it mayv be used for bearings, bushings or other like elements where anti-friction surfaces are required or other purposes where a hardened lead is desirable. The invention has particularly in view the production of an anti-friction metal which will be tough and relatively hard, so as to be capable of supporting heavy loads but which at the same time possesses lubricating pro erties.
A further ObJGCt of the invention is to provide an alloy of this character, the alloying metals of which will not'dross or burn out, at least to any undesirable extent, with reasonable care,,either when the ingredient metals are melted up together in compounding or when the alloy is melted in casting operations.
A further object is to provide an alloy, the alloying metals of which will not oxidize When the metal is exposed to the atmosphere.
The alloy of my invention can be made according to twosomewhat different methods, dependent upon whether the product requires primarily and articularly strength, toughness andload caring capacity, where, for example, it is to be usedfor forming the 30 bearing element as. a whole; or requires to .be soldered as, for example, where it is to be used merely as a lining, in which latter case strength isof relatively less importance but the metal must be of such character that it can be made to adhere by soldering to the base to which it is attached.
The method of making the alloy in the form suitable for complete bearings or bushings will be first described.
The primary hardening agent used is sodium and very small quantities of sodium will sufiice to give the lead hardness and toughness rovided the sodium is retained in the lead. I the lead, for example, when the alloy is melted for casting, and to oxidize on exposure of the alloy to the atmosphere. I have discovered that this drossing out can be prevented by the use of small amounts of calcium and aluminum; tin, also, preferably used contributing to the same result, which metals may, therefore, be termed anti-drossing metals.
The method of compounding is preferably carried out as follows: The lead is heated to odium alone tends to dross out of Application filed March 25, 1928. Serial Ilia-97,334. v
a temperature of approximately 1600 ,Fahrenheit, that 1s, so as to raise its temperature to or somewhat above the melting temperature of calcium which is 1400 Fahrenheit.
The melted lead is covered with a supernatant flux or coverin which will not burn at this temperature, which will exclude oxygen and which will-be neutral tothe metals, cal- 0mm and aluminum, to be introduced. The priaferred covering consists of calcium chlor1 e.
The calcium and aluminum are introduced into the lead while .under this covering and the tin also if employed. The melt is then cooled to a temperature somewhat above the melting point of lead, that is, to a temperature, preferably, of between 650 and 700 Fahrenheit. After the calcium and alumi num have been added the'metal may be, poured into ingots and afterward re-heated for the addition of the sodium. In such case the melting of the lead and the addition of the sodium takes place under a supernatant covering consisting of sodium hydrate and rosin, soap, fuel oil or other organic substance which will create a reducing atmosphere or at least exclude oxygen. The sodium hydrate and rosin, or its e uivalent, may be used in substantially equa proportions. The quantity of each may be approximately 1% of the melt. The quantity of sodium hydrate should be small so as to prevent reaction between it and the calcium in the alloy. .Themetallic sodium is put into the flux or supernatant covering and .then
stirred into the molten metal. The temperature rises very considerably, the reaction be- I tweenthe sodium and the other metals being exothermic. The sodium hydrate aids in excluding air from the metals and clarifies the metals by combining with the impurities therein.
The final alloy is then poured into ingots. It can be melted for casting without drossing to any substantial extent.
The alloy may be improved by using small quantities of tin which may be mixed with the lead in the first melting operation as stated.
The ingredient metals are used preferably in the following) proportions by weight.
Sodium 0.3% to 1.0%, the preferred amount being 0.7% to 0.8%. The amount of sodium will vary according to the degree of hardness required. If substantially more hydroxide, during re-melting for casting,
which prevents the drossing out of the sodium. If care is taken in the melting and re-melting operations the amount of calcium used may be small. The amount of calcium in the cast bearing should be not less than 0.1% and, as the cacium acts to a certain extent as a hardening agent, if it is present in a greater amount than approximately 1.0%, the metal will be too hard and brittle. 0.3% to 0.4% of calcium is preferred. If a rigid metal for bearing a heavy load is required there should be at least 0.3% of calcium in the finished article; for metals of lower strength and higher lubricating properties'0.2% of calcium might suflice.
Aluminum from 0.02% to 0.1%. A small amount of aluminum will suflice, and if it is used in uanttities substantially in excess of 0.1% it rosses out and also tends to make the metal viscous.
Tin 2.0% to 5.0%. The tin is anoptional but preferred ingredient. It tends to make the metal more fluid and tougher and to a certain extent aids in preventing the drossi'ng out of the other ingredients. If used in amounts substantially greater than 5% it tends to make the alloy too brittle. If the article itself is heated say to dull-red the tin tends to prevent the burning out of the calcium and sodium.
Lead in an amount to make up 100%.
- The alloy thus formed is-of value for other purposes than for bearings because of its unexpectedly high tensile strength and ductility. For example, an alloy consisting of sodium 0.8%, calcium 0.3%, tin 2.0%, aluminum 0.02%, balance lead, has a tensile strength of 15,000 pounds persquare inch and an. elongation of 7% for a two inch gether and the sodium added with the melt at a temperature approximatelythe melting temperature of lead and covered with a flux, as described, neutral to sodium and of a character to exclude oxygen.
I claim:
1. Method of making a lead-sodium alloy which comprises introducing an anti-drossing metal into the molten lead heated to a point to melt said anti-drossing metal, allowing the melt to cool, and introducing sodium into the same while at a temperature between the melting point of sodium and its vaporizing point.
2. A lead alloy containing from 0.3% to 1.0% sodium, 0.3% to 1.0% calcium, and 0.02% to 0.1% aluminum.
3. A lead allo containing a small quantity of tin and rom 0.3% to 1.0% sodium, 0.3% to 1.0% calcium and 0.02% to 0.1% aluminum.
4. Method of compounding a lead sodium alloy which comprises introducing small quantities of calcium and aluminum into molten lead covered with a molten stratum of a halogen salt of an alkaline earth metal.
ture below the vaporizing point of sodium. I
6. Method of compounding a lead sodium alloy which comprises introducing small quantities of calcium and aluminum into molten lead covered with a molten stratum of calcium chloride. v
ROBERT J AY SHOEMAKER.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US97334A US1717469A (en) | 1926-03-25 | 1926-03-25 | Bearing metal and method of making same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US97334A US1717469A (en) | 1926-03-25 | 1926-03-25 | Bearing metal and method of making same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US1717469A true US1717469A (en) | 1929-06-18 |
Family
ID=22262831
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US97334A Expired - Lifetime US1717469A (en) | 1926-03-25 | 1926-03-25 | Bearing metal and method of making same |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US1717469A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4170470A (en) * | 1976-02-18 | 1979-10-09 | Globe-Union Inc. | High strength lead alloy |
-
1926
- 1926-03-25 US US97334A patent/US1717469A/en not_active Expired - Lifetime
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4170470A (en) * | 1976-02-18 | 1979-10-09 | Globe-Union Inc. | High strength lead alloy |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3620716A (en) | Magnesium removal from aluminum alloy scrap | |
| US3475166A (en) | Aluminum base alloy | |
| US2762705A (en) | Addition agent and process for producing magnesium-containing cast iron | |
| EP0833953B1 (en) | Method for making machinable lead-free copper alloys | |
| US2253502A (en) | Malleable iron | |
| US20020110478A1 (en) | Copper base alloy that contains intermetallic constituents rich in calcium and/or magnesium | |
| US1717469A (en) | Bearing metal and method of making same | |
| US5023051A (en) | Hypoeutectic aluminum silicon magnesium nickel and phosphorus alloy | |
| US1906567A (en) | Metal alloy | |
| US1940922A (en) | Aluminium silicon alloy with a phosphorus content of 0.001 to 0.1% | |
| US2066512A (en) | Alloy | |
| US2770031A (en) | Bearing | |
| US1745721A (en) | Bearing metal | |
| US3072476A (en) | Method of alloying | |
| US2195435A (en) | Copper alloy | |
| US2098081A (en) | Aluminum alloy | |
| US2059555A (en) | Alloys | |
| US1261987A (en) | Method of making aluminum-alloy articles. | |
| US2720459A (en) | Highly wear-resistant zinc base alloy | |
| US2721797A (en) | Titanium-sulfur alloys | |
| US285638A (en) | Amos c | |
| US2752242A (en) | Copper-nickel-titanium alloy and process for making same | |
| US1808793A (en) | Bearing metal | |
| US2888741A (en) | Alloys | |
| US2123886A (en) | Heat treated aluminum base alloy |