US1740857A - Process for the production of metallic beryllium - Google Patents
Process for the production of metallic beryllium Download PDFInfo
- Publication number
- US1740857A US1740857A US222211A US22221127A US1740857A US 1740857 A US1740857 A US 1740857A US 222211 A US222211 A US 222211A US 22221127 A US22221127 A US 22221127A US 1740857 A US1740857 A US 1740857A
- Authority
- US
- United States
- Prior art keywords
- beryllium
- metallic
- fluoride
- production
- magnesium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052790 beryllium Inorganic materials 0.000 title description 30
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 title description 28
- 238000000034 method Methods 0.000 title description 11
- 238000004519 manufacturing process Methods 0.000 title description 6
- 229910052783 alkali metal Inorganic materials 0.000 description 14
- 150000001340 alkali metals Chemical class 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 11
- 150000003839 salts Chemical class 0.000 description 11
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 10
- 229910052749 magnesium Inorganic materials 0.000 description 10
- 239000011777 magnesium Substances 0.000 description 10
- 229910001633 beryllium fluoride Inorganic materials 0.000 description 8
- JZKFIPKXQBZXMW-UHFFFAOYSA-L beryllium difluoride Chemical compound F[Be]F JZKFIPKXQBZXMW-UHFFFAOYSA-L 0.000 description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- 150000002222 fluorine compounds Chemical class 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910000952 Be alloy Inorganic materials 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- LWBPNIJBHRISSS-UHFFFAOYSA-L beryllium dichloride Chemical compound Cl[Be]Cl LWBPNIJBHRISSS-UHFFFAOYSA-L 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 238000002144 chemical decomposition reaction Methods 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ULGYAEQHFNJYML-UHFFFAOYSA-N [AlH3].[Ca] Chemical compound [AlH3].[Ca] ULGYAEQHFNJYML-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229910001627 beryllium chloride Inorganic materials 0.000 description 1
- -1 beryllium fluoride compound Chemical class 0.000 description 1
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- ZHWKJMGWTPJJRZ-UHFFFAOYSA-I magnesium pentafluoroaluminum(2-) Chemical compound [F-].[F-].[F-].[F-].[F-].[Mg++].[Al+3] ZHWKJMGWTPJJRZ-UHFFFAOYSA-I 0.000 description 1
- 238000010310 metallurgical process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/34—Electrolytic production, recovery or refining of metals by electrolysis of melts of metals not provided for in groups C25C3/02 - C25C3/32
Definitions
- the present invention relates to a new useful process for the production of compact metallic beryllium.
- beryllium chloride was reduced by an alkali metal. In this way 10 spangles or scales of the metal are obtained which must be melted down into compact pieces in vacuo.
- salts having been found to be satisfactory diluents for the beryllium fluoride such salts being preferably halogen compounds of the earth alkali metals.
- metallic salts be added to the mixture of salts. alloys of beryllium with the metal forming the base of these added salts will be formed.
- aluminium-beryllium can be obtained by the decomposition of beryllium aluminium magnesium fluoride by metallic magnesium.
- aluminium-beryllium can be obtained from calcium-aluminium using beryllium fluoride asthe reacting salt, Berylli 1 loys of copper and iron are prepared in the same way.
- the metallic beryllium obtained 'by the method above described can vbe purified or refinedin a simple manner by superheating attended by difficulties inthat the choice of suitable crucibles is a very restricted one.
- the earth alkali metals or the beryllium react with most of the substances which can be used and the fused fluorides assist the reaction to a very great extent. It was found that the reactions can be carried out in crucibles composed of fused alumina or magnesia or of beryllium oxide.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
Description
Patented Dec. 24, 1929 PATENT OFFICE WILHELM KROLL, or LUXEMBURG, LUXEMBURG PROCESS FOR THE PRODUCTION OF METALLIC BERYLLIUM No Drawing. Application filed September 26, 1927, Serial No. 222,211, and in Germany September 28, 1926.
The present invention relates to a new useful process for the production of compact metallic beryllium.
Hitherto two kinds of processes have been used for the production of metallic beryllium, namely the chemical and the electrochemical processes. 7
In the chemical process beryllium chloride was reduced by an alkali metal. In this way 10 spangles or scales of the metal are obtained which must be melted down into compact pieces in vacuo.
The only-one of the electro-metallurgical processes which has been of any practical use is that one in which an electrolyte consisting of barium beryllium fluoride is subjected at about 1300 C. to electrolysis using cathodes which provide a good contact. By this process it is possible to obtain compact beryllium in comparatively large pieces. Unfortunately electrolysis requires a relatively large consumption of current and a considerable part of the beryllium is lost owing tothe volatilization of the fluoride.
After thorough investigation of the conditions prevailing in the case of electrolysis I made the present invention according to which metallic beryllium can be obtained in a much simpler way by chemical decomposition. The reactions selected for the decomposition are based on the greater aflinity of magnesium or of the earth alkali metals or of lithium for fluorine, so that beryllium fluoride can be decomposed in the simplest possible manner, and beryllium in the metallic form is set free. The decomposition reaction between the said metals and the beryllium fluoride is so violent that this reaction can-.
duct the reduction of the beryllium that beryllium completely free from any earth alkali metal, magnesium or 'lithium shall be obtained, provision must be made for a certain excess of beryllium fluoride or else the impure metallic beryllium obtained by the first decomposition must be decomposed again several times with fresh salt.
Erample. 150 grams of MgF BelE were caused to react in a molten state with 20 grams of magnesium. The temperature rose above the melting point of beryllium so that compact metallic beryllium could be obtained. This however still contained about 5% of magnesium. By repeatedly decomposing the metallic beryllium obtained with grams of the same salt I was able to obtain at 1300 C. perfectly pure metallic beryllium. If calcium be used for reduction, it is preferable to use calcium fluoride as the diluent for the beryllium fluoride. Metallic lithium which behaves similarly to the earth alkali metals may be used instead of magnesium or calcium for reduction but any alkali metal other than lithium cannot be used. On the. other hand care must be taken to see'that the molten mass contains only a little alkali fluoride as otherwise the reaction will be too violent and the alkali metal escapes in the form of vapour.
A number of other salts have been found to be satisfactory diluents for the beryllium fluoride such salts being preferably halogen compounds of the earth alkali metals. Ifsuch metallic salts be added to the mixture of salts. alloys of beryllium with the metal forming the base of these added salts will be formed. Thus for example aluminium-beryllium can be obtained by the decomposition of beryllium aluminium magnesium fluoride by metallic magnesium. By correctly selecting the salt components aluminium-beryllium alloys of high p'recentage and free from magnesium can be obtained. The same result is obtained if the metal with which the beryllium is to be alloyed be added to the bath not in the form of a metallic salt but in the form of any alloy with an'earth alkali metal or as a pure metal. Thus aluminium-beryllium can be obtained from calcium-aluminium using beryllium fluoride asthe reacting salt, Berylli 1 loys of copper and iron are prepared in the same way.
The metallic beryllium obtained 'by the method above described can vbe purified or refinedin a simple manner by superheating attended by difficulties inthat the choice of suitable crucibles is a very restricted one. The earth alkali metals or the beryllium react with most of the substances which can be used and the fused fluorides assist the reaction to a very great extent. It was found that the reactions can be carried out in crucibles composed of fused alumina or magnesia or of beryllium oxide. It has however also been found of advantage to carry out the fusion in crucibles of pure graphite and to pour the fused mass into a vessel having Water cooled walls: and in which it is caused to react with magnesium or other earth alkali metals and can if necessary be kept hot by means of electrodes which provide a good contact. If the temperature be correctly selected and the composition of the mixture of salts is correct, the heatof combination of the magnesium with fluorine, is suflicient to keep the reaction going and to raise the temperature to such a degree that compact fused metallic beryllium can be obtained.
- In comparison with the electrolytic method the hereinbefore described chemical decomposition method possesses the great advantage that compact metallic beryllium is obtained in almost theoretical yield directly and in the shortest possible time andwithout any appreciable loss of beryllium .fluoride.
Where in the appended claims I have mentioned an earth alkali metal, I desire this term to be interpreted as covering or including the equivalents mentioned above, that is to say, magnesium or lithium.
What I claim as-my invention and desir to besecured by Letters Patent is: A
1. The process for the production of'compact metallic beryllium which consists in bringing to reaction fluorides of beryllium and at least one earth alkali metal free from water as a molten fused mass and at, a temperature of at least about 1300. C., taking away the product of the reaction and melting it once more together with beryllium conta-ining fluorides.
2. 'The process for the production of compact metallic beryllium which consists in bringing to reaction. fluorides of beryllium and at least one earth alkali metal free from bringing to reaction an excess of a beryllium fluoride compound free from water and at least one earth alkali metal, as a molten fused mass at a temperature of at least about l300 0., taking away the product of the reaction and melting it once more together with beryllium containing fluorides. I
In testimony whereof I afiix my signature.
WILHELM KROLL.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE1740857X | 1926-09-28 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US1740857A true US1740857A (en) | 1929-12-24 |
Family
ID=7741360
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US222211A Expired - Lifetime US1740857A (en) | 1926-09-28 | 1927-09-26 | Process for the production of metallic beryllium |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US1740857A (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2486475A (en) * | 1945-10-20 | 1949-11-01 | Beryllium Corp | Method of producing metallic beryllium and alloys of beryllium |
| US2782116A (en) * | 1946-09-06 | 1957-02-19 | Frank H Spedding | Method of preparing metals from their halides |
| US2785065A (en) * | 1945-11-14 | 1957-03-12 | Frank H Spedding | Method of producing metals from their halides |
| US2922712A (en) * | 1952-12-30 | 1960-01-26 | Chicago Dev Corp | Method for producing titanium and zirconium |
| US3103434A (en) * | 1963-09-10 | Production of beryllium |
-
1927
- 1927-09-26 US US222211A patent/US1740857A/en not_active Expired - Lifetime
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3103434A (en) * | 1963-09-10 | Production of beryllium | ||
| US2486475A (en) * | 1945-10-20 | 1949-11-01 | Beryllium Corp | Method of producing metallic beryllium and alloys of beryllium |
| US2785065A (en) * | 1945-11-14 | 1957-03-12 | Frank H Spedding | Method of producing metals from their halides |
| US2782116A (en) * | 1946-09-06 | 1957-02-19 | Frank H Spedding | Method of preparing metals from their halides |
| US2922712A (en) * | 1952-12-30 | 1960-01-26 | Chicago Dev Corp | Method for producing titanium and zirconium |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5593566A (en) | Electrolytic production process for magnesium and its alloys | |
| US2786809A (en) | Electrolytic cladding | |
| US1740857A (en) | Process for the production of metallic beryllium | |
| US3226311A (en) | Process of producing calcium by electrolysis | |
| US2734855A (en) | Electrolytic preparation of reduced | |
| GB405596A (en) | Process and apparatus for the electrolytic refining of aluminium | |
| US2193364A (en) | Process for obtaining beryllium and beryllium alloys | |
| US3098021A (en) | Process for producing ductile vanadium | |
| US2833704A (en) | Production of titanium | |
| US2937979A (en) | Electrolytic process | |
| US2848396A (en) | Electrochemical preparation of boron | |
| JPH06173065A (en) | Method for purifying Ti | |
| US2939823A (en) | Electrorefining metallic titanium | |
| US3450524A (en) | Process for the preparation of pure manganese | |
| US3508908A (en) | Production of aluminum and aluminum alloys | |
| US1567318A (en) | Method of making metallic magnesium | |
| US2431723A (en) | Electrolytic method for producing magnesium alloys | |
| US2876180A (en) | Fused salt bath for the electrodeposition of transition metals | |
| US1566694A (en) | Method of electrolytically producing aluminum | |
| US3503857A (en) | Method for producing magnesium ferrosilicon | |
| US808066A (en) | Process for the production of metallic calcium. | |
| JPS63262489A (en) | Nonmetal electrolytic manufacturing method | |
| US2986503A (en) | Production of titanium and zirconium by the electrolytic refining of their alloys | |
| US1809442A (en) | Process for the manufacture of metallic beryllium or its alloys | |
| US2687340A (en) | Production of an alkali metal double fluoride of zirconium or hafnium |