US1608706A - Electrodeposition of metals - Google Patents
Electrodeposition of metals Download PDFInfo
- Publication number
- US1608706A US1608706A US292793A US29279319A US1608706A US 1608706 A US1608706 A US 1608706A US 292793 A US292793 A US 292793A US 29279319 A US29279319 A US 29279319A US 1608706 A US1608706 A US 1608706A
- Authority
- US
- United States
- Prior art keywords
- nickel
- bath
- metals
- hydrate
- electrodeposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052751 metal Inorganic materials 0.000 title description 30
- 239000002184 metal Substances 0.000 title description 30
- 238000004070 electrodeposition Methods 0.000 title description 14
- 150000002739 metals Chemical group 0.000 title description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 108
- 229910052759 nickel Inorganic materials 0.000 description 58
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000000725 suspension Substances 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 8
- -1 nickel metals Chemical class 0.000 description 8
- SPIFDSWFDKNERT-UHFFFAOYSA-N nickel;hydrate Chemical compound O.[Ni] SPIFDSWFDKNERT-UHFFFAOYSA-N 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 7
- 238000000151 deposition Methods 0.000 description 6
- 229910017052 cobalt Inorganic materials 0.000 description 5
- 239000010941 cobalt Substances 0.000 description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 150000002431 hydrogen Chemical class 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 235000011121 sodium hydroxide Nutrition 0.000 description 4
- 229910052938 sodium sulfate Inorganic materials 0.000 description 4
- 235000011152 sodium sulphate Nutrition 0.000 description 4
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 3
- 239000004327 boric acid Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000001464 adherent effect Effects 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 1
- 101100372509 Mus musculus Vat1 gene Proteins 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001869 cobalt compounds Chemical class 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000002659 electrodeposit Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229940097275 indigo Drugs 0.000 description 1
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000010310 metallurgical process Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- 150000002816 nickel compounds Chemical class 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/12—Electroplating: Baths therefor from solutions of nickel or cobalt
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D13/00—Electrophoretic coating characterised by the process
- C25D13/02—Electrophoretic coating characterised by the process with inorganic material
Definitions
- My invention relates to a method and means of electro-depositing metals, particularly the nickel metals, by which I mean nickel, or cobalt, or alloys containing either nickel or cobalt or both of these metals.
- My invention aims to produce a new bath and a new method of employing said bath, whereby I am enabled to electrodeposit said nickel metals at a..,very high rate, using very high current densities.
- I am further enabled to substantially avoid pitting or pits in the deposits.
- said nickel metals may be obtained in a dense, ceremoniesne, homogeneous, malleable and ductile condition. Said nickel metals deposited in accordance with my invention,
- This bath is preferably operated at a temperature of about 130 F. Except for the addition of boric acid, as set forth above, the bath should be neutral.
- the anode may consist of cast or rolled nickel, and the oath- Ode of a metal, such as aluminum or nickel, which is adapted to receive a smooth, separable deposit of the electrodeposited nickel. However, if so desired, the metal may be electrodeposited adherently, as'in the form of a plating.
- the cathode on which the nickel is eing electrodeposited is intermittently or periodically exposed to a gas eous medium, such as the air, as by removal from the bath or otherwise.
- a gas eous medium such as the air
- the time during which the cathode and the electrode-' posited nickel carried by it are kept out of the bath should be more than what I term the minimum or hydrogen dissipation period, which is necessary to permit the hydrogen deposited with the metal to be dissipated or removed by contact with the surrounding gaseous medium, such as the air.
- Th s minimum or hydrogen dissipation period may be readily determined by trial and experiment and is generally greater than about one second, usually two seconds.
- the time during which the cathode and the deposit carried by it are kept out of the bath should not, however, exceed what I term the maximum or critical or separable deposit period, which, in the case here given, is from about 6 to about '16 seconds, by which I mean that if the time during which the cathode and its deposit are kept out of thebath exceeds the said max imum or critical or separable deposit per od, on restoring the cathode and its deposit to the bath, the succeeding deposit will not be. adherent but will separate or be eas ly separable from the previous deposit. Thisresults in a laminated, weak metal, a condition which is obviously'to be avoided, where a sound unitary metal is desired.
- the frequency of removal or exposure frequency period is determined by the factors of deposition which influence hydrogen liberation, such as the degree of exactness of neutrality, current density, and temperature. I have found that in the bath here described by way of example, and operating at a temperature of about 130 F., and with a current density of about 10 amperes per square decimeter, this period may be from 1 to 2 minutes.
- the electrodeposited metal such as the nickel in the example given
- the electrodeposited metal may not only be dense, ceremoniesne and free from pores and hydrogen, but in order also that said metal shall be free from what are known as pits in' the art of the deposition of the nickel metals
- salts such as the sulphates, of the alkali metals, preferably sodium, finely divided or colloidal nickel hydrate is produced and held in suspension in the bath.
- This freshly and continuously produced hydrate replenishes the hydrate which during the operation of the bath aggregates or for other reasons goes out of suspension and drops to the bottom of the bath.
- Such salts have further beneficial effects and greatly improve the operation of the bath and the character of the deposits formed.
- I may add varying amounts, such as from about 1 to about 10 grams, preferably 1 gram, of sodium sulphate for each liter of bath solution.
- colloid-producing substance such as the sodium sulphate
- caustic soda or sodium hydroxide is to produce by and during electrodeposition, some caustic soda or sodium hydroxide.
- the caustic soda or sodium hydroxide thus produced, by interaction with the nickel salts present in the bath, such as the nickel sulphate, generates finely divided or colloidal nickel hydrate which remains suspended in the bath. The interaction at the same time re-generates the sodium sulphate.
- the sodium sulphate or its equivalent also acts to assist the deposition and to improve the character of the deposit,-
- Figure 1 is a cross section
- Figure 2 is a longitudinal section apparatus.
- vat 1 for containing the bath 2.
- 3 is the anode and 4 the connector forsupplying said anode with current.
- the cathode is indicated at 5 and its conductor at 6.
- any suitable means which may, if desired be manually operated, for intermittently or periodically removing the cathode from the bath, as set forth above.
- the resulting product as in the case of nickel in the illustrative embodiment set forth above, is, as before stated, dense, ceremoniesne, homogeneous, malleable and ductile.
- the new nickel herein described is substantially free from pores and pits and contains no appreciable amount of hydro 1 1.
- the nickel herein described differs in character from the nickel obtained by the usual metallurgical processes in that my new nickel is free from the usual poisonous contents such as sulphur, silicon, arsenic, carbon, carbides, oxygen, and other gases, and oxide containing compounds, generally present in metallurglcal nickel and rendering the same imperfect and more difficult to work. Furthermore, my new nickel is to be further differentiated from the ordinary metallur'gical nickel in that it has a finer and more even grain than such metallurgical nickel, as is shown by metallographic micro-photographs. It is also considerably purer than such metallurgical nickel, resists chemical action better and has ahigher melting point.
- the nickel described herein is also to be differentiated from the usual electrodeposited nickel in that it is substantially free from pores, pits and hydrogen, and is malleable and ductile to a' very high degree, unlike the usual electrodeposited nickel which is porous, contains a large hydrogen content and is brittle and unworkable
- a further diflerence in character between my new nickel and the ordinary metallurgical nickel is shown by the fact that the film of oxide formed by heating my new nickel in an oxidizing atmosphere is thinner, finer in texture and more adherent and flexible than the oxide coating formed by similar treatment of ordinary metallurgical nickel.
- oxide coating in the case of my new nickel is of a different color, generally yellow to brown, while the oxide coating on the metallurgical nickel is generallyviolet or indigo in color.
- a bath comprising a salt of a nickel metal in solution, and a finely divided hydrate of a nickel metal in suspension therein.
- a bath comprising, in solution, a salt of nickel, and an agent adapted during electrodeposition to produce a finely divided hydrate of nickel in suspension in the bath.
- a bath comprising, in suspension, finely divided nickel hydrate, and, in solution, a salt of nickel, and an agent adapted during electrodeposition to produce a finely divided hydrate of nickel in suspension in the bath.
- a method of electrodepositing nickel metals which comprises intermittently electrodepositing a nickel metal on the cathode from a bath containing, in solution, a chloride of a nickel metal an a ent adapted during deposition to provide a nely divided hydrate of a nickel metal in suspension in said bath, and boric acid, and, insuspension, a finely divided hydrate of a nickel metal, and successively bringing .the surfaces of the successive deposits into contact with a gaseous medium for a period of time sufficiently long to permit the hydrogen in the deposited surfaces to be dissipated, but
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Description
Nov. 30 1926. 1,608,706
- c. P. MADSEN ELECTRODEPOSITION OF METALS Original Filed April 26. 1919 Patented Nov. 30, 1926.
UNITED STATES PATENT OFFICE.
CHARLES P. MADSEN, OF NEW YQRK, N. Y., ASSIGN'OR T MADSENELL CORPORATION,
OF NEW YORK, N. Y., A CORPORATION OF NEW YORK.
ELECTRODEPOSITION OF METALS.
Application filed April 26, 1919, Serial No. 292,793. Renewed December 20, 1924.
My invention relates to a method and means of electro-depositing metals, particularly the nickel metals, by which I mean nickel, or cobalt, or alloys containing either nickel or cobalt or both of these metals. My invention aims to produce a new bath and a new method of employing said bath, whereby I am enabled to electrodeposit said nickel metals at a..,very high rate, using very high current densities. By means of my invention I am further enabled to substantially avoid pitting or pits in the deposits. By the use of my invention, moreover, said nickel metals may be obtained in a dense, reguline, homogeneous, malleable and ductile condition. Said nickel metals deposited in accordance with my invention,
are substantially free from pits, pores and hydrogen, and are workable to a remarkable de ree.
y way of example, I shall describe an illustrative embodiment of my invention in the following specification. I shall set forth my invention as applied more particularly to the electrodepositionof my new nickel, as described in my copending application Serial No. 292794, filed April 6, 1919, though it is of course to be understood that analogous means may be applied to the electrodeposition of the other nickel metals.
In producing the foregoing new nickel I may use an electrode osition bath of ap roximately the fol owing composition: lickel sulphate, 240 g.; nickel chloride, 20 g.; boric acid, 40 g.; water, 1 liter. This bath is preferably operated at a temperature of about 130 F. Except for the addition of boric acid, as set forth above, the bath should be neutral. The anode may consist of cast or rolled nickel, and the oath- Ode of a metal, such as aluminum or nickel, which is adapted to receive a smooth, separable deposit of the electrodeposited nickel. However, if so desired, the metal may be electrodeposited adherently, as'in the form of a plating.
During eposition the cathode on which the nickel is eing electrodeposited, is intermittently or periodically exposed to a gas eous medium, such as the air, as by removal from the bath or otherwise. The time during which the cathode and the electrode-' posited nickel carried by it are kept out of the bath should be more than what I term the minimum or hydrogen dissipation period, which is necessary to permit the hydrogen deposited with the metal to be dissipated or removed by contact with the surrounding gaseous medium, such as the air. Th s minimum or hydrogen dissipation period may be readily determined by trial and experiment and is generally greater than about one second, usually two seconds. The time during which the cathode and the deposit carried by it are kept out of the bath should not, however, exceed what I term the maximum or critical or separable deposit period, which, in the case here given, is from about 6 to about '16 seconds, by which I mean that if the time during which the cathode and its deposit are kept out of thebath exceeds the said max imum or critical or separable deposit per od, on restoring the cathode and its deposit to the bath, the succeeding deposit will not be. adherent but will separate or be eas ly separable from the previous deposit. Thisresults in a laminated, weak metal, a condition which is obviously'to be avoided, where a sound unitary metal is desired.
The frequency of removal or exposure frequency period is determined by the factors of deposition which influence hydrogen liberation, such as the degree of exactness of neutrality, current density, and temperature. I have found that in the bath here described by way of example, and operating at a temperature of about 130 F., and with a current density of about 10 amperes per square decimeter, this period may be from 1 to 2 minutes.
In order, moreover, that the electrodeposited metal, such as the nickel in the example given, may not only be dense, reguline and free from pores and hydrogen, but in order also that said metal shall be free from what are known as pits in' the art of the deposition of the nickel metals, I add to the bath, preferably before starting the electrodeposition, a quantity of finely divided nickel hydrate, preferably freshl precipitated nickel hydrate (NiO,H an probably existing in a colloidal condition, which nickel hydrate remains in suspension in the bath durin electrodeposition. While the quantity 0 hydrate so added may vary within considerable limits, I prefer to add from 1 to 5 grams, generally 1 gram, of said colloidal nickel hydrate to each liter of bath solution.
I have discovered that by adding to the bath certain salts, such as the sulphates, of the alkali metals, preferably sodium, finely divided or colloidal nickel hydrate is produced and held in suspension in the bath. This freshly and continuously produced hydrate replenishes the hydrate which during the operation of the bath aggregates or for other reasons goes out of suspension and drops to the bottom of the bath. Such salts have further beneficial effects and greatly improve the operation of the bath and the character of the deposits formed. For this purpose I may add varying amounts, such as from about 1 to about 10 grams, preferably 1 gram, of sodium sulphate for each liter of bath solution.
The action of the colloid-producing substance, such as the sodium sulphate, de-
scribed above, is to produce by and during electrodeposition, some caustic soda or sodium hydroxide. The caustic soda or sodium hydroxide thus produced, by interaction with the nickel salts present in the bath, such as the nickel sulphate, generates finely divided or colloidal nickel hydrate which remains suspended in the bath. The interaction at the same time re-generates the sodium sulphate. The sodium sulphate or its equivalent also acts to assist the deposition and to improve the character of the deposit,-
which factors are also further assisted by the initial addition of nickel hydrate in finely divided or colloidal condition to the bath.
In the accompanying drawing, I have diagrammatically illustrated a form of apparatus in which the foregoing illustrative embodiment of my invention may be carried out.
Referring to these drawings:
Figure 1 is a cross section; and
Figure 2 is a longitudinal section apparatus.
The apparatus oomprises briefly, a vat 1, for containing the bath 2. 3 is the anode and 4 the connector forsupplying said anode with current. The cathode is indicated at 5 and its conductor at 6. At 7 is indicated generall any suitable means, which may, if desired be manually operated, for intermittently or periodically removing the cathode from the bath, as set forth above.
7 The resulting product, as in the case of nickel in the illustrative embodiment set forth above, is, as before stated, dense, reguline, homogeneous, malleable and ductile. The new nickel herein described is substantially free from pores and pits and contains no appreciable amount of hydro 1 1.
It is, of course, to be understood hat where a deposit of cobalt, having the foregoing desirable properties,'is desired to be produced, a .cobaltanode is used in place of the nickel of such anode, and cobalt compounds are used in place of the corresponding nickel compounds. Where alloys of either nickel or of cobalt or of both of these metals are'desired to be produced, means analogous to the means herein set forth for the deposition of nickel and of cobalt in the desired condition and having the desired properties may be employed.
The nickel herein described differs in character from the nickel obtained by the usual metallurgical processes in that my new nickel is free from the usual poisonous contents such as sulphur, silicon, arsenic, carbon, carbides, oxygen, and other gases, and oxide containing compounds, generally present in metallurglcal nickel and rendering the same imperfect and more difficult to work. Furthermore, my new nickel is to be further differentiated from the ordinary metallur'gical nickel in that it has a finer and more even grain than such metallurgical nickel, as is shown by metallographic micro-photographs. It is also considerably purer than such metallurgical nickel, resists chemical action better and has ahigher melting point. The nickel described herein is also to be differentiated from the usual electrodeposited nickel in that it is substantially free from pores, pits and hydrogen, and is malleable and ductile to a' very high degree, unlike the usual electrodeposited nickel which is porous, contains a large hydrogen content and is brittle and unworkable A further diflerence in character between my new nickel and the ordinary metallurgical nickel is shown by the fact that the film of oxide formed by heating my new nickel in an oxidizing atmosphere is thinner, finer in texture and more adherent and flexible than the oxide coating formed by similar treatment of ordinary metallurgical nickel. Furthermore, such oxide coating in the case of my new nickel is of a different color, generally yellow to brown, while the oxide coating on the metallurgical nickel is generallyviolet or indigo in color.
It is of course, to be understood that the invention is not to be limited to the specific illustrative embodiment herein described for purposes of example onl It is also to be understood that the applicant does not wish to have the invention or the appended claims in any way limited by any particular theory of operation which he may now hold and which may be suggested by the foregoing detailed description.
What I claim is:
1. In the electrodeposition of nickelmetals, a bath comprising a salt of a nickel metal in solution, and a finely divided hydrate of a nickel metal in suspension therein.
2. In the electrodeposition of nickel, a bath comprising a salt of nickel in solution,
ltl
and a finely divided hydrate of nickel in suspension therein.
3. In the electrodeposition of nickel metals, a bath com rising, in solution, a salt of a nickel metal, and an agent adapted during electrodeposition to produce a finely divided hydrate of a nickel metal in suspension in the bath.
4. In the el-ectrodeposition of nickel, a bath comprising, in solution, a salt of nickel, and an agent adapted during electrodeposition to produce a finely divided hydrate of nickel in suspension in the bath.
5. In the electrodeposition of nickel, a bath comprising, in suspension, finely divided nickel hydrate, and, in solution, a salt of nickel, and an agent adapted during electrodeposition to produce a finely divided hydrate of nickel in suspension in the bath.
6. A method of electrodepositing nickel metals which comprises intermittently electrodepositing a nickel metal on the cathode from a bath containing, in solution, a chloride of a nickel metal an a ent adapted during deposition to provide a nely divided hydrate of a nickel metal in suspension in said bath, and boric acid, and, insuspension, a finely divided hydrate of a nickel metal, and successively bringing .the surfaces of the successive deposits into contact with a gaseous medium for a period of time sufficiently long to permit the hydrogen in the deposited surfaces to be dissipated, but
not long enough to cause the successive deposits to be separable, whereby a homogeneous, unitary nickel metal is formed.
In testimony whereof, I have signed my name to this specification this 26th day of April, 1919.
dense, deposit CHARLES P. MADSEN.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US292793A US1608706A (en) | 1919-04-26 | 1919-04-26 | Electrodeposition of metals |
| GB19316/19A GB142432A (en) | 1919-04-26 | 1919-08-05 | Improvements in and relating to electrodeposited metals |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US292793A US1608706A (en) | 1919-04-26 | 1919-04-26 | Electrodeposition of metals |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US1608706A true US1608706A (en) | 1926-11-30 |
Family
ID=23126222
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US292793A Expired - Lifetime US1608706A (en) | 1919-04-26 | 1919-04-26 | Electrodeposition of metals |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US1608706A (en) |
| GB (1) | GB142432A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2449422A (en) * | 1944-04-15 | 1948-09-14 | Harshaw Chem Corp | Electrodeposition of nickel |
-
1919
- 1919-04-26 US US292793A patent/US1608706A/en not_active Expired - Lifetime
- 1919-08-05 GB GB19316/19A patent/GB142432A/en not_active Expired
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2449422A (en) * | 1944-04-15 | 1948-09-14 | Harshaw Chem Corp | Electrodeposition of nickel |
Also Published As
| Publication number | Publication date |
|---|---|
| GB142432A (en) | 1920-12-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3654099A (en) | Cathodic activation of stainless steel | |
| US2243429A (en) | Electroplating of nonconductive surfaces | |
| US2093406A (en) | Stripping or transferring platinum metals | |
| US4014756A (en) | Process for making metal powders | |
| US2457059A (en) | Method for bonding a nickel electrodeposit to a nickel surface | |
| US2200782A (en) | Detinning | |
| US1922853A (en) | Process for the electrolytic deposition of chromium | |
| US2453757A (en) | Process for producing modified electronickel | |
| US1608706A (en) | Electrodeposition of metals | |
| US2075623A (en) | Zinc plating | |
| US3111464A (en) | Electrodeposition of chromium and chromium alloys | |
| US3515650A (en) | Method of electroplating nickel on an aluminum article | |
| US2847371A (en) | Chromium plating on aluminum | |
| US3421986A (en) | Method of electroplating a bright adherent chromium coating onto cast-iron | |
| US3259557A (en) | Method of electrodepositing aluminum | |
| US3829366A (en) | Treatment of titanium cathode surfaces | |
| US2577365A (en) | Rhodium plating | |
| US3497426A (en) | Manufacture of electrode | |
| US1584959A (en) | Electrodeposited metal | |
| JPS585983B2 (en) | Method and apparatus for stably producing metal complexes for electroless metal deposition | |
| US2436244A (en) | Metalworking and strippingplating process | |
| US1513119A (en) | Electrodeposited article and method of making the same | |
| US1466126A (en) | Electrolytic refining or depositing of tin | |
| US2398614A (en) | Electrodeposition of manganese | |
| US2623848A (en) | Process for producing modified electronickel |