US1436873A - Reversible battery - Google Patents
Reversible battery Download PDFInfo
- Publication number
- US1436873A US1436873A US1436873DA US1436873A US 1436873 A US1436873 A US 1436873A US 1436873D A US1436873D A US 1436873DA US 1436873 A US1436873 A US 1436873A
- Authority
- US
- United States
- Prior art keywords
- battery
- lead
- electrolyte
- electrode
- materials
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000002441 reversible effect Effects 0.000 title description 16
- 239000003792 electrolyte Substances 0.000 description 42
- 239000000463 material Substances 0.000 description 27
- 239000011149 active material Substances 0.000 description 23
- 239000000126 substance Substances 0.000 description 18
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 17
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 16
- 239000001913 cellulose Substances 0.000 description 16
- 229920002678 cellulose Polymers 0.000 description 16
- 238000000034 method Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 230000009471 action Effects 0.000 description 11
- 239000007772 electrode material Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000002184 metal Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 7
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 7
- YEXPOXQUZXUXJW-UHFFFAOYSA-N lead(II) oxide Inorganic materials [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 7
- 239000001117 sulphuric acid Substances 0.000 description 7
- 235000011149 sulphuric acid Nutrition 0.000 description 7
- 239000004115 Sodium Silicate Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Inorganic materials [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 6
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 description 6
- 238000007600 charging Methods 0.000 description 6
- 239000011507 gypsum plaster Substances 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 229910052911 sodium silicate Inorganic materials 0.000 description 6
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 150000002978 peroxides Chemical class 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000001427 coherent effect Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229910021653 sulphate ion Inorganic materials 0.000 description 3
- KEQXNNJHMWSZHK-UHFFFAOYSA-L 1,3,2,4$l^{2}-dioxathiaplumbetane 2,2-dioxide Chemical compound [Pb+2].[O-]S([O-])(=O)=O KEQXNNJHMWSZHK-UHFFFAOYSA-L 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229920001875 Ebonite Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 239000011505 plaster Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- 241000370685 Arge Species 0.000 description 1
- 235000013382 Morus laevigata Nutrition 0.000 description 1
- 244000278455 Morus laevigata Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229910052914 metal silicate Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000010454 slate Substances 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 235000009529 zinc sulphate Nutrition 0.000 description 1
- 239000011686 zinc sulphate Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/06—Lead-acid accumulators
- H01M10/08—Selection of materials as electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- This invention relates to reversible batteries of the type disclosed in my pending application No. 531,120, filed Januaryi2, 1922, and consists of certain improvements in said battery, all as hereinafter set forth, whereby the operation of the battery is improved and the durability of the cells is enhanced.
- Figure 1 is a sectional view of the'invention, taken on the line 1 1 of Figure 2;
- F1gure 2 is a. sectional view taken on the line 2 2 of Figure 1;
- Figure 3 is a sectional view of the receptacle used in. connection with the invention
- Figure 4 is a top view of one form of the electrode employed in connection with the invention
- Figure 5 is a side elevation of such electrode
- Figure 6 is a top view of another form of the electrode used in connection with the -invention.
- Figure 7 is a side view of such electrode;
- Figure 8 is a view, partly in section, of the vent tube employed in connection with the invention;
- Figure 9 is a similar view of an electrolytic celi embodying further features of my invention in which ozone may be developed;
- Figure 10 is a vertical sectional view of a primary cell embodying certain features of my invention.
- Figure 11 is a view of4 a volta pile embodying my invention. f
- the battery as described in my pending application, consists of a receptacle 1 of hard rubber or glass, which .is provided with' an interior groove 2 for retaining a cover 14 of plastic material, and with spacing members 3 for the containers 4.
- These containers are made of cellulosefsuch as blotting paper, and, according to the present invention, are treated in a particular mannerto increase the treatment of the blotting the effectiveness of the battery and to render v VICTOR C.
- Each of the containers 4 filled, approz'ii- ⁇ I' matel with a material 5, such as red lead, Pbs, C14, for producing the positive electrode, and the receptacle 1 is likewise approximately filled with a material 6, such' as litharge PbO; for producing the negative electrode, these materials bein respectively, changed to Pb()2 and Pb, when the battery is charged by passing a current of electricity through it in the usual manner.
- terminals 7 and 8 Disposed at opposite sides of the battery, are terminals 7 and 8, the terminal 7 having a plurality of legs or plates of lead, correspondingin number with their containers, the negative terminal 8 beingsimilarly provided with legs or plates of lead, except as to the number employed, which is either one more or one less than the number of positive terminal legs. All of the terminal legs are surby a ⁇ suitable bridge 9, and the terminals may be respectively provided with collars 10, l0 and slots 12, the collars 10 being embedded in plastic material 14, such as is used in capping batteries, and the slots 12 a'ording a convenient means for wiring the terminals.
- the battery is relieved of gases by a vent tube 15 having anl aperture 16 and a perforated cap 17.
- the improvements. forming the subject matter of the present application relate to the general construction of paper or equivalent porous celluloseof which'the containers 4 are composed; to the composition and the treatment of the materials of the respective electrodes, and to the electrolyte.
- Cellulose in its natural condition, is carbonized by the spontaneous action of sulphuric acid andother electrolytes, a chemical reaction which reduces the eliciency of a battery. I have found that ifcellulose containers are saturated with an aqueous soluthe battery; to
- I In constructing the battery, I produce a block of Wood of the size of the containers, and fold around and under it, one at a time, pieces of White blotting paper, tWo or three layers being laid in order to give sufficient stren h to each of the containers.
- the bottoms of the containers are sealed With paraiiin Wax, the object of using porous. containers being to separate or isolate, without insulating, the electrodes of the battery and to insure continuity of the electrolyte.
- the legs or plates around Aand in contact With which the *redl lead is initially deposited, which do not support active material and are merely conductors for the current are tenu- ,ous or thin, and fit loosely Within the receptacles to leaveroom for that positive electrode material.
- the red lead is preliminarily mixed With Water and plaster of Paris to form a creamy mass, tWo parts b-y volume of red lead and one p art by volume of plaster of Paris being found satisfactory pro-portions to insure setting or solidiica-
- a suitable frame of paraiiined Wood or metal is used to support and maintain the shape of the containers while being filled.
- the legs or plates of the containers are attached to the positive pole pieces and placed in the battery casing, Without the electrolyte being present, following which the negative strips, which are also tenuous or thin, and do not-support active material' are inserted in alternate positions, and a mixture of litharge and plaster, prepared in the same Way as the positive materials introduced in the spaces around the containers.
- the battery is then allowed to stand for 24 hours, after which the negative strips are attached to the negative terminal. ⁇
- the materials and the cups are no-vv covered'with a solution of silicate of soda, which is gradually absorbed by the cellulose and the electrode materials, and a current of electricity is passed through the red lead and into arge, to thereby complete the battery, the period of time required for this purpose being determined by the appearance of the litharge, which, When turned dark gray, indicates that the battery is complete and ready for the introduction of the electrolyte.
- the receptacle 1 is opaque, the results and through the lithmay be determined by reference to previous experiences of the maker with batteries having transparent receptacles.
- the battery as thus completed by the electrolytic action of the current, is charged and ready for service.
- the electrolyte Will then be introduced, and will act to eliminate the laster of Paris or other substances remaining in the pores of the materials.
- a sulphuric acid electrolyte is preferable, other electrolytes such as a solution of zinc sulphate, may be employed.
- The' battery Will, however, act to produce a current of high voltage and amperage, if an electrolyte of the ordinary kind be not employed, the aqueous solution of sodium silicate being itself a satisfactory electrolyte. If the silicate of soda is to be used. as an electrolyte, the aqueous solution thereof previously poured' in Will be retained, but, if another electrolyte is employed, the excess solution will be removed, and said other electrolyte introduced.
- the electrolyte then appears to be a composite electrolyte, including the silicate of soda retained in the porous constituents of the battery, and possessing new properties, these new' properties being indicated by the continued purity or stability of the materials of the electrodes, by the absence of discoloration'of the materials of the containers and the electrodes, by the high conductivity of the materials of the electrodes, by Athe constant ohmic. resistance of the electrolyte, by the ability of the battery to prolong the charge-holding period, and by an increase in the voltage of the battery as compared With that of an ordinary battery, which increase approximates onequarter of a volt.
- the porous electrodes shou d remain constant as they appear to do, and operate expanded uby the f to occlude the respective constituents of the water.
- a cell containing the silicate-olfsoda'electrolyte has a considerably higher voltage than a cell containing a sulphuricacid electrolyte, but a cell of the latter kind has the greater capacity in ampere-hours.
- the silicate-of-soda cell gives off only a mixture of ozone and, possibly, hydrogen whilel being charged, ozone being liberated at the positive electrode, and is, therefore, especially desirable in situations, as in submarines, where it is essential to maintain th'e purity of the atmosphere, and is desirable also in fiash-light batteries wherein the receptacles are composed of metal. the metal which would be acted upon by sulphuric aid, being inert as respects the silicate of soda.
- the silicate -of soda will function as an electrolyte if it contain any moisture, but an aqueous solution containing 90 parts by volume of water and 10 parts by volume of silicate of soda, is preferable, because a stronger solution hampers the electrolytic action.
- the legs or plates which carry the electric curr-ent to and from the active materials may, as already stated, betenuous or thin, that is to say, only heavyenough to possess mechanical stability, and also to conduct the current without being overheated, contrary' to the practice in the ordinary secondary lead battery.
- the active materials are of such low resistance that the crosssections of the lead legs or plates may b'e very small, and the active materials actually predominate, al grid not being relied upon for carrying the current. Lead legs are used, however, because the active materials are capable of adhering thereto morecertainly than they would cling to another substance.
- the negative electrodes of my completed battery are composed of pure lead which, unlike ordinary electrolytically deposited comminuted lead, is in form a single mass composed of fine coherent and integral fila ⁇ ments possessing lustrous surfaces and resenting to the electrolyte large areas of clean metallic surfaces thereby greatly increasing the activity of the battery as compared with batteries in which the lead is in comminuted form.
- the negative electrode has a slate color, while the positive electrode is brown after forming, and these colors remain unchanged.
- a battery constructed in accordance with my invention will retain its efficiency for an indefinite period of time, or until the terminals of the lattery are disconnected by the complete'conversion of the metallic lead to spongy lead in the case of the negative electrode, or to peroxide of lead in the case of the positive electrode, there being no disintegration of the masses of active materials such as occurs 1n o rdmary secondary lead batteries in which the active materials are carried by grids, these active materials being of such low resistance that a conductive path for the current, such as is afforded by the lead grid of an ordinary battery, is not essential.
- the battery because of its construction, is about one-third lighter than an ordinary secondary lead battery of the same capacity.
- a further advantage results from vthe fact ythat my battery has its capacity increased by successive chargings until all of the ma-v teria-ls are rendered active, the ratio of the volume of red lead and litharge, and of the active materials produced therefrom, to the volume of lead, being much greater in the present battery thanit is in the usual ,secondary lead battery, and that it remains charged for a much longer period of time than a battery in which heterogeneous portions of the materials establish local short circuits which reduce the active materials to a condition of inactivity.
- the battery herein described may be operated indefinitely without incrustation of the electrodes with lead sulphate which is an essential element of an ordinary battery and which, being a poor electrical conductor, se-
- the battery contains a substantially unchangeable electrolyte which does not yield sulphur to combine with portions of th-e lead to form lead sulphate, and which therefore approximately retains its specific gravity and affords a constant internal resistance during the entire periods of charging and discharging.
- the operation of the battery is believed to be dependent upon the dissociation of molecules of water and therecombination of the resulting oxygen and hydrogen atoms which, pending the generation of the electrical current, are occluded in the pores of the respective electrodes, the hydrogen being occluded in the pores of the lead constituting the negative electrode, and the oxygen being occluded in the pores of the peroxide of lead constituting the positive electrode.
- a battery including porous cellulose, a solution of silicate of soda, ⁇ and masses of unormed substances mixed with Paris.
- A'battery having active material permeated with a metallic salt 3.
- the primary battery cell shown in Figure 10 has a retainer 18 of glass or other suit'- able substance, which ⁇ may not be inert since the electrolyte 19 is composed of a ten per cent solution of silicate of soda which does not corrode substances that are attackedby acid electrolytes, such as sulphuric acid.
- rI ⁇ he electrodes 20and 21 are, or may be, respectively composed of carbon and zinc, or other substances Which are relatively electropositive and electro-negative.
- a primary cell of this type is very eflicient. I have found that it has a voltageof 1.5.
- the ozone or electrolytic cell shown in Figure 9 has a retainer 22 of glass or other desired substance, which may not be inert to acids, positive and negative electrodes 23, 24, which may be carbon rods, and inverted glass tubes or receptacles 25, /26, Within which the upper ends of these rods terminate.
- the electrolyte 27 is a 10% solution of silicate of soda.
- the current is supplied by a conductor 28 attached to the upper end lof the rod 23, and ⁇ passes out through a conductor 29 attachedto the upper end of the rod 24, theelectrolyte 27 being included in the current.
- Bubbles yof ozone (probably O3) developed on the surface of the rod 23 are caught in the receptacles 25, While bubbles of hydrogen formed on the surface of the rod 24 are caught in the receptacle 26, each receptacle being open at its bottom and closed at its top, valves 30, 31, controlling the escape of the respective gases.
- rI ⁇ he retainer 22 is closed by a suitable cover 32. This electrolytic cell produces large volumes of ozone of abnormal activity, and also large volumes of hydrogen.
- the volta pile shown in Figure 11 has car- 6.
- a lead battery including an electrolyte containing sodium silicate.
- An occlusive electrode composed of fine coherent and integral filaments.
- An electrode composed of ine coherent and integral filaments of occlusive properties.
- An electrode for a lead battery, 1ncluding active material and a sustaining element for said material composed of cellulose immune to the action of an acid.
- a lead battery having a single negative electrode surrounding one or more than one positivey electrode, land physically .connected with said positive electrode by a porous partition constituting a bond Jfor uniting said electrodes.
- a gridless lead battery in which highly conductive masses of active material constitute substantially the sole conducting ath for the current.
- a battery including positive and negative materials, an electrolyte, and porous cellulosey containers for said materials which are inert to an electrolyte, such as sulphuric acid.
- a reversiblelead battery having an electrolyte of constant chemical constitution and constant ohmic resistance.
- a battery including electrode materials respectively composed of litharge and red lead, an electrolyte composed of silicate of soda, a cellulose container for electrode material, and a solution of silicate'of soda permeating said cellulose.
- plaster of I lead having high containing a cellulose container, which conslsts 1n saturating sald contalner With a metallic salt, arranging non-active electrode electrical current materials in proper relation to said container, and passing a current of electricity through the incomplete battery until it is materially charged and the cellulose is rendered inert to sulphuric acid.
- a cellulose container for active material which consists in supplying thereto an aqueous solution of sodium silicate, passing an electric current through the incomplete battery, and continuing said current until the cellulose is rendered chemically inert to the action of an electrolyte.
- the process of producing a battery electrode which consists in mixing a mass of sub-oxide of lead (Ph) in an aqueous solution of a metal silicate, andfpassing an electric current therethrough.
- a cell including lead electrodes and the decomposable salt of a metal of the alkaline group.
- a cell including lead electrodes and sodium silicate.
- a reversible battery comprising active material having constant chemical properties throughout the complete electro-chemical cycle.
- a gridless battery having a negative mass of porous lead, a positive mass of leadoxygen composition, and an electrolyte.
- a gridless battery having a negative mass of porous lead, a positive mass of the ⁇ peroxide of lead,'and an electrolyte.
- a reversible battery comprising active lead material having constant chemical properties throughout the complete electrochemical cycle.
- a reversible battery including a negative electrode of lead having chemical constancy during both the period of charging and the period of discharging.
- a reversible battery having in its dit. charged condition, a porous lead negative electrode.
- a reversible battery having in its discharged condition, a porous lead negative electrode, and a positive electrode of oxide of lead.
- 41. A gridless battery cell consisting of two homogeneous masses of lead and of lead composition constituting the active materials, and an electrolyte.
- a gridless battery cell including homogeneous masses of porous active materials formed of or containing lead, andan electrolyte composed in part of Water.
- An Oxy-hydrogen battery including porous electrodes, and water constituting an electrolyte, said electrodes being inert as regards the action of' said electrolyte and Awhich consists -in mixing electrode chemically inert material With a substance to render the completed electrode occlusivelyy 10 byelec'trolytc action.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Description
V. C. GOODRIDGE.
REVERSIBLE BATTERY.
APPLICATION FILED ILILYS, 1922.
Patented Nov. 28, 1922.
'3 SHEETS-SHEET l.
INI/mm@ V. C. GOODRIDGE.
REVERSIBLE BATTERY.
APPLICATION FILED IULYS. 1922.
Patented Nov. 28, 1922.
3 SHEETS-SHEET 2.
V. C. GUODRIDGE.
REVERSIBLE BATTERY.
APPLICATION FILED 11m/3,1922.
Patented Nov. 28, 1922.
33 naar @IW Patented Nov. 28, '1922.
A CORPORATION OF ILLINOIS.
REVERSIBLE BATTERY.
Application filed July 3, 1922. 'Serial N0. 572,589.
To all whom it may concern.
Be it known that I, VICTOR C. GooDRIDeE, a citizen of the United States, anda resident of Chicago, in the county of Cook and State of Illinois, have invented certain new and useful Improvements in Reversible Batteries, of which the following is a specilication.
This invention relates to reversible batteries of the type disclosed in my pending application No. 531,120, filed Januaryi2, 1922, and consists of certain improvements in said battery, all as hereinafter set forth, whereby the operation of the battery is improved and the durability of the cells is enhanced.
The nature of the improvements will be understood if reference is made to the accompanying drawings, constituting a part of this specification, in which,-
Figure 1 is a sectional view of the'invention, taken on the line 1 1 of Figure 2;
F1gure 2 is a. sectional view taken on the line 2 2 of Figure 1;
Figure 3 is a sectional view of the receptacle used in. connection with the invention; Figure 4 is a top view of one form of the electrode employed in connection with the invention; i i
Figure 5 is a side elevation of such electrode; f
Figure 6 is a top view of another form of the electrode used in connection with the -invention;
Figure 7 is a side view of such electrode; Figure 8 is a view, partly in section, of the vent tube employed in connection with the invention;
Figure 9 is a similar view of an electrolytic celi embodying further features of my invention in which ozone may be developed; Figure 10 is a vertical sectional view of a primary cell embodying certain features of my invention; and
Figure 11 is a view of4 a volta pile embodying my invention. f
The battery, as described in my pending application, consists of a receptacle 1 of hard rubber or glass, which .is provided with' an interior groove 2 for retaining a cover 14 of plastic material, and with spacing members 3 for the containers 4. These containers are made of cellulosefsuch as blotting paper, and, according to the present invention, are treated in a particular mannerto increase the treatment of the blotting the effectiveness of the battery and to render v VICTOR C. GOODRIDGE, 0F CHICAGO, ILLINOIS, ASSIGNOR TO GOODRIDGE BATTERY C0.,
the containers inert as regards the actionof the electrolyte.
Each of the containers 4 filled, approz'ii-` I' matel with a material 5, such as red lead, Pbs, C14, for producing the positive electrode, and the receptacle 1 is likewise approximately filled with a material 6, such' as litharge PbO; for producing the negative electrode, these materials bein respectively, changed to Pb()2 and Pb, when the battery is charged by passing a current of electricity through it in the usual manner. l
Disposed at opposite sides of the battery, are terminals 7 and 8, the terminal 7 having a plurality of legs or plates of lead, correspondingin number with their containers, the negative terminal 8 beingsimilarly provided with legs or plates of lead, except as to the number employed, which is either one more or one less than the number of positive terminal legs. All of the terminal legs are surby a` suitable bridge 9, and the terminals may be respectively provided with collars 10, l0 and slots 12, the collars 10 being embedded in plastic material 14, such as is used in capping batteries, and the slots 12 a'ording a convenient means for wiring the terminals. A. support of hard rubber, or otherr inert material 13, resting on the bridges 9, underlies the terminals 7, 8, and sustains the plastic' material 14 until it hardens.
The battery is relieved of gases by a vent tube 15 having anl aperture 16 and a perforated cap 17.
The improvements. forming the subject matter of the present application relate to the general construction of paper or equivalent porous celluloseof which'the containers 4 are composed; to the composition and the treatment of the materials of the respective electrodes, and to the electrolyte.
Cellulose, in its natural condition, is carbonized by the spontaneous action of sulphuric acid andother electrolytes, a chemical reaction which reduces the eliciency of a battery. I have found that ifcellulose containers are saturated with an aqueous soluthe battery; to
produced in ordinary batteries by the action' of the sulphuric acid, and that said battery is, consequently, capable of developing a current of unusually high amperage and voltage.
In constructing the battery, I produce a block of Wood of the size of the containers, and fold around and under it, one at a time, pieces of White blotting paper, tWo or three layers being laid in order to give sufficient stren h to each of the containers. The bottoms of the containers are sealed With paraiiin Wax, the object of using porous. containers being to separate or isolate, without insulating, the electrodes of the battery and to insure continuity of the electrolyte. The legs or plates around Aand in contact With which the *redl lead is initially deposited, which do not support active material and are merely conductors for the current are tenu- ,ous or thin, and fit loosely Within the receptacles to leaveroom for that positive electrode material. The red lead is preliminarily mixed With Water and plaster of Paris to form a creamy mass, tWo parts b-y volume of red lead and one p art by volume of plaster of Paris being found satisfactory pro-portions to insure setting or solidiica- A suitable frame of paraiiined Wood or metal is used to support and maintain the shape of the containers while being filled.
After the material in the containers is set, the legs or plates of the containers are attached to the positive pole pieces and placed in the battery casing, Without the electrolyte being present, following which the negative strips, which are also tenuous or thin, and do not-support active material' are inserted in alternate positions, and a mixture of litharge and plaster, prepared in the same Way as the positive materials introduced in the spaces around the containers. The battery is then allowed to stand for 24 hours, after which the negative strips are attached to the negative terminal.` The materials and the cups are no-vv covered'with a solution of silicate of soda, Which is gradually absorbed by the cellulose and the electrode materials, and a current of electricity is passed through the red lead and into arge, to thereby complete the battery, the period of time required for this purpose being determined by the appearance of the litharge, which, When turned dark gray, indicates that the battery is complete and ready for the introduction of the electrolyte. If the receptacle 1 is opaque, the results and through the lithmay be determined by reference to previous experiences of the maker with batteries having transparent receptacles. The battery, as thus completed by the electrolytic action of the current, is charged and ready for service. The electrolyte Will then be introduced, and will act to eliminate the laster of Paris or other substances remaining in the pores of the materials.
Although a sulphuric acid electrolyte is preferable, other electrolytes such as a solution of zinc sulphate, may be employed. The' battery Will, however, act to produce a current of high voltage and amperage, if an electrolyte of the ordinary kind be not employed, the aqueous solution of sodium silicate being itself a satisfactory electrolyte. If the silicate of soda is to be used. as an electrolyte, the aqueous solution thereof previously poured' in Will be retained, but, if another electrolyte is employed, the excess solution will be removed, and said other electrolyte introduced. The electrolyte then appears to be a composite electrolyte, including the silicate of soda retained in the porous constituents of the battery, and possessing new properties, these new' properties being indicated by the continued purity or stability of the materials of the electrodes, by the absence of discoloration'of the materials of the containers and the electrodes, by the high conductivity of the materials of the electrodes, by Athe constant ohmic. resistance of the electrolyte, by the ability of the battery to prolong the charge-holding period, and by an increase in the voltage of the battery as compared With that of an ordinary battery, which increase approximates onequarter of a volt. The precise reaction which| take place during the formation, the charging and the discharging ofthe battery are not fully understood, but the phenomena as herein set forth have been definitely ascertained by a prolonged series` of experiments. It is, however, believed that the plaster of Paris, as it is Water of the mixture, produces porosity in the electrode materials; that the disintegration of the plaster of Paris by the acid reduces its volume, thus increasing the ca.- pacity of the pores; that the nascent atoms of hydrogen and of oxygen liberated by the electrolysis of the Water, respectively reduce the litharge to metallic lead, and change the red lead to peroxide of lead, these products being formed in a porous condition; and that the cellulose of the containers becomes impregnated with silica, which sub-- stance lis produced by the action of the acid, sodium sulphate Which .becomes a part of the electrolyte, also being formed. If Water decomposition and recombination is the reversible' reaction, storing and re roducing energy, the porous electrodes shou d remain constant as they appear to do, and operate expanded uby the f to occlude the respective constituents of the water. A cell containing the silicate-olfsoda'electrolyte has a considerably higher voltage than a cell containing a sulphuricacid electrolyte, but a cell of the latter kind has the greater capacity in ampere-hours. The silicate-of-soda cell gives off only a mixture of ozone and, possibly, hydrogen whilel being charged, ozone being liberated at the positive electrode, and is, therefore, especially desirable in situations, as in submarines, where it is essential to maintain th'e purity of the atmosphere, and is desirable also in fiash-light batteries wherein the receptacles are composed of metal. the metal which would be acted upon by sulphuric aid, being inert as respects the silicate of soda.
The silicate -of soda will function as an electrolyte if it contain any moisture, but an aqueous solution containing 90 parts by volume of water and 10 parts by volume of silicate of soda, is preferable, because a stronger solution hampers the electrolytic action.
The legs or plates which carry the electric curr-ent to and from the active materials, may, as already stated, betenuous or thin, that is to say, only heavyenough to possess mechanical stability, and also to conduct the current without being overheated, contrary' to the practice in the ordinary secondary lead battery. In my battery, the active materials are of such low resistance that the crosssections of the lead legs or plates may b'e very small, and the active materials actually predominate, al grid not being relied upon for carrying the current. Lead legs are used, however, because the active materials are capable of adhering thereto morecertainly than they would cling to another substance.
The negative electrodes of my completed battery are composed of pure lead which, unlike ordinary electrolytically deposited comminuted lead, is in form a single mass composed of fine coherent and integral fila` ments possessing lustrous surfaces and resenting to the electrolyte large areas of clean metallic surfaces thereby greatly increasing the activity of the battery as compared with batteries in which the lead is in comminuted form. The negative electrode has a slate color, while the positive electrode is brown after forming, and these colors remain unchanged.
A battery constructed in accordance with my invention, will retain its efficiency for an indefinite period of time, or until the terminals of the lattery are disconnected by the complete'conversion of the metallic lead to spongy lead in the case of the negative electrode, or to peroxide of lead in the case of the positive electrode, there being no disintegration of the masses of active materials such as occurs 1n o rdmary secondary lead batteries in which the active materials are carried by grids, these active materials being of such low resistance that a conductive path for the current, such as is afforded by the lead grid of an ordinary battery, is not essential. The battery, because of its construction, is about one-third lighter than an ordinary secondary lead battery of the same capacity.
Furthermore, such a battery will not establish the detrimental internal short circuits which, in previous batteries, operate to discharge them, or, if the electrolyte has evaporated produce destructive sparking between the electrodes, the internal solid elements of the battery being physically connected throughout by the porous material of the containers, thus eliminatingor filling the spark gaps which would otherwise be present. v
A further advantage results from vthe fact ythat my battery has its capacity increased by successive chargings until all of the ma-v teria-ls are rendered active, the ratio of the volume of red lead and litharge, and of the active materials produced therefrom, to the volume of lead, being much greater in the present battery thanit is in the usual ,secondary lead battery, and that it remains charged for a much longer period of time than a battery in which heterogeneous portions of the materials establish local short circuits which reduce the active materials to a condition of inactivity.
The battery herein described may be operated indefinitely without incrustation of the electrodes with lead sulphate which is an essential element of an ordinary battery and which, being a poor electrical conductor, se-
riously interferes with all of the `functions tutes, although new lead plates or legs may be inserted in holes bored in the material of the positive electrode when the old ones are completely reduced, thus restoring the only part of the battery which is subject to deterioration. f'
The battery, as hereinbefore set forth, contains a substantially unchangeable electrolyte which does not yield sulphur to combine with portions of th-e lead to form lead sulphate, and which therefore approximately retains its specific gravity and affords a constant internal resistance during the entire periods of charging and discharging.
The operation of the battery is believed to be dependent upon the dissociation of molecules of water and therecombination of the resulting oxygen and hydrogen atoms which, pending the generation of the electrical current, are occluded in the pores of the respective electrodes, the hydrogen being occluded in the pores of the lead constituting the negative electrode, and the oxygen being occluded in the pores of the peroxide of lead constituting the positive electrode. Reasons for believing that the battery operates in this Way, are the unchangeability of the electrode materials during the periods of charge and discharge, the constancy of the electrolyte which, as already indicated, maintains its specific gravity and its ohmic resistance, and the tidal effect produced in the electrolyte which, during the charging of the battery rises approximately one-half an inch, and which during discharge falls to its normal level or is entirely absorbed by the orous electrodes. en, in the claims, I refer to active materials, I means to include the subtsances of.
which the positive and negative electrodes of soda, is held by porous pads 35, of blotting paper.
Having described my invention, what I claim and desire to secure by Letters Patent 1. container for activematerial and silicate of soda. l
2. A battery including porous cellulose, a solution of silicate of soda,`and masses of unormed substances mixed with Paris.
3. A'battery having active material permeated with a metallic salt.-
4. A battery having active material permeated With the salt of an alkaline metal.
51A battery permeated with a fsodium are formed, even though they may not par-v S lt ticipate in the chemical reactions taking place in the battery; and When, in'said claims, I speak of an electrolyte I intend to include any substance which affords a path for the current flowing from one electrode to the other.
The primary battery cell shown in Figure 10 has a retainer 18 of glass or other suit'- able substance, which` may not be inert since the electrolyte 19 is composed of a ten per cent solution of silicate of soda which does not corrode substances that are attackedby acid electrolytes, such as sulphuric acid. rI`he electrodes 20and 21 are, or may be, respectively composed of carbon and zinc, or other substances Which are relatively electropositive and electro-negative. A primary cell of this type is very eflicient. I have found that it has a voltageof 1.5.
The ozone or electrolytic cell shown in Figure 9 has a retainer 22 of glass or other desired substance, which may not be inert to acids, positive and negative electrodes 23, 24, which may be carbon rods, and inverted glass tubes or receptacles 25, /26, Within which the upper ends of these rods terminate. The electrolyte 27 is a 10% solution of silicate of soda. The current is supplied by a conductor 28 attached to the upper end lof the rod 23, and` passes out through a conductor 29 attachedto the upper end of the rod 24, theelectrolyte 27 being included in the current. Bubbles yof ozone (probably O3) developed on the surface of the rod 23 are caught in the receptacles 25, While bubbles of hydrogen formed on the surface of the rod 24 are caught in the receptacle 26, each receptacle being open at its bottom and closed at its top, valves 30, 31, controlling the escape of the respective gases. rI`he retainer 22 is closed by a suitable cover 32. This electrolytic cell produces large volumes of ozone of abnormal activity, and also large volumes of hydrogen.
The volta pile shown in Figure 11 has car- 6. A battery permeated with silicate of soda.
7. A lead battery including an electrolyte containing sodium silicate.
8.1 An occlusive electrode composed of fine coherent and integral filaments.
9. An electrode composed of ine coherent and integral filaments of occlusive properties.
10. Integral lead for a battery characterized by a high degree of occlusive porosity,
11. An electrode for a lead battery, 1ncluding active material and a sustaining element for said material composed of cellulose immune to the action of an acid.
12. A lead battery having a single negative electrode surrounding one or more than one positivey electrode, land physically .connected with said positive electrode by a porous partition constituting a bond Jfor uniting said electrodes.
14. A battery including positive and negative materials, an electrolyte, and porous cellulosey containers for said materials which are inert to an electrolyte, such as sulphuric acid.
15. A reversiblelead battery having an electrolyte of constant chemical constitution and constant ohmic resistance.
16. A battery, including electrode materials respectively composed of litharge and red lead, an electrolyte composed of silicate of soda, a cellulose container for electrode material, and a solution of silicate'of soda permeating said cellulose.
17. The process of preparing a cellulose container for use in a battery, Which consists in passin a current of electricity through silicate o soda in the presence of an undeveloped cellulose container.
18. The process of completing a battery A reversible battery including cellulose.
plaster of I lead having high containing a cellulose container, which conslsts 1n saturating sald contalner With a metallic salt, arranging non-active electrode electrical current materials in proper relation to said container, and passing a current of electricity through the incomplete battery until it is materially charged and the cellulose is rendered inert to sulphuric acid.
19. The process of treating cellulose for use in a battery, which consists in subjecting said cellulose and silicate of soda to the action of ozone.
20. The process of completing a battery,
including a cellulose container for active material, which consists in supplying thereto an aqueous solution of sodium silicate, passing an electric current through the incomplete battery, and continuing said current until the cellulose is rendered chemically inert to the action of an electrolyte.
21. The process of completing a battery including electrodes separated by a porous partition, `which consists in supplying thereto an aqueous solution of sodium silicate,
assing an electrical current through the incomplete battery, and continuing said current until the materials of the electrodes have become electrically active, or until the battery is substantially charged.
22. The process of producing a battery containing 'an oxidizable metal and the oxide et a metal, which consists in passing an through electrode materials and through an associated salt of an alkaline metal in solution.
23. The process of preparing active material for use in a battery, Which consists in subjecting said material to the action of an electrical current While in contact with silicate of soda.
24. The process of preparing active material for use in a battery, Which consists in the electrolysis of a solution of sodium silicate performed adjacent te said material.
25. The process of producing a battery electrode, which consists in mixing a mass of sub-oxide of lead (Ph) in an aqueous solution of a metal silicate, andfpassing an electric current therethrough.
23. The process of producing an electrode, which consists in mixing with electrode materials a substance, and eliminating said substance to thereby render said 4electrode materials porous and increase the areas of their active surfaces.
27|. The process of producing an electrode, which consists in mixing the electrode materials with plaster of Paris and eliminatin said plaster of Paris to thereby render said electrode materials porous and increase the areas of their active surfaces.
28. rlhe process of producing an electrode, `which consists in mixing. the electrode materiale with an alkaline sulphate, and elimielectrode of nating said sulphate to thereby render said electrode materials porousand increase the areas of their active surfaces.
29. A cell including lead electrodes and the decomposable salt of a metal of the alkaline group.
30. A cell including lead electrodes and sodium silicate.
31. A reversible battery comprising active material having constant chemical properties throughout the complete electro-chemical cycle.
32. A gridless battery having a negative electrode substantially composed of porous metallic lead.
33. A gridless battery having a negative mass of porous lead, a positive mass of leadoxygen composition, and an electrolyte.
34. A gridless battery having a negative mass of porous lead, a positive mass of the `peroxide of lead,'and an electrolyte.
35. A reversible battery comprising active lead material having constant chemical properties throughout the complete electrochemical cycle.
36. A reversible battery including a negative electrode of lead, having chemical constancy during both the period of charging and the period of discharging.
37. A reversible battery having a positive peroxide of lead, having chemical constancy during both the period of charging and period of discharging.
38. A reversible battery having aconstant negative electrode of lead, and a positive electrode which in a charged condition of the battery, is an oxide of lead.
39. A reversible battery having in its dit. charged condition, a porous lead negative electrode. Y
40. A reversible battery having in its discharged condition, a porous lead negative electrode, anda positive electrode of oxide of lead. 41. A gridless battery cell consisting of two homogeneous masses of lead and of lead composition constituting the active materials, and an electrolyte.
42. A gridless battery cell including homogeneous masses of porous active materials formed of or containing lead, andan electrolyte composed in part of Water.
43. An Oxy-hydrogen battery including porous electrodes, and water constituting an electrolyte, said electrodes being inert as regards the action of' said electrolyte and Awhich consists -in mixing electrode chemically inert material With a substance to render the completed electrode occlusivelyy 10 byelec'trolytc action.
\ 48. The process of forming the respective electrodes of a battery, which. consists in electrolytically reducing, in the absence of the sulphate radical, tharge to metallic lead, and in electrolytically oxidizing red 15 lead to peroxide of lead.
1n Witness whereof, I have hereunto set my hand and alixed my seal, this 27 th day of June, 1922.
VICTORv C. GOODRlDGE. [11. s]
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US1436873A true US1436873A (en) | 1922-11-28 |
Family
ID=3402990
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US1436873D Expired - Lifetime US1436873A (en) | Reversible battery |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US1436873A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3317349A (en) * | 1963-03-15 | 1967-05-02 | Allis Chalmers Mfg Co | Ambipolar battery including electrodes of identical nickelous composition |
-
0
- US US1436873D patent/US1436873A/en not_active Expired - Lifetime
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3317349A (en) * | 1963-03-15 | 1967-05-02 | Allis Chalmers Mfg Co | Ambipolar battery including electrodes of identical nickelous composition |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3887396A (en) | Modular electrochemical cell | |
| US3765942A (en) | Accumulator or battery with sulfuric acid electrolyte containing phosphoric acid | |
| US3926673A (en) | Method and apparatus for charging zinc electrodes in galvanic cells | |
| JPS609065A (en) | Sealed lead storage battery | |
| US1436873A (en) | Reversible battery | |
| US3342639A (en) | Sealed alkaline cells and electrolytes therefor | |
| US2692904A (en) | Growth inhibiter for battery electrodes | |
| US3873367A (en) | Zinc-container electrode | |
| US680848A (en) | Zinc electrode for electric batteries. | |
| JP2993668B2 (en) | Conductive ceramic support for active materials in lead / acid batteries | |
| US3899351A (en) | Formation of electrodes for alkaline batteries | |
| US3839089A (en) | Water activated lead acid storage battery cell having dry discharged electrodes | |
| US623195A (en) | Alexis werner | |
| US2619437A (en) | Primary cells | |
| US3836398A (en) | Electrochemical generators of the metal-air or metal-oxygen type | |
| US701804A (en) | Reversible galvanic battery. | |
| US1201481A (en) | Galvanic battery. | |
| US1028354A (en) | Galvanic battery. | |
| US3578504A (en) | Method of activating a silver oxide-zinc primary cell | |
| US1450533A (en) | Storage battery and process of producing the same | |
| US3754998A (en) | Silver oxide-zinc primary cell with magnesium oxide | |
| US1321947A (en) | Electric battery | |
| US370134A (en) | flick | |
| US703875A (en) | Active material for storage batteries and process of making same. | |
| US633249A (en) | Method of forming electrodes for secondary or storage batteries. |