US12265185B2 - Variable resonance frequency acoustic wave emission and/or detection device - Google Patents
Variable resonance frequency acoustic wave emission and/or detection device Download PDFInfo
- Publication number
- US12265185B2 US12265185B2 US17/813,063 US202217813063A US12265185B2 US 12265185 B2 US12265185 B2 US 12265185B2 US 202217813063 A US202217813063 A US 202217813063A US 12265185 B2 US12265185 B2 US 12265185B2
- Authority
- US
- United States
- Prior art keywords
- wave
- receiver
- resonance frequency
- emitter
- time period
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H11/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
- G01H11/06—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/521—Constructional features
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/02—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
- G01S15/04—Systems determining presence of a target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8909—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
- G01S15/8913—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using separate transducers for transmission and reception
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52023—Details of receivers
- G01S7/52025—Details of receivers for pulse systems
- G01S7/52026—Extracting wanted echo signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/523—Details of pulse systems
- G01S7/524—Transmitters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/523—Details of pulse systems
- G01S7/526—Receivers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/523—Details of pulse systems
- G01S7/526—Receivers
- G01S7/527—Extracting wanted echo signals
Definitions
- the present invention relates to the field of ultrasonic sensors, particularly piezoelectric micromachined ultrasonic transducers of the PMUT type or capacitive micromachined ultrasonic transducers of the CMUT type, having a high quality factor, in particular between 10 and 100.
- the present invention will have applications in detecting fingerprints, portable ultrasonic medical imaging, presence detection or also home automation and virtual reality.
- ultrasonic sensors have been widely used for detecting the distances to objects.
- ultrasonic sensors are generally configured to generate ultrasonic signals with an ultrasonic transducer and to receive echo signals reflected by the objects.
- the distance to an object can be determined based on the propagation speed of the sound through the propagation medium, such as air.
- Ultrasonic transducers are generally configured to generate ultrasonic signals when they are actuated by an excitation signal. For example, an electrical energy pulse can make a piezoelectric transducer vibrate at a given frequency due to the piezoelectricity, thus generating an ultrasonic wave.
- the ultrasonic signal transmitted is reflected by an object, the echo of the ultrasonic signal can thus be detected and evaluated to determine a distance to the object.
- the response of the ultrasonic transducer comprises the measurement of the echo, which is the signal of interest, and undesired interfering mechanical vibrations.
- the amplitude of the interfering mechanical vibrations is significant just after the emission of the ultrasonic signal, then decreases over time, even though this problem appears in particular when the echo signal is expected for short times. Thus, for objects located at a low distance, the signal of interest cannot be correctly measured.
- the blind zone is a spatial zone surrounding the ultrasonic transducer, wherein the echo signals cannot be reliably detected.
- the current methods attempt to resolve the problem of the blind zone by using, for example, by a software approach, wherein there is a un post-processing of the signal.
- the software approach simply avoids the taking into consideration, by the sensor, of the signals measured at the short times, and thus the detection, potentially erroneous, of an object at a low distance, to best identify the echo signals corresponding to a greater distance. This does not reduce nor remove the interfering vibrations of the transducer, the blind zone is therefore still present. In other words, the objects located in the blind zone cannot still be reliably detected.
- Document CN 101 294 796 is also known, which describes a supersonic detector of the reflection type with a small blind zone based on multifrequency.
- the document proposes to use two frequencies which are emitted, detected and analyzed according to the types of short or long measurements desired. This does not reduce or eliminate interfering receiver vibrations, so the blind zone is still present.
- an acoustic, preferably ultrasonic wave emission and/or reception device comprising:
- the invention proposes a device configured to modulate the resonance frequency of the receiver such that it is less sensitive.
- the sensitivity of the receiver is voluntarily degraded for a predefined time period, such that the receiver is less sensitive to the direct wave and therefore that it resonates in a less pronounced manner, thus enabling a reduction of the blind zone, and therefore measurements at shorter distances.
- the amplitude of the oscillations is reduced at the reception of the direct wave.
- the resonance frequency modulator is configured to move the resonance frequencies from the emitter and from the receiver, preferably at least the time of the reception of the direct wave, in order to reduce the blind zone.
- the invention allows to modulate the resonance frequency of the receiver unlike known documents which retain the same resonance frequency.
- Another aspect relates to a method for detecting acoustic waves by the acoustic wave emission and reception device, such as described above comprising the steps below:
- FIG. 1 represents a diagram of an ultrasonic emission and detection system.
- FIG. 2 represents a graph of the oscillations of the receiver in the absence of the invention.
- FIG. 3 represents a graph of the oscillations of the receiver in the absence of the invention.
- FIG. 4 represents a graph of the oscillations of the receiver with the system according to the invention.
- FIG. 5 represents a graph of the reception frequency of the receiver with the system according to the invention.
- FIG. 6 represents an electric diagram of an ultrasonic detection system according to an embodiment of the invention.
- the predetermined time period is at least equal to a time period for receiving the direct wave 6 by the receiver 3 .
- the invention enables to shift the resonance frequency of the receiver at least during the reception of the direct wave, then advantageously to return it to the frequency of the emission once the direct wave has passed.
- the emission frequency of the emitter 2 is the resonance frequency of the emitter 2 .
- the emission frequency of the emitter 2 is fixed.
- the emitter 2 and/or the receiver 3 is a PMUT-type piezoelectric micromachined transducer.
- the resonance frequency modulator of the receiver 3 is configured to make the polarisation of the receiver 3 vary during the predetermined time period.
- the emitter 2 and/or the receiver 3 is a CMUT-type capacitive micromachined transducer.
- the resonance frequency modulator of the receiver 3 is configured to vary the electrostatic rigidity of the receiver during the predetermined time period.
- the resonance frequency modulator of the receiver 3 comprises a negative counterreaction charge amplifier 11 configured to integrate the charge generated by the receiver 3 to apply a predefined polarisation voltage to the receiver.
- the device is adapted to emit and/or receive acoustic waves of frequency of between 100 Hz and 75 MHz, preferably between 1 kHz and 10 MHz, preferably around 100 kHz.
- the predetermined time period starts at the same time as the acoustic wave emission starts.
- the predetermined time period starts before the start of the emission of acoustic waves.
- the predetermined time period starts at the end of the emission of acoustic waves.
- the method comprises, after the emission of waves, the reception of a direct wave 6 by the receiver 3 .
- the modulation of the resonance frequency of the receiver 3 starts during the reception of the direct wave 6 by the receiver 3 .
- the modulation of the resonance frequency of the receiver 3 is simultaneous to the reception of a direct wave 6 by the receiver 3 .
- the modulation of the resonance frequency of the receiver is done only until the end of the reception of the direct wave.
- the modulation of the resonance frequency of the receiver 3 is done by a variation of the polarisation of the receiver 3 or a variation of the electrostatic rigidity of the receiver 3 .
- the device according to the invention is intended for the emission and/or the reception of an acoustic wave.
- the device is, for example, a piezoelectric or capacitive transducer adapted to emit and/or receive sonic or ultrasonic acoustic waves, for example acoustic waves at frequencies of between 100 Hz and 75 MHz and preferably 1 kHz and 10 MHz.
- acoustic or “ultrasonic” are interchangeable.
- the device advantageously comprises an emitter 2 of acoustic waves which could be ultrasonic waves.
- the device advantageously comprises a receiver 3 of acoustic waves which could be ultrasonic waves.
- the emitter 2 is separate from the receiver 3 .
- the emitter 2 and the receiver 3 can be of strictly identical technology.
- the receiver 3 receives ultrasonic waves generated by the emitter 2 and comprising direct waves 6 and reflected waves 7 .
- direct waves 6 this means waves generated by the emitter 2 and which reach the receiver 3 without being reflected, for example by being propagated in the surrounding environment, which can be air or liquid, or via a solid physical medium, like for example the medium of the device 1 .
- reflected waves 7 this means waves generated by the emitter 2 and which reach the receiver 3 after having met a surface of a solid obstacle, in particular the surface of an object located on the path of the waves emitted 5 by the emitter 2 ; the receiver 3 therefore both receives the direct waves 6 and the reflected waves 7 .
- the measurement of the reflected wave can be used to evaluate the distance separating the object 4 and the device 1 .
- the receiver 3 and the emitter 2 are implemented in one same device. In other cases, the receiver 3 and the emitter 2 are implemented in separate devices.
- the device according to the invention can be unitary, for example, i.e. that it forms an assembly.
- the device according to the invention is movable.
- the emitter 2 and the receiver 3 are immobile relative to one another.
- the emitter 2 and the receiver 3 are arranged on a front of the device 1 such that the emitter 2 emits to the outside of the device 1 and that the receiver receives waves from the outside of the device 1 .
- the emitter 2 and the receiver 3 are each a piezoelectric acoustic transducer which conventionally comprises a flexible membrane suspended by its periphery to a rigid support.
- the membrane comprises a piezoelectric conversion element constituted of a piezoelectric layer disposed between two electrodes.
- a voltage is applied between the two electrodes, an electric field appears in the piezoelectric layer, causing a mechanical deformation of the piezoelectric layer and consequently a deformation of the membrane.
- the application of a mechanical deformation to the membrane and therefore to the piezoelectric layer leads to a variation of the electric field and therefore an accumulation of charge in the two electrodes of the piezoelectric conversion element.
- a piezoelectric acoustic transducer comprises a circuit configured to, when emitting, apply an alternating excitation voltage between the two electrodes of the piezoelectric conversion element. This causes a mechanical vibration of the membrane leading to the emission of an acoustic wave.
- the circuit When receiving, the circuit is configured to read, between the two electrodes of the piezoelectric conversion element, an electric signal, for example an alternating voltage or an alternating current, representative of the variation of charges, in the electrodes, resulting from a vibration of the membrane caused by a received acoustic wave.
- the piezoelectric acoustic transducer is also called piezoelectric micromachined transducer, or PMUT.
- the emitter 2 and the receiver 3 are each a capacitive acoustic transducer which comprises a flexible membrane, also called mobile electrode, a rear cavity and a rear plate, also called lower electrode.
- a capacitive acoustic transducer which comprises a flexible membrane, also called mobile electrode, a rear cavity and a rear plate, also called lower electrode.
- emission mode an alternating voltage is applied to the terminals of the transducer of the cell thus creating an electrostatic force which will lead to a movement of the membrane. This movement will itself cause a radiated acoustic pressure in the front face of the membrane.
- reception mode it is the pressure of the acoustic wave applied on the membrane which causes its movement. This movement thus leads to a variation of the intrinsic capacity of the device.
- the capacitive acoustic transducer is also called capacitive micromachined transducer, or CMUT.
- the device according to the invention in particular enables to measure the distance between the device and an object, by measuring the propagation time of the ultrasonic wave.
- the emitter 2 is configured to emit an acoustic wave 5 and the receiver 3 is configured to receive the wave reflected 7 by the object 4 .
- the receiver 3 being conventionally closer to the emitter 2 than the object 4 is close to the emitter 2 , the receiver 3 commonly receives a direct acoustic wave 6 .
- This direct acoustic wave 6 excites the receiver 3 sooner than the reflected wave 7 , the travel time of the reflected wave 7 being greater than that of the direct wave 6 .
- This excitation of the receiver 3 by the direct wave 6 leads to a residual vibration of the receiver 3 , more specifically of the flexible membrane of the receiver 3 , also called pseudo-oscillations 8 .
- the reception of the direct wave 6 and/or the pseudo-oscillations 8 are interfering signals which interfere with the reception of the reflected wave 7 .
- the time period during which the receiver 3 is excited by the direct wave 6 and the pseudo-oscillations 8 define a period or zone called blind zone 9 .
- This zone 9 is a volume surrounding the receiver 3 defined by a component of a length which is at least equal to half of the distance separating it from the emitter 2 , commonly this volume is greater, due to the pseudo-oscillations 8 which last at the receiver 3 .
- This blind zone 9 corresponds to a time period during which the excitation of the receiver 3 is due to the direct wave 6 .
- the time period corresponding to the blind zone 9 corresponds to the time period during which the receiver 3 receives the direct wave 6 and the pseudo-oscillations 8 .
- the detection and/or emission device has a high quality factor, in particular when to improve the sensitivity of the device, the emission frequency of the emitter is at the resonance frequency of the receiver.
- high quality factor this means a quality factor greater than 10, more preferably 50.
- the emitter 2 emits acoustic waves at an emission frequency, while the receiver 3 has a resonance frequency.
- the sensitivity of the receiver is optimal when the emission frequency is equal to the resonance frequency of the receiver.
- the emission frequency corresponds to the resonance frequency of the emitter 2 .
- the emission frequency is fixed. By that, this means that the emission frequency is not modulated by the present invention.
- the emission and/or detection device 1 advantageously comprises a resonance frequency modulator of the receiver 3 .
- the invention relates to the modification of the mechanical properties of the receiver 3 to enable to reduce the blind zone 9 .
- the resonance frequency modulator of the receiver 3 is configured to alternatively take a first modulation configuration, advantageously wherein the resonance frequency of the receiver is closest to the emission frequency of the emitter, and at least one second modulation configuration wherein the resonance frequency of the receiver is further away from the emission frequency of the emitter 2 than in the first configuration. By further away, this means when the resonance frequency of the receiver is further away by at least 1/Q %, Q being the quality factor, preferably by at least 2/Q %.
- the first configuration is advantageously a default configuration, wherein the resonance frequency of the receiver 3 is not modulated. According to this first default configuration, the resonance frequency of the receiver 3 is advantageously quite close to the emission frequency.
- the first configuration can be a configuration, wherein the resonance frequency of the receiver 3 is modulated to be closest to the emission frequency and thus optimise the sensitivity of the receiver 3 .
- the second configuration is advantageously a configuration wherein the resonance frequency of the receiver 3 is voluntarily modulated, preferably far away from the emission frequency of the emitter 2 . The operation of the receiver is voluntarily modified. In the second configuration, the difference between the resonance frequency of the receiver 3 and the emission frequency of the emitter is greater than in the first configuration.
- the device comprises a unit for controlling the resonance frequency modulator.
- the control unit is advantageously configured to activate the resonance frequency modulator at least during a predetermined time period.
- This modification of the resonance frequency is advantageously intended to reduce the sensitivity of the receiver 3 during said predetermined time period.
- the modulation or modification of the resonance frequency of the receiver during the predetermined time period is a shift of the resonance frequency of the receiver 3 with respect to the emission frequency of the emitter 2 .
- the unit for controlling the modulator is configured to activate the first modulation configuration and alternatively at least the second modulation configuration of the resonance frequency modulator of the receiver 3 .
- the resonance frequency modulator is configured such that the second modulation configuration moves the resonance frequency of the receiver 3 away from the emission frequency of the emitter 2 during the predetermined time period.
- the unit for controlling the frequency modulator of the receiver 3 is also configured to activate the resonance frequency modulator outside of the predetermined time period.
- the resonance frequency modulator advantageously takes the first modulation configuration, which could advantageously be intended to tune the resonance frequency of the receiver 3 to the emission frequency of the emitter 2 .
- the resonance frequency is intended as an optimum of sensitivity.
- the predetermined time period is advantageously a time period, less than or equal to the blind zone 9 .
- the end of the predetermined time period is earlier than or equal to the end of the blind zone 9 , i.e. the end of the pseudo-oscillations 8 .
- the start of the predetermined time period is earlier than the start of the emission, or equal to the start of the emission or later than the start of the emission, i.e. more specifically, during the emission of the acoustic wave by the emitter 2 .
- the start of the predetermined time period corresponds to the start of the emission of the acoustic wave by the emitter 2 .
- the receiver 3 has its sensitivity degraded before starting to receive the direct wave 6 , which will limit its excitation and therefore the amplitude of the pseudo-oscillations 8 and therefore the duration of the blind zone 9 .
- the start of the predetermined time period corresponds to the start of the reception of the direct wave 6 by the receiver 3 .
- the reception of the direct wave 6 is limited, reducing the pseudo-oscillations 8 and therefore the blind zone 9 .
- FIG. 2 a graph of signals detected by a receiver 3 according to the state of the art is given.
- a first time period 100 corresponding to the reception of the direct wave 6 by the receiver 3 is observed in this figure.
- the start t 0 of this first time period 100 corresponds to the start of the reception of the direct wave 6 .
- the start t 0 of this first time period 100 also corresponds to the start of the emission of waves by the emitter 2 .
- the distance between the emitter 2 and the receiver 3 is around a few millimetres, more specifically less than 10 mm.
- 1 mm is travelled in around 3 ⁇ s. If the emitter 2 and the receiver 3 are close, the receiver 3 receives the direct wave 6 almost instantaneously.
- the path of the reflected wave is around 10 cm, more specifically less than 20 cm, in air, 10 cm is travelled in 300 ⁇ s.
- the order of magnitude of the duration of the emission (t 1 ⁇ t 0 ) is 100 ⁇ s.
- the end t 1 of this first time period 100 corresponds to the end of the reception of the direct wave 6 .
- the end t 1 of this first time period 100 also corresponds to the end of the emission of waves by the emitter 2 .
- a second time period 101 corresponding to the residual oscillation of the receiver 3 or pseudo-oscillation 8 starts.
- This second time period 101 starts at the end of the first time period 100 , i.e. at t 1 .
- This second time period 101 ends at t 2 , which corresponds to the moment when the pseudo-oscillations 8 no longer cause any reception signal from the receiver 3 which could prevent the identification of the echo signal.
- the third time period 103 corresponds to the reception of the reflected wave 7 .
- the blind zone 9 corresponds to the sum of the first time period 100 and to the second time period 101 .
- the predetermined time period corresponds at least to the first time period 100 .
- the predetermined time period is less than or equal to the sum of the first time period 100 and the second time period 101 . According to a considerable possibility, the predetermined time period is less than the first time period 100 .
- the receiver 3 is not very sensitive to the direct wave 6 ; then becomes sensitive. However, the receiver 3 does not have the time to reach a regime of high amplitude, as the excitation signal stops rapidly. The residual oscillations are also of low amplitudes. The blind zone 9 would thus, all the same, be reduced.
- the predetermined time period is greater than half of the first time period 100 .
- the resonance frequency modulator of the receiver 3 is configured to polarise the receiver 3 or modify the electrostatic rigidity of the receiver 3 .
- the polarisation of the receiver 3 is achieved by the application of a polarisation voltage on the receiver 3 .
- the control unit controls the modulator, such that it applies a polarisation voltage on the receiver 3 , thus enabling to modulate the resonance frequency of said receiver 3 .
- the polarisation of the receiver 3 is applied particularly for the emission and/or reception device according to the invention, which are of the PMUT-type piezoelectric transducer type.
- the modification of the electrostatic rigidity of the receiver 3 is achieved by the application of a voltage on the receiver 3 .
- the control unit controls the modulator such that it applies a voltage on the receiver 3 thus enabling to modulate the resonance frequency of said receiver 3 .
- the modification of the electrostatic rigidity is applied particularly for the emission and/or reception devices according to the invention which are of the capacitive transducer type, commonly called CMUT (capacitive micromachined ultrasonic transducer).
- FIG. 3 the oscillations of the membrane of the receiver 3 of the state of the art are represented.
- the reception of the direct wave 6 then the pseudo-oscillations 8 and the reception of the reflected wave 7 are observed in this figure over time. It is seen in this figure that the reception of the reflected wave 7 is interfered with by the pseudo-oscillations 8 following the reception of the direct wave 6 .
- the object 4 is too close, the reflected wave 7 arrives too early and the associated signal is hidden in the pseudo-oscillations 8 .
- the oscillations of the membrane of the receiver 3 according to the invention are represented. It is observed that the reception of the direct wave 6 is of a lower amplitude, since the pseudo-oscillations 8 are also of lower amplitudes. After a quite short duration, less than the duration 101 , the echo signal is no longer hidden by the pseudo-oscillations.
- the time period A corresponds to the predetermined time period, i.e. the period during which the resonance frequency of the receiver 3 is modulated to move away from the emission frequency of the emitter 2 , and is chosen equal to the period 100 .
- the time period B corresponds to a time period during which the resonance frequency of the receiver 3 is no longer modulated to move away from the resonance frequency of the emitter 2 , which is modulated to reposition itself on the emission frequency of the emitter 2 .
- FIG. 5 illustrates the resonance frequency of a receiver 3 . This figure illustrates the shift of the resonance frequency of the receiver 3 when a direct voltage of 2V is applied according to the diagram of FIG. 6 .
- Measurements are taken to quantify the shift of the resonance frequencies according to the polarisation voltages Vdc.
- a PMUT membrane having a resonance frequency of 102 kHz has this frequency offset by 900 Hz with a polarisation of 2V.
- PMUTs are considered with a quality factor of 50, and a resonance frequency at 100 kHz, thus by emitting at 100 kHz, and by shifting by 1 kHz of the resonance frequency of the receiver, i.e. at 101 kHz, by applying a polarisation of 2V, at least during the duration of the emission, the sensitivity of the receiver 3 to the direct wave 6 is reduced by a root factor of 2, i.e. of around 1.4142.
- the resonance frequency modulator of the receiver 3 comprises a counterreaction operational amplifier 11 for each electrode E 1 , E 2 , E 3 , E 4 .
- the operational amplifier 11 comprises a charge amplifier 14 , a resistance 15 and a capacity 16 .
- the polarisation of the PMUT-type receiver 3 is done via the counterreaction of the operational amplifier 11 , also called charge operator. This use is counterintuitive: usually, it is preferable that operators 11 interfere as little as possible with the components placed upstream.
- the operational amplifier 11 therefore has two functions: integrating the charges generated by the PMUT-type receiver 3 and forcing the voltage on the second pin 12 at the same level as the third pin 13 .
- the desired polarisation voltage at the terminals of the PMUT-type receiver 3 is applied to the third pin 13 of the operational amplifier 11 .
- FIG. 6 illustrates a receiver 3 according to this aspect of the invention.
- the receiver 3 comprises at least one pair of electrodes E 1 /E 2 .
- the electronic diagram is given for a PMUT comprising 2 pairs of electrodes (E 1 /E 2 -E 3 /E 4 ), that is 4 electrodes E 1 , E 2 , E 3 , E 4 .
- This diagram can be stated with n (n being a natural integer) electrode pairs “En/En+1”, polarised at n voltages “VPOLn”, with charges generated opposite phases from one electrode to the other.
- Each electrode E 1 , E 2 , E 3 , E 4 is connected to the inverting input of a dedicated charge amplifier (for example, E 1 is connected to the pin 12 of the charge amplifier 14 ).
- the two charge amplifiers 14 of two electrodes of one same pair are connected to one single instrumentation amplifier 17 located downstream from the two charge amplifiers.
- the two instrumentation amplifiers 17 are connected to an amplifier 18 , which delivers the output signal.
- the electronic diagram illustrated in FIG. 6 enables to polarise pairs of electrodes E 1 /E 2 and E 3 /E 4 with a specific polarisation voltage VPOL 1 or VPOL 2 for each pair of electrodes to modify the resonance frequency, while amplifying the charges generated opposite the phase within one same pair of electrodes, contrary to what is usually done.
- the non-inverting output of the amplifiers is generally grounded and the sensors are polarised via one single voltage VPOLBULK.
- the charge amplifier 14 has two roles: in one direction, it amplifies the charges, by integrating them in the capacity 16 .
- the resistance 15 and the capacity 16 thus form a high-pass filter.
- the charge amplifier 14 imposes a voltage VPOL 1 to E 1 through the resistance 15 .
- the resistance 15 and the capacity 16 thus form a low-pass filter.
- 15 10 MOhms
- 16 1 pF
- the charge amplifiers and the instrumentation amplifiers are of the “JFET” (Junction Field Effect Transistor) type, to have a very high input impedance.
- the invention relates to a method for modulating the resonance frequency of a PMUT- or CMUT-type receiver 3 , in particular.
- the method advantageously comprises, the application of a polarisation voltage VPOLn to a pair of electrodes and simultaneously, the amplification of charges generated opposite the phase within one same pair of electrodes.
- PMUTs and CMUTs emit ultrasounds in air, up to 5 to 10 metres. They are also very efficient in emission/reception in a liquid environment.
- the device of the invention thus aims for very varied applications in the medical, general public or automotive field.
- Micromachined transducers have dimensions, typically of around 10 to 1000 microns and are generally assembled in a large number.
- the invention is not limited to the embodiments described above, and extends to all the embodiments covered by the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Acoustics & Sound (AREA)
- Mechanical Engineering (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Transducers For Ultrasonic Waves (AREA)
Abstract
Description
-
- a wave emitter configured to transmit waves at an emission frequency and
- a preferably ultrasonic wave receiver, preferably separate from the emitter having a resonance frequency and configured to receive waves generated by the emitter and comprising direct waves and reflected waves, characterised in that the device comprises
- a resonance frequency modulator of the receiver and
- a control unit configured to control the resonance frequency modulator during a predetermined time period so as to reduce the sensitivity of the receiver during said predetermined time period by moving the resonance frequency of the receiver away from the emission frequency of the emitter.
-
- Emission of acoustic waves by the emitter at an emission frequency of the emitter,
- Modulation of the resonance frequency of the receiver for a predetermined time period, to move it away from the emission frequency of the emitter, then
- Detection of a wave reflected by the receiver.
Vpol1=−(Vpol2)=2 v,
15=10 MOhms,
16=1 pF,
the charge amplifiers and the instrumentation amplifiers are of the “JFET” (Junction Field Effect Transistor) type, to have a very high input impedance.
-
- 1. Transducer
- 2. Emitter
- 3. Receiver
- 4. Object
- 5. Emitted wave
- 6. Direct wave
- 7. Reflected wave
- 8. Pseudo-oscillations
- 9. Blind zone
- 10. Travel time
- 11. Operational amplifier
- 12. Second pin
- 13. Third pin
- 14. Charge amplifier
- 15. Resistance
- 16. Capacity
- 17. Instrumentation amplifier
- 18. Amplifier
- A. Modulation of the resonance frequency of the receiver
- B. Repositioning of the resonance frequency of the receiver
- C. Resonance frequency of the receiver corresponding to the emission frequency of the emitter
- E1. Electrode
- E2. Electrode
- E3. Electrode
- E4. Electrode
- 101. First time period
- 102. Second time period
- 103. Third time period
Claims (12)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR2107781 | 2021-07-19 | ||
| FR2107781A FR3125330B1 (en) | 2021-07-19 | 2021-07-19 | Device for emitting and/or detecting acoustic waves with variable resonance frequency |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20230028853A1 US20230028853A1 (en) | 2023-01-26 |
| US12265185B2 true US12265185B2 (en) | 2025-04-01 |
Family
ID=78212196
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/813,063 Active US12265185B2 (en) | 2021-07-19 | 2022-07-18 | Variable resonance frequency acoustic wave emission and/or detection device |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US12265185B2 (en) |
| EP (1) | EP4123270B1 (en) |
| FR (1) | FR3125330B1 (en) |
Citations (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3798590A (en) * | 1968-09-12 | 1974-03-19 | Us Navy | Signal processing apparatus including doppler dispersion correction means |
| US4207625A (en) * | 1961-03-06 | 1980-06-10 | The United States Of America As Represented By The Secretary Of The Navy | Doppler compensator for heterodyne correlation devices |
| US4264788A (en) * | 1979-01-31 | 1981-04-28 | Princo Instruments, Inc. | Damped ultrasonic detection unit |
| US4282589A (en) * | 1961-11-16 | 1981-08-04 | Texas Instruments Incorporated | Correlation ranging |
| JP2001108739A (en) * | 1999-10-04 | 2001-04-20 | Hitachi Koki Co Ltd | Distance measuring circuit using ultrasonic sensor, sensitivity adjustment method of the circuit, and distance measuring method using the circuit |
| US6571144B1 (en) * | 1999-10-20 | 2003-05-27 | Intel Corporation | System for providing a digital watermark in an audio signal |
| US6731569B2 (en) | 2001-03-16 | 2004-05-04 | Automotive Technologies International Inc. | Methods for reducing ringing of ultrasonic transducers |
| US20050088334A1 (en) * | 2003-09-18 | 2005-04-28 | Bjoern Herder | Method for measuring distance and measuring device for it |
| WO2005106530A1 (en) * | 2004-04-28 | 2005-11-10 | Matsushita Electric Industrial Co., Ltd. | Ultrasonic range finder |
| US20060232165A1 (en) * | 2003-07-06 | 2006-10-19 | Shinji Amaike | Ultrasonic transmitter-receiver |
| CN101294796A (en) * | 2007-04-27 | 2008-10-29 | 孙跃 | Reflection type small blind zone supersonic detector based on multi-frequency |
| CN101458332A (en) | 2009-01-09 | 2009-06-17 | 华南师范大学 | Ultrasonic ranging method and system thereof |
| US7591788B2 (en) * | 2003-08-19 | 2009-09-22 | Siemens Medical Solutions Usa, Inc. | Adaptive contrast agent medical imaging |
| US20100245065A1 (en) * | 2009-03-25 | 2010-09-30 | Denso Corporation | Obstacle detection apparatus and method of controlling obstacle detection apparatus |
| WO2012152493A1 (en) | 2011-05-09 | 2012-11-15 | Robert Bosch Gmbh | Ultrasonic measurement system having reduced minimum range and method for detecting an obstacle |
| US20170320093A1 (en) * | 2016-05-03 | 2017-11-09 | Globalfoundries Singapore Pte. Ltd. | ELECTRODE ARRANGEMENT FOR A pMUT and pMUT TRANSDUCER ARRAY |
| US9921057B2 (en) | 2014-04-11 | 2018-03-20 | Sz Dji Technology, Co., Ltd. | Proximity sensing systems and methods |
| US20190102046A1 (en) * | 2017-09-29 | 2019-04-04 | Qualcomm Incorporated | Layer for inducing varying delays in ultrasonic signals propagating in ultrasonic sensor |
| FR3077161A1 (en) | 2018-01-22 | 2019-07-26 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | TUNABLE PIEZOELECTRIC ACOUSTIC TRANSDUCER |
| US20200174116A1 (en) | 2018-12-03 | 2020-06-04 | Te Connectivity Corporation | Distance-detection system for determining a time-of-flight measurement and having a reduced dead zone |
-
2021
- 2021-07-19 FR FR2107781A patent/FR3125330B1/en active Active
-
2022
- 2022-07-18 EP EP22185569.5A patent/EP4123270B1/en active Active
- 2022-07-18 US US17/813,063 patent/US12265185B2/en active Active
Patent Citations (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4207625A (en) * | 1961-03-06 | 1980-06-10 | The United States Of America As Represented By The Secretary Of The Navy | Doppler compensator for heterodyne correlation devices |
| US4282589A (en) * | 1961-11-16 | 1981-08-04 | Texas Instruments Incorporated | Correlation ranging |
| US3798590A (en) * | 1968-09-12 | 1974-03-19 | Us Navy | Signal processing apparatus including doppler dispersion correction means |
| US4264788A (en) * | 1979-01-31 | 1981-04-28 | Princo Instruments, Inc. | Damped ultrasonic detection unit |
| JP2001108739A (en) * | 1999-10-04 | 2001-04-20 | Hitachi Koki Co Ltd | Distance measuring circuit using ultrasonic sensor, sensitivity adjustment method of the circuit, and distance measuring method using the circuit |
| US6571144B1 (en) * | 1999-10-20 | 2003-05-27 | Intel Corporation | System for providing a digital watermark in an audio signal |
| US6731569B2 (en) | 2001-03-16 | 2004-05-04 | Automotive Technologies International Inc. | Methods for reducing ringing of ultrasonic transducers |
| US20060232165A1 (en) * | 2003-07-06 | 2006-10-19 | Shinji Amaike | Ultrasonic transmitter-receiver |
| US7591788B2 (en) * | 2003-08-19 | 2009-09-22 | Siemens Medical Solutions Usa, Inc. | Adaptive contrast agent medical imaging |
| US20050088334A1 (en) * | 2003-09-18 | 2005-04-28 | Bjoern Herder | Method for measuring distance and measuring device for it |
| US7176789B2 (en) * | 2003-09-18 | 2007-02-13 | Robert Bosch Gmbh | Method for measuring distance and measuring device for it |
| WO2005106530A1 (en) * | 2004-04-28 | 2005-11-10 | Matsushita Electric Industrial Co., Ltd. | Ultrasonic range finder |
| US7046015B2 (en) | 2004-04-28 | 2006-05-16 | Matsushita Electric Industrial Co., Ltd. | Ultrasonic distance measure |
| CN101294796A (en) * | 2007-04-27 | 2008-10-29 | 孙跃 | Reflection type small blind zone supersonic detector based on multi-frequency |
| CN101458332A (en) | 2009-01-09 | 2009-06-17 | 华南师范大学 | Ultrasonic ranging method and system thereof |
| US20100245065A1 (en) * | 2009-03-25 | 2010-09-30 | Denso Corporation | Obstacle detection apparatus and method of controlling obstacle detection apparatus |
| WO2012152493A1 (en) | 2011-05-09 | 2012-11-15 | Robert Bosch Gmbh | Ultrasonic measurement system having reduced minimum range and method for detecting an obstacle |
| US20140331772A1 (en) | 2011-05-09 | 2014-11-13 | Albrecht Klotz | Ultrasonic measuring system having a reduced minimum range and method for detecting an obstacle |
| US9921057B2 (en) | 2014-04-11 | 2018-03-20 | Sz Dji Technology, Co., Ltd. | Proximity sensing systems and methods |
| EP3102964B1 (en) | 2014-04-11 | 2020-07-29 | SZ DJI Technology Co., Ltd. | Proximity sensing systems and methods |
| US20170320093A1 (en) * | 2016-05-03 | 2017-11-09 | Globalfoundries Singapore Pte. Ltd. | ELECTRODE ARRANGEMENT FOR A pMUT and pMUT TRANSDUCER ARRAY |
| US20190102046A1 (en) * | 2017-09-29 | 2019-04-04 | Qualcomm Incorporated | Layer for inducing varying delays in ultrasonic signals propagating in ultrasonic sensor |
| FR3077161A1 (en) | 2018-01-22 | 2019-07-26 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | TUNABLE PIEZOELECTRIC ACOUSTIC TRANSDUCER |
| US20200174116A1 (en) | 2018-12-03 | 2020-06-04 | Te Connectivity Corporation | Distance-detection system for determining a time-of-flight measurement and having a reduced dead zone |
Non-Patent Citations (4)
| Title |
|---|
| Design and development of an electronic interface circuit for piezoelectric sensors applied to impact detection. Gunther Monté Muñoz. Vittorio Ferrari. Feb. 25, 2011. (Year: 2011). * |
| French Preliminary Search Report issued Mar. 25, 2022 in French Application 21 07781 filed on Jul. 19, 2021, citing documents AC-AD & AQ-AS therein, 9 pages (with English Translation of Categories of Cited Documents & Written Opinion). |
| Liu et al., "Reducing ring-down time of pMUTs with phase shift of driving waveform", Sensors and Actuators A: Physical, vol. 281, 2018, pp. 100-107. |
| Office Action issued Oct. 25, 2023, in corresponding European Patent Application No. 22 185 569.5, 4 pages. |
Also Published As
| Publication number | Publication date |
|---|---|
| US20230028853A1 (en) | 2023-01-26 |
| FR3125330B1 (en) | 2024-01-12 |
| EP4123270A1 (en) | 2023-01-25 |
| FR3125330A1 (en) | 2023-01-20 |
| EP4123270B1 (en) | 2025-09-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2661329B1 (en) | Improvements in or relating to ultrasound generating apparatus, and methods for generating ultrasound | |
| CN107807361B (en) | Apparatus and method for driving ultrasonic sensors | |
| JP7446092B2 (en) | Distance sensing system to determine time-of-flight measurements with reduced deadband | |
| KR101939383B1 (en) | Apparatus and method for driving ultrasonic sensor | |
| JP4377121B2 (en) | Distance measurement and pressure measurement inside air spring | |
| EP3576429B1 (en) | Ultrasonic device | |
| CN104204844B (en) | Ultrasonic sensor and method for measuring distance between objects | |
| WO2002016925A1 (en) | Non-destructive inspection device | |
| US12265185B2 (en) | Variable resonance frequency acoustic wave emission and/or detection device | |
| JPH06500638A (en) | Acoustic flute type web edge sensor | |
| JP2012220434A (en) | Object detecting device | |
| JP4111236B2 (en) | Driving method of ultrasonic transducer | |
| JP3047588B2 (en) | Ultrasonic transducer for liquid concentration meter | |
| KR20070066136A (en) | Method and device for measuring distance using ultrasound | |
| JPS6367151B2 (en) | ||
| CN215844031U (en) | Ultrasonic transducer device and air suspension device comprising same | |
| JPH0454471Y2 (en) | ||
| KR101932285B1 (en) | Ultrasonic measuring system and method for detecting an obstacle by using ultrasonics | |
| Kang et al. | Wideband electromagnetic dynamic acoustic transducer as a standard acoustic source for air-coupled ultrasonic sensors | |
| JP3742856B2 (en) | Liquid level detector | |
| JPH1082855A (en) | Object measuring device | |
| JPH0961523A (en) | Ultrasonic distance-measuring apparatus | |
| SU1460696A1 (en) | Ultrasonic receiving transducer for operation in gas medium | |
| CN119317849A (en) | Ultrasonic wave generating device, vibrator and object detecting device | |
| CN116136591A (en) | Method and apparatus for detecting an object using an ultrasonic transducer |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| AS | Assignment |
Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GARDIEN, FRANCOIS;BLARD, FRANCOIS;FAIN, BRUNO;SIGNING DATES FROM 20220729 TO 20220824;REEL/FRAME:061470/0719 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |