US12422849B2 - Method for building controller for robot, method, device for controlling motion of robot, and robot - Google Patents
Method for building controller for robot, method, device for controlling motion of robot, and robotInfo
- Publication number
- US12422849B2 US12422849B2 US18/203,910 US202318203910A US12422849B2 US 12422849 B2 US12422849 B2 US 12422849B2 US 202318203910 A US202318203910 A US 202318203910A US 12422849 B2 US12422849 B2 US 12422849B2
- Authority
- US
- United States
- Prior art keywords
- robot
- controller
- control
- data
- motion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
- G05B19/0423—Input/output
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/40—Control within particular dimensions
- G05D1/43—Control of position or course in two dimensions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1615—Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
- B25J9/162—Mobile manipulator, movable base with manipulator arm mounted on it
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/25—Pc structure of the system
- G05B2219/25257—Microcontroller
Definitions
- the present disclosure relates to the field of artificial intelligence and robots, including to a method for building a controller for a robot, a method, device for controlling motion of a robot, a robot, a computer readable storage medium, and a computer program product.
- robots based on artificial intelligence and robot technologies play an increasingly important role in intelligent transportation, smart home and other fields, and also face higher requirements.
- the present disclosure provides a method for building a controller for a robot, a method, device for controlling motion of a robot, a robot, a non-transitory computer-readable storage medium and a computer program product.
- the present disclosure provides a method for controlling a robot.
- movement of the robot is controlled according to a first controller.
- Motion state data and control data of the robot are obtained while the movement of the robot is controlled according to the first controller.
- a linear equilibrium parameter matrix of the first controller is updated according to a policy iteration algorithm that uses the obtained motion state data and the control data.
- a second controller of the robot is built based on the updated linear equilibrium parameter matrix.
- the present disclosure provides a method for controlling a robot.
- motion trajectory information that indicates a motion trajectory of the robot is received.
- a driving force which is applied to driving wheels of the robot by a first controller based on the motion trajectory information, is controlled to move the robot according to the motion trajectory.
- Motion state data and control data of the robot are obtained during the movement according to the motion trajectory.
- a second controller of the robot is built according to a policy iteration algorithm that uses the motion state data and the control data. The driving force applied to the driving wheels is controlled according to the second controller.
- the present disclosure provides a robot control apparatus including processing circuitry.
- the processing circuitry is configured to control movement of a robot according to a first controller.
- the processing circuitry is configured to obtain motion state data and control data of the robot while the movement of the robot is controlled according to the first controller.
- the processing circuitry is configured to update a linear equilibrium parameter matrix of the first controller according to a policy iteration algorithm that uses the obtained motion state data and the control data. Further, the processing circuitry is configured to build a second controller of the robot based on the updated linear equilibrium parameter matrix.
- the present disclosure provides a robot that includes the robot control apparatus, wheel legs, and a driving motor.
- the driving motor is configured to drive driving wheels of the wheel legs to move the robot according to the first controller or the second controller.
- the present disclosure provides a device for building a controller for a robot, the device including a motion control module, a policy iteration module, and a second controller building module.
- the motion control module is configured to control motion of the robot using a first controller, and obtain motion state data and control data of the robot during the motion process.
- the policy iteration module is configured to update a linear equilibrium parameter matrix of the first controller using a policy iteration manner according to the motion state data and the control data.
- the second controller building module is configured to build a second controller corresponding to dynamic characteristics of the robot based on the updated linear equilibrium parameter matrix.
- the present disclosure provides a device for controlling motion of a robot, the robot moving by driving wheels, the device including an instruction receiving module, an instruction execution module, a data obtaining module, a policy iteration module, and a driving force control module.
- the instruction receiving module is configured to receive a motion instruction indicating a motion trajectory of the robot.
- the instruction execution module is configured to control a driving force applied to the driving wheels by the first controller according to the motion instruction, to cause the robot to move according to the motion trajectory.
- the data obtaining module is configured to obtain motion state data and control data of the robot during the motion process.
- the policy iteration module is configured to build a second controller corresponding to dynamic characteristics of the robot using a policy iteration manner based on the motion state data and the control data.
- the driving force control module is configured to control a driving force applied to the driving wheels using the second controller to cause smooth motion of the robot.
- the present disclosure provides a non-transitory computer readable storage medium, storing instructions which when executed by one or more processors cause the one or more processors to perform any of the above methods.
- the present disclosure provides a computer program product comprising computer-readable instructions, the computer-readable instructions, when executed by one or more processors, performing any of the above methods.
- FIG. 1 illustrates a schematic structural diagram of a robot with left and right wheel legs in a single wheel-legged configuration according to an embodiment of the present disclosure.
- FIG. 2 illustrates an exemplary flowchart of a method for building a controller for a robot according to an embodiment of the present disclosure.
- FIG. 3 illustrates a labeling schematic diagram corresponding to a robot according to an embodiment of the present disclosure.
- FIG. 4 illustrates a control architecture diagram corresponding to a robot according to an embodiment of the present disclosure.
- FIG. 5 illustrates an exemplary flowchart of a method for building a controller for a robot according to an embodiment of the present disclosure.
- FIG. 6 illustrates another structural view of a robot according to an embodiment of the present disclosure.
- FIG. 7 A illustrates motion state data and control data in a motion process of a robot using a first controller to control the robot according to an embodiment of the present disclosure.
- FIG. 7 B illustrates a convergence process of a linear equilibrium parameter matrix in a process of building a second controller according to an embodiment of the present disclosure, the base portion heights of the robot being 0.5 m and 0.6 m respectively.
- FIG. 7 C illustrates motion state data of a robot controlled by the first controller and the second controller respectively to walk straight with the base portion height to be 0.6 m according to an embodiment of the present disclosure.
- FIG. 8 illustrates an exemplary flowchart of building a first controller according to an embodiment of the present disclosure.
- FIG. 9 illustrates an exemplary schematic diagram of a method for building a controller of a robot according to an embodiment of the present disclosure.
- FIG. 10 illustrates a schematic process diagram of collecting motion state data and control data of a robot according to an embodiment of the present disclosure.
- FIG. 11 illustrates a plot of collecting motion state data and control data of a robot according to an embodiment of the present disclosure.
- FIG. 12 illustrates a schematic iteration diagram of collecting a linear equilibrium parameter matrix in a process of a robot according to an embodiment of the present disclosure.
- FIG. 13 illustrates a schematic experiment diagram of testing a controller of a robot according to an embodiment of the present disclosure.
- FIG. 14 illustrates an experiment data diagram of testing a controller of a robot according to an embodiment of the present disclosure.
- words such as “a/an,” “one,” “one kind,” and/or “the” do not refer specifically to singular forms and may also include plural forms, unless the context expressly indicates an exception.
- terms “comprise” and “include” merely indicate including clearly identified steps and elements. The steps and elements do not constitute an exclusive list. A method or a device may also include other steps or elements.
- any quantity of different modules may be used and run on a user terminal and/or a server.
- the modules are merely illustrative, and different aspects of the system and method may use different modules.
- Flowcharts are used in the present disclosure for illustrating operations performed by systems according to embodiments of the present disclosure. It is to be understood that, the foregoing or following operations are not necessarily strictly performed according to an order. On the contrary, various steps may be performed in a reverse order or simultaneously according to needs. Meanwhile, other operations may be added to the processes, or one or more operations may be deleted from the processes.
- a robot may include a kind of mechanical and electronic equipment which combines mechanical transmission and modern microelectronics technologies to imitate certain human skills, and is developed on the basis of electronics, machinery and information technologies.
- a robot does not have to look like a human. For example, as long as it can complete tasks and instructions given by humans, the robot may be considered a member of the robot family.
- a robot may include an automated machine that possesses some intelligent capabilities similar to those of a human or a living being, such as perception, planning, movement and collaboration, and possesses a high degree of flexibility.
- a robot is greatly improved in functional and technical levels, and technologies such as mobile robots and robot vision and tactile are typical representatives.
- the present disclosure relates to an application of artificial intelligence to robot control, for example, the present disclosure provides a method for building a controller for a robot based on artificial intelligence.
- the solution adds use of an arbitrary controller to be optimized to build a controller corresponding to dynamic characteristics of the robot.
- the robot under control of the controller corresponding to dynamic characteristics of the robot has a motion state closer to an equilibrium point relative to the robot under control of the arbitrary controller to be optimized.
- the robot to which the present disclosure relates may be an underactuated robot.
- Underactuation is, for example, a kind of nonlinear control object with the number of independent control variables less than the number of degrees of freedom.
- the underactuated robot may be a wheel-legged robot as illustrated in FIG. 1 .
- FIG. 1 illustrates a schematic structural diagram of a robot with left and right wheel legs in a single wheel-legged configuration according to an embodiment of the present disclosure.
- FIG. 1 illustrates a schematic structural diagram of a robot 100 in an embodiment.
- the wheel-legged robot 100 may include: wheel legs 103 ; the wheel legs 103 include driving wheels 104 which may also be referred to as feet.
- the wheel-legged robot 100 may further include a base portion 101 , the base portion 101 may refer to a main body part of the robot and may be, for example, a trunk portion of the robot, and the base portion may be, for example, a planar plate-like member or a rectangular parallelepiped-shaped member that is connected to the wheel legs of the robot.
- one end of the wheel legs 103 is connected to the base portion 101 , and the other end is connected to the driving wheels 104 .
- the base portion 101 is equipped with a power output device (for example, a motor), which can be used for providing power to the driving wheels for driving the wheel legs 103 .
- a power output device for example, a motor
- the robot may further include a base portion connected to the wheel legs or an additional member arranged on the base portion according to actual needs. It is to be understood that merely one structure example of the robot is given above, and embodiments of the present disclosure are not limited by the specific members of the robot and connection manners thereof.
- the driving wheels 104 connected to the wheel legs 103 may enable the wheel-legged robot 100 to perform both walking and wheel motion.
- the wheel-legged robot 100 may further include a controllable additional member 102 (for example, a tail) and the tail may be used to equilibrate the wheel-legged robot and may also assist in motion of the wheel-legged robot.
- the tail may assist the wheel-legged robot in maintaining equilibrium during motion.
- the wheel-legged robot may further include a controllable robotic arm and the robotic arm may be used to perform operation tasks such as handling, picking, and the like.
- the wheel-legged robot may further include a multi-foot wheel-legged robot, such as a two-foot wheel-legged robot and a four-foot wheel-legged robot.
- the wheel legs 103 are parallel legs (the position of the equilibrium point is between two legs of the two-foot wheel-legged robot 100 ).
- the wheel legs 103 of the robot 100 include a left wheel leg and a right wheel leg, and each of the left wheel leg and the right wheel leg includes a driving wheel and two parallel legs connected to a central axis of the driving wheel and for realizing motion control of the driving wheel.
- the left wheel leg includes a left driving wheel, a first left wheel leg and a second left wheel leg and the first left wheel leg and the second left wheel leg are connected in parallel;
- the right wheel leg 112 includes, for example, a right driving wheel, a first right wheel leg and a second right wheel leg, and the first right wheel leg and the second right wheel leg are connected in parallel.
- the left wheel leg and the right wheel leg are in mirror symmetry.
- the number of driving wheels may be one, two, four, or other, and the motion of each driving wheel may be controlled by two legs in parallel or multiple legs in series. It is to be understood that embodiments of the present disclosure are not limited by the specific composition types of the left wheel leg and the right wheel leg and the number of driving wheels thereof. In some embodiments, both the left wheel leg and the right wheel leg are of a single wheel leg configuration.
- a single wheel leg configuration means that the wheel leg comprises merely a single driving wheel.
- the left wheel leg and the right wheel leg may comprise the same number of joints and have the same joint configuration, or the left wheel leg and the right wheel leg may, for example, have a different number of joints or a different joint configuration, or both, depending on actual needs.
- Embodiments of the present disclosure are not limited by the specific number of joints and the joint configuration of the left wheel leg and the right wheel leg. Taking the example illustrated in FIG. 1 as an example, each of the left wheel leg and right wheel leg includes five joints and has a total of two rotational degrees of freedom, and the change in the height of the center of mass of the wheel legs/base portion and the tilt angle of the base portion can be adjusted by adjusting each joint of the wheel legs 103 .
- the legs of the robot can be either serial legs or parallel legs. Compared to the serial legs, the parallel legs have stronger stiffness and can withstand the impact that may be induced in complex motion.
- the driving wheels 104 may provide motion capability for the wheel-legged robot 100 to glide while in contact with the ground.
- the two-foot wheel-legged robot 100 may further include an additional member 102 connected to the base portion 101 .
- the additional member 102 may be equipped with a driven wheel 105 .
- the additional member 102 may include one rotational degree of freedom. Motion of the additional member 102 also affects changes of the base portion 101 and the wheel legs 103 , for example, the position change of the additional member may drive the base portion to enable the base portion to have a certain rotation velocity. Thus, equilibrium and posture of the robot 100 can be adjusted by adjusting the position of the additional member 102 .
- the wheel-legged robot 100 has both the flexibility of a wheeled robot and the flexibility of a legged robot, so it can move quickly on a flat ground and cross a bumpy road.
- some wheel-legged robots similar to the wheel-legged robot 100 illustrated in FIG. 1
- merely two contact points exist between the robot and the ground.
- the wheel-legged robot 100 is a non-minimum phase system, it may still be difficult to control the equilibrium of the wheel-legged robot 100 in practical applications.
- it may be difficult to determine dynamic characteristics of the (wheel-legged) robot due to its complex mechanical structure. Because the traditional equilibrium control method needs to know the dynamic characteristics of the robot, it may be difficult for the traditional equilibrium control method to control the equilibrium of such a robot without knowing the dynamic characteristics.
- a method for building a controller of a robot relates to designing a controller that enables the robot to maintain equilibrium during motion by using an adaptive dynamic programming (ADP) method and/or a whole body dynamic method under the condition that the dynamic characteristics of the robot are unknown.
- ADP adaptive dynamic programming
- the ADP essentially addresses the infinite time domain LQR problem, but the parameters of the system model are partially or completely unknown. Therefore, the algebraic Riccati equation may not be solved analytically.
- the solution to the LQR problem can still be obtained through an artificial intelligence scheme under the condition that the LQR problem may not be solved based on a system model.
- the adaptive dynamic programming method may be based on a data-driven policy iteration (PI) scheme (or algorithm).
- PI policy iteration
- an embodiment of the present disclosure proposes a policy iteration method based on adaptive dynamic programming, and in some embodiments in combination with an optimal control technology.
- the policy iteration method based on adaptive dynamic programming can dynamically iterate a controller under the condition that the dynamic parameters of the robot are changed or the dynamic characteristics are unknown, so as to obtain a controller corresponding to the dynamic characteristics of the robot after the parameters are changed.
- the controller enables the robot to move along the target trajectory with the optimal control effect in the equilibrium state even if the dynamic parameters of the robot are changed.
- a value iteration method based on adaptive dynamic programming may not require any initial controller, but the amount of data required is relatively large, and it is more suitable for an off-line iteration controller.
- the policy iteration method based on adaptive dynamic programming requires an initial controller, the amount of data required is less than that of the value iteration method based on adaptive dynamic programming.
- An embodiment of the present disclosure addresses an optimal equilibrium control problem for a robot controller without knowledge of dynamic characteristics of the robot based on artificial intelligence, such as reinforcement learning and ADP technologies, using policy iteration, value iteration, or whole body dynamic control technologies.
- the process of building the controller of the embodiment of the present disclosure merely requires that the wheel-legged robot travels for a period of time or a section of trajectory under the control of a non-optimal controller or an arbitrary controller, and collects motion state data and control data corresponding to the period of time or the section of trajectory as training data.
- the amount of training data of the embodiment of the present disclosure is can be smaller than the amount of data required by a related reinforcement learning algorithm.
- the trained controller gradually converges to a controller corresponding to the optimal solution to the linear quadratic regulation problem as the learning step increases, so that stability of a close-loop system can be ensured, the training process is greatly simplified, and additional limitations on training data are not required, to simplify the design process of a controller for a wheel-legged robot.
- the data is collected from real robots, and the control policy obtained based on the data of the real robots is directly applied to the robot, so that the application effect of the controller on the real robots is improved without considering the difference between the simulated control and the real control.
- vec(A) [a 1 T , . . . , a n T ] T .
- S [s i,j ]
- vecs(S) [s 1,1 , 2s 1,2 , . . . , 2s 1,n , s 2,2 , 2s 2,3 , . . . , 2s n ⁇ 1,n , s n,n ] T .
- vecv(X) [x 1 2 , x 1 x 2 , . . . , x 1 x n , x 2 2 , . . . , x n 2 ] T .
- FIG. 2 illustrates an exemplary flowchart of a method for building a controller for a robot according to an embodiment of the present disclosure.
- the method for building a controller for a robot may include steps S 201 to S 203 .
- Steps S 201 to S 203 may be performed online or offline, and the present disclosure is not limited thereto.
- the method for building a controller for a robot may be applied to any robot that includes wheel legs, and the wheel legs include driving wheels.
- the method for building a controller for a robot is further described next by taking the robot 100 shown in FIG. 1 as an example.
- the robot 100 of FIG. 1 is further labeled with reference to FIG. 3 in order to describe various characteristic quantities involved in the method for building a controller for a robot.
- the complex robot 100 illustrated in FIG. 1 may be labeled in a generalized coordinate system of the robot.
- the centers P 1 and P 2 of the driving wheels are illustrated as two separate points. It is to be understood by a person skilled in the art that P 1 and P 2 are substantially the same point.
- the parameters of each joint involved in the wheel legs are respectively identified by q ⁇ . , . ⁇ and ⁇ ⁇ . , . ⁇ , where q ⁇ . , . ⁇ identifies a rotation angle of a joint, and ⁇ ⁇ . , . ⁇ identifies torque of a joint.
- q ⁇ 1,2 ⁇ identifies a rotation angle of a joint between a first link of the left wheel leg of the robot and the base portion
- ⁇ ⁇ 1,2 ⁇ identifies rotation torque of the joint between the first link of the left wheel leg of the robot and the base portion.
- angle and rotation torque of a tail joint may be set correspondingly.
- An embodiment of the present disclosure proposes a whole body dynamic control method based on adaptive dynamic programming, and in some embodiments in combination with a whole body dynamic technology.
- the whole body dynamic control method uses output of the robot controller calculated based on the adaptive dynamic programming as a reference parameter for the whole body dynamic control, to improve the overall flexibility of motion of the robot.
- an embodiment of the present disclosure proposes a policy iteration method based on adaptive dynamic programming.
- the policy iteration method based on adaptive dynamic programming can dynamically iterate a linear equilibrium parameter matrix in the controller under the condition that the dynamic parameters of the robot are changed to obtain a controller corresponding to the dynamic characteristics of the robot after the parameters are changed.
- the controller enables the robot to move along the target trajectory with the optimal control effect in the equilibrium state even if the dynamic parameters of the robot are changed.
- step S 201 the first controller is used to control motion of the robot, and obtain motion state data and control data of the robot during the motion process.
- the dynamic characteristics of the robot may involve some variable parameters. Taking the robot 100 as an example, as the robot 100 moves, the height of the center of gravity of the robot 100 may change. In addition, if an object is handled by the robot 100 , the mass of the robot 100 may change accordingly. Whether the height of the center of gravity or the mass changes, the dynamic energy, potential energy, momentum and other characteristics of the robot may be changed during the motion process of the robot, to change the dynamic model corresponding to the robot 100 . Although the present disclosure is described merely with the height of the center of gravity and the mass as examples of the variable parameters, it is not limited thereto.
- the first controller may be built based on historical motion data of the robot.
- a processor may obtain historical motion state data and historical control data from the historical motion data of the robot, and the diversity measures of the historical motion state data and the historical control data are higher than a predetermined threshold; calculating the linear equilibrium parameter matrix is using a value iteration manner according to the historical motion state data and the historical control data; building a first controller for controlling motion of the robot based on the linear equilibrium parameter matrix.
- the processor may control the robot to move along a predetermined trajectory, and obtain motion state data and control data during the motion process.
- the predetermined trajectory may be roughly estimated based on structural characteristics, motion characteristics, and dynamic characteristics of the robot to collect motion data of the robot in various motion situations (scenes) so that the diversity measures of the motion state data and the control data are sufficiently high.
- Motion control of the robot may be performed by determining the control torque for controlling each joint of wheel legs of the robot.
- the processor adaptively determines the control information for controlling rotation of the driving wheels based on historical motion information of the robot, determines first control information for controlling multiple joints based on the control information for controlling rotation of the driving wheel, the first control information allowing the robot to maintain equilibrium, determines second control information for controlling multiple joints based on a target trajectory of the robot, the second control information causing the robot to move along a target trajectory, and then determines control torque of each joint in the wheel legs of the robot based on the motion constraint condition of the robot, the first control information, and the second control information, so that each joint can be driven based on the control torque to control motion of the robot.
- the linear equilibrium parameter matrix of the first controller may be a stable initial gain matrix.
- the control force provided by the controller at a moment may be negatively correlated to the product of the linear equilibrium parameter matrix and the motion state data of the robot at the moment.
- the robot 100 includes at least: wheel legs with multiple joints, a base portion connected to the wheel legs and driving motors for controlling driving wheels in the wheel legs.
- the motion state data includes: a pitch angle of the base portion, a pitch angular velocity of the base portion, and linear velocities of the driving wheels.
- the control data includes: output torque of the driving motors.
- both the motion state data and the control data may be collected discretely by means of relevant measuring instruments, both the motion state data and the control data correspond to multiple discrete consecutive moments or to multiple consecutive time intervals.
- the first controller may be a non-optimal controller.
- the non-optimal controller is, for example, a controller that may merely cause the robot 100 to stumble along the target trajectory.
- the first controller as the non-optimal controller may be a controller corresponding to simplified dynamic characteristics.
- the dynamic model may be simplified to an equivalent dynamic model including merely the driving wheels and the base portion.
- a first controller may be used to control the robot to move in an equilibrium-like state, for example, under the control of some first controllers, the robot may swing left and right at an equilibrium point with a certain amplitude.
- the output of the first controller may be used as control data.
- the control data may be obtained by collecting the output of the controller on the real robot (for example, detecting the driving force of the driving wheel). The present disclosure does not limit the manner in which the control data is obtained.
- the first controller may also be a PID controller or the like.
- the linear equilibrium parameter matrix of the first controller may even be an arbitrary stability control gain matrix.
- the robot may be controlled to travel for a certain distance directly and randomly according to any control data, and the control data and the motion state data before the robot completely loses equilibrium (for example, topples) may be intercepted as the motion state data and the control data obtained in step 201 .
- the present disclosure does not limit specific design schemes of the first controller as long as the first controller may control the robot to not completely lose equilibrium.
- one or more first controllers obtained using a value iteration scheme may also be used to control the robot to move, and an exemplary implementation of this scheme will be described in detail later.
- the first controller may be determined using a value iteration scheme when the variable parameter is at a first value. Determination of the first controller using the value iteration scheme may be achieved offline.
- the variable parameter is made to be the height of the robot, and the first value of the variable parameter is made to be 0.38 m, and the second value of the variable parameter is made to be 0.5 m.
- an optimal controller for controlling the robot to walk straight may be determined using a value iteration scheme, and the controller is used as a first controller.
- the height of the robot 100 is adjusted to be 0.5 m by changing a joint angle.
- the first controller is used continuously to control the robot with the adjusted height to travel for a period of time or a distance, and motion state data and control data are correspondingly collected.
- the motion state data and the control data are used as training data for the second controller to obtain an optimal controller when the variable parameter is at the second value.
- the first value and the second value described above are merely examples, and the present disclosure is not limited thereto.
- the value iteration scheme is able to determine a first controller adapted to a robot with a height of 0.38 m, in a case that the height of the robot changes, a second controller adapted to the robot with the changed height needs to be recalculated offline. Offline calculation may be time-consuming and may lead to an interruption in the motion of the robot.
- the second controller may be built by using the policy iteration scheme in steps S 202 to S 203 .
- the linear equilibrium parameter matrix of the first controller is updated in a policy iteration manner according to the motion state data and the control data.
- the second controller corresponding to dynamic characteristics of the robot is built based on the updated linear equilibrium parameter matrix.
- a robot under the control of the second controller may have a better control effect during the motion process relative to a robot under the control of the first controller.
- the swing amplitude of the robot around the equilibrium point under the second controller corresponding to the dynamic characteristics of the robot may be smaller than that under the first controller.
- the robot under control of the controller can converge to the vicinity of the equilibrium point faster, or has smaller oscillation, faster control velocity, smaller overshoot, or smaller steady-state errors and so on.
- the arbitrary controller and the controller have the same control effect, but the control input of the controller is smaller. The present disclosure does not limit in this regard.
- the traveling robot 100 is described as an example.
- the robot 100 in an equilibrium state may be in a stable equilibrium state in a linear motion dimension and a rotation motion dimension.
- the robot 100 in the equilibrium state may maintain the same or very similar state to a state defined by the equilibrium point during the motion process, or may return to the state defined by the equilibrium point with the fastest velocity or minimum energy consumption during the motion process.
- the state defined by the equilibrium point may be such that the robot 100 is in a state in which a pitch angle is zero, an angular velocity corresponding to the pitch angle is zero, and a linear velocity is at the target velocity.
- the posture of the robot 100 is a state of being vertically upward, and the robot 100 does not have a velocity in the rotation motion dimension but merely has a target velocity in the linear motion dimension, that is, the robot 100 is in the state defined by the equilibrium point.
- the robot 100 in the equilibrium-like state is in a state defined in the vicinity of the equilibrium point during the motion process.
- the robot 100 in the equilibrium-like state may be in an intermediate state transiting from the stable equilibrium state to the unstable equilibrium state in the linear motion dimension and the rotation motion dimension.
- the robot 100 in the equilibrium-like state may require the driving wheel to provide a large force and torque during the motion process to ensure that it will not fall.
- the robot 100 may tilt left and right, and the robot 100 has a velocity in the linear motion dimension while also having a velocity in the rotation motion dimension, that is, the robot 100 is in a state defined by an equilibrium-like point.
- the robot 100 in the equilibrium-like state herein may also be in a nearly unstable equilibrium state in the linear motion dimension or the rotation motion dimension at some moments in motion, as long as the robot may be restored to a state capable of normally traveling by the driving force of the driving wheels 104 .
- the robot 100 in an equilibrium state may always move straight at a uniform speed with a vertically upward posture, that is, the central axis of the base portion of the robot 100 in the unstable equilibrium state may be perpendicular to the horizontal line at all times and does not have a velocity or acceleration in the rotation motion dimension.
- the base portion of the robot 100 in the equilibrium-like state may have a tilt angle (pitch angle) and at least one of a velocity and an acceleration in the rotation motion dimension.
- the robot may be first made to travel for a period of time or a section of trajectory under the control of the first controller, and the motion state data and the control data corresponding to the period of time or the trajectory may be collected as training data.
- the embodiment of the present disclosure may determine the second controller as an optimal controller through policy iteration.
- the embodiment of the present disclosure uses a value-driven policy iteration scheme to calculate a linear equilibrium parameter matrix to build a second controller. The control effect of the second controller will be better than that of the first controller.
- the built second controller is able to converge to a controller corresponding to an optimal solution to the linear quadratic regulation problem.
- the controller corresponding to the optimal solution to the linear quadratic regulation problem is also the controller corresponding to the precise dynamic characteristics of the robot.
- the controller corresponding to the optimal solution to the linear quadratic regulation problem may minimize the cost functional of the robot during the motion process, so that the robot may travel along the target trajectory with the optimal control effect in an equilibrium state.
- the policy iteration scheme and the calculation scheme of the linear equilibrium parameter matrix will be further described later.
- the amount of training data of the embodiment of the present disclosure is much smaller than the amount of data required by a related reinforcement learning algorithm.
- the trained controller gradually converges to the controller corresponding to the optimal solution to the linear quadratic regulation problem as the learning step increases, so that stability of a close-loop system may be improved and/or guaranteed, the training process is greatly simplified, and additional limitations on training data are not required, so as to simplify the design process of the controller for the robot.
- the embodiment of the present disclosure may directly perform data collection on a real robot, and the controller obtained by training may be directly applied to the real robot.
- the embodiment of the present disclosure does not need to perform data collection in a simulator based on a physical engine, and also eliminates some problems caused by the migration of data in the virtual world to the real world.
- ⁇ dot over (q) ⁇ fb and ⁇ umlaut over (q) ⁇ fb represent an instantaneous angular velocity and an instantaneous angular acceleration of the robot body, respectively.
- Equation (1) a general dynamic model as illustrated in the following equation (1) may be constructed.
- M ( q ) ⁇ umlaut over (q) ⁇ +C ( q, ⁇ dot over (q) ⁇ ) S T ⁇ +J f T f+J ⁇ T ⁇ (1)
- FIG. 4 illustrates a control architecture diagram corresponding to a robot according to an embodiment of the present disclosure. Taking the robot labeled in FIG. 3 as an example, FIG. 4 illustrates multiple exemplary control tasks for the robot and the association between the control tasks. Combination and association of these exemplary control tasks is further referred to as corresponding dynamic whole body dynamic control of the robot.
- FIG. 4 further illustrates another example, in which a measured value is used to estimate the motion state of the robot, and then the value after the state estimation is inputted to a data processing module for adaptively determining the control information for controlling rotation of the driving wheels, so that the data module may learn the corresponding measured value at each moment more quickly to more efficiently calculate an optimal controller for controlling rotation of the driving wheels.
- the control information for controlling rotation of the driving wheel may be the acceleration of the driving wheel or the torque of the driving wheel.
- the corresponding dynamic whole body dynamic control of the robot may be described as controlling each joint of the robot with the goal of minimizing the total input energy to each joint and minimizing the error from the target trajectory while ensuring the equilibrium of the robot.
- the dynamic whole body dynamic control target for the robot labeled in FIG. 3 may be expressed in equation (2).
- the controller determined by adaptive dynamic programming will be used to control the driving wheels illustrated in FIG. 1 and FIG. 3 .
- the motion state and the dynamic state of the driving wheel will correspondingly provide input reference or input limit to each control task, thus changing the posture and the equilibrium state of the robot.
- the active joints for example, q ⁇ 1,2 ⁇ and q ⁇ 7,8 ⁇ ) in FIG.
- rotation of the driving wheel under the control of the adaptive dynamic programming controller will provide an input reference Ref to at least one of a wheel equilibrium control task, a wheel traveling and rotation control task.
- the target trajectory will provide an input reference to the wheel traveling and rotation control task, a base portion posture control task, and a tail control task.
- the driving wheel and the target trajectory do not directly provide an input reference to other control tasks (for example, a torque control task and an external force control task), considering that each control task often needs to control the same robot component (for example, a main wheel, a link component, a joint hinge), the control effects of these control tasks are often limited by the driving wheel and the target trajectory.
- the motion of the robot is also limited by various constraints, for example, the limitations such as the maximum torque that each joint may provide, and the mechanical configuration.
- constraints such as the maximum torque that each joint may provide, and the mechanical configuration.
- the dynamic model illustrated in equation (1) may be used as an example of a dynamic constraint to limit the range of energy change during the motion process of the robot. It is to be understood by a person skilled in the art that the limitations of the dynamic model are not limited thereto.
- a simplified dynamic model may be established for the robot to simplify the dynamic model limitation corresponding to equation (1) in the dynamic whole body dynamic control.
- equation (3) illustrates an example of a close-loop linkage constraint for the robot in FIG. 3 . It is to be understood by a person skilled in the art that the close-loop linkage constraint may also be illustrated in other ways. The present disclosure is not limited thereto.
- J ⁇ ⁇ umlaut over (q) ⁇ + ⁇ dot over (J) ⁇ ⁇ ⁇ dot over (q) ⁇ 0 (3)
- equation (4) illustrates an example of one type of nonholonomic constraint for the robot in FIG. 3 , assuming that the wheel purely rolls and is in contact with the ground, with no slip or sliding in the radial and axial directions of the wheel. It is to be understood by a person skilled in the art that the nonholonomic constraint may also be illustrated in other ways.
- B J w (1,3) ⁇ umlaut over (q) ⁇ B + ⁇ dot over (J) ⁇ w (1,3) ⁇ dot over (q) ⁇ 0 (4)
- setting of the friction constraint may be based on the assumption: the friction cone at the contact point between the ground and the robot in the actual motion process is approximated as a friction pyramid.
- a friction coefficient ⁇ is given, and the friction constraint may be expressed as
- a one-sided constraint may be set correspondingly.
- An example of the one-sided constraint may be f i,z >0.
- Control models of various control tasks may be determined correspondingly, subject to the various constraints described above.
- the rotation of the driving wheel under the control of the adaptive dynamic programming controller will provide an input reference to the wheel equilibrium control task, while the target trajectory will provide an input reference to the other control tasks.
- the rotation speed of the driving wheel will have an influence on the posture and the speed of the base portion, and the posture and the speed of the base portion will have an influence on the equilibrium state of the robot.
- the desired acceleration ⁇ umlaut over (q) ⁇ fb of the base portion may be calculated by a PD control law (Proportional Derivative Controller).
- a PD control law Proportional Derivative Controller
- at least part of the PD control law is derived based on an input reference for a posture and an input reference for a velocity.
- the input reference for the posture indicates: due to rotation of the driving wheel under control of the adaptive dynamic programming controller, the posture of each joint except the joint q ⁇ 5,6 ⁇ changes.
- the input reference for the velocity also referred to as a reference velocity, indicates: due to rotation of the driving wheel under control of the adaptive dynamic programming controller, the velocity of each joint except the joint q ⁇ 5,6 ⁇ changes.
- Equation (2) ⁇ umlaut over (q) ⁇ i des in equation (2) may be approximately expressed by using equation (5).
- ⁇ i des in equation (2) may be further approximately expressed by using equation (6).
- equation (6) it is assumed that the torque of other joints ⁇ i des (i ⁇ 3,4) except the joint q ⁇ 5,6 ⁇ is approximately zero.
- the input reference for the posture includes: the distance from the center of gravity of the robot to the center of the driving wheel connection line projected on the ground (for example, identified by state_com_p).
- the input references for the velocity include: the velocity derived based on the difference from the center of gravity of the robot to the center of the driving wheel connection line projected on the ground (for example, identified by state_com_v), and the linear velocity of the driving wheel (identified by wheel_x_v).
- at least one of the reference acceleration and the reference torque of the driving wheel may be solved by taking state_com_p, state_com_v, and wheel_x_v as input states.
- An embodiment of the present disclosure proposes a whole body dynamic control method based on adaptive dynamic programming, and in some embodiments in combination with a whole body dynamic technology.
- the output of the controller of a certain joint of the robot which is calculated based on the adaptive dynamic programming, is used as a reference parameter for whole body dynamic control, so that the controller of the joint may be matched with the controller of other joints, and the overall flexibility of motion of the robot is improved.
- An embodiment of the present disclosure also includes a method for robot motion control using a controller corresponding to the dynamic characteristics of the robot.
- the robot includes wheel legs including driving wheels and at least one joint, and a base portion connected to the wheel legs.
- this method includes: receiving a motion instruction from a second controller, the motion instruction indicating a motion trajectory of the robot; according to the motion instruction, controlling the driving force of the driving wheel by a controller corresponding to the dynamic characteristics of the robot, so that the robot moves smoothly along the target trajectory.
- the robot under control of the controller corresponding to the dynamic characteristics of the robot is closer to the equilibrium point during the motion process than the robot under the control of a first controller.
- An embodiment of the present disclosure also includes a method for controlling a robot.
- this method includes: receiving a motion instruction from a first controller, the motion instruction indicating a motion trajectory of a robot; controlling the driving force of a driving wheel according to the motion instruction so that the robot moves under the control of the first controller and motion state data and control data during the motion process are obtained; based on the motion state data and the control data, building a second controller corresponding to the dynamic characteristics of the robot in a policy iteration manner, and controlling the driving force of the driving wheels by using the second controller to cause smooth motion of the robot.
- the robot under control of the second controller has a better control effect during the motion process, for example, closer to the equilibrium point, than the robot under the control of any other controller.
- the method for controlling the robot in the embodiment of the present disclosure enables a robot with unknown dynamic characteristics to learn data during the motion process, and gradually improves/generates a controller corresponding to the dynamic characteristics of the robot, and finally realizes smooth motion. Since the control input of the first controller may be used to control motion of the robot for a period of time to obtain training data, in such cases, the embodiment of the present disclosure enables improvement of a non-optimal controller in a case that the dynamic characteristics are unknown or the dynamic characteristics are changed, and a second controller corresponding to the (precise) dynamic characteristics of the robot is generated. That is, the embodiment of the present disclosure may enable the robot to be flexibly controlled without a precise dynamic model.
- the motion process of the robot 100 may be mathematically viewed as a continuous-time linear system. It is assumed that a controller corresponding to the optimal solution to a linear quadratic regulation problem exists for the robot 100 , the controller is capable of minimizing the cost functional corresponding to the motion process of the robot. For example, the controller corresponding to the optimal solution to the linear quadratic regulation problem may minimize the cost of the robot being near the equilibrium point and the robot may travel along the target trajectory with minimum energy consumption.
- the Algebraic Riccati equation (equation (8)) may be taken as the solution to the following linear quadratic regulation (LQR) problem defined by equation (7).
- K * 1 R ⁇ B T ⁇ P *
- P* is a matrix meeting
- policy iteration it may determine correspondingly:
- Equation (10) for an example of the Lyapunov equation.
- a k T P k +P k A k +K k T RK k +Q 0 (10)
- equation (9) and equation (10) describe the relationship among K k+1 , K k and P k .
- a scheme for updating the linear equilibrium parameter matrix of the first controller in a policy iteration manner may be illustratively determined.
- the above step S 202 may further include: non-linearly combining motion state data and control data corresponding to multiple time intervals to determine a training data set, and determining an iteration relationship function based on the training data set; according to the iteration relationship function, performing multiple policy iterations on the iteration target term to approximate to obtain a linear equilibrium parameter matrix corresponding to the dynamic characteristics of the robot.
- the step S 202 is explained with the examples described in FIGS. 1 to 4 .
- the first controller u o may be used to control the robot to move and collect motion state data and control data corresponding to multiple time intervals.
- equation (12) the derivative of x(t) T P k x(t) with respect to time may be illustrated in an exemplary manner by equation (12).
- the motion state data is collected by a sensor at a certain time interval over a period of time and respectively corresponds to the motion state of the robot at each discrete moment over a period of time.
- the motion state data and the control data of the first controller may correspond to multiple time intervals in [t 0 , t r ]. Any time interval t to t+ ⁇ t in the multiple time intervals may be marked as [t, t+ ⁇ t], and the duration ⁇ t may be determined according to a data collection time interval that may be achieved by the robot sensor.
- the motion state data and the control data corresponding to multiple time intervals may be respectively nonlinearly combined for building an iteration relationship function.
- the motion state data and the control data after integral operation will be used as training data to participate in the process of performing policy iteration on the iteration target term in the step S 202 , to approximate to obtain a linear equilibrium parameter matrix corresponding to the dynamic characteristics of the robot.
- the following description is merely an exemplary integral operation and the present disclosure is not limited thereto.
- an exemplary equation (13) may be determined by taking the integral of both sides of equation (12) in a time interval [t, t+ ⁇ t] and rearranging equation (12).
- equation (13) may be iterated at multiple time intervals.
- the integral of the motion state data in time between any two adjacent moments t and t+ ⁇ t may be related to at least one of the following items: a quadratic term of the motion state data at the moment t, a quadratic term of the motion state data at the moment t+ ⁇ t, a product of the motion state data at the moment t and the motion state data at the moment t+ ⁇ t, a product of the control data at the moment t and the motion state data at the moment t, a product of the control data at the moment t+ ⁇ t and the motion state data at the moment t+ ⁇ t and the like.
- the control data at the moment t is control data for controlling the robot to travel using the first controller.
- an embodiment of the present disclosure defines the following three matrices as example elements in the training data set, a first matrix ⁇ xx , a second matrix ⁇ xx , and a third matrix ⁇ xu in equation (14).
- the first matrix ⁇ xx ⁇ r ⁇ n 2 the second matrix ⁇ xx ⁇ r ⁇ n 2 and ⁇ xu ⁇ r ⁇ n .
- Each matrix corresponds to a nonlinear combination of the motion state data and the control data in multiple time intervals, for example, involving integral operation and product calculation.
- ⁇ xx [ x ⁇ x
- t i t i + ⁇ t in the first matrix ⁇ xx corresponds to a product of any two terms of a base portion pitch angle, a base portion pitch angular velocity, and a linear velocity of the driving wheel at a moment t i and a moment t i + ⁇ t , or a difference between quadratic terms of any one term.
- Any element ⁇ t i t i + ⁇ t x ⁇ x d ⁇ in the second matrix ⁇ xx corresponds to the product of any two terms of the base portion pitch angle, the base portion pitch angular velocity, and the linear velocity of the driving wheel at the moment t i and the moment t i + ⁇ t , or an integral of quadratic terms of any one term.
- Any element ⁇ t i t i + ⁇ t xu 0 d ⁇ in the third matrix ⁇ xu corresponds to the integral of the product of any item of the base portion pitch angle, the base portion pitch angular velocity, the linear velocity of the driving wheel at the moment t i and the moment t i + ⁇ t and the driving force controlled by the first controller.
- Configurations of different robots correspond to different matrices, the above is illustrated merely as an example, and the present disclosure is not limited thereto.
- Equation (15) the system of equations of equation (13) may be written exemplarily in the form of equation (15).
- iteration relationship function (for example, equation (15)) obtained based on equation (13) is given below exemplarily merely, where iteration target terms include a linear equilibrium parameter matrix to be iterated and a solution to a Lyapunov equation with the linear equilibrium parameter matrix to be iterated as a parameter.
- iteration target terms include a linear equilibrium parameter matrix to be iterated and a solution to a Lyapunov equation with the linear equilibrium parameter matrix to be iterated as a parameter.
- the present disclosure is not limited thereto.
- equation (16) may also collect the data collected online and update the control policy from K k to K k+1 using equation (15).
- such a policy iteration process may also be referred to as an off-policy iteration.
- FIG. 6 illustrates another structural view of the robot 100 .
- FIG. 7 A illustrates motion state data and control data in a motion process of using the first controller to control the robot.
- FIG. 7 B illustrates a convergence process of a linear equilibrium parameter matrix in a process of building a controller according to the dynamic characteristics of the robot, the base portion heights of the robot being 0.5 m and 0.6 m respectively.
- FIG. 7 C illustrates motion state data of the robot controlled by the first controller and the second controller respectively to walk straight with the base portion height to be 0.6 m.
- the robot 100 further includes a data collection device, a data processing device, and a driving motor, in addition to the wheel legs and the base portion described in FIGS. 1 to 4 .
- the data collection device may be configured to: obtain the motion state data and the control data during the motion process when the first controller controls motion of the robot.
- the data collector may include: a first sensor for measuring the pitch angle ⁇ of the base portion and the angular velocity ⁇ dot over ( ⁇ ) ⁇ thereof; a second sensor for measuring rotation angular velocities ⁇ dot over ( ⁇ ) ⁇ l and ⁇ dot over ( ⁇ ) ⁇ r of a left driving wheel and a right driving wheel.
- the first sensor may be an inertial measurement unit (IMU in short), which may include a triaxial gyroscope, a triaxial accelerometer, or a triaxial magnetometer.
- the second sensor may be a motor encoder with a sampling frequency of 200 Hz.
- the data processing device may be configured to update the linear equilibrium parameter matrix of the first controller using a policy iteration manner according to motion state data and control data; and build a second controller corresponding to the dynamic characteristics of the robot based on the updated linear equilibrium parameter matrix.
- the data processing device may include processing circuitry, such as a microprocessor, a digital signal processor (“DSP”), an application specific integrated circuit (“ASIC”), a field programmable gate array, a state machine, or other processing devices for processing electrical signals received from the sensor lines.
- processing devices may include a programmable electronic device such as a PLC, a programmable interrupt controller (“PIC”), a programmable logic device (“PLD”), a programmable read-only memory (“PROM”), an electronic programmable read-only memory, and the like.
- the data processing device may be further configured to further process the data collected by the data collection device. For example, based on the rotation angular velocities ⁇ dot over ( ⁇ ) ⁇ l and ⁇ dot over ( ⁇ ) ⁇ r of a left driving wheel and a right driving wheel, the data processing device may calculate the linear velocity
- x . ⁇ . l + ⁇ . r 2 ⁇ r w of the robot 100 , where r w is a radius of a driving wheel.
- r w 0.1 m the data processing device may further calculate the yaw angular velocity
- the present disclosure merely gives an example of controlling the driving wheel 104 using the first controller or the second controller, and it is to be understood by a person skilled in the art that the scheme of the present disclosure may also be used to control other components of the robot.
- the driving wheels are merely used to control the forward motion and the backward motion of the robot, for a curved target trajectory, a controller for controlling the yaw angle is also needed to control steering of the robot.
- the torque of the left wheel and the torque of the right wheel are then calculated by
- the data processing device calculates the control data of the first controller based on the given target trajectory.
- the first controller corresponds to an optimal controller which is obtained in a value iteration manner when the height of the robot is the lowest and the robot 100 may be controlled to walk straight.
- the lowest of the robot is 0.33 m.
- the control frequency of the data processing device is optionally 1000 Hz.
- the motion state data and the control data will be used to calculate a first matrix ⁇ xx , a second matrix ⁇ xx , and a third matrix ⁇ xu .
- the data requires continuous signals of x and u, so the data processing means may further use trapezoidal integration to calculate an integral in a case that the first controller and the controller corresponding to the dynamic characteristics of the robot controls the robot 100 to move.
- the step size of the trapezoidal integration is 0.01 s, which is the same as a sampling period.
- the exploration noise is commonly used in the fields of learning and system identification.
- the exploration noise may trigger various system behaviors to avoid repeated data collection.
- the exploration noise ⁇ (t) sin(10 ⁇ t)+0.4 cos (6 ⁇ t).
- the data processing device may also be further configured with the following instructions to perform calculation of the control data of the first controller and building of the second controller.
- instructions are illustrated in a form of pseudocodes, and a person skilled in the art may calculate the control data of the first controller and build the second controller using any programming language based on the following pseudocodes.
- the convergence speed of the policy iteration may be very fast, and thus the embodiment of the present disclosure may be applied to on-line calculation.
- the same sinusoidal noise is added to both the first controller u 0 (t) and the second controller u(t) to simulate disturbance acting on the wheel by the outside.
- both controllers are robust to noise and have similar control performance.
- the updated gain K 1 has a better control effect in the adjustment of the pitch angular velocity ⁇ circumflex over ( ⁇ dot over ( ⁇ ) ⁇ ) ⁇ , so that the traveling state of the robot is more stable.
- An embodiment of the present disclosure proposes a value iteration method based on adaptive dynamic programming in combination with an optimal control technology, and the value iteration method based on adaptive dynamic programming is capable of calculating a controller that converges to dynamic characteristics corresponding to a robot in a case that the dynamic characteristics of the robot are unknown.
- the controller corresponding to the precise dynamic characteristics of the robot that is, the controller corresponding to the optimal solution to the linear quadratic regulation problem, enables the robot to move along the target trajectory with optimal control effects in an equilibrium state.
- FIG. 8 illustrates a flowchart of building a first controller based on historical motion data of the robot.
- the motion process of the robot 100 may be mathematically viewed as a continuous-time linear system. It is assumed that a controller corresponding to the optimal solution to a linear quadratic regulation problem exists for the robot 100 , the controller is capable of minimizing the cost functional corresponding to the motion process of the robot. For example, the controller corresponding to the optimal solution to the linear quadratic regulation problem may minimize the cost of the robot being near the equilibrium point and the robot may travel along the target trajectory with minimum energy consumption.
- equation (7) and equation (8) have been set forth. If the precise dynamic characteristics of the robot 100 are known, then matrices A and B in equation (7) and equation (8) are known. In a case that the matrices A and B in equation (7) and equation (8) are known, u*(t) may be correspondingly solved.
- an embodiment of the present disclosure illustrates a data processing process of building a first controller.
- step S 801 historical motion state data and historical control data are obtained from the historical motion data of the robot, and the diversity measures of the historical motion state data and the historical control data are higher than a predetermined threshold.
- the robot may be controlled to move along a predetermined trajectory, and the historical motion state data and the historical control data in the historical motion process are obtained.
- the predetermined trajectory may be roughly estimated based on structural characteristics, motion characteristics, and dynamic characteristics of the robot to collect historical motion data of the robot in various motion situations (scenes) so that the diversity measures of the historical motion state data and the historical control data are sufficiently high (for example, at least higher than a predetermined threshold).
- the diversity measures may be characterized by information entropies, which characterize that there are enough non-repeating/non-similar values for both the historical motion state data and the historical control data.
- the diversity measures may also be characterized by data characteristic quantities.
- the robot may be controlled to move along a predetermined trajectory by an arbitrary controller.
- the robot may be manually controlled to move straight at different accelerations regardless of whether the robot is in a state of equilibrium stability motion.
- the robot illustrated in FIGS. 1 to 4 if the driving wheel 104 provides an excessive large acceleration, the robot 100 will quickly topple backward. If the driving wheel 104 provides a too small acceleration, the robot may not reach the destination quickly and may topple forward.
- the historical motion state data and the historical control data satisfying the diversity measures may be collected in the following manner.
- a driving motor may be first controlled to output first torque, so that the robot loses equilibrium due to low-speed motion.
- the first torque may be a small value, so that in a case that the driving motor is controlled to output the first torque, the center of mass of the base portion of the robot is first raised and then lowered, and the front end of the base portion of the robot comes into contact with the ground when it loses equilibrium. That is, the robot rushes forward from a lowered state (a state in which the center of mass of the base portion is lower), but since the force of the rush is not large enough, the robot raises its head halfway and lowers it.
- the second torque may be a large value
- the driving motor is controlled to output the second torque
- the center of mass of the base portion of the robot is first raised and then lowered, and the rear end of the base portion of the robot is in contact with the ground when it loses equilibrium. That is, the robot rushes forward from a lowered state (a state in which the center of mass of the base portion is low), but since the force of the rush is excessively large, the robot topples backwards when passing the equilibrium point (the highest point of the center of mass of the base portion).
- the driving motor may be further controlled to output third torque, so that the robot maintains an equilibrium state for a period of time.
- the driving motor is controlled to output the third torque
- the center of mass of the base portion of the robot remains unchanged in height when the robot maintains the equilibrium state.
- the driving motor is controlled to output fourth torque, so that the robot maintains an equilibrium-like state for a period of time, and the robot in the equilibrium-like state is near the equilibrium point during the motion process.
- the driving motor is controlled to output the fourth torque, the base portion of the robot shakes back and forth while the robot maintains the equilibrium-like state.
- instructions may be manually inputted to a remote controller and transmitted to the remote controller. After the remote controller receives the instructions, corresponding control data thereof may be determined. Then motion of the robot may be controlled according to the control data of the remote controller, and the motion state data during the motion process can be obtained.
- equilibrium of the robot may be difficult to be controlled manually since reaction speeds of human eyes and hands are difficult to satisfy control requirements of the robot. That is, the remote controller is not an equilibrium-like controller, which tends to cause the robot to lose equilibrium.
- step S 802 a linear equilibrium parameter matrix is calculated using a value iteration manner on the basis of the historical motion state data and historical control data.
- step S 803 based on the linear equilibrium parameter matrix, a first controller for controlling the motion of the robot is built.
- the robot under control of a controller corresponding to the dynamic characteristics of the robot has a better control effect during the motion process compared to the robot under control of the remote controller.
- the controller corresponding to the dynamic characteristics of the robot is a linear controller, and for each moment during the motion process, the control torque provided by the controller corresponding to the dynamic characteristics of the robot is negatively correlated to the product of the linear equilibrium parameter matrix and the motion state data of the robot.
- the step S 802 in FIG. 8 may further include: performing integral operation on historical motion state data and historical control data in multiple time intervals respectively to build an iteration relationship function; and performing value iterations on an iteration target term according to the iteration relationship function to approximate to obtain a linear equilibrium parameter matrix corresponding to the dynamic characteristics of the robot.
- the linear equilibrium parameter matrix K is thus
- the historical motion state data and the historical control data may be the motion state data for training and the control data for training.
- the motion state data for training and the control data for training are historical motion state data and control data at a moment when the robot does not topple (for example, the front/rear end or the tail portion of the base portion is not in contact with the ground). That is, equation (19) below is established based on equation (18) at least during the period of motion process.
- the historical motion state data is collected by a sensor at a certain time interval over a period of time, and respectively corresponds to the historical motion state of the robot at each discrete moment over a period of time. Therefore, the historical motion state data and the historical control data of the first controller may correspond to multiple time intervals in [t 0 , t r ]. Any time interval t i to t i+1 n the multiple time intervals may be marked as [t, t+ ⁇ t], and the duration ⁇ t may be determined according to a data collection time interval that can be reached by the robot sensor.
- the embodiment of the present disclosure merely by collecting the historical motion state data and the historical control data of the robot with unknown dynamic characteristics before losing equilibrium (toppling), and integrating the historical data, from the first matrix to the third matrix are built as the training data.
- the amount of the training data of the embodiment of the present disclosure is much smaller than the amount of data required by a related reinforcement learning algorithm.
- the embodiment of the present disclosure also correspondingly builds an iteration relationship function (for example, equation (20)) such that the target iteration terms (for example, P(s), K(s) and H(s)) gradually converge as a learning step increases.
- the converged target iteration term may obtain a controller, the controller converges to a controller corresponding to the optimal solution to the linear quadratic regulation problem, so that the stability of the close-loop system may be improved and/or guaranteed, and the training process is greatly simplified.
- the whole process does not require additional limitations on the training data, to simplify the design process of the controller of the robot.
- the processor may further process the data collected by the data collection device.
- the present disclosure merely gives an example of controlling the driving wheel 104 , and it is to be understood by a person skilled in the art that the scheme of the present disclosure may also be used to control other components of the robot.
- the data processing device sets control data for training based on the given target trajectory.
- the present disclosure is not limited to the specific control laws of the controller used for training. In order to explain the non-limitation of the present disclosure on the controller used for training, an experimenter later manually controls the motion of the robot to extract motion state data and control data as an example for explanation.
- the control frequency of the data processing device is 1000 Hz.
- the motion state data and the control data will be used to calculate ⁇ xx , ⁇ xx , ⁇ xu .
- the data requires continuous signals of x and u.
- manual control of the robot may often cause the robot to topple due to the fact that the controller of the robot may not be accurately and timely adjusted.
- the collected motion state data may be further processed to obtain a controller corresponding to the dynamic characteristics of the robot as soon as possible.
- An example experiment using a data iteration scheme to calculate the controller corresponding to the dynamic characteristics of the robot is illustrated below.
- the minimum height of the robot is 0.33 m.
- a motion instruction is given manually directly by the remote controller to indicate the torque of the driving wheel.
- the robot starts from an initial state (illustrated in state A), and moves using the driving wheel (illustrated in state B and state C), and finally topples (state D). Since, eventually, the robot loses equilibrium, the remote controller in this case is not an equilibrium-like controller.
- FIG. 11 A similar process is repeated for three times, and the data collected for the three times is plotted in FIG. 11 , where the torque is the total torque of the two driving wheel motors.
- the torque is the total torque of the two driving wheel motors.
- the durations of the three data collections are 0.515 seconds, 0.155 seconds, and 0.586 seconds, respectively, for a total of 1.256 seconds. Any unskilled person may easily collect the short-time data by manually inputting torque via the remote controller.
- the parameters since the data iteration scheme may be performed offline, the parameters may be easily adjusted to make the iteration term converge.
- the controller corresponding to the dynamic characteristics of the robot is built.
- the controller is used to control a real robot to travel in the path illustrated in FIG. 13 , and the test data of a tilt angle (which is approximately within plus or minus 2 deg), a linear velocity, and a yaw velocity illustrated in FIG. 14 are collected. It may be seen that a controller with strong enough robustness and stability may be obtained by using the data iteration scheme.
- controller may also be used to control other motions, and the present disclosure is not limited thereto. Furthermore, it has been tested that the robustness of the controller can be much higher than that of the PID controller, that is, when the robot 100 is externally disturbed, the robot under control of the controller may quickly recover its equilibrium.
- the embodiment of the present disclosure addresses the problem of optimal equilibrium control of a robot without knowledge of the dynamic characteristics of the robot using a value iteration scheme based on reinforcement learning and ADP technologies in artificial intelligence.
- the process of building the controller of the embodiment of the present disclosure merely requires the wheel-legged robot to travel for a period of time/a section of trajectory under the control of a non-optimal controller/an arbitrary controller, and collect the motion state data and control data corresponding to the period of time/trajectory as training data.
- the amount of training data of the embodiment of the present disclosure is much smaller than the amount of data required by a related reinforcement learning algorithm.
- the trained controller gradually converges to a controller corresponding to the optimal solution to the linear quadratic regulation problem as the learning step increases, so that stability of a close-loop system can be ensured, the training process is greatly simplified, and additional limitations on training data are not required, so as to simplify the design process of a controller for a wheel-legged robot.
- This disclosure provides a device for building a controller for a robot, the device including: a motion control module, a policy iteration module, and a second controller building module.
- the motion control module is configured to control motion of the robot using a first controller, and obtaining motion state data and control data of the robot during the motion process.
- the policy iteration module is configured to update a linear equilibrium parameter matrix of the first controller using a policy iteration manner according to the motion state data and the control data.
- the second controller building module is configured to build a second controller corresponding to dynamic characteristics of the robot based on the updated linear equilibrium parameter matrix.
- the dynamic characteristics of the robot are associated with at least one variable parameter; the first controller corresponds to the dynamic characteristics of the variable parameter being at a first value; the second controller corresponds to the dynamic characteristics of the variable parameter being at a second value.
- the first controller controls the robot to move in an equilibrium-like motion state, and the robot in the equilibrium-like state is near an equilibrium point during the motion process; the robot under control of the second controller has a better control effect during the motion process compared to the robot under control of the first controller.
- both the first controller and the second controller are linear controllers; at each moment during the motion process, the control torque provided by the linear controllers is negatively correlated to a product of the linear equilibrium parameter matrix and the motion state data of the robot.
- the motion control module is further used for determining an initial control instruction by the first controller according to the current motion state of the robot; applying disturbance to the control data indicated by the initial control instruction to obtain the control data of the first controller; and controlling the robot to move according to the control data of the first controller, and collecting the motion state data in the motion process.
- the motion state data and the control data correspond to multiple time intervals.
- the policy iteration module is also used for performing a nonlinear combination of the motion state data and the control data corresponding to the multiple time intervals to determine a training data set; determining an iteration target term and determining an iteration relationship function based on the training data set; and performing multiple policy iterations on the iteration target term according to the iteration relationship function to approximate to obtain the linear equilibrium parameter matrix corresponding to the dynamic characteristics of the robot.
- the policy iteration module is further used for determining whether the iteration target term converges in each policy iteration, and stopping the policy iteration when the iteration target term converges; and updating the linear equilibrium parameter matrix according to the converged iteration target term.
- the iteration relationship function conforms to the form of a Lyapunov equation
- the iteration target term comprises a linear equilibrium parameter matrix to be iterated, and a solution to the Lyapunov equation with the linear equilibrium parameter matrix to be iterated as a parameter
- the iteration relationship function is used for calculating the linear equilibrium parameter matrix corresponding to the next policy iteration according to the linear equilibrium parameter matrix in this policy iteration and the solution to the Lyapunov equation corresponding to this policy iteration.
- convergence of the iteration target term includes: the difference between the solutions to the Lyapunov equation corresponding to two adjacent policy iterations is less than a preset value.
- the device for building a controller for a robot also further includes a first controller building module configured to obtain historical motion state data and historical control data from historical motion data of the robot, the diversity measures of the historical motion state data and the historical control data being higher than a predetermined threshold; calculating the linear equilibrium parameter matrix using a value iteration manner according to the historical motion state data and the historical control data; and building a first controller for controlling the motion of the robot based on the linear equilibrium parameter matrix.
- a first controller building module configured to obtain historical motion state data and historical control data from historical motion data of the robot, the diversity measures of the historical motion state data and the historical control data being higher than a predetermined threshold; calculating the linear equilibrium parameter matrix using a value iteration manner according to the historical motion state data and the historical control data; and building a first controller for controlling the motion of the robot based on the linear equilibrium parameter matrix.
- the historical motion data is obtained based on driving each joint in wheel legs of the robot by control torque to drive the robot to move along the target trajectory.
- the device for building a controller for a robot also further includes a control torque obtaining module configured to adaptively determine control information for controlling the driving wheels of the robot to rotate based on existing motion information of the robot; determining first control information for controlling multiple joints of the robot based on the control information for controlling the driving wheels to rotate, the first control information causing the robot to maintain equilibrium; determining second control information for controlling the multiple joints based on the target trajectory of the robot, the second control information causing the robot to move along the target trajectory; determining the control torque of each joint in the wheel legs of the robot based on the motion constraint conditions of the robot, the first control information, and the second control information.
- a control torque obtaining module configured to adaptively determine control information for controlling the driving wheels of the robot to rotate based on existing motion information of the robot; determining first control information for controlling multiple joints of the robot based on the control information for controlling the driving wheels to rotate, the first control information causing the robot to maintain equilibrium; determining second control information for controlling the multiple joints based on the target trajectory of the robot, the
- This disclosure provides a device for controlling motion of a robot.
- the robot moves by driving wheels.
- the device includes: an instruction receiving module, an instruction execution module, a data obtaining module, a policy iteration module, and a driving force control module.
- the instruction receiving module is configured to receive a motion instruction indicating a motion trajectory of the robot.
- the instruction execution module is configured to control a driving force applied to the driving wheels by the first controller according to the motion instruction, to cause the robot to move according to the motion trajectory.
- the data obtaining module is configured to obtain motion state data and control data of the robot during the motion process.
- the policy iteration module is configured to build a second controller corresponding to dynamic characteristics of the robot using a policy iteration manner based on the motion state data and the control data.
- the driving force control module is configured to control a driving force applied to the driving wheels using the second controller to cause smooth motion of the robot.
- This disclosure further provides a computer-readable storage medium (such as a non-transitory computer-readable storage medium), storing computer-readable instructions, and the computer-readable instructions, when executed by one or more processors, perform the method of any above embodiment.
- a computer-readable storage medium such as a non-transitory computer-readable storage medium
- This disclosure further provides a computer program product comprising computer-readable instructions, and the computer-readable instructions, when executed by one or more processors, perform the method of any above embodiment.
- the robot may also include, for example, a bus, a memory, a sensor component, a communication module, and an input-output device, according to actual needs.
- a bus for example, a bus, a memory, a sensor component, a communication module, and an input-output device.
- the embodiment of the present disclosure is not limited by the specific components of the robot.
- the bus may be a circuit that interconnects the components of the robot and communicates communication information (for example, control messages or data) among the components.
- the sensor component may be used for perceiving the physical world, including, for example, a camera, an infrared sensor, an ultrasonic sensor and the like.
- the sensor component may also include a device for measuring the current operation and motion state of the robot, such as a Hall sensor, a laser position sensor, or a strain gauge force sensor.
- the communication module may, for example, be connected to a network through a wired or wireless connection to facilitate communication with the physical world (for example, a server).
- the communication module may be wireless and may include a wireless interface, such as an IEEE 802.11, Bluetooth, a wireless local area network (“WLAN”) transceiver, or a radio interface for accessing a cellular telephone network (for example, a transceiver/antenna for accessing a CDMA, a GSM, a UMTS, or other mobile communication networks).
- the communication module may be wired and may include an interface such as Ethernet, USB, or IEEE 1394.
- the input-output device may transmit, for example, a command or data inputted from the user or any other external device to one or more other components of the robot, or may output a command or data received from one or more other components of the robot to the user or other external device.
- Multiple robots may constitute a robot system to cooperatively complete a task, the multiple robots being communicatively connected to a server and receiving a cooperative robot instruction from the server.
- a tangible and permanent storage medium may include any memory or storage for a computer, a processor, or a similar device or a related module, for example, a semiconductor memory, a tape drive, a disk drive, or any device capable of providing a storage function for software.
- All or part of the software may sometimes communicate over a network, such as the Internet or other communication networks. Such communication may load software from one computer device or a processor to another. Therefore, another medium capable of transmitting software elements can also be used as a physical connection between local devices, for example, light waves, electric waves, and electromagnetic waves are transmitted through cables, optical cables, or the air.
- a physical medium over which a carrier wave travels such as a cable, a wireless link, an optical cable, or a similar device, may also be thought of as the medium on which the software is carried.
- other terms representing a computer- or machine-readable “medium” refer to media that participate during execution of any instructions by a processor.
- first/second embodiment refers to a certain feature, structure, or characteristic relate to at least one embodiment of the present disclosure. Therefore, it is to be emphasized and noted that “an embodiment” or “one embodiment” or “an alternative embodiment” referred to two or more times in different places in the description are not necessarily referring to the same embodiment. Furthermore, certain features, structures, or characteristics in one or more embodiments of the present disclosure may be combined as appropriate.
- aspects of the present disclosure may be explained and described with respect to a plurality of patentable classes or situations, including any new and useful combination of processes, machines, products, or materials, or any new and useful improvements thereof.
- various aspects of the present disclosure may be entirely executed by hardware, may be entirely executed by software (including firmware, resident software, microcodes, and the like), or may be executed by a combination of hardware and software.
- the foregoing hardware or software may be referred to as “data block”, “module”, “engine”, “unit”, “component” or “system”.
- aspects of the present disclosure may be embodied as computer products located in one or more computer-readable media, the product including a computer-readable program code.
- module in this disclosure may refer to a software module, a hardware module, or a combination thereof.
- a software module e.g., computer program
- the software module stored in the memory or medium is executable by a processor to thereby cause the processor to perform the operations of the module.
- a hardware module may be implemented using processor and/or memory. Each hardware module can be implemented using one or more processors (or processors and memory). Likewise, a processor (or processors and memory) can be used to implement one or more hardware modules.
- Each module can be part of an overall module that includes the functionalities of the module.
- Modules can be combined, integrated, separated, and/or duplicated to support various applications. Also, a function being performed at a particular module can be performed at one or more other modules and/or by one or more other devices instead of or in addition to the function performed at the particular module. Further, modules can be implemented across multiple devices and/or other components local or remote to one another. Additionally, modules can be moved from one device and added to another device, and/or can be included in both devices.
- references to at least one of A, B, or C; at least one of A, B, and C; at least one of A, B, and/or C; and at least one of A to C are intended to include only A, only B, only C or any combination thereof.
- references to one of A or B and one of A and B are intended to include A or B or (A and B).
- the use of “one of” does not preclude any combination of the recited elements when applicable, such as when the elements are not mutually exclusive.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Manipulator (AREA)
Abstract
Description
M(q){umlaut over (q)}+C(q,{dot over (q)})=S T τ+J f T f+J λ Tλ (1)
-
- where M(q)∈ (6+n
j )×(6+nj ), and M(q) is used to represent the mass matrix of the robot. C(q, {dot over (q)})∈ (6+nj ) is used to represent gravity, centrifugal, and Coriolis force terms of the robot. S=[0nj ×6 Inj ×nj ], the matrix S is used to select an active joint from all joints, where if the element value of an element in S is 0, it means that it is a joint without drive, and if the element value is not 0, it indicates that it is an active joint. f is a generalized force provided by the ground at a contact point when the robot is in contact with the ground. Jf∈β3nc ×(nj +6), Jf is a concatenated contact Jacobian matrix for f. λ is a close-loop force of the front leg acting on the back leg. Jλ∈β3nλ ×(nj +6), Jλ is a concatenated contact Jacobian matrix for λ. nc is the number of contact points between the driving wheels and the ground. Considering close-loop constraints (that is, on a real robot, each joint of the robot is to be fixedly connected), nλ is the number of contact points between open-loop links. For the robot illustrated inFIG. 1 andFIG. 3 , nc=2 and nλ=2. In an example, the wheel legs of the robot are a five-link mechanism. The number of contact points (for example, between P1 and P2 points inFIG. 3 ) between the open-loop links of the close-loop constraint of the five-link mechanism is two.
- where M(q)∈ (6+n
-
- where {umlaut over (q)}des is a vector of a set of accelerations set for all joints by the target trajectory. {umlaut over (q)} is a vector of a set of accelerations of all joints during the motion process. τdes is a vector of a set of torques for all joints by the target trajectory. τ is a vector of a set of torques of all joints in an actual motion process. f is a generalized force provided by the ground at a contact point when the robot is in actual contact with the ground. λ is a close-loop force of the front leg acting on the back leg during the motion process of the robot. The subscripts Wq, Wτ, Wf, Wλ identify weight coefficient matrices that need to be multiplied in calculating the norm of the equation (2) by {umlaut over (q)}, τ, f and λ respectively.
J λ {umlaut over (q)}+{dot over (J)} λ {dot over (q)}=0 (3)
-
- where Jλ T=[JP
1 ,l T−JP2 ,l TJP1 ,r T−JP2 ,r]T. and JP2 are Jacobian matrices corresponding to points P1 and P2, respectively. The subscripts J.,l and J.,r identify the left wheel leg and the right wheel leg of the robot, respectively.
- where Jλ T=[JP
B J w (1,3) {umlaut over (q)} B +{dot over (J)} w (1,3) {dot over (q)}=0 (4)
-
- where BJw (1,3) are the x axis and the z axis of the Jacobian matrix of the driving wheel-ground contact point with respect to the base portion.
-
- where J is the cost functional of the continuous-time linear system, Q is a real symmetric and positive semi-definite matrix, Q∈ n
p ×np . (A, √{square root over (Q)}) is observable, and R>0. x is related to a robot configuration and a wheel equilibrium task. For example, referring to the example inFIG. 4 , if a controller needs to be determined for a driving wheel, then x optionally include a pitch angle, a pitch angular velocity, and a linear velocity of the robot, and u is the sum of the input torques of the two wheels.
- where J is the cost functional of the continuous-time linear system, Q is a real symmetric and positive semi-definite matrix, Q∈ n
-
- where u*(t) is a controller corresponding to the optimal solution to the linear quadratic regulation problem, u*(t)=−K*x(t), where
and P* is a matrix meeting
-
- existence of K0∈ 1×n is assumed, K0 is a stability control gain matrix. That is, A−BK0 is Hurwitz. Then, if Kk is continuously updated by equation (9), as k tends to positive infinity, Kk will approach to K*, that is, limk→∞Kk=K*.
A k T P k +P k A k +K k T RK k +Q=0 (10)
{dot over (x)}=Ax+Bu 0 (11)
-
- where Qk=Q+Kk TRKk.
-
- where 0≤t0<t1< . . . <tr. The operator ⊗ represents a Kronecker product.
-
- where vec(·) identifies vectorization of a content within a bracket. In addition, Ωk∈ r×(n
2 +n) and Ξk∈ r may be defined in a form illustrated in equation (16). As described above, k indicates the number of policy iterations, Pk is the solution to a Lyapunov equation in a kth policy iteration, Kk is the linear equilibrium parameter matrix used in the kth policy iteration, and Kk+1 is the linear equilibrium parameter matrix in the (k+1)th policy iteration.
- where vec(·) identifies vectorization of a content within a bracket. In addition, Ωk∈ r×(n
rank([ΣxxΣxu])=n(n+3)/2 (17)
of the robot 100, where rw is a radius of a driving wheel. In an example, rw=0.1 m the data processing device may further calculate the yaw angular velocity
of the robot, where wd is the robot width, and in some embodiments, wd=0.47 m.
the force in the longitudinal direction of the robot is not changed by τΩ. Therefore, the yaw motion does not affect equilibrium of the robot. Thereafter, an angular unit is converted to “degree (deg)” for ease of reading.
where s tends to negative infinity.
-
- where {tilde over (Ω)}=[Σxx, 2Σxu(InR)]. Expressions for Δxx, Σxx, and Σxu have been given in equation (14). Thus, by continually iteratively solving equation (20) and updating equation (18), a linear equilibrium parameter matrix K* may be generated by value iterations, provided that a rank condition is satisfied and there is a unique pair of (H(s), P(s)), and the whole process is no longer dependent on model information (A, B). That is, the value iterations may be ended in a case that an iteration target term converges in a value iteration process; then, a linear equilibrium parameter matrix corresponding to the dynamic characteristics of the robot is rebuilt according to the converged iteration target term.
Claims (16)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210194306.XA CN116736749B (en) | 2022-03-01 | 2022-03-01 | Method for constructing controller of robot and robot |
| CN202210194306.X | 2022-03-01 | ||
| PCT/CN2022/134041 WO2023165177A1 (en) | 2022-03-01 | 2022-11-24 | Method for constructing controller of robot, motion control method for robot and apparatuses, and robot |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CN2022/134041 Continuation WO2023165177A1 (en) | 2022-03-01 | 2022-11-24 | Method for constructing controller of robot, motion control method for robot and apparatuses, and robot |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20230305563A1 US20230305563A1 (en) | 2023-09-28 |
| US12422849B2 true US12422849B2 (en) | 2025-09-23 |
Family
ID=87882882
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US18/203,910 Active 2043-09-12 US12422849B2 (en) | 2022-03-01 | 2023-05-31 | Method for building controller for robot, method, device for controlling motion of robot, and robot |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US12422849B2 (en) |
| EP (1) | EP4488773A4 (en) |
| CN (1) | CN116736749B (en) |
| WO (1) | WO2023165177A1 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111776106B (en) * | 2020-08-12 | 2024-02-23 | 腾讯科技(深圳)有限公司 | Mechanical leg and wheeled mobile device |
| US20240385619A1 (en) * | 2023-05-17 | 2024-11-21 | Scythe Robotics, Inc. | Motion planning with caster constraints |
| CN117565037B (en) * | 2023-11-22 | 2025-09-23 | 西北工业大学 | Real-time motion control method for crawler robots based on phase domain synthesis |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113753150A (en) | 2021-05-31 | 2021-12-07 | 腾讯科技(深圳)有限公司 | Control method, device and equipment of wheel-leg robot and readable storage medium |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103381826B (en) * | 2013-07-31 | 2016-03-09 | 中国人民解放军国防科学技术大学 | Adaptive cruise control method based on approximate strategy iteration |
| US11106189B2 (en) * | 2019-03-06 | 2021-08-31 | Mitsubishi Electric Research Laboratories, Inc. | System and method for data-driven control of constrained system |
| US11392104B2 (en) * | 2020-07-23 | 2022-07-19 | Mitsubishi Electric Research Laboratories, Inc. | System and method for feasibly positioning servomotors with unmodeled dynamics |
| CN113290559B (en) * | 2021-05-26 | 2022-11-11 | 深圳市优必选科技股份有限公司 | Robot balance control method and device, robot control equipment and storage medium |
-
2022
- 2022-03-01 CN CN202210194306.XA patent/CN116736749B/en active Active
- 2022-11-24 WO PCT/CN2022/134041 patent/WO2023165177A1/en not_active Ceased
- 2022-11-24 EP EP22929605.8A patent/EP4488773A4/en active Pending
-
2023
- 2023-05-31 US US18/203,910 patent/US12422849B2/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113753150A (en) | 2021-05-31 | 2021-12-07 | 腾讯科技(深圳)有限公司 | Control method, device and equipment of wheel-leg robot and readable storage medium |
| US20230087057A1 (en) | 2021-05-31 | 2023-03-23 | Tencent Technology (Shenzhen) Company Limited | Method and apparatus for controlling wheel-legged robot, wheel-legged robot, and device |
Non-Patent Citations (2)
| Title |
|---|
| Ding, Lijia, D., "Research on Balance Control and Gait Planning of Biped Robot" University of Electronic Science and Technology of China, Feb. 15, 2018. (English Abstract Submitted). |
| International Search Report and Written Opinion received for PCT Patent Application No. PCT/CN2022/134041, mailed on Feb. 13, 2023, 12 pages (3 pages of English Translation and 9 pages of Original Document). |
Also Published As
| Publication number | Publication date |
|---|---|
| CN116736749B (en) | 2024-09-17 |
| WO2023165177A1 (en) | 2023-09-07 |
| US20230305563A1 (en) | 2023-09-28 |
| EP4488773A4 (en) | 2025-07-02 |
| CN116736749A (en) | 2023-09-12 |
| EP4488773A1 (en) | 2025-01-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20230288931A1 (en) | Robot control method and apparatus, robot and computer-readable storage medium | |
| US12422849B2 (en) | Method for building controller for robot, method, device for controlling motion of robot, and robot | |
| US20230409035A1 (en) | Method for building controller for robot, method, device for controlling motion of robot, and robot | |
| Lee et al. | Path planning and control of multiple aerial manipulators for a cooperative transportation | |
| CN116985114B (en) | Robot control method and robot | |
| WO2024021767A1 (en) | Method, apparatus and device for controlling legged robot, legged robot, computer-readable storage medium and computer program product | |
| Park et al. | Pose and posture estimation of aerial skeleton systems for outdoor flying | |
| WO2024234594A1 (en) | Robot control method and apparatus, device and storage medium | |
| Wang et al. | Attitude and Altitude Controller Design for Quad‐Rotor Type MAVs | |
| Abdalla et al. | Trajectory tracking control for mobile robot using wavelet network | |
| Wang et al. | Dynamic hybrid position/force control for the quadrotor with a multi-degree-of-freedom manipulator | |
| Zadeh et al. | LQR motion control and analysis of a prototype spherical robot | |
| Majczak et al. | Comparison of two efficient control strategies for two-wheeled balancing robot | |
| CN115781658B (en) | Method for constructing a robot controller and robot | |
| Madhumitha et al. | Physical modeling and control of self-balancing platform on a cart | |
| CN110244703A (en) | A mobile robot predictive control method with external disturbance and abnormal data | |
| Zhong et al. | Theoretical and experimental study on remote dynamic balance control for a suspended wheeled mobile manipulator | |
| HK40092282A (en) | Method for constructing controller for robot and robot | |
| Murmu et al. | Trajectory Tracking Control for a Nano Quadcopter Employing Stochastically Optimal PID Control | |
| CN114952825B (en) | Method, equipment and storage medium for realizing Lagrange system group consensus | |
| CN115309176B (en) | Attitude control method, system and storage medium of a multi-motion mode spherical robot | |
| HK40083851A (en) | Method for constructing a controller for a robot and a robot | |
| Latroch et al. | A Proposed Empirical Method of Weighing Matrices Determination in LQ Controller Applied | |
| Abdullah et al. | Feedforward model based active force control of mobile manipulator using MATLAB and MD adams | |
| US20250162147A1 (en) | System and Method for Controlling a Multi-Legged Robot |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: TENCENT TECHNOLOGY (SHENZHEN) COMPANY LIMITED, CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WANG, SHUAI;ZHANG, JINGFAN;REEL/FRAME:063809/0698 Effective date: 20230524 |
|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |