US12421385B2 - Resin composition - Google Patents
Resin compositionInfo
- Publication number
- US12421385B2 US12421385B2 US17/763,866 US202017763866A US12421385B2 US 12421385 B2 US12421385 B2 US 12421385B2 US 202017763866 A US202017763866 A US 202017763866A US 12421385 B2 US12421385 B2 US 12421385B2
- Authority
- US
- United States
- Prior art keywords
- resin composition
- mass
- diene
- less
- anhydride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/06—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/26—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F222/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
- C08F222/04—Anhydrides, e.g. cyclic anhydrides
- C08F222/06—Maleic anhydride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F255/00—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
- C08F255/02—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F279/00—Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
- C08F279/02—Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/043—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0807—Copolymers of ethene with unsaturated hydrocarbons only containing four or more carbon atoms
- C08L23/0815—Copolymers of ethene with unsaturated hydrocarbons only containing four or more carbon atoms with aliphatic 1-olefins containing one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/04—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
- C08L9/06—Copolymers with styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/46—Reaction with unsaturated dicarboxylic acids or anhydrides thereof, e.g. maleinisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2351/00—Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
- C08J2351/06—Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2451/00—Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
Definitions
- the present invention relates to a resin composition, and more specifically to a modified propylene-based resin composition.
- Polyolefin materials such as polypropylene and polyethylene, are used in various industrial fields because of their easy availability and excellent molding processability. However, since polyolefins do not contain a polar group in their molecules, they are chemically inert, and thus extremely difficult to paint or bond. against such a problem, acid-modified polyolefin resins have been proposed as paint pretreatment agents, adhesives, or compatibilizers.
- Modification of polyolefin resins by introducing a polar group by graft modification with an unsaturated carboxylic acid such as a maleic anhydride or a derivative thereof has been well known, and widely practiced.
- an unsaturated carboxylic acid such as a maleic anhydride or a derivative thereof
- a grafting reaction using a graft initiator such as an organic peroxide
- the conventional method produces a large amount of reaction residue, which reduces the physical properties of a graft modified product.
- Patent Literature 1 proposes a method of performing a radical reaction in the presence of added rubber.
- Patent Literature 2 proposes graft modification in the co-presence of solid rubber and an unsaturated aromatic monomer.
- An object of the present invention is to provide a modified polyolefin resin composition that contains a large amount of an unsaturated carboxylic acid or an anhydride thereof, and that can inhibit an increase in fluidity after graft modification due to little influence of a reaction residue, and that, wherein the resin composition when used as a compatibilizer for reinforced fiber plastics provides a molded article with excellent mechanical properties such as bending strength and impact resistance.
- the present inventors conducted extensive research and found a modified polyolefin resin composition that contains a specific diene-based elastomer, has a high content of an unsaturated carboxylic acid or anhydride thereof, and has less change in fluidity after graft modification due to little influence of a reaction residue, and has excellent physical properties and compatibility.
- the present invention was proposed. Specifically, the present invention includes the following structure.
- a resin composition comprising a copolymer of a propylene-based polymer (A), a diene-based elastomer (B), and an unsaturated carboxylic acid or anhydride thereof (C), wherein the content of the unsaturated carboxylic acid or anhydride thereof (C) in the resin composition is 2.0 mass % or more, the melt mass flow rate of the resin composition measured at 190° C./2.16 kg as defined in JIS K 7210 is 2 g/10 min or more and 500 g/10 min or less, and a reaction residue derived from the unsaturated carboxylic acid or anhydride thereof (C) in the resin composition is less than 2.0 mass %.
- the resin composition preferably contains a volatile hydrocarbon compound in an amount of 0.5 mass % or less.
- the number average molecular weight of the diene-based elastomer (B) is preferably 50,000 or more, and the content of the diene-based elastomer (B) is preferably 5 to 50 parts by mass relative to 100 parts by mass of the propylene-based polymer (A).
- a compatibilizer comprising the resin composition according to any of the foregoing.
- a compatibilizer for glass fiber-reinforced plastics comprising the resin composition according to any of the foregoing.
- a fiber-reinforced plastic comprising the compatibilizer as described above.
- the resin composition of the present invention has excellent compatibility with reinforcing fibers such as carbon fibers and glass fibers because of a high content of an unsaturated carboxylic acid or anhydride thereof.
- the resin composition when used as a compatibilizer for glass fiber-reinforced plastics, mechanical properties such as impact resistance and bending strength of a molded article are improved.
- the resin composition has high processability, and contains a reaction residue and a volatile hydrocarbon compound in a small amount, which reduces odor.
- propylene-based polymer (A) used in the present invention there is no limitation on the propylene-based polymer (A) used in the present invention; however, a homopolypropylene or propylene- ⁇ -olefin copolymer can be used.
- the propylene-based polymer (A) preferably contains a propylene component in an amount of 40 mol % or more, more preferably 50 mol % or more, even more preferably 60 mol % or more, and particularly preferably 70 mol % or more.
- the propylene- ⁇ -olefin copolymer is obtained by copolymerizing an ⁇ -olefin with propylene as a main material.
- ⁇ -olefin ethylene, 1-butene, 1-heptene, 1-octene, 4-methyl-1-pentene, and vinyl acetate can be used singly or in combination.
- ethylene and 1-butene can be preferably used, and 1-butene can be more preferably used.
- the melting point of the propylene-based polymer (A) is preferably 70° C. or more and 170° C. or less, more preferably 120° C. or more, and even more preferably 140° C. or more. The higher the melting point, the higher the crystallinity, which increases the mechanical strength of a molded product when the resin composition is mixed with polypropylene as a compatibilizer.
- the melt mass flow rate of the propylene-based polymer (A) is preferably 1 g/10 min or more and 100 g/10 min or less, more preferably 50 g/10 min or less, and even more preferably 20 g/10 min or less. When the melt mass flow rate is 100 g/10 min or more, granulation in producing the resin composition of the present invention becomes difficult.
- the diene-based elastomer (B) used in the present invention is a polymer comprising a diene compound as a main component, and has a double bond in the main chain.
- diene-based elastomer (B) examples include acrylonitrile butadiene-based elastomers, butadiene isoprene copolymers, styrene isoprene copolymers, butadiene pentadiene copolymers, styrene butadiene elastomers, styrene butadiene copolymers, polychloroprene, polyisoprene, and polybutadiene.
- styrene-butadiene copolymers and polybutadiene can be used.
- the diene-based elastomer (B) must have a number average molecular weight of 50000 or more, preferably 70000 or more, and more preferably 80000 or more.
- the resin composition has excellent processability and a molded article obtained by using the resin composition as a compatibilizer for glass fiber-reinforced plastics has excellent mechanical properties such as impact resistance.
- the upper limit of the number average molecular weight is preferably 300000 or less, and more preferably 200000 or less.
- the dispersibility with the propylene-based copolymer (A) becomes excellent, and the addition amount of the unsaturated carboxylic acid or anhydride thereof to the resin composition becomes uniform, which increases adhesion to polyolefin resins.
- the use of the diene-based elastomer having a number average molecular weight as low as less than 50000 is not desirable because of the possibility of poor adhesion to and poor compatibility with olefin resins.
- the content of the diene component in the diene-based elastomer (B) is preferably 30 mass % or more and 100 mass % or less, more preferably 35 mass % or more, and even more preferably 40 parts by mass or more.
- a polybutadiene elastomer is most preferred from the viewpoint of attaining high acid addition.
- the melting point (Tm) of the diene-based elastomer (B) is preferably 50° C. or more and 120° C. or less, more preferably 60° C. or more, and even more preferably 80° C. or more.
- a diene-based elastomer (B) having a melting point of 120° C. or more causes incompatibility due to poor melting during kneading in an extruder, which may reduce the physical properties of the modified polyolefin resin composition and acid addition.
- diene-based elastomers (B) can be used alone or in a combination of two or more.
- the unsaturated carboxylic acid or anhydride thereof (C) used in the present invention is a compound having both a C ⁇ C unsaturated bond in the molecule and a carboxylic acid group or acid anhydride group thereof.
- the resin composition can provide compatibility with glass fibers because it has a carboxylic acid group or an acid anhydride group thereof. Further, having an unsaturated bond makes the propylene-based polymer (A) and the diene-based elastomer (B) copolymerizable.
- the unsaturated carboxylic acid or anhydride thereof (C) there is no particular limitation on the unsaturated carboxylic acid or anhydride thereof (C), as long as it has both an unsaturated bond and a carboxylic acid group or anhydride group thereof as described above.
- examples include acrylic acid, methacrylic acid, nasic acid, crotonic acid, isocrotonic acid, norbornenedicarboxylic acid, maleic acid, itaconic acid, citraconic acid, and acid anhydrides thereof.
- maleic acid is preferred, an acid anhydride is more preferred, and a maleic anhydride is even more preferred.
- the resin composition of the present invention contains a reaction product obtained by reacting a propylene-based polymer (A), a diene-based elastomer (B), and an unsaturated carboxylic acid or an anhydride thereof (C), wherein the content of the unsaturated carboxylic acid or the anhydride thereof (C) in the resin composition is 2.0 mass % or more of the entire resin composition, and the melt mass flow rate of the resin composition measured at 190° C./2.16 kg as defined in JIS K 7210 is 2 g/10 min or more and 500 g/10 min or less, and the content of the reaction residue derived from the unsaturated carboxylic acid or anhydride thereof (C) in the resin composition is less than 2.0 mass % of the entire resin composition.
- the reaction product comprises a copolymer comprising at least a propylene-based polymer (A), a diene-based elastomer (B), and an unsaturated carboxylic acid or anhydride thereof (C), and may further comprise a copolymer of the propylene-based polymer (A) and the unsaturated carboxylic acid or anhydride thereof (C), and/or a copolymer of the diene-based elastomer (B) and the unsaturated carboxylic acid or anhydride thereof (C).
- the resin composition of the present invention contains 98.0 mass % or more of the reaction product and less than 2.0 mass % of a reaction residue derived from the unsaturated carboxylic acid or anhydride thereof (C).
- the resin composition of the present invention must contain the unsaturated carboxylic acid or anhydride thereof (C) in an amount of 2.0 mass % or more, preferably 4.0 mass % or more, and more preferably 5.0 mass % or more.
- the amount of the unsaturated carboxylic acid or anhydride thereof (C) is preferably 15.0 mass % or less, and more preferably 10.0 mass % or less.
- the content of the unsaturated carboxylic acid or anhydride thereof (C) is 15.0 mass % or less, high compatibility with polyolefins, in particular, high compatibility with polypropylene can be attained, and mechanical properties when the resin composition is used as a compatibilizer for glass fiber-reinforced plastics are improved.
- the content of the reaction residue derived from the unsaturated carboxylic acid or anhydride thereof (C) in the resin composition of the present invention is less than 2.0 mass %, and preferably less than 1.5 mass %. If the content of the reaction residue is 2.0 mass % or more, when the resin composition is used as a compatibilizer for glass fiber-reinforced plastics, mechanical properties such as elongation modulus, bending modulus, and impact resistance is reduced due to the reaction residue. By incorporating the diene-based elastomer, the reaction efficiency of the unsaturated carboxylic acid or anhydride thereof (C) is improved, which can reduce the reaction residue.
- the resin composition of the present invention has a melt mass flow rate of 2 g/10 min or more and 500 g/10 min or less at 190° C./2.16 kg as defined in JIS K 7210, preferably 300 g/10 min or less, and more preferably 280 g/10 min or less.
- the melt mass flow rate is preferably 50 g/10 min or more, more preferably 80 g/10 min or more, and even more preferably 105 g/10 min or more.
- the resin composition of the present invention preferably contains a volatile hydrocarbon compound in an amount of 0.5 mass % or less, preferably 0.3 mass % or less, and more preferably 0.1 mass % or less.
- a volatile hydrocarbon compound in an amount of 0.5 mass % or less, preferably 0.3 mass % or less, and more preferably 0.1 mass % or less.
- the resin composition of the present invention preferably contains the diene-based elastomer (B) in an amount of 5 to 50 mass %, more preferably 5 to 40 mass %, and even more preferably 10 to 20 mass %, relative to the total amount of the propylene-based polymer (A) and the diene-based elastomer (B).
- the content of the component of the diene-based elastomer (B) is set to 5 mass % or more, mechanical properties such as impact resistance when the resin composition is used as a compatibilizer for glass fiber-reinforced plastics are improved.
- the resin composition when used as a compatibilizer for glass fiber-reinforced plastics has excellent compatibility with PP (matrix), which increases mechanical properties.
- the resin composition of the present invention may further comprise glass fibers.
- the resin composition of the present invention can be used as a compatibilizer, and the compatibilizer containing the resin composition of the present invention is preferably used as a compatibilizer for glass fiber-reinforced plastics.
- the method for producing the resin composition of the present invention is not particularly limited, and examples include a radical grafting reaction in which a radical species is formed in a polymer serving as a main chain, and an unsaturated carboxylic acid and acid anhydride are graft-polymerized using the radical species as a polymerization starting point.
- radical generators include, but are not limited to, organic peroxides and azonitriles, with organic peroxides being preferred.
- organic peroxides include, but are not limited to, di-tert-butylperoxy phthalate, tert-butyl hydroperoxide, dicumyl peroxide, benzoyl peroxide, tert-butyl peroxy benzoate, tert-butyl peroxy-2-ethylhexanoate, tert-butyl peroxy pivalate, methyl ethyl ketone peroxide, di-cert-butyl peroxide, lauroyl peroxide, and 2,5-dimethyl-2,5-di(tert-butyl propyl)hexane.
- azonitriles include azobisisobutyronitrile and azobisisopropionitrile.
- the glass fiber-reinforced plastic containing the compatibilizer of the present invention is used for home appliances and automobile parts.
- a resin composition (P-1) (2 parts by mass), 58 parts by mass of polypropylene (J-700GP produced by Prime Polymer Co., Ltd.), and 40 parts by mass of glass fiber (ECS03-631K produced by Central Glass Co., Ltd.) were supplied to an extrusion molding machine (LABOTEX30HSS produced by NSK Co., Ltd.) to perform granulation. Thereafter, injection molding was performed using an injection-molding machine (device: TI-30F6 produced by Toyo Machinery & Metal Co., Ltd.) under the conditions of an injection temperature of 190° C. and a molding temperature of 30° C. to form a multi-purpose test piece (Type A1) (Test Specimen 1) as described in JIS K 7139:2009 (ISO 20753).
- the elongation strength was evaluated using the test pieces prepared above.
- the evaluation method is based on the method defined in JIS K 7161:2014 (ISO 527-1).
- Each test piece has a thickness of 3.0 mm, and the elongation strength is evaluated under conditions such that the distance between chucks is 50 mm and the elongation speed is 1.0 ram/min.
- the measurement temperature is 23° C. unless otherwise specified.
- the ends of the test pieces produced above were cut using a processing machine (Notching Tool A produced by Toyo Seiki Co., Ltd.) to produce strip test pieces (80 mm ⁇ 10 mm ⁇ 3 mm), and the bending strength was evaluated.
- the evaluation method is based on the method defined in JIS K 7171:2016 (ISO 178:2010).
- the bending strength was evaluated under conditions such that the span length was 48 mm and the loading rate was 1.0 mm/min.
- the measurement temperature is 23° C. unless otherwise specified.
- test pieces produced above were cut using a processing machine (Notching Tool A produced by Toyo Seiki Co., Ltd.) to produce notched strip test pieces (80 mm ⁇ 10 mm ⁇ 3 mm, notch depth: 2 mm), and the impact resistance test was performed.
- the evaluation method is based on the Izod impact test method defined in JIS K 7110:1999 (ISO 180).
- the content of unsaturated carboxylic acid or acid anhydride thereof is the value calculated according to the following equation using the coefficient (f) obtained from the calibration curve prepared using a chloroform solution of maleic anhydride (Tokyo Chemical Industry Co., Ltd.) with FT-IR (FT-IR8200PC produced by Shimadzu Corporation), and the absorbance (I) of elongation peak (1780 cm ⁇ 1 ) of carbonyl (C ⁇ O) bonding of maleic anhydride in a sample, wherein the sample is each of the resin composition samples after acetone washing, which is used as a 10 mass % toluene solution sample.
- the content of a reaction residue derived from the unsaturated carboxylic acid or anhydride thereof (C) in the resin composition of the present invention was measured according to the following “Low Molecular Weight Content” section.
- the melt mass flow rate is measured based on the method defined in JIS K6758.
- the measurement temperature was 190° C., and the measurement was conducted at a load of 2.16 kg unless otherwise specified.
- the content of a volatile hydrocarbon compound is a value calculated from the remaining weight.
- Content of volatile hydrocarbon compound [mass %] [(the weight of resin before being allowed to stand ⁇ the weight of resin after being allowed to stand)/the weight of resin before being allowed to stand] ⁇ 100
- Example 2 The same procedure as in Example 1 was performed except that the amount of the maleic anhydride used in Example 1 was changed to 4 parts by mass, thus obtaining a resin composition (P-2).
- the evaluation results are shown in Table 1.
- Example 1 The same procedure as in Example 1 was performed except that the amount of the maleic anhydride used in Example 1 was changed to 16 parts by mass, thus obtaining a resin composition (P-3).
- the evaluation results are shown in Table 1.
- Example 1 The same procedure as in Example 1 was performed except that the amount of the di-tert-butyl peroxide used in Example 1 was changed to 1 part by mass, thus obtaining a resin composition (P-4).
- the evaluation results are shown in Table 1.
- Example 1 The same procedure as in Example 1 was performed except that the amount of the di-tert-butyl peroxide used in Example 1 was changed to 4 parts by mass, thus obtaining a resin composition (P-5).
- the evaluation results are shown in Table 1.
- Example 1 The same procedure as in Example 1 was performed except that the supply amount of the diene-based elastomer (B-1) used in Example 1 was changed to 5 parts by mass, thus obtaining a resin composition (P-6).
- the evaluation results are shown in Table 1.
- Example 1 The same procedure as in Example 1 was performed except that the supply amount of the diene-based elastomer (B-1) used in Example 1 was changed to 50 parts by mass, thus obtaining a resin composition (P-7).
- the evaluation results are shown in Table 1.
- Example 2 The same procedure as in Example 1 was performed except that the amount of the maleic anhydride used in Example 1 was changed to 2 parts by mass, thus obtaining a resin composition (P-8).
- Example 2 The same procedure as in Example 1 was performed except that the amount of the maleic anhydride used in Example 1 was changed to 20 parts by mass, thus obtaining a resin composition (P-9).
- Example 2 The same procedure as in Example 1 was performed except that the amount of the di-tert-butyl peroxide used in Example 1 was changed to 6 parts by mass, thus obtaining a resin composition (P-10).
- Example 1 The same procedure as in Example 1 was performed except that the amount of the maleic anhydride used in Example 1 was changed to 20 parts by mass and the reaction temperature was changed to 140° C., thus obtaining a resin composition (P-11).
- Example 2 The same procedure as in Example 1 was performed except that the diene-based elastomer was changed from (B-1) to (B-2), thus obtaining a resin composition (P-12).
- Example 2 The same procedure as in Example 1 was performed except that the diene-based elastomer was changed to 0 parts by mass, thus obtaining a resin composition (P-13).
- Example 2 The same procedure as in Example 1 was performed except that the diene-based elastomer was changed to 70 parts by mass, thus obtaining a resin composition (P-14).
- the propylene-based polymer (A) used in each of the Examples and Comparative Examples is as follows.
- the diene-based elastomer (B) used in each of the Examples and Comparative Examples is as follows.
- the resin composition of the present invention contains a small amount of a reaction residue of a carboxylic acid compound while having a certain amount of acid addition, and contains a copolymer of a propylene-based polymer, a high-molecular-weight diene-based elastomer, and an unsaturated carboxylic acid or anhydride thereof, the resin composition of the present invention has excellent interfacial adhesion with glass. Accordingly, the resin composition of the present invention can be used as a compatibilizer for glass fiber-reinforced plastics.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
- PTL 1: JP1980-50040A
- PTL 2: Japanese Patent No. 2632980
-
- A: Significantly excellent (70 MPa or more)
- B: Excellent (60 MPa or more and less than 70 MPa)
- C: Practicable (50 MPa or more and less than 60 MPa)
- D: Impractical (less than 50 MPa)
Evaluation of Bending Strength
-
- A: Significantly excellent (100 MPa or more)
- B: Excellent (90 MPa or more and less than 100 MPa)
- C: Practicable (80 MPa or more and less than 90 MPa)
- D: Impractical (less than 80 MPa)
Evaluation of impact Resistance
-
- A: Significantly excellent (7 kJ/m or more)
- B: Excellent (6 kJ/m or more and less than 7 kJ/m)
- C: Practicable (5 kJ/m or more and less than 6 kJ/m)
- D: Impractical (less than 5 kJ/m)
Content of Unsaturated Carboxylic Acid or Acid Anhydride Thereof
Content of unsaturated carboxylic acid or acid anhydride thereof [mass %]=[absorbance (I)×coefficient (f)×100/sample concentration (%)]
Low molecular weight content [mass %]=[weight of dry component/weight of resin before acetone washing]×100
Melt Mass Flow Rate
| TABLE 1 | ||||||||
| Example 1 | Example 2 | Example 3 | Example 4 | Example 5 | Example 6 | Example 7 | ||
| Resin composition | P-1 | P-2 | P-3 | P-4 | P-5 | P-6 | P-7 |
| Propylene-based polymer (A) | (A-1) | (A-1) | (A-1) | (A-1) | (A-1) | (A-1) | (A-1) |
| (A) Parts by mass | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| Diene-based elastomer (B) | (B-1) | (B-1) | (B-1) | (B-1) | (B-1) | (B-1) | (B-1) |
| (B) Parts by mass | 15 | 15 | 15 | 15 | 15 | 5 | 50 |
| (C) Parts by mass | 8 | 4 | 16 | 8 | 8 | 8 | 8 |
| Peroxide | 2 | 2 | 2 | 1 | 4 | 2 | 2 |
| Acid component (wt %) | 6.9 | 3 | 8.3 | 6.9 | 6.5 | 6.8 | 6.8 |
| Low molecular weight (wt %) | 1 | 0.9 | 1.9 | 0.8 | 1.3 | 1 | 1.1 |
| MFR (g/10 min) | 249 | 230 | 303 | 50 | 491 | 291 | 35 |
| Volatile hydrocarbon compound (wt %) | 0.3 | 0.2 | 0.3 | 0.3 | 0.3 | 0.4 | 0.5 |
| Elongation strength | A | B | B | B | B | B | C |
| Bending strength | A | B | B | B | B | B | C |
| Impact resistance | A | B | B | B | C | C | B |
| TABLE 2 | ||||||||
| Comparative | Comparative | Comparative | Comparative | Comparative | Comparative | Comparative | ||
| Example 1 | Example 2 | Example 3 | Example 4 | Example 5 | Example 6 | Example 7 | ||
| Resin composition | P-8 | P-9 | P-10 | P-11 | P-12 | P-13 | P-14 |
| Propylene-based polymer (A) | (A-1) | (A-1) | (A-1) | (A-1) | (A-1) | (A-1) | (A-1) |
| (A) Parts by mass | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| Diene-based elastomer (B) | (B-1) | (B-1) | (B-1) | (B-1) | (B-2) | (B-1) | (B-1) |
| (B) Parts by mass | 15 | 15 | 15 | 15 | 15 | 0 | 70 |
| (C) Parts by mass | 2 | 20 | 8 | 20 | 8 | 8 | 8 |
| Peroxide | 2 | 2 | 6 | 2 | 2 | 2 | 2 |
| Acid component (wt %) | 1.1 | 8.5 | 6.4 | 5.2 | 5.7 | 2.1 | 7.8 |
| Low molecular weight component (wt %) | 0.7 | 3.3 | 0.9 | 3.5 | 1.8 | 1.4 | 1.0 |
| MFR (g/10 min) | 155 | 245 | 714 | 243 | 555 | 332 | 1.7 |
| Volatile hydrocarbon compound (wt %) | 0.5 | 0.2 | 0.3 | 1.5 | 0.4 | 0.3 | 0.5 |
| Elongation strength | D | B | B | C | D | B | D |
| Bending strength | D | D | D | D | D | B | D |
| Impact resistance | D | D | D | D | B | D | C |
-
- A-1: Polypropylene (pellet, melt mass flow rate: 9 g/10 min (230° C.))
-
- B-1: Polybutadiene (pellet, density 0.91 g/cm3, Mn=160,000)
- B-2: Liquid polybutadiene (Mn=8,000, viscosity: 15,000 cps)
Claims (8)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2019176943 | 2019-09-27 | ||
| JP2019-176943 | 2019-09-27 | ||
| PCT/JP2020/033983 WO2021059969A1 (en) | 2019-09-27 | 2020-09-08 | Resin composition |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20220340748A1 US20220340748A1 (en) | 2022-10-27 |
| US12421385B2 true US12421385B2 (en) | 2025-09-23 |
Family
ID=75165739
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/763,866 Active 2042-08-13 US12421385B2 (en) | 2019-09-27 | 2020-09-08 | Resin composition |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US12421385B2 (en) |
| EP (1) | EP4036126A4 (en) |
| JP (1) | JP7652072B2 (en) |
| KR (1) | KR20220070263A (en) |
| CN (1) | CN114466875A (en) |
| TW (1) | TWI858129B (en) |
| WO (1) | WO2021059969A1 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20230002569A1 (en) * | 2020-03-31 | 2023-01-05 | Prime Polymer Co., Ltd. | Fiber-reinforced polypropylene-based resin composition and method for production thereof |
Citations (29)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4146529A (en) | 1976-03-29 | 1979-03-27 | Toa Nenryo Kogyo Kabushiki Kaisha | Process for the production of modified polyolefin |
| JPS5550040A (en) | 1978-10-05 | 1980-04-11 | Idemitsu Kosan Co Ltd | Polyolefin resin composition |
| JPS63172715A (en) | 1987-01-12 | 1988-07-16 | Mitsubishi Electric Corp | Low dielectric constant resin |
| US4882389A (en) | 1987-01-12 | 1989-11-21 | Mitsubishi Denki Kabushiki Kaisha | Electrical insulating resin |
| JPH0297550A (en) | 1988-09-30 | 1990-04-10 | Sumitomo Naugatuck Co Ltd | Rubber-reinforced resin composition of excellent chemical resistance |
| EP0459766A1 (en) | 1990-05-29 | 1991-12-04 | Tonen Corporation | Modified polyolefincontaining thermoplastic resin composition |
| JPH0559254A (en) | 1991-09-02 | 1993-03-09 | Tonen Corp | Glass fiber-reinforced thermoplastic resin composition |
| JPH07173229A (en) | 1993-12-17 | 1995-07-11 | Tonen Chem Corp | Production of modified polyolefin |
| JPH07316239A (en) | 1994-03-31 | 1995-12-05 | Kawasaki Steel Corp | Method for producing modified polyolefin and glass fiber reinforced polyolefin |
| JPH08127697A (en) | 1994-10-28 | 1996-05-21 | Tonen Corp | Fiber-reinforced polypropylene composition |
| JPH08143739A (en) * | 1994-11-17 | 1996-06-04 | Tonen Corp | Fiber-reinforced polypropylene composition |
| JPH0959448A (en) | 1995-08-25 | 1997-03-04 | Tonen Corp | Mica reinforced polypropylene resin composition |
| JPH0959449A (en) | 1995-08-28 | 1997-03-04 | Tonen Corp | Mica reinforced polypropylene resin composition |
| JP2632980B2 (en) | 1987-11-20 | 1997-07-23 | 住友化学工業株式会社 | Modified polyolefin resin composition |
| JP2001247760A (en) | 2000-03-06 | 2001-09-11 | Asahi Kasei Corp | Urethane composition |
| JP2002187922A (en) | 2000-12-20 | 2002-07-05 | Nippon Paper Industries Co Ltd | Modified polyolefin composition and its use |
| JP2007126553A (en) | 2005-11-02 | 2007-05-24 | Nippon Polyethylene Kk | Process for producing modified polyolefin resin and modified product thereof |
| JP2010053332A (en) | 2008-07-29 | 2010-03-11 | Prime Polymer Co Ltd | Polypropylene resin composition and molded article thereof |
| WO2010119480A1 (en) | 2009-04-14 | 2010-10-21 | 化薬アクゾ株式会社 | Maleic anhydride-modified polypropylene and resin composition including the same |
| CN105131203A (en) | 2015-07-28 | 2015-12-09 | 绍兴佳华高分子材料股份有限公司 | Preparation method for polypropylene grafted maleic anhydride with high graft ratio and low odor |
| JP2016006245A (en) | 2014-05-22 | 2016-01-14 | ユニチカ株式会社 | Fiber sizing agent, fibrous reinforcing material, and fiber reinforced resin composition |
| CN106117445A (en) | 2016-07-27 | 2016-11-16 | 浙江佳华精化股份有限公司 | A kind of preparation method of low odor polypropylene grafted maleic anhydride |
| US20160355628A1 (en) * | 2014-02-19 | 2016-12-08 | Mitsui Chemicals, Inc. | Graft-modified propylene alpha-olefin copolymers and methods for producing the same |
| CN107148445A (en) | 2014-11-13 | 2017-09-08 | 三井化学株式会社 | Carbon fiber-reinforced resin composition and products formed therefrom |
| JP2018044023A (en) | 2016-09-12 | 2018-03-22 | デンカ株式会社 | Glass fiber-reinforced resin composition |
| US20180079887A1 (en) * | 2015-03-31 | 2018-03-22 | Jxtg Nippon Oil & Energy Corporation | Thermoplastic elastomer composition and method for producing the same |
| US20180230629A1 (en) * | 2014-09-05 | 2018-08-16 | Exxonmobil Chemical Patents Inc. | Polymer Compositions and Nonwoven Materials Prepared Therefrom |
| CN108892752A (en) | 2018-07-20 | 2018-11-27 | 厦门科艾斯塑胶科技有限公司 | A kind of low smell grafting compatilizer and preparation method thereof |
| CN109535327A (en) | 2018-12-13 | 2019-03-29 | 沈阳科通塑胶有限公司 | A kind of maleic anhydride-grafted polypropylene material and preparation method thereof of low smell high fusion index |
-
2020
- 2020-09-08 CN CN202080067752.3A patent/CN114466875A/en active Pending
- 2020-09-08 US US17/763,866 patent/US12421385B2/en active Active
- 2020-09-08 EP EP20870204.3A patent/EP4036126A4/en active Pending
- 2020-09-08 WO PCT/JP2020/033983 patent/WO2021059969A1/en not_active Ceased
- 2020-09-08 JP JP2021548768A patent/JP7652072B2/en active Active
- 2020-09-08 KR KR1020227013775A patent/KR20220070263A/en active Pending
- 2020-09-11 TW TW109131229A patent/TWI858129B/en active
Patent Citations (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4146529A (en) | 1976-03-29 | 1979-03-27 | Toa Nenryo Kogyo Kabushiki Kaisha | Process for the production of modified polyolefin |
| JPS5550040A (en) | 1978-10-05 | 1980-04-11 | Idemitsu Kosan Co Ltd | Polyolefin resin composition |
| JPS63172715A (en) | 1987-01-12 | 1988-07-16 | Mitsubishi Electric Corp | Low dielectric constant resin |
| US4882389A (en) | 1987-01-12 | 1989-11-21 | Mitsubishi Denki Kabushiki Kaisha | Electrical insulating resin |
| JP2632980B2 (en) | 1987-11-20 | 1997-07-23 | 住友化学工業株式会社 | Modified polyolefin resin composition |
| JPH0297550A (en) | 1988-09-30 | 1990-04-10 | Sumitomo Naugatuck Co Ltd | Rubber-reinforced resin composition of excellent chemical resistance |
| EP0459766A1 (en) | 1990-05-29 | 1991-12-04 | Tonen Corporation | Modified polyolefincontaining thermoplastic resin composition |
| JPH0559254A (en) | 1991-09-02 | 1993-03-09 | Tonen Corp | Glass fiber-reinforced thermoplastic resin composition |
| JPH07173229A (en) | 1993-12-17 | 1995-07-11 | Tonen Chem Corp | Production of modified polyolefin |
| JPH07316239A (en) | 1994-03-31 | 1995-12-05 | Kawasaki Steel Corp | Method for producing modified polyolefin and glass fiber reinforced polyolefin |
| JPH08127697A (en) | 1994-10-28 | 1996-05-21 | Tonen Corp | Fiber-reinforced polypropylene composition |
| JPH08143739A (en) * | 1994-11-17 | 1996-06-04 | Tonen Corp | Fiber-reinforced polypropylene composition |
| JPH0959448A (en) | 1995-08-25 | 1997-03-04 | Tonen Corp | Mica reinforced polypropylene resin composition |
| JPH0959449A (en) | 1995-08-28 | 1997-03-04 | Tonen Corp | Mica reinforced polypropylene resin composition |
| JP2001247760A (en) | 2000-03-06 | 2001-09-11 | Asahi Kasei Corp | Urethane composition |
| JP2002187922A (en) | 2000-12-20 | 2002-07-05 | Nippon Paper Industries Co Ltd | Modified polyolefin composition and its use |
| JP2007126553A (en) | 2005-11-02 | 2007-05-24 | Nippon Polyethylene Kk | Process for producing modified polyolefin resin and modified product thereof |
| JP2010053332A (en) | 2008-07-29 | 2010-03-11 | Prime Polymer Co Ltd | Polypropylene resin composition and molded article thereof |
| WO2010119480A1 (en) | 2009-04-14 | 2010-10-21 | 化薬アクゾ株式会社 | Maleic anhydride-modified polypropylene and resin composition including the same |
| US20160355628A1 (en) * | 2014-02-19 | 2016-12-08 | Mitsui Chemicals, Inc. | Graft-modified propylene alpha-olefin copolymers and methods for producing the same |
| JP2016006245A (en) | 2014-05-22 | 2016-01-14 | ユニチカ株式会社 | Fiber sizing agent, fibrous reinforcing material, and fiber reinforced resin composition |
| US20180230629A1 (en) * | 2014-09-05 | 2018-08-16 | Exxonmobil Chemical Patents Inc. | Polymer Compositions and Nonwoven Materials Prepared Therefrom |
| US20170321019A1 (en) | 2014-11-13 | 2017-11-09 | Mitsui Chemicals, Inc. | Carbon fiber-reinforced resin composition and shaped product obtained therefrom |
| CN107148445A (en) | 2014-11-13 | 2017-09-08 | 三井化学株式会社 | Carbon fiber-reinforced resin composition and products formed therefrom |
| US20180079887A1 (en) * | 2015-03-31 | 2018-03-22 | Jxtg Nippon Oil & Energy Corporation | Thermoplastic elastomer composition and method for producing the same |
| CN105131203A (en) | 2015-07-28 | 2015-12-09 | 绍兴佳华高分子材料股份有限公司 | Preparation method for polypropylene grafted maleic anhydride with high graft ratio and low odor |
| CN106117445A (en) | 2016-07-27 | 2016-11-16 | 浙江佳华精化股份有限公司 | A kind of preparation method of low odor polypropylene grafted maleic anhydride |
| JP2018044023A (en) | 2016-09-12 | 2018-03-22 | デンカ株式会社 | Glass fiber-reinforced resin composition |
| CN108892752A (en) | 2018-07-20 | 2018-11-27 | 厦门科艾斯塑胶科技有限公司 | A kind of low smell grafting compatilizer and preparation method thereof |
| CN109535327A (en) | 2018-12-13 | 2019-03-29 | 沈阳科通塑胶有限公司 | A kind of maleic anhydride-grafted polypropylene material and preparation method thereof of low smell high fusion index |
Non-Patent Citations (3)
| Title |
|---|
| Extended European Search Report issued Aug. 29, 2023 in corresponding European Patent Application No. 20870204.3. |
| International Search Report issued Dec. 1, 2020 in International (PCT) Application No. PCT/JP2020/033983. |
| Yang Mingbo et al., "Plastic Molding Technology", China Light Industry Press, National Top 100 Book Publishing House3rd Edition, pp. 156-160, 2014, with translation. |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2021059969A1 (en) | 2021-04-01 |
| EP4036126A1 (en) | 2022-08-03 |
| KR20220070263A (en) | 2022-05-30 |
| JPWO2021059969A1 (en) | 2021-04-01 |
| US20220340748A1 (en) | 2022-10-27 |
| TWI858129B (en) | 2024-10-11 |
| JP7652072B2 (en) | 2025-03-27 |
| EP4036126A4 (en) | 2023-09-27 |
| CN114466875A (en) | 2022-05-10 |
| TW202116898A (en) | 2021-05-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR960008818B1 (en) | Modified polyolefin resin composition, and coated molding article thereof | |
| US5073447A (en) | Polypropylene-based resin composition | |
| FI96033C (en) | Process for functionalizing olefin polymers in a molten state | |
| KR960008817B1 (en) | Modified Polyolefin Resin Composition | |
| US6861476B2 (en) | Mixtures of thermoplastic elastomers and polar polymers | |
| US12421385B2 (en) | Resin composition | |
| JP2643388B2 (en) | Modified polyolefin resin composition | |
| EP1294782B1 (en) | Use of modified olefin polymers for producing polyolefin products with improved toughness, strength and heat resistance | |
| US4107109A (en) | Reactive compositions and polymers made therefrom | |
| KR101135699B1 (en) | Resin composition including high melt strength polyolefin | |
| FI96771C (en) | Polyolefin kondensationspolymerblandning | |
| JPH1036456A (en) | Modified rubber composition, method for producing the same, and molded article | |
| KR20160023987A (en) | Compatibilizer comprising itaconic acid-grafted polyproylene copolymer and PP/EVOH blend using the same | |
| KR102596130B1 (en) | Thermoplastic resin composition and article produced therefrom | |
| JPH05318681A (en) | Resin laminate using modified propylene polymer | |
| CN119604572A (en) | Method for producing glass fiber reinforced propylene resin composition pellets and method for producing injection molded products | |
| JPH09249783A (en) | Novel nitrile resin composition and laminate | |
| JPH05169586A (en) | Metal-resin laminate using modified propylene-based polymer composition | |
| JPH06106685A (en) | Resin laminate using modified propylene polymer | |
| JPH06200095A (en) | Propylene resin composition | |
| CN120647844A (en) | Compatilizer and preparation method and application thereof | |
| JPH05261872A (en) | Resin laminate using a modified propylene-based polymer composition | |
| JPH05155947A (en) | Method for producing modified propylene-based polymer | |
| US20070123654A1 (en) | Novel uses of unmodified polyolefins and of graft polyolefins | |
| JPH06238846A (en) | Resin laminate using modified propylene polymer |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: TOYOBO CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMASHITA, YOJI;YOKOMICHI, TAKUYA;KASHIHARA, KENJI;REEL/FRAME:059402/0875 Effective date: 20220120 |
|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| AS | Assignment |
Owner name: TOYOBO MC CORPORATION, JAPAN Free format text: ABSORPTION-TYPE COMPANY SPLIT;ASSIGNOR:TOYOBO CO., LTD.;REEL/FRAME:065080/0848 Effective date: 20230404 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: ALLOWED -- NOTICE OF ALLOWANCE NOT YET MAILED Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |