[go: up one dir, main page]

US11322525B2 - Array substrate and display panel having organic insulating elastic layer disposed on bending pathway - Google Patents

Array substrate and display panel having organic insulating elastic layer disposed on bending pathway Download PDF

Info

Publication number
US11322525B2
US11322525B2 US16/467,044 US201916467044A US11322525B2 US 11322525 B2 US11322525 B2 US 11322525B2 US 201916467044 A US201916467044 A US 201916467044A US 11322525 B2 US11322525 B2 US 11322525B2
Authority
US
United States
Prior art keywords
array substrate
trace
display zone
disposed
segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/467,044
Other versions
US20210384230A1 (en
Inventor
Xiaoliang Feng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd
Original Assignee
Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd filed Critical Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd
Assigned to WUHAN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD. reassignment WUHAN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Feng, Xiaoliang
Publication of US20210384230A1 publication Critical patent/US20210384230A1/en
Application granted granted Critical
Publication of US11322525B2 publication Critical patent/US11322525B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • H01L27/1244
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • H01L27/1218
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/411Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs characterised by materials, geometry or structure of the substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/441Interconnections, e.g. scanning lines
    • H10D86/443Interconnections, e.g. scanning lines adapted for preventing breakage, peeling or short circuiting
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/60Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs wherein the TFTs are in active matrices

Definitions

  • the present invention relates to a technical field of displays, and in particular, to an array substrate and a display panel.
  • Full-screens increase the screen ratio by reducing an invalid area, enhancing the consumers' visual experience.
  • the so-called full-screen of the conventional technology is still in the category of narrow bezel technology, and cannot be a full-screen in the true sense.
  • One of the main limiting factors from a narrow bezel to a full-screen is that borders of display panels require an area for a peripheral trace that occupies a display screen of the display panel.
  • An object of the present application is to provide an array substrate and a display panel, wherein an area of a display zone in the array substrate and the display panel thereof is increased.
  • An array substrate includes a flexible substrate comprising a first surface and a second surface opposite to the first surface, the first surface of the flexible substrate includes a display zone and a non-display zone, and the non-display zone is located at a periphery of the display zone; a peripheral trace disposed on a trace segment of the non-display zone; a bending pathway disposed between the trace segment and the display zone; the array substrate is folded along the bending pathway and the peripheral trace is located at a side of the second surface of the flexible substrate.
  • the array substrate further includes a transition trace disposed on a line transition segment, and the line transition segment is located between the bending pathway and the display zone.
  • the transition trace includes a first conductive layer, a first insulation layer, and a second conductive layer which are sequentially disposed on the first surface of the flexible substrate.
  • the array substrate further includes a gate driving circuitry disposed on the trace segment, and the array substrate is folded along the bending pathway to have the gate driving circuitry located at the side of the second surface of the flexible substrate.
  • the second conductive layer is electrically connected to the gate driving circuitry and the first conductive layer through at least one through via in the first insulation layer.
  • the first conductive layer is a scan line extending from the display zone to the line transition segment.
  • a width of the line transition segment is in a range of 0.08 mm to 0.12 mm.
  • the width of the line transition segment is 0.1 mm.
  • the array substrate further includes an organic insulating elastic layer disposed on the bending pathway.
  • an organic insulating elastic protrusion is disposed on a contact surface between the organic insulating elastic layer and the peripheral trace.
  • the organic insulating elastic protrusion has a hemispherical, trapezoid, stepped, or toothed shape.
  • the array substrate further includes at least one conductive pad disposed on the peripheral trace on both sides of the bending pathway.
  • the conductive pad is an organic conductive pad.
  • a width of the conductive pad along a direction perpendicular to the longitudinal axis of the peripheral trace is 2-10 times of a width of the peripheral trace.
  • the array substrate further includes an external control chip bonded on the bonding area of the trace segment, and the array substrate is folded along the bending pathway to have the external control chip located at the side of the second surface of the flexible substrate.
  • the bending pathway is arranged in a shape of a meshed grid.
  • a display panel including an array substrate, in which the array substrate includes a flexible substrate including a first surface and a second surface opposite to the first surface, the first surface of the flexible substrate includes a display zone and a non-display zone, the non-display zone is located at a periphery of the display zone; a peripheral trace disposed on a trace segment of the non-display zone; a bending pathway disposed between the trace segment and the display zone; the array substrate is folded along the bending pathway and the peripheral trace is located at a side of the second surface of the flexible substrate.
  • the array substrate further includes a gate driving circuitry disposed on the trace segment, and the array substrate is folded along the bending pathway to have the gate driving circuitry located at the side of the second surface of the flexible substrate.
  • the array substrate further includes an external control chip bonded on the bonding area of the trace segment, and the array substrate is folded along the bending pathway to have the external control chip located at the side of the second surface of the flexible substrate.
  • the array substrate further includes an organic insulating elastic layer disposed on the bending pathway.
  • the present application provides an array substrate and a display panel, and the peripheral trace is located on the back side of the display zone by folding the array substrate along the bending pathway to increase the area of the display zone in the displaying screen.
  • FIG. 1 is a schematic view of an array substrate before folding according to an embodiment of the present application
  • FIG. 2 is a schematic view of the array substrate of FIG. 1 after being folded;
  • FIG. 3 is a schematic view of the back side of the array substrate shown in FIG. 2 ;
  • FIG. 4 is a first partial enlarged view of the array substrate of FIG. 1 ;
  • FIG. 5 is a cross-sectional view of the array substrate of FIG. 4 taken along the line A-A;
  • FIG. 6 is a schematic cross-sectional view of the array substrate shown in FIG. 5 folded along a bending pathway;
  • FIG. 7 is a cross-sectional view of the array substrate of FIG. 4 taken along the line B-B;
  • FIG. 8 is a second partial enlarged view of the array substrate of FIG. 1 ;
  • FIG. 9 is a cross-sectional view of the array substrate of FIG. 8 taken along the line C-C;
  • FIG. 10 is a cross-sectional view of the array substrate of FIG. 8 taken along the line D-D.
  • FIG. 1 is an array substrate according to an embodiment of the present application
  • FIG. 2 is a schematic view of the array substrate of FIG. 1 after being folded
  • FIG. 3 is a schematic view of the back side of the array substrate shown in FIG. 2 .
  • the array substrate shown in FIG. 1 is an array substrate according to an embodiment of the present application
  • FIG. 2 is a schematic view of the array substrate of FIG. 1 after being folded
  • FIG. 3 is a schematic view of the back side of the array substrate shown in FIG. 2 .
  • the aforementioned array substrate is folded along the bending pathway so that the peripheral trace is located on the back side of the display zone to increase the area of the display zone of the displaying screen.
  • the array substrate is a thin film transistor array substrate, and the substrate is a flexible substrate 100 to make the array substrate to have foldability.
  • the flexible substrate 100 can be made of polyimide (PI), polyethylene terephthalate (PET) or other flexible materials.
  • the first surface 102 of the flexible substrate 100 has a display zone 102 a and a non-display zone 102 a ′, and the display zone 102 a is provided with a plurality of data lines 130 and a plurality of scan lines 140 that intersect each other perpendicularly.
  • a plurality of thin film transistors (not shown) are disposed in a region where the plurality of data lines 130 and the plurality of scan lines 140 are intersected, each of the scan lines 140 is connected to the gate of the thin film transistor to input a scan signal to the thin film transistor, and each of the data lines 130 is connected to a source of the thin film transistor to input a data signal to the thin film transistor.
  • Manufacturing the thin film transistor in the display zone 102 a includes the following steps:
  • a second conductive layer on the first surface 102 and patterning the second conductive layer in the display zone 102 a to form a plurality of source/drain electrodes, and the source/drain electrodes are electrically connected to the patterned channel layer by the through via on the second insulation layer.
  • a first conductive layer, a first insulation layer, a second conductive layer, and a second insulation layer are sequentially formed in the non-display zone 102 a ′ at the same time to form other lines in the non-display zone 102 a′.
  • the peripheral trace 110 is disposed in the trace segment of the non-display zone 102 a ′, and the peripheral trace 110 is disposed around the display zone 102 a .
  • the peripheral trace includes, but is not limited to, a power supply voltage (voltage drain-drain, VDD) trace, a ground voltage (voltage source-source, VSS) trace, a clock (CLK) trace, an external clock (XCLK) trace.
  • VDD trace, the VSS trace, the CLK trace, and the XCLK trace are formed by patterning the second conductive layer in the non-display zone 102 a ′, that is, the second conductive layer is the conductive layer forming a source/drain electrode of the thin film transistor in the display zone 102 a.
  • the bending pathway 120 a is located at the periphery of the display zone 102 a , and the bending pathway is arranged in a shape of a meshed grid.
  • the bending pathway may also be other structures, for example, the bending pathway is a stripe and is respectively located on at least one side of the array substrate.
  • the peripheral traces 110 located in the trace segment of the non-display area 102 a ′ are disposed on the second surface 104 of the flexible substrate 100 along the meshed grid folding channel.
  • the first surface 102 of the flexible substrate 100 (the surface of the displaying screen of the array substrate) only has the display zone 102 a , and the front view of the array substrate after being folded along the bending pathway 120 a is as shown in FIG. 2 , and the back side of the array substrate after being folded along the bending pathway 120 a is as shown in FIG. 3 .
  • the meshed grid shape bending pathway 120 a divides it into 8 regions, including a first corner 1021 , a second corner 1022 , a third corner 1023 , a fourth corner 1024 , a first main trace segment 1025 located between the first corner 1021 and the second corner 1022 , a second main trace segment 1026 located between the third corner 1023 and the fourth corner 1024 , a third main trace segment 1027 located between the first corner 1021 and the third corner 1023 , and a fourth main trace segment 1028 located between the second corner 1022 and the fourth corner 1024 .
  • the array substrate further includes a gate driving circuitry 150 , ex. a gate on array (GOA).
  • the gate driving circuitry 150 is disposed in the trace segment, and is folded along the bending pathway 120 a such that the gate driving circuitry 150 is located on the side of the second surface 104 of the flexible substrate 100 .
  • the gate driving circuitry 150 is disposed in the third main trace segment 1027 and the fourth main trace segment 1028 , and the two ends of each scan line 140 in the display zone 102 a are respectively connected to the gate driving circuitry 150 , that is, each scan line 140 is input the scan/driving signal through both ends.
  • the gate driving circuitry 150 can also be disposed in the third main trace segment 1027 or the fourth main trace segment 1028 , that is, each scan line 140 inputs a driving signal through one end.
  • the gate driving circuitry 150 is electrically connected to the peripheral trace 110 .
  • the gate driving circuitry 150 is fabricated in the same layer as the scan line 140 of the thin film transistor in the display zone 102 a.
  • the array substrate further includes an external control chip 1029 , and the external control chip 1029 is bound to the bonding area 103 of the trace segment, and the array substrate is folded along the bending pathway 120 a so that the external control chip 1029 is located at the second surface 104 of the flexible substrate 100 .
  • the external control chip 1029 includes a data driving control chip for outputting a driving signal to the data line and a chip for inputting a control signal to the peripheral trace 110 , and the data line 130 and the peripheral trace 110 are extended to the bonding area 103 and are electrically connected to the external control chip 1029 through a flexible printed circuit (FPC).
  • FPC flexible printed circuit
  • the external control chip 1029 bound to the bonding area 103 is located in the second main trace segment 1026 .
  • the array substrate further includes a transition trace 160 .
  • the transition trace 160 is disposed in the line transition segment 160 a , the line transition segment 160 a is located between the bending pathway 120 a and the display zone 102 a .
  • the line transition segment 160 a has a width in a range about from 0.08 mm to 0.12 mm, for example, the line transition segment 160 a has a width of 0.1 mm. Even if the transition trace 160 is added to the first surface 102 a of the flexible substrate 100 , the displaying area occupied the display zone 102 a is still as high as 99%.
  • FIG. 4 is a first partial enlarged view of the array substrate of FIG. 1
  • FIG. 5 is a cross-sectional view of FIG. 4 taken along the line A-A.
  • the array substrate further includes at least one conductive pad 170 disposed on the peripheral trace 110 on both sides of the bending pathway 120 a .
  • the conductive pad 170 is an organic conductive layer, and the width d of the conductive pad 170 in a direction perpendicular to the longitudinal peripheral trace 110 is greater than the width of the peripheral trace 110 .
  • the width d of the conductive pad along a direction perpendicular to the longitudinal axis of the peripheral trace 110 is 2-10 times of a width of the peripheral trace 110 .
  • the spacing of the adjacent two peripheral traces 110 is correspondingly increased in the first corner 1021 , and the distance between the adjacent two peripheral traces 110 is gradually small from the entrance of the first main trace segment 1025 .
  • the conductive pad 170 is formed in the second insulation layer 14 and is located on the peripheral trace 110 .
  • the second insulation layer 14 is the second insulation layer in the non-display zone 102 a ′.
  • the thickness of the conductive pad 170 is the same as the thickness of the second insulation layer 14 . It can be understood that the conductive pad 170 can also be located on the peripheral trace 110 above the bending pathway 120 a.
  • the array substrate further includes an organic insulating elastic layer 120 , and the organic insulating elastic layer 120 is disposed in the bending pathway 120 a .
  • the organic insulating elastic layer 120 is resilient so that it provides the lengthening required for bending during the folding process.
  • Material of the organic insulating elastic layer 120 is a rubber material, such as ethylene propylene diene monomer rubber or natural rubber.
  • the bending pathway 120 a is formed in the channel of the first insulation layer 12 , and forms an organic insulating elastic layer 120 in the bending pathway 120 a in the first insulation layer 12 before forming the source and drain electrodes of the thin film transistor in the display zone 102 a .
  • the first insulation layer 12 is the first insulation layer in the non-display zone 102 a′.
  • a surface of the organic insulating elastic layer 120 in contact with the peripheral trace 110 is provided with an organic insulating elastic protrusion 121 , which is deformed to further provide the lengthening required for the organic insulating elastic layer 120 when the organic insulating elastic protrusion 121 is folded.
  • the peripheral trace 110 overlying the organic insulating elastic protrusion 121 is also deformed to provide the lengthening required for the peripheral trace 120 to be bent when the peripheral trace 110 is folded. Therefore, the organic insulating elastic protrusion 121 on the organic insulating elastic layer 120 can prevent the peripheral trace 120 from breaking when folded.
  • the organic insulating elastic protrusion 121 and the organic insulating elastic layer 120 can be produced by the same process or by different processes.
  • the organic insulating elastic protrusion 121 may be a hemispherical, trapezoid, stepped, or toothed shape. It can be understood that the surface of the organic insulating elastic layer 120 in contact with the peripheral trace 110 can also be provided with at least one groove so that the peripheral trace 110 is also deformed to provide the lengthening required for the peripheral trace 110 to be bend when the peripheral trace 110 is folded.
  • FIG. 6 is a schematic cross-sectional view of the array substrate shown in FIG. 5 folded along the bending pathway.
  • the organic insulating elastic protrusion 121 is deformed after stretching so that the peripheral trace 110 is also deformed, thereby to avoid the breakage of the peripheral trace 110 during stretching.
  • the conductive pads 170 on the peripheral trace 110 on both sides of the bending pathway 120 a are in contact with each other to further ensure that the peripheral traces on both sides of the bending pathway 120 a can be electrically connected.
  • FIG. 7 is a cross-sectional view of FIG. 4 taken along line B-B.
  • the scan line 140 in the display zone 102 a is connected to the gate driving circuitry 150 located in the trace segment by the transition trace 160 .
  • the second conductive layer 13 is electrically connected to the gate driving circuitry 150 and the first conductive layer 11 by the through via in the first insulation layer 12 .
  • the second conductive layer 13 extends to the bending pathway 120 a , the second conductive layer 13 is located on the surface of the organic insulating elastic layer 120 .
  • the surface of the organic insulating elastic layer 120 in contact with the second conductive layer 13 is provided with an organic insulating elastic protrusion 121 which is deformed to further provide the lengthening required for the bending of the organic insulating elastic layer 120 when folded. Moreover, the second conductive layer 13 overlying the organic insulating elastic protrusion 121 is also deformed to provide the lengthening required for the second conductive layer 13 to be bend during folding.
  • the transition trace 160 includes the first conductive layer 11 , the first insulation layer 12 , and the second conductive layer 13 which are sequentially disposed on the first surface 102 of the flexible substrate 100 .
  • the first conductive layer 11 is a scan line 140 extending from the display zone 102 a to the line transition segment 160 a
  • the first insulation layer 12 is the first insulation layer in the non-display zone 102 a ′
  • the second conductive layer 13 is the second conductive layer in the non-display zone 102 a ′.
  • a surface of the second conductive layer 13 also covered by the second insulation layer 14 , which is the second insulation layer in the non-display zone 102 a′.
  • FIG. 8 is a second partial enlarged view of the array substrate of FIG. 1
  • FIG. 9 is a cross-sectional view of the array substrate of FIG. 8 taken along the line C-C.
  • the peripheral trace 110 extends directly from the third main trace segment 1027 to the third corner 1023 , and the surface of the organic insulating elastic layer 120 in contact with the peripheral trace 110 is provided with the organic insulating elastic protrusion 121 , so that the peripheral trace 110 can be elongated to avoid breakage during the folding process.
  • FIG. 10 is a cross-sectional view of the array substrate of FIG. 8 taken along the line D-D.
  • the data line 130 extends through the bending pathway 120 a to the bonding area 103 , and the data line 130 needs the transition trace 160 to change the line before passing through the bending pathway 120 a .
  • the data line 130 is connected to the first transition pad 15 by the through via on the first insulation layer 12 .
  • the second conductive layer 13 extending from the line transition segment 160 a to the trace segment is electrically connected to the first transition pad 15 and the second transition pad 16 by the through via on the first insulation layer 12 .
  • the second conductive pad 16 After the second conductive pad 16 is connected to the second conductive layer 13 of the trace segment by the through via in the first insulation layer 12 , the second conductive layer 13 of the trace segment extends to the bonding area 103 .
  • the first transition pad 15 is located in the line transition segment 160 a
  • the second transition pad 16 is located in the trace segment
  • the first transition pad 15 and the second transition pad 16 are both formed by patterning the first conductive layer 11 outside the display zone 102 a .
  • the surface of the organic insulating elastic layer 120 in contact with the second conductive layer 13 is provided with the organic insulating elastic protrusion 121 so that the second conductive layer 13 can be elongated to avoid breakage during folding.
  • Another object of the present application is to provide a display panel including the above array substrate.
  • the display panel further includes an anode, a light emitting layer, and a cathode which are sequentially formed on the array substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

An array substrate and a display panel are provided. The array substrate includes a flexible substrate, a peripheral trace, and a bending pathway. The array substrate is folded along the bending pathway so that the peripheral trace is located on the back side of a display zone to increase an area of the display zone of a displaying screen.

Description

FIELD OF INVENTION
The present invention relates to a technical field of displays, and in particular, to an array substrate and a display panel.
BACKGROUND OF INVENTION
With the release of new products from IPHONE X and SAMSUNG, narrow bezels and U-Cut (a top screen groove design) full-screen products become hot on the market, and full-screens have gradually become the mainstream of the industry.
Full-screens increase the screen ratio by reducing an invalid area, enhancing the consumers' visual experience. However, the so-called full-screen of the conventional technology is still in the category of narrow bezel technology, and cannot be a full-screen in the true sense. One of the main limiting factors from a narrow bezel to a full-screen is that borders of display panels require an area for a peripheral trace that occupies a display screen of the display panel.
SUMMARY OF INVENTION
An object of the present application is to provide an array substrate and a display panel, wherein an area of a display zone in the array substrate and the display panel thereof is increased.
An array substrate includes a flexible substrate comprising a first surface and a second surface opposite to the first surface, the first surface of the flexible substrate includes a display zone and a non-display zone, and the non-display zone is located at a periphery of the display zone; a peripheral trace disposed on a trace segment of the non-display zone; a bending pathway disposed between the trace segment and the display zone; the array substrate is folded along the bending pathway and the peripheral trace is located at a side of the second surface of the flexible substrate.
In one embodiment of the present invention, the array substrate further includes a transition trace disposed on a line transition segment, and the line transition segment is located between the bending pathway and the display zone.
In one embodiment of the present invention, the transition trace includes a first conductive layer, a first insulation layer, and a second conductive layer which are sequentially disposed on the first surface of the flexible substrate.
In one embodiment of the present invention, the array substrate further includes a gate driving circuitry disposed on the trace segment, and the array substrate is folded along the bending pathway to have the gate driving circuitry located at the side of the second surface of the flexible substrate.
In one embodiment of the present invention, the second conductive layer is electrically connected to the gate driving circuitry and the first conductive layer through at least one through via in the first insulation layer.
In one embodiment of the present invention, the first conductive layer is a scan line extending from the display zone to the line transition segment.
In one embodiment of the present invention, a width of the line transition segment is in a range of 0.08 mm to 0.12 mm.
In one embodiment of the present invention, the width of the line transition segment is 0.1 mm.
In one embodiment of the present invention, the array substrate further includes an organic insulating elastic layer disposed on the bending pathway.
In one embodiment of the present invention, an organic insulating elastic protrusion is disposed on a contact surface between the organic insulating elastic layer and the peripheral trace.
In one embodiment of the present invention, the organic insulating elastic protrusion has a hemispherical, trapezoid, stepped, or toothed shape.
In one embodiment of the present invention, the array substrate further includes at least one conductive pad disposed on the peripheral trace on both sides of the bending pathway.
In one embodiment of the present invention, the conductive pad is an organic conductive pad.
In one embodiment of the present invention, a width of the conductive pad along a direction perpendicular to the longitudinal axis of the peripheral trace is 2-10 times of a width of the peripheral trace.
In one embodiment of the present invention, the array substrate further includes an external control chip bonded on the bonding area of the trace segment, and the array substrate is folded along the bending pathway to have the external control chip located at the side of the second surface of the flexible substrate.
In one embodiment of the present invention, the bending pathway is arranged in a shape of a meshed grid.
A display panel including an array substrate, in which the array substrate includes a flexible substrate including a first surface and a second surface opposite to the first surface, the first surface of the flexible substrate includes a display zone and a non-display zone, the non-display zone is located at a periphery of the display zone; a peripheral trace disposed on a trace segment of the non-display zone; a bending pathway disposed between the trace segment and the display zone; the array substrate is folded along the bending pathway and the peripheral trace is located at a side of the second surface of the flexible substrate.
In one embodiment of the present invention, the array substrate further includes a gate driving circuitry disposed on the trace segment, and the array substrate is folded along the bending pathway to have the gate driving circuitry located at the side of the second surface of the flexible substrate.
In one embodiment of the present invention, the array substrate further includes an external control chip bonded on the bonding area of the trace segment, and the array substrate is folded along the bending pathway to have the external control chip located at the side of the second surface of the flexible substrate.
In one embodiment of the present invention, the array substrate further includes an organic insulating elastic layer disposed on the bending pathway.
The present application provides an array substrate and a display panel, and the peripheral trace is located on the back side of the display zone by folding the array substrate along the bending pathway to increase the area of the display zone in the displaying screen.
DESCRIPTION OF DRAWINGS
FIG. 1 is a schematic view of an array substrate before folding according to an embodiment of the present application;
FIG. 2 is a schematic view of the array substrate of FIG. 1 after being folded;
FIG. 3 is a schematic view of the back side of the array substrate shown in FIG. 2;
FIG. 4 is a first partial enlarged view of the array substrate of FIG. 1;
FIG. 5 is a cross-sectional view of the array substrate of FIG. 4 taken along the line A-A;
FIG. 6 is a schematic cross-sectional view of the array substrate shown in FIG. 5 folded along a bending pathway;
FIG. 7 is a cross-sectional view of the array substrate of FIG. 4 taken along the line B-B;
FIG. 8 is a second partial enlarged view of the array substrate of FIG. 1;
FIG. 9 is a cross-sectional view of the array substrate of FIG. 8 taken along the line C-C; and
FIG. 10 is a cross-sectional view of the array substrate of FIG. 8 taken along the line D-D.
LEGENDS IN THE FIGURES
100 flexible substrate, 102 first surface, 104 second surface, 102 a display zone, 102 a′ non-display zone, 103 bonding area, 1021 first corner, 1022 second corner, 1023 third corner, 1024 fourth corner, 1025 first main trace segment, 1026 second main trace segment, 1027 third main trace segment, 1028 fourth main trace segment, 110 peripheral trace, 120 a bending pathway, 120 organic insulating elastic layer, 121 organic insulating elastic protrusion, 130 data line, 140 scan line, 150 gate driving circuitry, 160 transition trace, 160 a line transition segment, 170 conductive pad, 11 first conductive layer, 12 first insulation layer, 13 second conductive layer, 14 second insulation layer, 15 first transition pad, and 16 second transition pad.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
In order to illustrate the technical solutions of the present disclosure or the related art in a clearer manner, the drawings desired for the present disclosure or the related art will be described hereinafter briefly. Obviously, the following drawings merely relate to some embodiments of the present disclosure. For the skilled persons of ordinary skill in the art without creative effort, the other embodiments obtained thereby are still covered by the present invention.
Referring to FIG. 1, FIG. 2, and FIG. 3, FIG. 1 is an array substrate according to an embodiment of the present application, FIG. 2 is a schematic view of the array substrate of FIG. 1 after being folded, and FIG. 3 is a schematic view of the back side of the array substrate shown in FIG. 2. The array substrate shown in FIG. 1 includes a flexible substrate 100 including a first surface 102 and a second surface 104 opposite to the first surface 102, wherein the first surface 102 of the flexible substrate 100 includes a display zone 102 a and a non-display zone 102 a′, and the non-display zone 102 a′ is located at a periphery of the display zone; a peripheral trace 110 disposed on a trace segment of the non-display zone 102 a′; a bending pathway 120 a disposed between the trace segment and the display zone 102 a; wherein the array substrate is folded along the bending pathway 120 a and the peripheral trace 110 is located at a side of the second surface 104 of the flexible substrate 100.
The aforementioned array substrate is folded along the bending pathway so that the peripheral trace is located on the back side of the display zone to increase the area of the display zone of the displaying screen.
In this embodiment, the array substrate is a thin film transistor array substrate, and the substrate is a flexible substrate 100 to make the array substrate to have foldability. The flexible substrate 100 can be made of polyimide (PI), polyethylene terephthalate (PET) or other flexible materials.
The first surface 102 of the flexible substrate 100 has a display zone 102 a and a non-display zone 102 a′, and the display zone 102 a is provided with a plurality of data lines 130 and a plurality of scan lines 140 that intersect each other perpendicularly. A plurality of thin film transistors (not shown) are disposed in a region where the plurality of data lines 130 and the plurality of scan lines 140 are intersected, each of the scan lines 140 is connected to the gate of the thin film transistor to input a scan signal to the thin film transistor, and each of the data lines 130 is connected to a source of the thin film transistor to input a data signal to the thin film transistor. Manufacturing the thin film transistor in the display zone 102 a includes the following steps:
forming a first conductive layer on the first surface 102 of the flexible substrate 100, patterning the first conductive layer in the display zone 102 a to form a plurality of gates;
forming a first insulation layer on of the first surface 102;
forming a patterned channel layer on the first surface 102;
forming a second insulation layer on the first surface 102 and patterning the second insulation layer in the display zone 102 a to form at least one through via on the second insulation layer;
forming a second conductive layer on the first surface 102 and patterning the second conductive layer in the display zone 102 a to form a plurality of source/drain electrodes, and the source/drain electrodes are electrically connected to the patterned channel layer by the through via on the second insulation layer.
It should be noted that, in the process of forming a thin film transistor in the display zone 102 a, a first conductive layer, a first insulation layer, a second conductive layer, and a second insulation layer are sequentially formed in the non-display zone 102 a′ at the same time to form other lines in the non-display zone 102 a′.
The peripheral trace 110 is disposed in the trace segment of the non-display zone 102 a′, and the peripheral trace 110 is disposed around the display zone 102 a. The peripheral trace includes, but is not limited to, a power supply voltage (voltage drain-drain, VDD) trace, a ground voltage (voltage source-source, VSS) trace, a clock (CLK) trace, an external clock (XCLK) trace. The VDD trace, the VSS trace, the CLK trace, and the XCLK trace are formed by patterning the second conductive layer in the non-display zone 102 a′, that is, the second conductive layer is the conductive layer forming a source/drain electrode of the thin film transistor in the display zone 102 a.
The bending pathway 120 a is located at the periphery of the display zone 102 a, and the bending pathway is arranged in a shape of a meshed grid. In other embodiments, the bending pathway may also be other structures, for example, the bending pathway is a stripe and is respectively located on at least one side of the array substrate. The peripheral traces 110 located in the trace segment of the non-display area 102 a′ are disposed on the second surface 104 of the flexible substrate 100 along the meshed grid folding channel. That is, on the first surface 102 of the flexible substrate 100 (the surface of the displaying screen of the array substrate) only has the display zone 102 a, and the front view of the array substrate after being folded along the bending pathway 120 a is as shown in FIG. 2, and the back side of the array substrate after being folded along the bending pathway 120 a is as shown in FIG. 3.
For the non-display zone 102 a′, the meshed grid shape bending pathway 120 a divides it into 8 regions, including a first corner 1021, a second corner 1022, a third corner 1023, a fourth corner 1024, a first main trace segment 1025 located between the first corner 1021 and the second corner 1022, a second main trace segment 1026 located between the third corner 1023 and the fourth corner 1024, a third main trace segment 1027 located between the first corner 1021 and the third corner 1023, and a fourth main trace segment 1028 located between the second corner 1022 and the fourth corner 1024.
Further, the array substrate further includes a gate driving circuitry 150, ex. a gate on array (GOA). The gate driving circuitry 150 is disposed in the trace segment, and is folded along the bending pathway 120 a such that the gate driving circuitry 150 is located on the side of the second surface 104 of the flexible substrate 100. Specifically, the gate driving circuitry 150 is disposed in the third main trace segment 1027 and the fourth main trace segment 1028, and the two ends of each scan line 140 in the display zone 102 a are respectively connected to the gate driving circuitry 150, that is, each scan line 140 is input the scan/driving signal through both ends. In other embodiments, the gate driving circuitry 150 can also be disposed in the third main trace segment 1027 or the fourth main trace segment 1028, that is, each scan line 140 inputs a driving signal through one end. In addition, the gate driving circuitry 150 is electrically connected to the peripheral trace 110. The gate driving circuitry 150 is fabricated in the same layer as the scan line 140 of the thin film transistor in the display zone 102 a.
Referring to FIG. 1, the array substrate further includes an external control chip 1029, and the external control chip 1029 is bound to the bonding area 103 of the trace segment, and the array substrate is folded along the bending pathway 120 a so that the external control chip 1029 is located at the second surface 104 of the flexible substrate 100. The external control chip 1029 includes a data driving control chip for outputting a driving signal to the data line and a chip for inputting a control signal to the peripheral trace 110, and the data line 130 and the peripheral trace 110 are extended to the bonding area 103 and are electrically connected to the external control chip 1029 through a flexible printed circuit (FPC). Specifically, the external control chip 1029 bound to the bonding area 103 is located in the second main trace segment 1026.
In order to prevent the critical lines (including the scan line and the data line, etc.) in the display zone 102 a extending into the bending pathway 120 a from being broken during the folding process of the array substrate, the array substrate further includes a transition trace 160. The transition trace 160 is disposed in the line transition segment 160 a, the line transition segment 160 a is located between the bending pathway 120 a and the display zone 102 a. The line transition segment 160 a has a width in a range about from 0.08 mm to 0.12 mm, for example, the line transition segment 160 a has a width of 0.1 mm. Even if the transition trace 160 is added to the first surface 102 a of the flexible substrate 100, the displaying area occupied the display zone 102 a is still as high as 99%.
Referring to FIG. 4 and FIG. 5, FIG. 4 is a first partial enlarged view of the array substrate of FIG. 1, and FIG. 5 is a cross-sectional view of FIG. 4 taken along the line A-A. As shown in FIG. 4, the array substrate further includes at least one conductive pad 170 disposed on the peripheral trace 110 on both sides of the bending pathway 120 a. The conductive pad 170 is an organic conductive layer, and the width d of the conductive pad 170 in a direction perpendicular to the longitudinal peripheral trace 110 is greater than the width of the peripheral trace 110. For example, the width d of the conductive pad along a direction perpendicular to the longitudinal axis of the peripheral trace 110 is 2-10 times of a width of the peripheral trace 110. In order to adapt the width of the conductive pad 170 to be larger than the width of the peripheral trace 110, the spacing of the adjacent two peripheral traces 110 is correspondingly increased in the first corner 1021, and the distance between the adjacent two peripheral traces 110 is gradually small from the entrance of the first main trace segment 1025. The conductive pad 170 is formed in the second insulation layer 14 and is located on the peripheral trace 110. The second insulation layer 14 is the second insulation layer in the non-display zone 102 a′. The thickness of the conductive pad 170 is the same as the thickness of the second insulation layer 14. It can be understood that the conductive pad 170 can also be located on the peripheral trace 110 above the bending pathway 120 a.
In addition, the array substrate further includes an organic insulating elastic layer 120, and the organic insulating elastic layer 120 is disposed in the bending pathway 120 a. When the array substrate folded along the bending pathway 120 a, the organic insulating elastic layer 120 is resilient so that it provides the lengthening required for bending during the folding process. Material of the organic insulating elastic layer 120 is a rubber material, such as ethylene propylene diene monomer rubber or natural rubber. The bending pathway 120 a is formed in the channel of the first insulation layer 12, and forms an organic insulating elastic layer 120 in the bending pathway 120 a in the first insulation layer 12 before forming the source and drain electrodes of the thin film transistor in the display zone 102 a. The first insulation layer 12 is the first insulation layer in the non-display zone 102 a′.
Further, a surface of the organic insulating elastic layer 120 in contact with the peripheral trace 110 is provided with an organic insulating elastic protrusion 121, which is deformed to further provide the lengthening required for the organic insulating elastic layer 120 when the organic insulating elastic protrusion 121 is folded. Moreover, the peripheral trace 110 overlying the organic insulating elastic protrusion 121 is also deformed to provide the lengthening required for the peripheral trace 120 to be bent when the peripheral trace 110 is folded. Therefore, the organic insulating elastic protrusion 121 on the organic insulating elastic layer 120 can prevent the peripheral trace 120 from breaking when folded. The organic insulating elastic protrusion 121 and the organic insulating elastic layer 120 can be produced by the same process or by different processes. The organic insulating elastic protrusion 121 may be a hemispherical, trapezoid, stepped, or toothed shape. It can be understood that the surface of the organic insulating elastic layer 120 in contact with the peripheral trace 110 can also be provided with at least one groove so that the peripheral trace 110 is also deformed to provide the lengthening required for the peripheral trace 110 to be bend when the peripheral trace 110 is folded.
Referring to FIG. 6, FIG. 6 is a schematic cross-sectional view of the array substrate shown in FIG. 5 folded along the bending pathway. The organic insulating elastic protrusion 121 is deformed after stretching so that the peripheral trace 110 is also deformed, thereby to avoid the breakage of the peripheral trace 110 during stretching. The conductive pads 170 on the peripheral trace 110 on both sides of the bending pathway 120 a are in contact with each other to further ensure that the peripheral traces on both sides of the bending pathway 120 a can be electrically connected.
Referring to FIG. 4 and FIG. 7, FIG. 7 is a cross-sectional view of FIG. 4 taken along line B-B. The scan line 140 in the display zone 102 a is connected to the gate driving circuitry 150 located in the trace segment by the transition trace 160. The second conductive layer 13 is electrically connected to the gate driving circuitry 150 and the first conductive layer 11 by the through via in the first insulation layer 12. When the second conductive layer 13 extends to the bending pathway 120 a, the second conductive layer 13 is located on the surface of the organic insulating elastic layer 120. The surface of the organic insulating elastic layer 120 in contact with the second conductive layer 13 is provided with an organic insulating elastic protrusion 121 which is deformed to further provide the lengthening required for the bending of the organic insulating elastic layer 120 when folded. Moreover, the second conductive layer 13 overlying the organic insulating elastic protrusion 121 is also deformed to provide the lengthening required for the second conductive layer 13 to be bend during folding.
As shown in FIG. 7, the transition trace 160 includes the first conductive layer 11, the first insulation layer 12, and the second conductive layer 13 which are sequentially disposed on the first surface 102 of the flexible substrate 100. Specifically, the first conductive layer 11 is a scan line 140 extending from the display zone 102 a to the line transition segment 160 a, the first insulation layer 12 is the first insulation layer in the non-display zone 102 a′, and the second conductive layer 13 is the second conductive layer in the non-display zone 102 a′. A surface of the second conductive layer 13 also covered by the second insulation layer 14, which is the second insulation layer in the non-display zone 102 a′.
Referring to FIG. 8 and FIG. 9, FIG. 8 is a second partial enlarged view of the array substrate of FIG. 1, and FIG. 9 is a cross-sectional view of the array substrate of FIG. 8 taken along the line C-C. The peripheral trace 110 extends directly from the third main trace segment 1027 to the third corner 1023, and the surface of the organic insulating elastic layer 120 in contact with the peripheral trace 110 is provided with the organic insulating elastic protrusion 121, so that the peripheral trace 110 can be elongated to avoid breakage during the folding process.
Referring to FIG. 8 and FIG. 10, FIG. 10 is a cross-sectional view of the array substrate of FIG. 8 taken along the line D-D. The data line 130 extends through the bending pathway 120 a to the bonding area 103, and the data line 130 needs the transition trace 160 to change the line before passing through the bending pathway 120 a. Specifically, the data line 130 is connected to the first transition pad 15 by the through via on the first insulation layer 12. The second conductive layer 13 extending from the line transition segment 160 a to the trace segment is electrically connected to the first transition pad 15 and the second transition pad 16 by the through via on the first insulation layer 12. After the second conductive pad 16 is connected to the second conductive layer 13 of the trace segment by the through via in the first insulation layer 12, the second conductive layer 13 of the trace segment extends to the bonding area 103. The first transition pad 15 is located in the line transition segment 160 a, the second transition pad 16 is located in the trace segment, and the first transition pad 15 and the second transition pad 16 are both formed by patterning the first conductive layer 11 outside the display zone 102 a. In addition, the surface of the organic insulating elastic layer 120 in contact with the second conductive layer 13 is provided with the organic insulating elastic protrusion 121 so that the second conductive layer 13 can be elongated to avoid breakage during folding.
Another object of the present application is to provide a display panel including the above array substrate.
Further, the display panel further includes an anode, a light emitting layer, and a cathode which are sequentially formed on the array substrate.
Embodiments of the present invention have been described, but not intending to impose any unduly constraint to the appended claims. Any modification of equivalent structure or equivalent process made according to the disclosure and drawings of the present invention, or any application thereof, directly or indirectly, to other related fields of technique, is considered encompassed in the scope of protection defined by the claims of the present invention.

Claims (17)

What is claimed is:
1. An array substrate, comprising:
a flexible substrate comprising a first surface and a second surface opposite to the first surface, wherein the first surface of the flexible substrate comprises a display zone and a non-display zone, and the non-display zone is located at a periphery of the display zone;
a peripheral trace disposed on a trace segment of the non-display zone;
a bending pathway disposed between the trace segment and the display zone; and
an organic insulating elastic layer disposed on the bending pathway;
wherein the array substrate is folded along the bending pathway to cause the peripheral trace located at a side of the second surface of the flexible substrate; and
wherein an organic insulating elastic protrusion is disposed on a contact surface between the organic insulating elastic layer and the peripheral trace.
2. The array substrate according to claim 1, wherein the array substrate further comprises a transition trace disposed on a line transition segment, and the line transition segment is located between the bending pathway and the display zone.
3. The array substrate according to claim 2, wherein the transition trace comprises a first conductive layer, a first insulation layer, and a second conductive layer which are sequentially disposed on the first surface of the flexible substrate.
4. The array substrate according to claim 3, wherein the array substrate further comprises a gate driving circuitry disposed on the trace segment, and the array substrate is folded along the bending pathway to have the gate driving circuitry located at the side of the second surface of the flexible substrate.
5. The array substrate according to claim 4, wherein the second conductive layer is electrically connected to the gate driving circuitry and the first conductive layer through at least one through via in the first insulation layer.
6. The array substrate according to claim 5, wherein the first conductive layer is a scan line extending from the display zone to the line transition segment.
7. The array substrate according to claim 2, wherein a width of the line transition segment is in a range of 0.08 mm to 0.12 mm.
8. The array substrate according to claim 7, wherein the width of the line transition segment is 0.1 mm.
9. The array substrate according to claim 1, wherein the organic insulating elastic protrusion has a hemispherical, trapezoid, stepped, or toothed shape.
10. The array substrate according to claim 1, wherein the array substrate further comprises conductive pads disposed on the peripheral trace on both sides of the bending pathway.
11. The array substrate according to claim 10, wherein the conductive pads are organic conductive pads.
12. The array substrate according to claim 10, wherein a width of any of the conductive pads along a direction perpendicular to the longitudinal axis of the peripheral trace is 2-10 times of a width of the peripheral trace.
13. The array substrate according to claim 1, wherein the array substrate further comprises an external control chip bonded on a bonding area of the trace segment, and the array substrate is folded along the bending pathway to have the external control chip located at the side of the second surface of the flexible substrate.
14. The array substrate according to claim 1, wherein the bending pathway is arranged in a shape of a meshed grid.
15. A display panel, comprising an array substrate, the array substrate comprising:
a flexible substrate comprising a first surface and a second surface opposite to the first surface, wherein the first surface of the flexible substrate comprises a display zone and a non-display zone, the non-display zone is located at a periphery of the display zone;
a peripheral trace disposed on a trace segment of the non-display zone;
a bending pathway disposed between the trace segment and the display zone; and
an organic insulating elastic layer disposed on the bending pathway;
wherein the array substrate is folded along the bending pathway to cause the peripheral trace located at a side of the second surface of the flexible substrate; and
wherein an organic insulating elastic protrusion is disposed on a contact surface between the organic insulating elastic layer and the peripheral trace.
16. The display panel according to claim 15, wherein the array substrate further comprises a gate driving circuitry disposed on the trace segment, and the array substrate is folded along the bending pathway to have the gate driving circuitry located at the side of the second surface of the flexible substrate.
17. The display panel according to claim 15, wherein the array substrate further comprises an external control chip bonded on a bonding area of the trace segment, and the array substrate is folded along the bending pathway to have the external control chip located at the side of the second surface of the flexible substrate.
US16/467,044 2018-12-13 2019-03-12 Array substrate and display panel having organic insulating elastic layer disposed on bending pathway Active 2040-08-12 US11322525B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201811524188.4 2018-12-13
CN201811524188.4A CN109410764B (en) 2018-12-13 2018-12-13 Array substrate and display panel
PCT/CN2019/077881 WO2020118931A1 (en) 2018-12-13 2019-03-12 Array substrate and display panel

Publications (2)

Publication Number Publication Date
US20210384230A1 US20210384230A1 (en) 2021-12-09
US11322525B2 true US11322525B2 (en) 2022-05-03

Family

ID=65458989

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/467,044 Active 2040-08-12 US11322525B2 (en) 2018-12-13 2019-03-12 Array substrate and display panel having organic insulating elastic layer disposed on bending pathway

Country Status (3)

Country Link
US (1) US11322525B2 (en)
CN (1) CN109410764B (en)
WO (1) WO2020118931A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109410764B (en) * 2018-12-13 2020-10-27 武汉华星光电半导体显示技术有限公司 Array substrate and display panel
CN110600506B (en) * 2019-08-21 2022-08-23 武汉华星光电半导体显示技术有限公司 Display panel and display device
CN110534027A (en) 2019-10-09 2019-12-03 昆山工研院新型平板显示技术中心有限公司 The production method of display panel, display device and display panel
CN112987957B (en) * 2019-12-17 2025-09-05 群创光电股份有限公司 electronic devices
CN113012570B (en) * 2019-12-20 2023-06-20 京东方科技集团股份有限公司 Array substrate, display panel
CN111403467B (en) * 2020-03-31 2022-09-13 武汉天马微电子有限公司 Display substrate, display panel and display device
CN111599302B (en) * 2020-06-30 2022-10-21 上海天马微电子有限公司 Display panel and display device
CN112071190A (en) * 2020-09-25 2020-12-11 武汉天马微电子有限公司 Display panel and display device
CN113219737B (en) * 2021-04-20 2022-06-07 绵阳惠科光电科技有限公司 Display panel and display device
CN114020179B (en) * 2021-10-25 2024-07-30 惠州华星光电显示有限公司 Electromagnetic touch display panel

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102855821A (en) 2011-06-30 2013-01-02 三星显示有限公司 Flexible display panel and display apparatus including the flexible display panel
KR20140050453A (en) 2012-10-19 2014-04-29 삼성전자주식회사 Multi-display apparatus
US20140132553A1 (en) * 2012-11-14 2014-05-15 Samsung Display Co., Ltd. Flexible touch screen panel and flexible display device with the same
US20150099954A1 (en) * 2012-06-29 2015-04-09 Roche Diagnostics Operations, Inc. Sensor elements for detecting an analyte in a body fluid sample as well as methods of making the same
US20160035812A1 (en) * 2014-07-31 2016-02-04 Lg Display Co., Ltd. Flexible display device with wire having reinforced portion and manufacturing method for the same
US20160363795A1 (en) 2015-06-10 2016-12-15 Samsung Display Co., Ltd. Display panel and display device including the same
CN106951125A (en) 2017-03-30 2017-07-14 上海天马微电子有限公司 Touch display panel and touch display device
CN106972030A (en) 2017-03-30 2017-07-21 京东方科技集团股份有限公司 A kind of preparation method of flexible display panels, display device and flexible display panels
CN107017265A (en) 2016-01-27 2017-08-04 上海和辉光电有限公司 A kind of flexible display panels and preparation method thereof
CN207781091U (en) 2018-02-02 2018-08-28 京东方科技集团股份有限公司 A kind of flexible array substrate and flexible display apparatus
CN108598142A (en) 2018-06-28 2018-09-28 上海天马微电子有限公司 Flexible display substrate, flexible display panel and flexible display device
CN109410764A (en) 2018-12-13 2019-03-01 武汉华星光电半导体显示技术有限公司 Array substrate and display panel

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160370827A1 (en) * 2011-06-30 2016-12-22 Samsung Display Co., Ltd. Flexible display panel and display apparatus including the flexible display panel
US20190004569A1 (en) 2011-06-30 2019-01-03 Samsung Display Co., Ltd. Flexible display panel and display apparatus including the flexible display panel
CN102855821A (en) 2011-06-30 2013-01-02 三星显示有限公司 Flexible display panel and display apparatus including the flexible display panel
US20150099954A1 (en) * 2012-06-29 2015-04-09 Roche Diagnostics Operations, Inc. Sensor elements for detecting an analyte in a body fluid sample as well as methods of making the same
KR20140050453A (en) 2012-10-19 2014-04-29 삼성전자주식회사 Multi-display apparatus
US20140132553A1 (en) * 2012-11-14 2014-05-15 Samsung Display Co., Ltd. Flexible touch screen panel and flexible display device with the same
US20160035812A1 (en) * 2014-07-31 2016-02-04 Lg Display Co., Ltd. Flexible display device with wire having reinforced portion and manufacturing method for the same
US20160363795A1 (en) 2015-06-10 2016-12-15 Samsung Display Co., Ltd. Display panel and display device including the same
CN107017265A (en) 2016-01-27 2017-08-04 上海和辉光电有限公司 A kind of flexible display panels and preparation method thereof
CN106972030A (en) 2017-03-30 2017-07-21 京东方科技集团股份有限公司 A kind of preparation method of flexible display panels, display device and flexible display panels
US20180059862A1 (en) 2017-03-30 2018-03-01 Shanghai Tianma Micro-electronics Co., Ltd. Touch control display panel and touch control display device
CN106951125A (en) 2017-03-30 2017-07-14 上海天马微电子有限公司 Touch display panel and touch display device
US20190287433A1 (en) 2017-03-30 2019-09-19 Chengdu Boe Optoelectronics Technology Co., Ltd. Flexible display panel, display device, and method for manufacturing flexible display panel
CN207781091U (en) 2018-02-02 2018-08-28 京东方科技集团股份有限公司 A kind of flexible array substrate and flexible display apparatus
CN108598142A (en) 2018-06-28 2018-09-28 上海天马微电子有限公司 Flexible display substrate, flexible display panel and flexible display device
CN109410764A (en) 2018-12-13 2019-03-01 武汉华星光电半导体显示技术有限公司 Array substrate and display panel

Also Published As

Publication number Publication date
WO2020118931A1 (en) 2020-06-18
CN109410764B (en) 2020-10-27
US20210384230A1 (en) 2021-12-09
CN109410764A (en) 2019-03-01

Similar Documents

Publication Publication Date Title
US11322525B2 (en) Array substrate and display panel having organic insulating elastic layer disposed on bending pathway
US10644038B2 (en) Array substrate, display panel, and display device thereof
US10216307B2 (en) Touch panel, manufacturing method thereof and touch display device
US10268292B2 (en) Touch type liquid crystal display device
US20200303485A1 (en) Display panel and display device
CN107305757A (en) Display device
US10429681B1 (en) Structure of GOA circuit
US11199937B2 (en) Touch sensor having improved sensing sensitivity and display device including the same
CN106782122A (en) A kind of display panel and device
CN105097838B (en) Display panel and thin-film transistor array base-plate
TWI650596B (en) Tft substrate and display panel using the same
US9291847B2 (en) Pixel unit and TFT-LCD with touch function
KR20220129153A (en) display device
US10824260B1 (en) Touch display apparatus
US10817025B2 (en) Narrow-bezel display module and display device
CN102004361B (en) Pixel array
US10527895B2 (en) Array substrate, liquid crystal panel, and liquid crystal display
US20220291783A1 (en) Input sensing unit and display device having the same
US10459298B2 (en) Display device, array substrate and manufacturing method thereof
KR101944363B1 (en) Liquid crystal display device
US7710525B2 (en) Thin film transistor, fabrication method thereof, liquid crystal display panel device having the same, and fabrication method thereof
US20200117312A1 (en) Touch screen including an inspection line and a display device having the same
US20230087495A1 (en) Array substrate and liquid crystal display
CN110379820A (en) Thin film transistor (TFT) and GOA circuit
CN118715500A (en) Liquid crystal writing tablet and its repair method

Legal Events

Date Code Title Description
AS Assignment

Owner name: WUHAN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FENG, XIAOLIANG;REEL/FRAME:049386/0769

Effective date: 20181229

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4