[go: up one dir, main page]

US11633541B2 - Cartridge hold-up volume reduction - Google Patents

Cartridge hold-up volume reduction Download PDF

Info

Publication number
US11633541B2
US11633541B2 US16/794,689 US202016794689A US11633541B2 US 11633541 B2 US11633541 B2 US 11633541B2 US 202016794689 A US202016794689 A US 202016794689A US 11633541 B2 US11633541 B2 US 11633541B2
Authority
US
United States
Prior art keywords
cartridge
needle
delivery system
drug delivery
plunger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/794,689
Other versions
US20200179608A1 (en
Inventor
Maureen McCaffrey
David Nazzaro
Ian McLaughlin
Simon Kozin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Insulet Corp
Original Assignee
Insulet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Insulet Corp filed Critical Insulet Corp
Priority to US16/794,689 priority Critical patent/US11633541B2/en
Assigned to INSULET CORPORATION reassignment INSULET CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOZIN, Simon, NAZZARO, DAVID, McCAFFREY, Maureen, MCLAUGHLIN, IAN
Publication of US20200179608A1 publication Critical patent/US20200179608A1/en
Assigned to MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT reassignment MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INSULET CORPORATION
Application granted granted Critical
Publication of US11633541B2 publication Critical patent/US11633541B2/en
Assigned to MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT reassignment MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT SECURITY AGREEMENT SUPPLEMENT Assignors: INSULET CORPORATION
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/28Syringe ampoules or carpules, i.e. ampoules or carpules provided with a needle
    • A61M5/285Syringe ampoules or carpules, i.e. ampoules or carpules provided with a needle with sealing means to be broken or opened
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/24Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic
    • A61M5/2455Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic with sealing means to be broken or opened
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/24Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic
    • A61M5/2455Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic with sealing means to be broken or opened
    • A61M5/2466Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic with sealing means to be broken or opened by piercing without internal pressure increase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31565Administration mechanisms, i.e. constructional features, modes of administering a dose
    • A61M5/31566Means improving security or handling thereof
    • A61M5/31573Accuracy improving means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
    • A61M5/3293Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles characterised by features of the needle hub
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
    • A61M5/34Constructions for connecting the needle, e.g. to syringe nozzle or needle hub
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/20Arrangements for transferring or mixing fluids, e.g. from vial to syringe
    • A61J1/2089Containers or vials which are to be joined to each other in order to mix their contents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31511Piston or piston-rod constructions, e.g. connection of piston with piston-rod
    • A61M2005/31516Piston or piston-rod constructions, e.g. connection of piston with piston-rod reducing dead-space in the syringe barrel after delivery

Definitions

  • Embodiments generally relate to medication delivery. More particularly, embodiments relate to reducing hold-up volume for drug delivery systems.
  • An on-body delivery system is often used to deliver drug dosages to a user.
  • Many OBDSs use cartridges to hold a liquid drug that is expelled from the cartridge when a portion of the liquid drug is desired to be delivered to the user.
  • Many conventional OBDSs and associated cartridges are not capable of delivering all of the stored liquid drug to the user.
  • relatively significant amounts of the liquid drug can remain inside of the pre-filled cartridge when the OBDS completes full delivery. The undelivered amount of the liquid drug is wasted and for expensive drugs can increase costs to various parties, including the user. Accordingly, there is a need for an OBDS, drug delivery system and/or device, and/or cartridge having reduced amounts of a liquid drug remaining after delivery to reduce waste and reduce costs to various parties, including the user.
  • FIG. 1 A illustrates a first view of a conventional drug delivery system.
  • FIG. 1 B illustrates a second view of the conventional drug delivery system of FIG. 1 A .
  • FIG. 2 illustrates a first view of a first exemplary drug delivery system.
  • FIG. 3 illustrates a second view of the first exemplary drug delivery system.
  • FIG. 4 illustrates a second exemplary drug delivery system.
  • FIG. 5 illustrates a first view of a third exemplary drug delivery system.
  • FIG. 6 illustrates a second view of the third exemplary drug delivery system.
  • FIG. 7 illustrates a first view of a fourth exemplary drug delivery system.
  • FIG. 8 illustrates a second view of the fourth exemplary drug delivery system.
  • FIG. 9 illustrates a third view of the fourth exemplary drug delivery system.
  • FIG. 10 illustrates a fourth view of the fourth exemplary drug delivery system.
  • This disclosure presents various systems, components, and methods related to a drug delivery system and/or device.
  • Each of the systems, components, and methods disclosed herein provides one or more advantages over conventional systems, components, and methods.
  • the drug delivery systems include a cartridge configured to hold a liquid drug.
  • a cartridge stopper is positioned in a first portion of the cartridge having a first diameter and forms a first seal for the liquid drug.
  • a needle guide component is positioned within the cartridge stopper.
  • a needle is positioned within a central opening of the needle guide.
  • a plunger is positioned in a second portion of the cartridge having a second diameter, with the second diameter larger than the first diameter. The plunger forms a second seal for the liquid drug.
  • the plunger includes a fluid path pocket facing and aligned with the central opening of the needle guide component. The needle pierces the cartridge stopper to be coupled to the liquid drug.
  • the plunger is driven toward the cartridge stopper to expel the liquid drug from the cartridge through the needle.
  • An end of the needle can be positioned within the fluid path pocket when the plunger is pushed against the cartridge stopper, ensuring that only a small volume of the liquid drug remains in the cartridge (e.g., within a portion of the fluid path pocket) when delivery of the liquid drug is completed. As a result, a reduced amount of the liquid drug remains within the cartridge when delivery is complete.
  • FIG. 1 A illustrates a conventional drug delivery system 100 .
  • the drug delivery system 100 includes a drug container or cartridge 102 .
  • the cartridge 102 can hold or store a liquid drug 104 .
  • a plunger 106 can be positioned within the cartridge 102 .
  • a needle 108 can be positioned within the cartridge 102 and coupled to the liquid drug 104 .
  • the plunger 106 can be moved in a direction 110 toward the needle 108 . In doing so, the plunger 106 can force a portion of the liquid drug 104 through the needle 108 and out of the cartridge 102 . As the plunger 106 moves closer to the needle 108 , more of the liquid drug 104 can be expelled from the cartridge 102 .
  • FIG. 1 B illustrates a subsequent stage of operation of the drug delivery system 100 relative to the depiction of the drug delivery system 100 in FIG. 1 A .
  • the plunger 106 is positioned adjacent to a neck of the cartridge 102 and cannot be advanced any further in the direction 110 .
  • a portion of the liquid drug 104 remains in the cartridge 102 as shown in FIG. 1 B . That is, the liquid drug 104 remaining in the cartridge 102 cannot be expelled from the cartridge 102 by the plunger 106 .
  • the amount of space occupied by this portion of the liquid drug 104 that remains effectively trapped in the cartridge 102 can be considered to be a hold-up volume (or portion thereof) of the cartridge 102 and/or the drug delivery system 100 .
  • the entire fluid path e.g., the needle
  • the entire fluid path can also be considered to contribute to hold-up and/or to contribute to the hold-up volume of the system.
  • Hold-up volume can represent the amount of space that can be occupied by a liquid drug that cannot be expelled and can include the volume of liquid drug that cannot be expelled. As shown in FIGS. 1 A and 1 B , the arrangement and shapes of the components of the drug delivery system 100 contribute to the size and shape of the resulting hold-up volume. Since the hold-up volume retains a portion of the liquid drug 104 that cannot be expelled, reduction and minimization of the hold-up volume is desirable. In general, the hold-up volume represents a wasted or unused portion of the liquid drug 104 . For very expensive drugs, the wasted amount of the liquid drug 104 can be very costly, which can be passed along to the user, insurance company, or other purchaser of the drug delivery system 100 .
  • the amount of liquid drug 104 used to fill the cartridge 102 may be greater than the amount of liquid drug 104 that corresponds to the dose of the user.
  • this “over-filling” of the liquid drug 104 for the user can add costs to the drug delivery system 100 .
  • air can be introduced into the drug delivery system 100 during typical filling processes associated with a pre-filled device such as the cartridge 102 and/or the drug delivery system 100 .
  • the introduced air is typically addressed in a number of ways. For example, the air may be purged out, which can add complexity and cost to the drug delivery system and/or burden on the user. Alternatively, the air can be delivered to the user. Lastly, the air can be trapped within the drug delivery device 100 .
  • a body-worn device e.g., an OBDS
  • OBDS body-worn device
  • a liquid drug e.g., within the cartridge 102 holding the liquid drug 104
  • gravity may cause the heavier liquid drug out of the device prior to the air.
  • the air may be delivered first and a portion of the liquid drug may trapped within the device as part of the hold-up volume. Because of these various orientations of the body-worn device and their impact on whether air or liquid drug will be delivered to the patient, embodiments as described herein improve dose accuracy by reducing hold-up volume.
  • Dose accuracy can be affected when the ratio of hold-up volume to fill volume exceeds approximately 3-5%, with the dose accuracy being further negatively affected as this ration increases. For example, if a dose within 5% of 1 mL of a drug is desired using a device having a hold-up volume of 0.2 mL, then the desired dose accuracy is not possible. Accordingly, in addition to reducing wastes, it is desired to reduce hold-up volumes to achieve desired dosing accuracies and/or to achieve industry standard dose accuracy requirements.
  • FIG. 2 illustrates a first exemplary drug delivery system 200 for providing a reduced hold-up volume.
  • the drug delivery system 200 can efficiently expel the liquid drug it contains while reducing amounts of the liquid drug retained by the drug delivery system 200 after use.
  • the reduced hold-up volume provided by the drug delivery system 200 can improve dosing accuracy.
  • FIG. 2 can represent a cross-sectional view of the drug delivery system 200 .
  • the drug delivery system 200 can provide a ratio of hold-up volume to fill volume that is less 5% or less than 3%.
  • the drug delivery system includes a drug container or cartridge 202 .
  • the cartridge 202 can be an International Organization for Standardization (ISO) standard cartridge 202 .
  • the cartridge 202 can be a custom design or customized cartridge 202 .
  • the cartridge 202 can comprise any suitable material such as, for example, metal, plastic, or glass, or any combination thereof.
  • the cartridge 202 can include a main body component 204 , a neck component 206 , and a top component 208 .
  • the cartridge 202 can generally be cylindrically-shaped with a diameter of the main body component 204 being substantially constant and larger than a diameter of the top component 208 .
  • the neck component 206 can have a variable diameter that transitions from a diameter corresponding to the diameter of the main body component 204 to the diameter of the top component 208 .
  • the variable diameter portion of the neck component 206 can be considered a transitional portion of the cartridge 202 where the wider main body component 204 transitions to the narrower top component 208 .
  • the top component 208 can be sealed by a septum 210 and a crimp 212 .
  • the septum 210 can be positioned adjacent to and/or over the top component 208 (e.g., over an opening in the top component 208 ).
  • the crimp 212 can be positioned around the septum 210 and the top component 208 to tightly fit the septum 210 against the top component 208 .
  • the septum 210 can comprise any suitable material such as, for example, metal or plastic, or any combination thereof.
  • the crimp 212 can comprise any suitable material such as, for example, metal or plastic, or any combination thereof.
  • the septum 210 and the crimp 212 can form at least one seal of the cartridge 202 .
  • a second seal of the cartridge 202 can be formed by a plunger 214 .
  • the plunger 214 can comprise any suitable material such as, for example, plastic or rubber.
  • the plunger 214 can be positioned within the main body component 204 .
  • the plunger 214 can be positioned into the main body component 204 through an opening 216 of the cartridge 202 .
  • a drug 218 can be stored or held in the cartridge 202 .
  • the drug 218 can be a liquid drug.
  • the drug 218 can be any therapeutic agent and/or medicine.
  • the drug 218 can be stored within the main body component 204 .
  • the plunger 214 can be positioned to retain or seal the liquid drug 218 within the cartridge 202 .
  • the drug delivery system 200 can also include a cartridge stopper 220 .
  • the cartridge stopper 220 can be positioned within any portion of the main body component 204 and/or the neck component 206 . In various embodiments, the cartridge stopper 220 can be positioned within a portion of the neck component 206 and an adjacent portion of the main body component 204 .
  • the cartridge stopper 220 can include a first side 222 that is substantially flat or planar. The first side 222 can be coupled to the liquid drug 218 and can be facing the plunger 214 . The first side 222 can include a fluid path pocket 224 .
  • the fluid path pocket 224 can comprise a hole or opening within the cartridge stopper 220 , extending from the first side 222 into the cartridge stopper 220 .
  • the fluid path pocket 224 can be positioned at an approximate center of the cartridge stopper 220 (e.g., aligned with a center of the first side 222 and/or aligned with a central axis of the cartridge stopper 220 ).
  • a second side 226 of the cartridge stopper 220 can be shaped to fit within the transition region of the neck component 206 .
  • the second side 226 can face the top component 208 of the cartridge 202 .
  • the second side 226 can be shaped to taper from a relatively wider diameter (e.g., a diameter of the main body component 204 ) to a relatively narrower diameter (e.g., a diameter of the narrowest portion of the neck component 206 ).
  • the cartridge stopper 220 can also form a seal for the liquid drug 218 as shown in FIG. 2 .
  • the cartridge stopper 220 can be generally cylindrical-shaped and can be formed of any suitable material such as, for example, a plastic or rubber.
  • an outer portion of the cartridge stopper 220 can include sealing features (e.g., sealing glands).
  • the cartridge stopper 220 can include any number of such sealing features that can be varied based on application.
  • the liquid drug 218 is retained within the cartridge 202 by seals provided by the cartridge stopper 220 and the plunger 214 .
  • the drug delivery system 200 can further include a needle insertion guide 228 .
  • the needle insertion guide 228 can be generally cylindrically-shaped and can be positioned within the top component 208 and the neck component 206 .
  • the needle insertion component 228 can comprise any suitable material such as, for example, metal, stainless steel, plastic, or a polymer, or any combination thereof.
  • the needle insertion guide 228 can include an opening or hole 230 .
  • the opening 230 can extend along an entire length of the needle insertion guide 228 .
  • the opening 230 can provide an area for a needle 232 to be guided through the top component 208 and the neck component 206 .
  • the needle 232 can be inserted through the crimp 212 and the septum 210 and into the opening 230 of the needle insertion guide 228 .
  • the needle 232 can then be inserted further into the cartridge 202 by subsequently piercing the cartridge stopper 220 .
  • an end of the needle 232 can be inserted so as to be positioned within the fluid path pocket 224 .
  • the plunger 214 can be used to expel the liquid drug 218 from the cartridge 202 .
  • the plunger 214 can be moved in a direction 234 toward the cartridge stopper 222 . In doing so, the liquid drug 218 can be forced out of the cartridge 202 through the needle 232 .
  • the plunger 214 can be advanced in the direction 234 until the plunger 214 is adjacent to the first side 222 of the cartridge stopper 220 .
  • the plunger 214 can be pressed up against the first side 222 without damaging the needle 232 or disturbing the positioning of the needle 232 .
  • the fluid path pocket 224 can be positioned with a center of the cartridge stopper 220 .
  • the fluid path pocket 224 can be aligned with the opening 230 of the needle insertion guide 228 . This opening 230 guides the needle 232 such that as the needle 232 is inserted further into the cartridge 202 , the needle 232 will reach the fluid path pocket 224 .
  • FIG. 2 can represent a stage of operation of the drug delivery system 200 prior to expelling the liquid drug 218 from the cartridge 202 (e.g., prior to activation of the drug delivery system 200 ).
  • the needle 232 has pierced the septum 210 and is partially inserted into the needle insertion guide 228 but has not yet reached or pierced the cartridge stopper 220 .
  • the plunger 214 can be advanced in the direction 234 to expel the liquid drug 218 from the cartridge 202 .
  • the main body component 204 of the cartridge 202 can have a first diameter that is substantially constant across an entire length of the main body component 204 .
  • the top component 208 and the neck component 206 of the cartridge 202 can have a smaller, second diameter.
  • the neck component 206 can further include a region that transitions from the smaller or narrower region or portion of the cartridge 202 of the second diameter to the larger or wider region or portion of the cartridge 202 of the first diameter.
  • the top component 208 and the neck component 206 can together be considered to be a necked area or the neck component 206 of the cartridge 202 —which transitions from the larger, first diameter to the smaller, second diameter.
  • FIG. 3 illustrates the drug delivery system 200 after expelling the liquid drug 218 from the cartridge 202 .
  • FIG. 3 can also represent a cross-sectional view of the drug delivery system 200 .
  • the needle 232 is inserted through the needle insertion guide 228 and the cartridge stopper 220 such that the end of the needle 232 is maintained within the fluid path pocket 224 .
  • the needle 232 can have a shape (e.g., a bend) and length that ensures the end of the needle 232 is precisely positioned within the fluid path pocket 224 as shown.
  • the plunger 214 is positioned against the first side 222 of the cartridge stopper 220 and does not contact the needle 232 or disturb the positioning of the needle 232 .
  • a hold-up volume 302 is shown in FIG. 3 as highlighting an approximate amount of the liquid drug 218 that remains inside the cartridge 202 (e.g., after no further liquid drug 218 can be expelled by the plunger 214 ). Comparing the hold-up volume 302 to the hold-up volume shown in FIG. 1 B reveals that the drug delivery system 200 significantly reduces the amount of the liquid drug 218 that remains inside of the cartridge 202 , while also improving dose delivery accuracy.
  • the cartridge stopper 220 As shown in FIG. 3 , with the addition of the cartridge stopper 220 , a portion of the neck component 206 is blocked off, thereby reducing the resulting hold-up volume 302 as discussed above. Positioning the cartridge stopper 220 within the necked area of the cartridge 202 can provide a significant reduction in hold-up volume and increase in dose delivery accuracy. The positioning of the cartridge stopper 220 can also increase positional stability and provide space savings. Due to the reduced hold-up volume 302 provided by the drug delivery system 200 , the drug delivery system 200 can deliver any air volume without affecting dose tolerance (e.g., if any air is trapped within the cartridge 202 and expelled by the plunger 214 ).
  • the smaller hold-up volume 302 reduces and minimizes any wasted or unused liquid drug 218 left within the cartridge 202 . As previously mentioned, reducing the amount of wasted liquid drug 218 may reduce the cost of the drug delivery system 200 for a user.
  • the drug delivery system 200 can be sterilized prior to use and being provided to a user in a variety of manners.
  • the drug delivery system 200 can be sterilized with the needle 232 inserted between the septum 210 and the cartridge stopper 220 (e.g., as depicted in FIG. 2 ). Sterilization in this manner can provide a seal on the needle 232 and can maintain sterility thereafter.
  • the drug delivery system 200 can be sterilized with the needle 232 partially inserted in the cartridge stopper 220 . Sterilization in this manner can also provide a seal on the needle 232 that can maintain sterility.
  • the drug delivery system 200 can be sterilized with the needle 232 completely removed from the cartridge 202 (i.e., separate from the cartridge assembly).
  • FIG. 4 illustrates a second exemplary drug delivery system 400 .
  • the drug delivery system 400 is substantially similar to the drug delivery system 200 in design and operation and represents an alternative design to the drug delivery system 200 .
  • the drug delivery system 400 can provide substantially the same benefits as the drug delivery system 200 as described above.
  • FIG. 4 can represent a cross-sectional view of the drug delivery system 400 .
  • the drug delivery system 400 can provide a ratio of hold-up volume to fill volume that is less 5% or less than 3%.
  • the drug delivery system 400 can include a cartridge stopper 402 having a fluid path pocket 404 on a first side and a second side having an extended portion 406 .
  • the extended portion 406 can extend further into the neck component 206 of the cartridge 202 .
  • a needle insertion guide 408 of the drug delivery system 400 can be substantially arranged and positioned within the top component 208 of the cartridge 202 .
  • This alternative design and arrangement of the cartridge stopper 402 and the needle insertion guide 408 (e.g., in comparison to the cartridge stopper 220 and the needle insertion guide 228 , respectively) can provide increased sealing capabilities and additional stability for the needle 232 .
  • the cartridge stopper e.g., the cartridge stopper 220 or 402
  • the needle insertion guide e.g., the needle insertion guide 228 and 408
  • the cartridge stopper and the needle insertion guide can be of any size and shape and can occupy any portions of the main body 204 , the neck component 206 , and/or the top component 208 .
  • FIG. 5 illustrates a third exemplary drug delivery system 500 for providing a reduced hold-up volume.
  • the drug delivery system 500 provides efficient delivery of a stored liquid drug.
  • FIG. 5 can represent a cross-sectional view of the drug delivery system 500 .
  • the drug delivery system 500 can provide a ratio of hold-up volume to fill volume that is less 5% or less than 3%.
  • the drug delivery system 500 can include many of the components depicted and described in relation to the drug delivery system 200 and can further include a cartridge stopper 502 , a plunger 504 , a needle insertion guide 506 , an optional secondary needle seal 508 , and a needle 510 .
  • the cartridge stopper 502 can be positioned within a portion of the main body component 204 and the neck component 206 .
  • the cartridge stopper 502 can have a first side 512 that is substantially planar or flat that can be coupled to the liquid drug 218 .
  • the cartridge stopper 502 can provide a first seal for the liquid drug 218 for containment within the cartridge 202 .
  • the cartridge stopper 502 can be generally cylindrical-shaped and can be formed of any suitable material such as, for example, a plastic or rubber.
  • the plunger 504 can be positioned within the main body component 204 .
  • the plunger 504 can include a fluid path pocket 514 .
  • the fluid path pocket 514 can comprise a hole or opening that extends partially into the plunger 504 from a first side or surface 516 of the plunger 504 .
  • the fluid path pocket 514 can be round or cylindrical in shape and can be centered about the plunger 504 (e.g., about a central axis of the plunger 504 ).
  • the plunger 504 can form a second seal for the liquid drug 218 for containment within the cartridge 202 .
  • the plunger 504 can be generally cylindrical-shaped and can be formed of any suitable material such as, for example, a plastic or rubber.
  • the needle insertion guide 506 can be positioned into the plunger 504 from a second side or surface 518 of the plunger 504 . In this way, the plunger 504 can provide stability for the needle insertion guide 506 .
  • the needle insertion guide 506 can include an opening or hole 520 that extends through the needle insertion guide 506 .
  • the opening 520 can be aligned with the fluid path pocket 514 and can provide a guide for stabilizing and orienting the needle 510 .
  • the needle insertion guide 506 can ensure that an end of the needle 510 can be positioned within the fluid path pocket 514 when the needle 510 is moved further in the direction 234 .
  • the needle insertion guide 506 can comprise any suitable material such as, for example, metal, stainless steel, plastic, or a polymer, or any combination thereof.
  • the optional secondary needle seal 508 can be positioned in the main body component 204 between the plunger 504 and needle insertion guide 506 and an end of the cartridge 202 .
  • the optional secondary needle seal 508 can comprise any suitable materials such as, for example, rubber, plastic, or a polymer, or any combination thereof.
  • the optional secondary needle seal 508 can provide a seal for the needle 510 for sterilization.
  • FIG. 5 can represent the drug delivery system 500 prior to activation or initiation of expelling the stored liquid drug 218 .
  • the end of the needle 510 can be positioned in the fluid path pocket 514 by having the needle 510 move in the direction 234 .
  • the needle 510 can pierce and traverse a portion of the plunger 504 between the needle insertion guide 506 and the fluid path pocket 514 in order to reach the fluid path pocket 514 .
  • the plunger 504 (and the needle insertion guide 506 and the needle 506 ) can be moved in the direction 234 .
  • the liquid drug 218 can be expelled out of the cartridge 202 through the needle 510 .
  • the drug delivery system 500 enables the liquid drug 218 to be expelled out of an opposite end of the cartridge 202 as compared to the end of the cartridge 202 from which the liquid drug 218 is expelled by the drug delivery system 200 .
  • the fluid path pocket 514 can be positioned within a center of the plunger 504 .
  • the fluid path pocket 514 can have any cross-sectional shape such as, for example, circular or rectangular.
  • the fluid path pocket 514 can have a depth 522 —that is, the fluid path pocket 514 can extend a distance 522 into the plunger 504 from the first surface 516 of the plunger 504 .
  • the needle insertion guide 506 can include a base component 524 and an extension component 526 .
  • the base component 524 can extend into the plunger 504 by a first distance 528 and the extension component 526 can extend into the plunger 504 by an additional second distance 530 beyond the first distance 528 .
  • the base component 524 can be substantially flush with the second surface 518 of the plunger 506 .
  • the needle insertion guide 506 can be arranged and/or shaped in different manners.
  • the needle insertion guide 506 can be positioned adjacent to the second surface 518 of the plunger 502 rather than being inserted into a portion of the plunger 504 .
  • the needle insertion guide 506 may be substantially cylindrical having a substantially uniform thickness.
  • FIG. 6 illustrates the drug delivery system 500 after expelling the liquid drug 218 from the cartridge 202 .
  • FIG. 6 can also represent a cross-sectional view of the drug delivery system 500 .
  • the needle 510 is inserted through the needle insertion guide 506 and the plunger 504 such that the end of the needle 510 is maintained within the fluid path pocket 514 .
  • the plunger 504 is positioned against the first side 512 of the cartridge stopper 502 without the cartridge stopper 502 contacting the needle 510 or disturbing the positioning of the needle 510 .
  • a hold-up volume 602 is shown in FIG. 6 as highlighting an approximate amount of the liquid drug 218 that remains inside of the cartridge 202 . Comparing the hold-up volume 602 to the hold-up volume shown in FIG. 1 B reveals that the drug delivery system 500 significantly reduces the amount of the liquid drug 218 that remains inside of the cartridge 202 , while also improving dose delivery accuracy.
  • the drug delivery system 500 can be sterilized prior to use and being provided to a user in a variety of manners.
  • the drug delivery system 500 can be sterilized with the needle 510 positioned within the needle insertion guide 506 but not coupled to the liquid drug 218 .
  • the optional secondary needle seal 508 can be used to maintain sterility of the needle 510 from the end positioned in the needle insertion guide 506 to the portion of the needle 510 adjacent the optional secondary needle seal 508 .
  • the drug delivery system 500 can be sterilized with the needle 510 partially inserted into the plunger 504 (e.g., with the end of the needle 510 positioned in the plunger 504 prior to reaching the fluid path pocket 514 ).
  • the drug delivery system 500 can be sterilized with the needle 510 inserted into the fluid path pocket 514 and coupled to the liquid drug 518 .
  • a needle seal at the opposite end of the needle can be used to seal the needle path.
  • the drug delivery system 500 by incorporating rear piercing of the plunger 504 , can reduce the overall size of the drug delivery system 500 by obviating the need for delivery mechanisms positioned near a front end of the cartridge 202 (e.g., near the top component 208 ).
  • the drug delivery system 500 as depicted in FIGS. 5 and 6 , can provided without the septum 210 and the crimp 212 .
  • FIG. 7 illustrates a fourth exemplary drug delivery system 700 .
  • the drug delivery system 700 can include certain features that are substantially similar to the drug delivery system 200 as shown.
  • the drug delivery system 700 can operate in a similar manner to the drug delivery system 200 while representing an alternative design to the drug delivery system 200 .
  • the drug delivery system 700 can provide substantially the same benefits as the drug delivery system 200 as described above.
  • FIG. 7 can represent a cross-sectional view of the drug delivery system 700 .
  • the drug delivery system 700 can provide a ratio of hold-up volume to fill volume that is less 5% or less than 3%.
  • the drug delivery system 700 includes a cartridge stopper 702 .
  • the cartridge stopper 702 can be formed from any suitable material such as, for example, plastic or rubber.
  • the cartridge stopper 702 can be positioned with a portion of the neck component 206 and/or the top component 208 .
  • the cartridge stopper 702 can be positioned so as not to extend beyond the position of the neck component 206 having a substantially constant diameter (i.e., to not be positioned within the transition region of the neck component 206 ).
  • the cartridge stopper 702 can be cylindrically-shaped to tightly fit within the diameter of the neck component 208 (e.g., the smallest diameter of the cartridge 202 ).
  • the cartridge stopper 702 can be positioned within the neck component 208 using an interference fit or press fit.
  • the cartridge stopper 702 can help seal the liquid drug 218 within the cartridge 202 such that, for example, the liquid drug 218 does not contact the septum 210 .
  • the arrangement and positioning of the cartridge stopper 702 allows a portion of the liquid drug to extend into the neck component 206 of the cartridge 202 .
  • the drug delivery system 700 can further include a needle insertion guide component 704 .
  • the needle insertion guide component 704 can be positioned within the cartridge stopper 702 .
  • the cartridge stopper 702 can have an opening (e.g., a partially hollow center portion or cavity) that allows the needle insertion guide component 704 to be positioned into the cartridge stopper 702 to be tightly sealed and retained therein.
  • the needle insertion guide component 704 can be formed of any suitable material such as, for example, metal, stainless steel, rubber, plastic, or a polymer, or any combination thereof.
  • the needle insertion guide component 704 can be cylindrically-shaped and can be positioned entirely within the cartridge stopper 702 .
  • a needle 706 can be positioned with the needle insertion guide component 704 .
  • the needle insertion guide component 704 can include an opening or hole 708 that extends the length of the needle insertion guide component 704 .
  • the needle 706 can be positioned within the opening 708 .
  • the opening 708 can provide a guide for the needle 706 .
  • the opening 708 can have a first conical portion (positioned closer to the top component 208 ) and a cylindrical portion (positioned closer to the main body component 204 ) as shown in FIG. 7 .
  • the opening 708 can be positioned along a center of the needle insertion guide component 704 (e.g., along a central axis of the needle insertion guide component 704 ).
  • the drug delivery system 700 can further include a plunger 720 .
  • the plunger 720 can be formed of any suitable material such as, for example, plastic or rubber.
  • the plunger 720 can form another seal for the liquid drug 218 .
  • the liquid drug 218 can be accessed by the needle 706 .
  • the needle 706 can be moved to pierce the cartridge stopper 702 to access the liquid drug 218 .
  • an end of the needle 706 can be positioned within the neck component 206 in fluid communication with the liquid drug 218 .
  • the plunger 720 can have a first side or surface 712 and a second side or surface 714 .
  • the first side 712 can be substantially planar or flat and can face the opening 216 of the cartridge 202 .
  • the second side 714 can have a surface 716 that extends at an angle from a side of the plunger 720 .
  • the side of the plunger 720 can include one or more seal features and can be substantially cylindrical in shape.
  • the surface 716 can extend from the side of the plunger 720 at an angle to a fluid path pocket area or component 718 .
  • the second surface 714 of the plunger 720 can be shaped to approximately match a shape of the neck component 206 —in particular, a transition region of the neck component 206 .
  • the fluid path pocket 718 can be a hole or opening that extends into the plunger 720 (e.g., partially into the plunger 720 from the second side 714 ) by a distance or depth 710 .
  • the fluid path pocket 718 can have any shape such as, for example, circular or square.
  • the fluid path pocket 718 can have a decreasing diameter moving in a direction from the second side 714 to the first side 712 .
  • the fluid path pocket 718 can be positioned about a center of the plunger 720 (e.g., along a central axis of the plunger 720 ).
  • the fluid path pocket 718 can be aligned with the opening 708 of the needle insertion guide component 704 . In this way, when the needle 706 pierces through the cartridge stopper 702 and is coupled to the liquid drug 218 , an end of the needle 706 will align with the fluid path pocket 718 . This enables the plunger 720 to be pushed into the transition area of the neck component 206 without damaging the needle 706 or its position, as the end of the needle 706 is secured within the fluid path pocket 718 and does not contact the plunger 720 .
  • Precise positioning of the end of the needle 706 can be controlled by a number of manners including, for example, a shape of the needle 706 —for example, by including a bend or turn in the needle 706 to limit how far the needle 706 can extend into the cartridge 202 .
  • the plunger 720 can be advanced in the direction 234 toward the cartridge stopper 702 . As the plunger 720 is advanced, the liquid drug 218 can be forced out of the cartridge 202 through the needle 706 .
  • the cartridge stopper 702 blocks off a portion of the neck component 206 .
  • the size, arrangement, and positioning of the cartridge stopper 702 , along with the shape of the plunger 720 can provide reduced hold-up volume and an increase in dose delivery accuracy.
  • the cartridge 202 can be filled using standard fill and finishing processes with standardized equipment and can be filled with the liquid drug from the opening 216 (e.g., before installing the plunger 720 ).
  • the drug delivery system 700 can be made shorter in length while holding and delivering the same amount of liquid drug 218 .
  • an on-body delivery system e.g., an insulin pump holding the drug delivery system 700 can be made shorter in length.
  • the cartridge stopper 702 can be considered as including a central opening or cavity for accepting the needle guide component 704 .
  • the needle guide component 704 can be tightly pressed or fitted into the cavity of the cartridge stopper 702 , so that the cartridge stopper 702 is tightly positioned around the needle guide component 704 and against the cartridge 202 to form a seal for the liquid drug 218 .
  • the cartridge stopper 702 can be considered to be disposed or positioned within a first region or portion of the cartridge 202 .
  • This first region or portion of the cartridge 202 can have a first diameter.
  • the plunger 720 can be considered to be positioned within a second region or portion of the cartridge 202 .
  • This second region or portion of the cartridge 202 can have a second diameter, with the second diameter being larger than the first diameter.
  • the cartridge 202 can further include a region or portion where the cartridge 202 transitions from the first diameter to the second diameter. As shown in FIG. 7 , the plunger 720 can be shaped to approximately match the boundaries of this transition region. Further, the diameter of the cartridge stopper 702 can approximately match the first diameter of the cartridge 202 and the diameter of the plunger 720 can approximately match the second diameter of the cartridge 202 .
  • the opening 708 of the needle guide component 704 can be aligned with the fluid path pocket 718 .
  • the opening 708 can be aligned with a center of the fluid path pocket 718 .
  • the opening 718 and the fluid path pocket 718 can be aligned and/or centered about a same central axis of either component and/or the cartridge 202 .
  • FIG. 8 illustrates a close-up view of a portion of the drug delivery system 700 .
  • the needle 706 can be stored in the position show—that is, the needle 706 can be positioned within the needle insertion guide component 704 without piercing the cartridge stopper 702 so as to access the liquid drug 218 .
  • a needle insertion mechanism (not shown in FIG. 8 ) can advance the needle 706 into the neck component 206 to be coupled with the liquid drug 218 .
  • a sterile zone 802 represents a sterile area of the drug delivery system 700 .
  • the needle 706 as shown, can be stored prior to activation of the drug delivery system 700 within the sterile zone 802 .
  • the drug delivery system 700 can be sterilized after the needle 706 is inserted into the position as shown in FIG. 8 .
  • the sterile zone 802 can remain sealed and sterile prior to use.
  • the opening 708 of the needle insertion guide component 704 can include a first conical portion 804 (positioned closer to the top component 208 ) and a second cylindrical portion 806 (positioned closer to the main body component 204 ).
  • the needle insertion guide component 704 can be fully positioned within an inner portion (e.g., opening) of the cartridge stopper 702 .
  • the cartridge stopper 702 can include a first portion 808 (positioned adjacent to the septum 210 ) and a second portion 810 (positioned adjacent to the liquid drug 218 ).
  • the needle 706 can be positioned as shown in FIG. 8 —for example, positioned through the first portion 808 and adjacent to the second portion 810 (but not yet having pierced the second portion 810 ).
  • the needle 706 can be advanced toward the second portion 810 and can pierce the second portion 810 when the drug delivery system 700 is activated, thereby coupling the needle 706 to the liquid drug 218 .
  • the needle insertion guide component 704 can provide accurate guiding of needle 706 through the cartridge stopper 702 .
  • FIG. 9 illustrates the drug delivery system 700 after activation. Specifically, FIG. 9 illustrates the drug delivery system 700 after the needle 706 has been advanced toward the liquid drug 218 . FIG. 9 also illustrates a close-up view of a portion of the drug delivery system 700 . As the needle 706 is advanced, the end of the needle 706 pierces and extends through the second portion 810 of the cartridge stopper 702 . The end of the needle 706 extends just beyond the cartridge stopper 702 and is coupled to the liquid drug 218 . The needle insertion guide component 704 provides accurate alignment of the needle 706 through the cartridge stopper 706 (e.g., to maintain alignment of the needle 706 with the central axis of the cartridge stopper 706 ).
  • the plunger 720 (as shown in FIG. 7 ) can be advanced in the direction 234 to expel the liquid drug 218 out of the cartridge 202 through the needle 706 .
  • the thickness of the second portion 810 of the cartridge stopper 702 can maintain sterility and non-permeability prior to being pierced by the needle 706 .
  • the second portion 810 of the cartridge stopper 706 can have a thickness of at least 1.5 mm to maintain closure integrity of the container 202 .
  • FIG. 10 illustrates the drug delivery system 700 after substantially all of the liquid drug 218 has been expelled from the cartridge 202 .
  • FIG. 10 also illustrates a close-up view of a portion of the drug delivery system 700 .
  • the end of the needle 706 is positioned within the fluid path pocket 718 .
  • the needle insertion guide component 704 ensures the end of the needle 706 is aligned with the fluid path pocket 718 .
  • the plunger 720 is positioned against the cartridge stopper 702 .
  • the plunger 720 is also pressed against the neck component 206 such that the surface 716 is pressed against the transitional portion of the neck component 206 —with a portion of the surface 716 surrounding the fluid path pocket 718 adjacent to or pressed against the cartridge stopper 702 as shown.
  • a hold-up volume 1002 is shown in FIG. 10 as highlighting an approximate amount of the liquid drug 218 that remains inside of the cartridge 202 . Comparing the hold-up volume 1002 to the hold-up volume of FIG. 1 B reveals that the drug delivery system 700 significantly reduces the amount of the liquid drug 218 that remains inside of the cartridge 202 , while also improving dose delivery accuracy.
  • the positioning of the needle 706 in terms of concentricity (e.g., with respect to the cartridge 202 ) and depth (e.g., with respect to the neck component 206 ) can be controlled to leave a relatively small hold-up volume 1002 . As further shown, the needle 706 is positioned such that at the end of the plunger stroke (e.g., when the plunger 720 is positioned as far against the neck component 206 as possible), the needle 706 remains in the fluid path pocket 718 .
  • the drug delivery system 700 provides further advantages in that the drug delivery system 700 provides a reduced amount of surface area from the cartridge stopper 702 and the plunger 720 that may contact the liquid drug 218 (e.g., in comparison to the other drug delivery systems described herein that have larger combined surface areas in contact with the liquid drug 218 due to the increased surface area of the cartridge stoppers used therein).
  • the cartridge stopper 702 and the plunger 720 can be formed from an elastomer. Leachable and extractable levels of a drug can result when a liquid drug is in contact with an elastomer, which can adversely affect the drug and/or adversely affect drug stability. Accordingly, the reduced surface area of the cartridge stopper 702 and the plunger 720 (e.g., combined or in total) provided by the drug delivery system 700 can improve stability of the liquid drug 218 .
  • any of the individual drug delivery systems described herein e.g., drug delivery systems 200 , 400 , 500 , and 700
  • any features thereof can be combined with any other drug delivery system and/or feature thereof.
  • Example 1 is a drug delivery system comprising a cartridge configured to hold a liquid drug, a cartridge stopper positioned in a first portion of the cartridge having a first diameter, a needle guide component positioned within the cartridge stopper, a needle positioned within a central opening of the needle guide, and a plunger positioned in a second portion of the cartridge having a second diameter, the second diameter larger than the first diameter, the plunger having a fluid path pocket facing and aligned with the central opening of the needle guide component.
  • Example 2 is an extension of example 1 or any other example disclosed herein, wherein the cartridge is an International Organization for Standardization (ISO) cartridge.
  • ISO International Organization for Standardization
  • Example 3 is an extension of example 1 or any other example disclosed herein, wherein the cartridge stopper is formed from plastic or rubber
  • Example 4 is an extension of example 1 or any other example disclosed herein, wherein the cartridge stopper is cylindrically-shaped.
  • Example 5 is an extension of example 4 or any other example disclosed herein, wherein the cartridge stopper has a diameter approximately matching the first diameter, the cartridge stopper configured to form a seal for the liquid drug.
  • Example 6 is an extension of example 5 or any other example disclosed herein, wherein the cartridge stopper includes a central cavity configured to retain the needle guide component.
  • Example 7 is an extension of example 6 or any other example disclosed herein, wherein the needle guide component is formed from metal, plastic, or rubber.
  • Example 8 is an extension of example 7 or any other example disclosed herein, wherein the needle guide component is configured to be fitted within the central cavity of the cartridge stopper.
  • Example 9 is an extension of example 8 or any other example disclosed herein, wherein the central opening of the needle guide component includes a conical portion and a cylindrical portion.
  • Example 10 is an extension of example 9 or any other example disclosed herein, wherein the cylindrical portion is positioned closer to the plunger.
  • Example 11 is an extension of example 10 or any other example disclosed herein, wherein the central opening of the needle guide component is aligned with a central axis of the needle guide component.
  • Example 12 is an extension of example 11 or any other example disclosed herein, wherein the central opening of the needle guide component is aligned with a center of the fluid path pocket.
  • Example 13 is an extension of example 1 or any other example disclosed herein, wherein the plunger includes a first surface facing an opening of the cartridge and a second surface facing the cartridge stopper, the second surface containing the fluid path pocket, the plunger forming a seal for the liquid drug.
  • Example 14 is an extension of example 13 or any other example disclosed herein, wherein the first surface is substantially planar.
  • Example 15 is an extension of example 13 or any other example disclosed herein, wherein the plunger has a diameter approximately matching the second diameter.
  • Example 16 is an extension of example 13 or any other example disclosed herein, wherein the fluid path pocket is cylindrically-shaped.
  • Example 17 is an extension of example 13 or any other example disclosed herein, wherein the fluid path pocket has a depth that extends into the plunger from the second surface.
  • Example 18 is an extension of example 17 or any other example disclosed herein, wherein the fluid path pocket comprises a decreasing diameter along the depth of the fluid path pocket.
  • Example 19 is an extension of example 17 or any other example disclosed herein, wherein the second surface is angled from a side of the plunger toward the fluid path pocket.
  • Example 20 is an extension of example 19 or any other example disclosed herein, wherein the second surface is shaped to approximately match a transition region of the cartridge, the transition region of the cartridge having a variable diameter that transitions from the first diameter to the second diameter.
  • Example 21 is an extension of example 13 or any other example disclosed herein, wherein the needle is configured to pierce the cartridge stopper to be coupled to the liquid drug.
  • Example 22 is an extension of example 21 or any other example disclosed herein, wherein the plunger is configured to be driven toward the cartridge stopper to expel the liquid drug out of the cartridge through the needle.
  • Example 23 is an extension of example 22 or any other example disclosed herein, wherein an end of the needle is configured to be positioned within the fluid path pocket of the plunger when the plunger expels substantially all of the liquid drug from the cartridge.
  • Example 24 is an extension of example 22 or any other example disclosed herein, wherein an end of the needle is configured to be positioned within the fluid path pocket of the plunger when the second surface of the plunger is pressed against the cartridge stopper.
  • Example 25 is an extension of example 24 or any other example disclosed herein, wherein the end of the needle is not in contact with the plunger.
  • Example 26 is an extension of example 1 or any other example disclosed herein, wherein the needle guide component is formed from a metal.

Landscapes

  • Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

Drug delivery systems with reduced hold-up volumes are provided. The drug delivery systems include a cartridge configured to hold a liquid drug. A cartridge stopper is positioned in a first portion of the cartridge. A needle guide component is positioned within the cartridge stopper. A needle is positioned within a central opening of the needle guide. A plunger is positioned in a second portion of the cartridge. The plunger includes a fluid path pocket facing and aligned with the central opening of the needle guide component. The plunger is driven toward the cartridge stopper to expel the liquid drug from the cartridge through the needle. An end of the needle can be positioned within the fluid path pocket when the plunger is pushed against the cartridge stopper, ensuring that only a small volume of the liquid drug remains in the cartridge when delivery of the liquid drug is completed.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a continuation of U.S. Non-Provisional application Ser. No. 15/875,115, filed Jan. 19, 2018, which claims the benefit of U.S. Provisional Application No. 62/448,222, filed Jan. 19, 2017, U.S. Provisional Application No. 62/453,065, filed Feb. 1, 2017, and U.S. Provisional Application No. 62/549,488, filed Aug. 24, 2017, each of which is incorporated herein by reference in its entirety.
TECHNICAL FIELD
Embodiments generally relate to medication delivery. More particularly, embodiments relate to reducing hold-up volume for drug delivery systems.
BACKGROUND
An on-body delivery system (OBDS) is often used to deliver drug dosages to a user. Many OBDSs use cartridges to hold a liquid drug that is expelled from the cartridge when a portion of the liquid drug is desired to be delivered to the user. Many conventional OBDSs and associated cartridges are not capable of delivering all of the stored liquid drug to the user. Specifically, relatively significant amounts of the liquid drug can remain inside of the pre-filled cartridge when the OBDS completes full delivery. The undelivered amount of the liquid drug is wasted and for expensive drugs can increase costs to various parties, including the user. Accordingly, there is a need for an OBDS, drug delivery system and/or device, and/or cartridge having reduced amounts of a liquid drug remaining after delivery to reduce waste and reduce costs to various parties, including the user.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1A illustrates a first view of a conventional drug delivery system.
FIG. 1B illustrates a second view of the conventional drug delivery system of FIG. 1A.
FIG. 2 illustrates a first view of a first exemplary drug delivery system.
FIG. 3 illustrates a second view of the first exemplary drug delivery system.
FIG. 4 illustrates a second exemplary drug delivery system.
FIG. 5 illustrates a first view of a third exemplary drug delivery system.
FIG. 6 illustrates a second view of the third exemplary drug delivery system.
FIG. 7 illustrates a first view of a fourth exemplary drug delivery system.
FIG. 8 illustrates a second view of the fourth exemplary drug delivery system.
FIG. 9 illustrates a third view of the fourth exemplary drug delivery system.
FIG. 10 illustrates a fourth view of the fourth exemplary drug delivery system.
DETAILED DESCRIPTION
This disclosure presents various systems, components, and methods related to a drug delivery system and/or device. Each of the systems, components, and methods disclosed herein provides one or more advantages over conventional systems, components, and methods.
Various embodiments provide drug delivery systems with reduced hold-up volumes. The drug delivery systems include a cartridge configured to hold a liquid drug. A cartridge stopper is positioned in a first portion of the cartridge having a first diameter and forms a first seal for the liquid drug. A needle guide component is positioned within the cartridge stopper. A needle is positioned within a central opening of the needle guide. A plunger is positioned in a second portion of the cartridge having a second diameter, with the second diameter larger than the first diameter. The plunger forms a second seal for the liquid drug. The plunger includes a fluid path pocket facing and aligned with the central opening of the needle guide component. The needle pierces the cartridge stopper to be coupled to the liquid drug. The plunger is driven toward the cartridge stopper to expel the liquid drug from the cartridge through the needle. An end of the needle can be positioned within the fluid path pocket when the plunger is pushed against the cartridge stopper, ensuring that only a small volume of the liquid drug remains in the cartridge (e.g., within a portion of the fluid path pocket) when delivery of the liquid drug is completed. As a result, a reduced amount of the liquid drug remains within the cartridge when delivery is complete.
FIG. 1A illustrates a conventional drug delivery system 100. The drug delivery system 100 includes a drug container or cartridge 102. The cartridge 102 can hold or store a liquid drug 104. A plunger 106 can be positioned within the cartridge 102. A needle 108 can be positioned within the cartridge 102 and coupled to the liquid drug 104.
To expel the liquid drug 104 from the cartridge 102, the plunger 106 can be moved in a direction 110 toward the needle 108. In doing so, the plunger 106 can force a portion of the liquid drug 104 through the needle 108 and out of the cartridge 102. As the plunger 106 moves closer to the needle 108, more of the liquid drug 104 can be expelled from the cartridge 102.
FIG. 1B illustrates a subsequent stage of operation of the drug delivery system 100 relative to the depiction of the drug delivery system 100 in FIG. 1A. As shown in FIG. 1B, the plunger 106 is positioned adjacent to a neck of the cartridge 102 and cannot be advanced any further in the direction 110. As a result, a portion of the liquid drug 104 remains in the cartridge 102 as shown in FIG. 1B. That is, the liquid drug 104 remaining in the cartridge 102 cannot be expelled from the cartridge 102 by the plunger 106. The amount of space occupied by this portion of the liquid drug 104 that remains effectively trapped in the cartridge 102 (or the amount or volume of the remaining liquid drug 104 itself) can be considered to be a hold-up volume (or portion thereof) of the cartridge 102 and/or the drug delivery system 100. As will be appreciated by one of ordinary skill in the art, in additional to the amount of space in the cartridge 102, the entire fluid path (e.g., the needle) can also be considered to contribute to hold-up and/or to contribute to the hold-up volume of the system.
Hold-up volume can represent the amount of space that can be occupied by a liquid drug that cannot be expelled and can include the volume of liquid drug that cannot be expelled. As shown in FIGS. 1A and 1B, the arrangement and shapes of the components of the drug delivery system 100 contribute to the size and shape of the resulting hold-up volume. Since the hold-up volume retains a portion of the liquid drug 104 that cannot be expelled, reduction and minimization of the hold-up volume is desirable. In general, the hold-up volume represents a wasted or unused portion of the liquid drug 104. For very expensive drugs, the wasted amount of the liquid drug 104 can be very costly, which can be passed along to the user, insurance company, or other purchaser of the drug delivery system 100.
Since a portion of the stored liquid drug 104 may be trapped inside of the drug delivery system 100 (or at least not delivered to the user), then the amount of liquid drug 104 used to fill the cartridge 102 may be greater than the amount of liquid drug 104 that corresponds to the dose of the user. As explained above, this “over-filling” of the liquid drug 104 for the user can add costs to the drug delivery system 100. In addition to this problem, air can be introduced into the drug delivery system 100 during typical filling processes associated with a pre-filled device such as the cartridge 102 and/or the drug delivery system 100. The introduced air is typically addressed in a number of ways. For example, the air may be purged out, which can add complexity and cost to the drug delivery system and/or burden on the user. Alternatively, the air can be delivered to the user. Lastly, the air can be trapped within the drug delivery device 100.
Since a body-worn device (e.g., an OBDS) is multi-oriented, depending on where and how it is attached to the user's body, air will move within the container that stores a liquid drug (e.g., within the cartridge 102 holding the liquid drug 104). In some instances, when air is trapped within the body-worn device and the outlet of the body-worn device is facing down, gravity may cause the heavier liquid drug out of the device prior to the air. In other instances, when air is trapped within the body-worn device and the outlet of the body-worn device is facing up, the air may be delivered first and a portion of the liquid drug may trapped within the device as part of the hold-up volume. Because of these various orientations of the body-worn device and their impact on whether air or liquid drug will be delivered to the patient, embodiments as described herein improve dose accuracy by reducing hold-up volume.
Dose accuracy can be affected when the ratio of hold-up volume to fill volume exceeds approximately 3-5%, with the dose accuracy being further negatively affected as this ration increases. For example, if a dose within 5% of 1 mL of a drug is desired using a device having a hold-up volume of 0.2 mL, then the desired dose accuracy is not possible. Accordingly, in addition to reducing wastes, it is desired to reduce hold-up volumes to achieve desired dosing accuracies and/or to achieve industry standard dose accuracy requirements.
FIG. 2 illustrates a first exemplary drug delivery system 200 for providing a reduced hold-up volume. The drug delivery system 200 can efficiently expel the liquid drug it contains while reducing amounts of the liquid drug retained by the drug delivery system 200 after use. The reduced hold-up volume provided by the drug delivery system 200 can improve dosing accuracy. FIG. 2 can represent a cross-sectional view of the drug delivery system 200. In various embodiments, the drug delivery system 200 can provide a ratio of hold-up volume to fill volume that is less 5% or less than 3%.
As shown in FIG. 2 , the drug delivery system includes a drug container or cartridge 202. In various embodiments, the cartridge 202 can be an International Organization for Standardization (ISO) standard cartridge 202. In various embodiments, the cartridge 202 can be a custom design or customized cartridge 202. The cartridge 202 can comprise any suitable material such as, for example, metal, plastic, or glass, or any combination thereof. The cartridge 202 can include a main body component 204, a neck component 206, and a top component 208.
The cartridge 202 can generally be cylindrically-shaped with a diameter of the main body component 204 being substantially constant and larger than a diameter of the top component 208. The neck component 206 can have a variable diameter that transitions from a diameter corresponding to the diameter of the main body component 204 to the diameter of the top component 208. The variable diameter portion of the neck component 206 can be considered a transitional portion of the cartridge 202 where the wider main body component 204 transitions to the narrower top component 208.
The top component 208 can be sealed by a septum 210 and a crimp 212. The septum 210 can be positioned adjacent to and/or over the top component 208 (e.g., over an opening in the top component 208). The crimp 212 can be positioned around the septum 210 and the top component 208 to tightly fit the septum 210 against the top component 208. The septum 210 can comprise any suitable material such as, for example, metal or plastic, or any combination thereof. The crimp 212 can comprise any suitable material such as, for example, metal or plastic, or any combination thereof. The septum 210 and the crimp 212 can form at least one seal of the cartridge 202.
A second seal of the cartridge 202 can be formed by a plunger 214. The plunger 214 can comprise any suitable material such as, for example, plastic or rubber. The plunger 214 can be positioned within the main body component 204. The plunger 214 can be positioned into the main body component 204 through an opening 216 of the cartridge 202.
A drug 218 can be stored or held in the cartridge 202. The drug 218 can be a liquid drug. The drug 218 can be any therapeutic agent and/or medicine. The drug 218 can be stored within the main body component 204. The plunger 214 can be positioned to retain or seal the liquid drug 218 within the cartridge 202.
As further shown in FIG. 2 , the drug delivery system 200 can also include a cartridge stopper 220. The cartridge stopper 220 can be positioned within any portion of the main body component 204 and/or the neck component 206. In various embodiments, the cartridge stopper 220 can be positioned within a portion of the neck component 206 and an adjacent portion of the main body component 204. The cartridge stopper 220 can include a first side 222 that is substantially flat or planar. The first side 222 can be coupled to the liquid drug 218 and can be facing the plunger 214. The first side 222 can include a fluid path pocket 224. The fluid path pocket 224 can comprise a hole or opening within the cartridge stopper 220, extending from the first side 222 into the cartridge stopper 220. The fluid path pocket 224 can be positioned at an approximate center of the cartridge stopper 220 (e.g., aligned with a center of the first side 222 and/or aligned with a central axis of the cartridge stopper 220).
A second side 226 of the cartridge stopper 220 can be shaped to fit within the transition region of the neck component 206. The second side 226 can face the top component 208 of the cartridge 202. In various embodiments, the second side 226 can be shaped to taper from a relatively wider diameter (e.g., a diameter of the main body component 204) to a relatively narrower diameter (e.g., a diameter of the narrowest portion of the neck component 206). The cartridge stopper 220 can also form a seal for the liquid drug 218 as shown in FIG. 2 . The cartridge stopper 220 can be generally cylindrical-shaped and can be formed of any suitable material such as, for example, a plastic or rubber.
As shown in FIG. 2 , an outer portion of the cartridge stopper 220 can include sealing features (e.g., sealing glands). In various embodiments, the cartridge stopper 220 can include any number of such sealing features that can be varied based on application. As further shown in FIG. 2 , the liquid drug 218 is retained within the cartridge 202 by seals provided by the cartridge stopper 220 and the plunger 214.
The drug delivery system 200 can further include a needle insertion guide 228. The needle insertion guide 228 can be generally cylindrically-shaped and can be positioned within the top component 208 and the neck component 206. The needle insertion component 228 can comprise any suitable material such as, for example, metal, stainless steel, plastic, or a polymer, or any combination thereof.
The needle insertion guide 228 can include an opening or hole 230. The opening 230 can extend along an entire length of the needle insertion guide 228. The opening 230 can provide an area for a needle 232 to be guided through the top component 208 and the neck component 206. To reach the liquid drug 218, the needle 232 can be inserted through the crimp 212 and the septum 210 and into the opening 230 of the needle insertion guide 228. The needle 232 can then be inserted further into the cartridge 202 by subsequently piercing the cartridge stopper 220. Lastly, an end of the needle 232 can be inserted so as to be positioned within the fluid path pocket 224.
When the needle 232 is inserted with an end positioned within the fluid path pocket 224, the plunger 214 can be used to expel the liquid drug 218 from the cartridge 202. For example, the plunger 214 can be moved in a direction 234 toward the cartridge stopper 222. In doing so, the liquid drug 218 can be forced out of the cartridge 202 through the needle 232. The plunger 214 can be advanced in the direction 234 until the plunger 214 is adjacent to the first side 222 of the cartridge stopper 220. By maintaining the end of the needle 232 within the fluid path pocket 224, the plunger 214 can be pressed up against the first side 222 without damaging the needle 232 or disturbing the positioning of the needle 232.
As shown in FIG. 2 , the fluid path pocket 224 can be positioned with a center of the cartridge stopper 220. In various embodiments, the fluid path pocket 224 can be aligned with the opening 230 of the needle insertion guide 228. This opening 230 guides the needle 232 such that as the needle 232 is inserted further into the cartridge 202, the needle 232 will reach the fluid path pocket 224.
FIG. 2 can represent a stage of operation of the drug delivery system 200 prior to expelling the liquid drug 218 from the cartridge 202 (e.g., prior to activation of the drug delivery system 200). As shown in FIG. 2 , the needle 232 has pierced the septum 210 and is partially inserted into the needle insertion guide 228 but has not yet reached or pierced the cartridge stopper 220. In a subsequent stage of operation, after the end of the needle 232 is inserted into the fluid path pocket 224, the plunger 214 can be advanced in the direction 234 to expel the liquid drug 218 from the cartridge 202.
In various embodiments, the main body component 204 of the cartridge 202 can have a first diameter that is substantially constant across an entire length of the main body component 204. Further, the top component 208 and the neck component 206 of the cartridge 202 can have a smaller, second diameter. The neck component 206 can further include a region that transitions from the smaller or narrower region or portion of the cartridge 202 of the second diameter to the larger or wider region or portion of the cartridge 202 of the first diameter. In various embodiments, the top component 208 and the neck component 206 can together be considered to be a necked area or the neck component 206 of the cartridge 202—which transitions from the larger, first diameter to the smaller, second diameter.
FIG. 3 illustrates the drug delivery system 200 after expelling the liquid drug 218 from the cartridge 202. FIG. 3 can also represent a cross-sectional view of the drug delivery system 200. As shown in FIG. 3 , the needle 232 is inserted through the needle insertion guide 228 and the cartridge stopper 220 such that the end of the needle 232 is maintained within the fluid path pocket 224. The needle 232 can have a shape (e.g., a bend) and length that ensures the end of the needle 232 is precisely positioned within the fluid path pocket 224 as shown. The plunger 214 is positioned against the first side 222 of the cartridge stopper 220 and does not contact the needle 232 or disturb the positioning of the needle 232. A hold-up volume 302 is shown in FIG. 3 as highlighting an approximate amount of the liquid drug 218 that remains inside the cartridge 202 (e.g., after no further liquid drug 218 can be expelled by the plunger 214). Comparing the hold-up volume 302 to the hold-up volume shown in FIG. 1B reveals that the drug delivery system 200 significantly reduces the amount of the liquid drug 218 that remains inside of the cartridge 202, while also improving dose delivery accuracy.
As shown in FIG. 3 , with the addition of the cartridge stopper 220, a portion of the neck component 206 is blocked off, thereby reducing the resulting hold-up volume 302 as discussed above. Positioning the cartridge stopper 220 within the necked area of the cartridge 202 can provide a significant reduction in hold-up volume and increase in dose delivery accuracy. The positioning of the cartridge stopper 220 can also increase positional stability and provide space savings. Due to the reduced hold-up volume 302 provided by the drug delivery system 200, the drug delivery system 200 can deliver any air volume without affecting dose tolerance (e.g., if any air is trapped within the cartridge 202 and expelled by the plunger 214). This provides operational flexibility since the position of the plunger 214 does not need to be precisely controlled nor does any trapped air within the cartridge 202 need to be reduced to ensure accurate dosing of the liquid drug 218. Further, the smaller hold-up volume 302 reduces and minimizes any wasted or unused liquid drug 218 left within the cartridge 202. As previously mentioned, reducing the amount of wasted liquid drug 218 may reduce the cost of the drug delivery system 200 for a user.
The drug delivery system 200 can be sterilized prior to use and being provided to a user in a variety of manners. In various embodiments, the drug delivery system 200 can be sterilized with the needle 232 inserted between the septum 210 and the cartridge stopper 220 (e.g., as depicted in FIG. 2 ). Sterilization in this manner can provide a seal on the needle 232 and can maintain sterility thereafter. In various embodiments, the drug delivery system 200 can be sterilized with the needle 232 partially inserted in the cartridge stopper 220. Sterilization in this manner can also provide a seal on the needle 232 that can maintain sterility. In various embodiments, the drug delivery system 200 can be sterilized with the needle 232 completely removed from the cartridge 202 (i.e., separate from the cartridge assembly).
FIG. 4 illustrates a second exemplary drug delivery system 400. The drug delivery system 400 is substantially similar to the drug delivery system 200 in design and operation and represents an alternative design to the drug delivery system 200. The drug delivery system 400 can provide substantially the same benefits as the drug delivery system 200 as described above. FIG. 4 can represent a cross-sectional view of the drug delivery system 400. In various embodiments, the drug delivery system 400 can provide a ratio of hold-up volume to fill volume that is less 5% or less than 3%.
As shown in FIG. 4 , the drug delivery system 400 can include a cartridge stopper 402 having a fluid path pocket 404 on a first side and a second side having an extended portion 406. The extended portion 406 can extend further into the neck component 206 of the cartridge 202. As also shown in FIG. 4 , a needle insertion guide 408 of the drug delivery system 400 can be substantially arranged and positioned within the top component 208 of the cartridge 202. This alternative design and arrangement of the cartridge stopper 402 and the needle insertion guide 408 (e.g., in comparison to the cartridge stopper 220 and the needle insertion guide 228, respectively) can provide increased sealing capabilities and additional stability for the needle 232. In general, for any of the drug delivery systems described herein that provide reduced hold-up volume, the cartridge stopper (e.g., the cartridge stopper 220 or 402) and the needle insertion guide (e.g., the needle insertion guide 228 and 408) can be of any size and shape and can occupy any portions of the main body 204, the neck component 206, and/or the top component 208.
FIG. 5 illustrates a third exemplary drug delivery system 500 for providing a reduced hold-up volume. As a result, the drug delivery system 500 provides efficient delivery of a stored liquid drug. FIG. 5 can represent a cross-sectional view of the drug delivery system 500. In various embodiments, the drug delivery system 500 can provide a ratio of hold-up volume to fill volume that is less 5% or less than 3%.
As shown in FIG. 5 , the drug delivery system 500 can include many of the components depicted and described in relation to the drug delivery system 200 and can further include a cartridge stopper 502, a plunger 504, a needle insertion guide 506, an optional secondary needle seal 508, and a needle 510. The cartridge stopper 502 can be positioned within a portion of the main body component 204 and the neck component 206. The cartridge stopper 502 can have a first side 512 that is substantially planar or flat that can be coupled to the liquid drug 218. The cartridge stopper 502 can provide a first seal for the liquid drug 218 for containment within the cartridge 202. The cartridge stopper 502 can be generally cylindrical-shaped and can be formed of any suitable material such as, for example, a plastic or rubber.
The plunger 504 can be positioned within the main body component 204. The plunger 504 can include a fluid path pocket 514. The fluid path pocket 514 can comprise a hole or opening that extends partially into the plunger 504 from a first side or surface 516 of the plunger 504. The fluid path pocket 514 can be round or cylindrical in shape and can be centered about the plunger 504 (e.g., about a central axis of the plunger 504). The plunger 504 can form a second seal for the liquid drug 218 for containment within the cartridge 202. The plunger 504 can be generally cylindrical-shaped and can be formed of any suitable material such as, for example, a plastic or rubber.
The needle insertion guide 506 can be positioned into the plunger 504 from a second side or surface 518 of the plunger 504. In this way, the plunger 504 can provide stability for the needle insertion guide 506. The needle insertion guide 506 can include an opening or hole 520 that extends through the needle insertion guide 506. The opening 520 can be aligned with the fluid path pocket 514 and can provide a guide for stabilizing and orienting the needle 510. Specifically, the needle insertion guide 506 can ensure that an end of the needle 510 can be positioned within the fluid path pocket 514 when the needle 510 is moved further in the direction 234. The needle insertion guide 506 can comprise any suitable material such as, for example, metal, stainless steel, plastic, or a polymer, or any combination thereof.
The optional secondary needle seal 508 can be positioned in the main body component 204 between the plunger 504 and needle insertion guide 506 and an end of the cartridge 202. The optional secondary needle seal 508 can comprise any suitable materials such as, for example, rubber, plastic, or a polymer, or any combination thereof. The optional secondary needle seal 508 can provide a seal for the needle 510 for sterilization.
FIG. 5 can represent the drug delivery system 500 prior to activation or initiation of expelling the stored liquid drug 218. When activated, the end of the needle 510 can be positioned in the fluid path pocket 514 by having the needle 510 move in the direction 234. The needle 510 can pierce and traverse a portion of the plunger 504 between the needle insertion guide 506 and the fluid path pocket 514 in order to reach the fluid path pocket 514.
Once the end of the needle 510 is positioned within the fluid path pocket 514, the plunger 504 (and the needle insertion guide 506 and the needle 506) can be moved in the direction 234. As the plunger 504 is moved towards the cartridge stopper 502, the liquid drug 218 can be expelled out of the cartridge 202 through the needle 510. The drug delivery system 500 enables the liquid drug 218 to be expelled out of an opposite end of the cartridge 202 as compared to the end of the cartridge 202 from which the liquid drug 218 is expelled by the drug delivery system 200.
As described above, the fluid path pocket 514 can be positioned within a center of the plunger 504. The fluid path pocket 514 can have any cross-sectional shape such as, for example, circular or rectangular. The fluid path pocket 514 can have a depth 522—that is, the fluid path pocket 514 can extend a distance 522 into the plunger 504 from the first surface 516 of the plunger 504.
The needle insertion guide 506 can include a base component 524 and an extension component 526. The base component 524 can extend into the plunger 504 by a first distance 528 and the extension component 526 can extend into the plunger 504 by an additional second distance 530 beyond the first distance 528. The base component 524 can be substantially flush with the second surface 518 of the plunger 506.
In various embodiments, the needle insertion guide 506 can be arranged and/or shaped in different manners. For example, the needle insertion guide 506 can be positioned adjacent to the second surface 518 of the plunger 502 rather than being inserted into a portion of the plunger 504. In such embodiments, the needle insertion guide 506 may be substantially cylindrical having a substantially uniform thickness.
FIG. 6 illustrates the drug delivery system 500 after expelling the liquid drug 218 from the cartridge 202. FIG. 6 can also represent a cross-sectional view of the drug delivery system 500. As shown in FIG. 6 , the needle 510 is inserted through the needle insertion guide 506 and the plunger 504 such that the end of the needle 510 is maintained within the fluid path pocket 514. The plunger 504 is positioned against the first side 512 of the cartridge stopper 502 without the cartridge stopper 502 contacting the needle 510 or disturbing the positioning of the needle 510. A hold-up volume 602 is shown in FIG. 6 as highlighting an approximate amount of the liquid drug 218 that remains inside of the cartridge 202. Comparing the hold-up volume 602 to the hold-up volume shown in FIG. 1B reveals that the drug delivery system 500 significantly reduces the amount of the liquid drug 218 that remains inside of the cartridge 202, while also improving dose delivery accuracy.
The drug delivery system 500 can be sterilized prior to use and being provided to a user in a variety of manners. In various embodiments, the drug delivery system 500 can be sterilized with the needle 510 positioned within the needle insertion guide 506 but not coupled to the liquid drug 218. In such embodiments, the optional secondary needle seal 508 can be used to maintain sterility of the needle 510 from the end positioned in the needle insertion guide 506 to the portion of the needle 510 adjacent the optional secondary needle seal 508. In various embodiments, the drug delivery system 500 can be sterilized with the needle 510 partially inserted into the plunger 504 (e.g., with the end of the needle 510 positioned in the plunger 504 prior to reaching the fluid path pocket 514). In various embodiments, the drug delivery system 500 can be sterilized with the needle 510 inserted into the fluid path pocket 514 and coupled to the liquid drug 518. In such embodiments, a needle seal at the opposite end of the needle can be used to seal the needle path.
The drug delivery system 500, by incorporating rear piercing of the plunger 504, can reduce the overall size of the drug delivery system 500 by obviating the need for delivery mechanisms positioned near a front end of the cartridge 202 (e.g., near the top component 208). In various embodiments, the drug delivery system 500, as depicted in FIGS. 5 and 6 , can provided without the septum 210 and the crimp 212.
FIG. 7 illustrates a fourth exemplary drug delivery system 700. The drug delivery system 700 can include certain features that are substantially similar to the drug delivery system 200 as shown. The drug delivery system 700 can operate in a similar manner to the drug delivery system 200 while representing an alternative design to the drug delivery system 200. The drug delivery system 700 can provide substantially the same benefits as the drug delivery system 200 as described above. FIG. 7 can represent a cross-sectional view of the drug delivery system 700. In various embodiments, the drug delivery system 700 can provide a ratio of hold-up volume to fill volume that is less 5% or less than 3%.
As shown in FIG. 7 , the drug delivery system 700 includes a cartridge stopper 702. The cartridge stopper 702 can be formed from any suitable material such as, for example, plastic or rubber. The cartridge stopper 702 can be positioned with a portion of the neck component 206 and/or the top component 208. In various embodiments, the cartridge stopper 702 can be positioned so as not to extend beyond the position of the neck component 206 having a substantially constant diameter (i.e., to not be positioned within the transition region of the neck component 206). The cartridge stopper 702 can be cylindrically-shaped to tightly fit within the diameter of the neck component 208 (e.g., the smallest diameter of the cartridge 202). In various embodiments, the cartridge stopper 702 can be positioned within the neck component 208 using an interference fit or press fit. The cartridge stopper 702 can help seal the liquid drug 218 within the cartridge 202 such that, for example, the liquid drug 218 does not contact the septum 210. As shown in FIG. 7 , the arrangement and positioning of the cartridge stopper 702 allows a portion of the liquid drug to extend into the neck component 206 of the cartridge 202.
The drug delivery system 700 can further include a needle insertion guide component 704. The needle insertion guide component 704 can be positioned within the cartridge stopper 702. In various embodiments, the cartridge stopper 702 can have an opening (e.g., a partially hollow center portion or cavity) that allows the needle insertion guide component 704 to be positioned into the cartridge stopper 702 to be tightly sealed and retained therein. The needle insertion guide component 704 can be formed of any suitable material such as, for example, metal, stainless steel, rubber, plastic, or a polymer, or any combination thereof. The needle insertion guide component 704 can be cylindrically-shaped and can be positioned entirely within the cartridge stopper 702.
A needle 706 can be positioned with the needle insertion guide component 704. The needle insertion guide component 704 can include an opening or hole 708 that extends the length of the needle insertion guide component 704. The needle 706 can be positioned within the opening 708. The opening 708 can provide a guide for the needle 706. The opening 708 can have a first conical portion (positioned closer to the top component 208) and a cylindrical portion (positioned closer to the main body component 204) as shown in FIG. 7 . The opening 708 can be positioned along a center of the needle insertion guide component 704 (e.g., along a central axis of the needle insertion guide component 704).
The drug delivery system 700 can further include a plunger 720. The plunger 720 can be formed of any suitable material such as, for example, plastic or rubber. The plunger 720 can form another seal for the liquid drug 218. The liquid drug 218 can be accessed by the needle 706. Specifically, the needle 706 can be moved to pierce the cartridge stopper 702 to access the liquid drug 218. After piercing the cartridge stopper 702 to access the liquid drug 218, an end of the needle 706 can be positioned within the neck component 206 in fluid communication with the liquid drug 218.
As shown, the plunger 720 can have a first side or surface 712 and a second side or surface 714. The first side 712 can be substantially planar or flat and can face the opening 216 of the cartridge 202. The second side 714 can have a surface 716 that extends at an angle from a side of the plunger 720. The side of the plunger 720 can include one or more seal features and can be substantially cylindrical in shape. The surface 716 can extend from the side of the plunger 720 at an angle to a fluid path pocket area or component 718. The second surface 714 of the plunger 720 can be shaped to approximately match a shape of the neck component 206—in particular, a transition region of the neck component 206.
The fluid path pocket 718 can be a hole or opening that extends into the plunger 720 (e.g., partially into the plunger 720 from the second side 714) by a distance or depth 710. The fluid path pocket 718 can have any shape such as, for example, circular or square. The fluid path pocket 718 can have a decreasing diameter moving in a direction from the second side 714 to the first side 712. The fluid path pocket 718 can be positioned about a center of the plunger 720 (e.g., along a central axis of the plunger 720).
The fluid path pocket 718 can be aligned with the opening 708 of the needle insertion guide component 704. In this way, when the needle 706 pierces through the cartridge stopper 702 and is coupled to the liquid drug 218, an end of the needle 706 will align with the fluid path pocket 718. This enables the plunger 720 to be pushed into the transition area of the neck component 206 without damaging the needle 706 or its position, as the end of the needle 706 is secured within the fluid path pocket 718 and does not contact the plunger 720. Precise positioning of the end of the needle 706 can be controlled by a number of manners including, for example, a shape of the needle 706—for example, by including a bend or turn in the needle 706 to limit how far the needle 706 can extend into the cartridge 202.
To expel the liquid drug 218 from the cartridge 202, the plunger 720 can be advanced in the direction 234 toward the cartridge stopper 702. As the plunger 720 is advanced, the liquid drug 218 can be forced out of the cartridge 202 through the needle 706.
As shown in FIG. 7 , the cartridge stopper 702 blocks off a portion of the neck component 206. The size, arrangement, and positioning of the cartridge stopper 702, along with the shape of the plunger 720, can provide reduced hold-up volume and an increase in dose delivery accuracy. Further, the cartridge 202 can be filled using standard fill and finishing processes with standardized equipment and can be filled with the liquid drug from the opening 216 (e.g., before installing the plunger 720). Compared to the drug delivery system 200, the drug delivery system 700 can be made shorter in length while holding and delivering the same amount of liquid drug 218. As a result, an on-body delivery system (e.g., an insulin pump) holding the drug delivery system 700 can be made shorter in length.
In various embodiments, the cartridge stopper 702 can be considered as including a central opening or cavity for accepting the needle guide component 704. The needle guide component 704 can be tightly pressed or fitted into the cavity of the cartridge stopper 702, so that the cartridge stopper 702 is tightly positioned around the needle guide component 704 and against the cartridge 202 to form a seal for the liquid drug 218.
The cartridge stopper 702 can be considered to be disposed or positioned within a first region or portion of the cartridge 202. This first region or portion of the cartridge 202 can have a first diameter. In contrast, the plunger 720 can be considered to be positioned within a second region or portion of the cartridge 202. This second region or portion of the cartridge 202 can have a second diameter, with the second diameter being larger than the first diameter. The cartridge 202 can further include a region or portion where the cartridge 202 transitions from the first diameter to the second diameter. As shown in FIG. 7 , the plunger 720 can be shaped to approximately match the boundaries of this transition region. Further, the diameter of the cartridge stopper 702 can approximately match the first diameter of the cartridge 202 and the diameter of the plunger 720 can approximately match the second diameter of the cartridge 202.
In various embodiments, as further described herein, the opening 708 of the needle guide component 704 can be aligned with the fluid path pocket 718. In various embodiments, the opening 708 can be aligned with a center of the fluid path pocket 718. In various embodiments, the opening 718 and the fluid path pocket 718 can be aligned and/or centered about a same central axis of either component and/or the cartridge 202.
FIG. 8 illustrates a close-up view of a portion of the drug delivery system 700. As shown in FIG. 8 , the needle 706 can be stored in the position show—that is, the needle 706 can be positioned within the needle insertion guide component 704 without piercing the cartridge stopper 702 so as to access the liquid drug 218. When the drug delivery system 700 is activated, a needle insertion mechanism (not shown in FIG. 8 ) can advance the needle 706 into the neck component 206 to be coupled with the liquid drug 218.
A sterile zone 802 represents a sterile area of the drug delivery system 700. The needle 706, as shown, can be stored prior to activation of the drug delivery system 700 within the sterile zone 802. The drug delivery system 700 can be sterilized after the needle 706 is inserted into the position as shown in FIG. 8 . The sterile zone 802 can remain sealed and sterile prior to use.
As further shown in FIG. 8 , the opening 708 of the needle insertion guide component 704 can include a first conical portion 804 (positioned closer to the top component 208) and a second cylindrical portion 806 (positioned closer to the main body component 204). The needle insertion guide component 704 can be fully positioned within an inner portion (e.g., opening) of the cartridge stopper 702.
The cartridge stopper 702 can include a first portion 808 (positioned adjacent to the septum 210) and a second portion 810 (positioned adjacent to the liquid drug 218). During storage and/or prior to activation of the drug delivery system 700, the needle 706 can be positioned as shown in FIG. 8 —for example, positioned through the first portion 808 and adjacent to the second portion 810 (but not yet having pierced the second portion 810). The needle 706 can be advanced toward the second portion 810 and can pierce the second portion 810 when the drug delivery system 700 is activated, thereby coupling the needle 706 to the liquid drug 218. The needle insertion guide component 704 can provide accurate guiding of needle 706 through the cartridge stopper 702.
FIG. 9 illustrates the drug delivery system 700 after activation. Specifically, FIG. 9 illustrates the drug delivery system 700 after the needle 706 has been advanced toward the liquid drug 218. FIG. 9 also illustrates a close-up view of a portion of the drug delivery system 700. As the needle 706 is advanced, the end of the needle 706 pierces and extends through the second portion 810 of the cartridge stopper 702. The end of the needle 706 extends just beyond the cartridge stopper 702 and is coupled to the liquid drug 218. The needle insertion guide component 704 provides accurate alignment of the needle 706 through the cartridge stopper 706 (e.g., to maintain alignment of the needle 706 with the central axis of the cartridge stopper 706).
Once the needle 706 is advanced into the cartridge 202 as shown in FIG. 9 , the plunger 720 (as shown in FIG. 7 ) can be advanced in the direction 234 to expel the liquid drug 218 out of the cartridge 202 through the needle 706. In various embodiments, the thickness of the second portion 810 of the cartridge stopper 702 can maintain sterility and non-permeability prior to being pierced by the needle 706. For example, the second portion 810 of the cartridge stopper 706 can have a thickness of at least 1.5 mm to maintain closure integrity of the container 202.
FIG. 10 illustrates the drug delivery system 700 after substantially all of the liquid drug 218 has been expelled from the cartridge 202. FIG. 10 also illustrates a close-up view of a portion of the drug delivery system 700. As shown, the end of the needle 706 is positioned within the fluid path pocket 718. The needle insertion guide component 704 ensures the end of the needle 706 is aligned with the fluid path pocket 718. The plunger 720 is positioned against the cartridge stopper 702. The plunger 720 is also pressed against the neck component 206 such that the surface 716 is pressed against the transitional portion of the neck component 206—with a portion of the surface 716 surrounding the fluid path pocket 718 adjacent to or pressed against the cartridge stopper 702 as shown.
A hold-up volume 1002 is shown in FIG. 10 as highlighting an approximate amount of the liquid drug 218 that remains inside of the cartridge 202. Comparing the hold-up volume 1002 to the hold-up volume of FIG. 1B reveals that the drug delivery system 700 significantly reduces the amount of the liquid drug 218 that remains inside of the cartridge 202, while also improving dose delivery accuracy. The positioning of the needle 706, in terms of concentricity (e.g., with respect to the cartridge 202) and depth (e.g., with respect to the neck component 206) can be controlled to leave a relatively small hold-up volume 1002. As further shown, the needle 706 is positioned such that at the end of the plunger stroke (e.g., when the plunger 720 is positioned as far against the neck component 206 as possible), the needle 706 remains in the fluid path pocket 718.
The drug delivery system 700 provides further advantages in that the drug delivery system 700 provides a reduced amount of surface area from the cartridge stopper 702 and the plunger 720 that may contact the liquid drug 218 (e.g., in comparison to the other drug delivery systems described herein that have larger combined surface areas in contact with the liquid drug 218 due to the increased surface area of the cartridge stoppers used therein). In various embodiments, the cartridge stopper 702 and the plunger 720 can be formed from an elastomer. Leachable and extractable levels of a drug can result when a liquid drug is in contact with an elastomer, which can adversely affect the drug and/or adversely affect drug stability. Accordingly, the reduced surface area of the cartridge stopper 702 and the plunger 720 (e.g., combined or in total) provided by the drug delivery system 700 can improve stability of the liquid drug 218.
Any of the individual drug delivery systems described herein (e.g., drug delivery systems 200, 400, 500, and 700) and/or any features thereof can be combined with any other drug delivery system and/or feature thereof.
The following examples pertain to additional further embodiments:
Example 1 is a drug delivery system comprising a cartridge configured to hold a liquid drug, a cartridge stopper positioned in a first portion of the cartridge having a first diameter, a needle guide component positioned within the cartridge stopper, a needle positioned within a central opening of the needle guide, and a plunger positioned in a second portion of the cartridge having a second diameter, the second diameter larger than the first diameter, the plunger having a fluid path pocket facing and aligned with the central opening of the needle guide component.
Example 2 is an extension of example 1 or any other example disclosed herein, wherein the cartridge is an International Organization for Standardization (ISO) cartridge.
Example 3 is an extension of example 1 or any other example disclosed herein, wherein the cartridge stopper is formed from plastic or rubber
Example 4 is an extension of example 1 or any other example disclosed herein, wherein the cartridge stopper is cylindrically-shaped.
Example 5 is an extension of example 4 or any other example disclosed herein, wherein the cartridge stopper has a diameter approximately matching the first diameter, the cartridge stopper configured to form a seal for the liquid drug.
Example 6 is an extension of example 5 or any other example disclosed herein, wherein the cartridge stopper includes a central cavity configured to retain the needle guide component.
Example 7 is an extension of example 6 or any other example disclosed herein, wherein the needle guide component is formed from metal, plastic, or rubber.
Example 8 is an extension of example 7 or any other example disclosed herein, wherein the needle guide component is configured to be fitted within the central cavity of the cartridge stopper.
Example 9 is an extension of example 8 or any other example disclosed herein, wherein the central opening of the needle guide component includes a conical portion and a cylindrical portion.
Example 10 is an extension of example 9 or any other example disclosed herein, wherein the cylindrical portion is positioned closer to the plunger.
Example 11 is an extension of example 10 or any other example disclosed herein, wherein the central opening of the needle guide component is aligned with a central axis of the needle guide component.
Example 12 is an extension of example 11 or any other example disclosed herein, wherein the central opening of the needle guide component is aligned with a center of the fluid path pocket.
Example 13 is an extension of example 1 or any other example disclosed herein, wherein the plunger includes a first surface facing an opening of the cartridge and a second surface facing the cartridge stopper, the second surface containing the fluid path pocket, the plunger forming a seal for the liquid drug.
Example 14 is an extension of example 13 or any other example disclosed herein, wherein the first surface is substantially planar.
Example 15 is an extension of example 13 or any other example disclosed herein, wherein the plunger has a diameter approximately matching the second diameter.
Example 16 is an extension of example 13 or any other example disclosed herein, wherein the fluid path pocket is cylindrically-shaped.
Example 17 is an extension of example 13 or any other example disclosed herein, wherein the fluid path pocket has a depth that extends into the plunger from the second surface.
Example 18 is an extension of example 17 or any other example disclosed herein, wherein the fluid path pocket comprises a decreasing diameter along the depth of the fluid path pocket.
Example 19 is an extension of example 17 or any other example disclosed herein, wherein the second surface is angled from a side of the plunger toward the fluid path pocket.
Example 20 is an extension of example 19 or any other example disclosed herein, wherein the second surface is shaped to approximately match a transition region of the cartridge, the transition region of the cartridge having a variable diameter that transitions from the first diameter to the second diameter.
Example 21 is an extension of example 13 or any other example disclosed herein, wherein the needle is configured to pierce the cartridge stopper to be coupled to the liquid drug.
Example 22 is an extension of example 21 or any other example disclosed herein, wherein the plunger is configured to be driven toward the cartridge stopper to expel the liquid drug out of the cartridge through the needle.
Example 23 is an extension of example 22 or any other example disclosed herein, wherein an end of the needle is configured to be positioned within the fluid path pocket of the plunger when the plunger expels substantially all of the liquid drug from the cartridge.
Example 24 is an extension of example 22 or any other example disclosed herein, wherein an end of the needle is configured to be positioned within the fluid path pocket of the plunger when the second surface of the plunger is pressed against the cartridge stopper.
Example 25 is an extension of example 24 or any other example disclosed herein, wherein the end of the needle is not in contact with the plunger.
Example 26 is an extension of example 1 or any other example disclosed herein, wherein the needle guide component is formed from a metal.
Certain embodiments of the present invention were described above. It is, however, expressly noted that the present invention is not limited to those embodiments, but rather the intention is that additions and modifications to what was expressly described herein are also included within the scope of the invention. Moreover, it is to be understood that the features of the various embodiments described herein were not mutually exclusive and can exist in various combinations and permutations, even if such combinations or permutations were not made express herein, without departing from the spirit and scope of the invention. In fact, variations, modifications, and other implementations of what was described herein will occur to those of ordinary skill in the art without departing from the spirit and the scope of the invention. As such, the invention is not to be defined only by the preceding illustrative description.

Claims (18)

What is claimed is:
1. A drug delivery system, comprising:
a cartridge configured to hold a liquid drug;
a cartridge stopper positioned in a first portion of the cartridge and including a fluid path pocket;
a needle insertion guide positioned adjacent to the cartridge stopper, wherein:
the needle insertion guide has an opening aligned with the fluid path pocket,
the opening extends along an entire length of the needle insertion guide, and
the opening includes a conical portion and a cylindrical portion; and
a plunger positioned in a second portion of the cartridge and operable to advance through the cartridge in a direction of the cartridge stopper.
2. The drug delivery system of claim 1, wherein the cartridge stopper is formed from plastic or rubber.
3. The drug delivery system of claim 1, wherein the cartridge stopper is cylindrically-shaped.
4. The drug delivery system of claim 1, wherein the cartridge stopper has a shape operable to fit within a transition region of a neck component of the cartridge, and the cartridge stopper is operable to form a seal for the liquid drug.
5. The drug delivery system of claim 1, wherein the needle insertion guide is formed from metal, plastic, or rubber.
6. The drug delivery system of claim 1, wherein the plunger includes a first surface facing the cartridge stopper and a second surface facing an opening of the cartridge, the first surface positioned to contact a liquid drug in the cartridge, and the plunger forms a seal with the cartridge for the liquid drug.
7. The drug delivery system of claim 6, wherein the first surface of the plunger and the second surface of the plunger are substantially planar.
8. The drug delivery system of claim 1, wherein the fluid path pocket is cylindrically-shaped.
9. The drug delivery system of claim 1, wherein the cartridge stopper has a second side angled to match a neck component of the cartridge.
10. The drug delivery system of claim 1, wherein the cartridge stopper has a second side and the fluid path pocket has a depth that extends into the cartridge stopper from a first side.
11. The drug delivery system of claim 1, further comprising:
a needle operable to deliver a liquid drug, wherein the needle is positioned within an opening of the needle insertion guide and operable to reach the fluid path pocket when inserted into the cartridge and through the cartridge stopper to the fluid path pocket.
12. The drug delivery system of claim 11, wherein the needle further comprises:
a shape and a length operable to position an end of the needle within the fluid path pocket.
13. The drug delivery system of claim 12, wherein the plunger when positioned against a first side of the cartridge stopper does not contact or disturb the positioning of the needle.
14. The drug delivery system of claim 11, wherein the plunger includes a first surface facing the cartridge stopper and an end of the needle is configured to be positioned within the fluid path pocket of the cartridge stopper when the first surface of the plunger contacts the cartridge stopper.
15. The drug delivery system of claim 1, wherein the plunger is configured to be driven toward the cartridge stopper to expel the liquid drug out of the cartridge through the needle.
16. The drug delivery system of claim 1, further comprising:
a crimp and a septum, wherein the crimp is positioned around the septum and a top component of the cartridge and is operable to tightly fit the septum against the top component.
17. The drug delivery system of claim 16, wherein the crimp and septum are positioned over an opening to the needle insertion guide and are operable to be pierced by a needle during insertion of the needle into the needle insertion guide.
18. The drug delivery system of claim 16, wherein the needle insertion guide is positioned between the septum and the cartridge stopper.
US16/794,689 2017-01-19 2020-02-19 Cartridge hold-up volume reduction Active 2039-06-26 US11633541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/794,689 US11633541B2 (en) 2017-01-19 2020-02-19 Cartridge hold-up volume reduction

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762448222P 2017-01-19 2017-01-19
US201762453065P 2017-02-01 2017-02-01
US201762549488P 2017-08-24 2017-08-24
US15/875,115 US10603440B2 (en) 2017-01-19 2018-01-19 Cartridge hold-up volume reduction
US16/794,689 US11633541B2 (en) 2017-01-19 2020-02-19 Cartridge hold-up volume reduction

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/875,115 Continuation US10603440B2 (en) 2017-01-19 2018-01-19 Cartridge hold-up volume reduction

Publications (2)

Publication Number Publication Date
US20200179608A1 US20200179608A1 (en) 2020-06-11
US11633541B2 true US11633541B2 (en) 2023-04-25

Family

ID=61569407

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/875,115 Active 2038-05-26 US10603440B2 (en) 2017-01-19 2018-01-19 Cartridge hold-up volume reduction
US16/794,689 Active 2039-06-26 US11633541B2 (en) 2017-01-19 2020-02-19 Cartridge hold-up volume reduction

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/875,115 Active 2038-05-26 US10603440B2 (en) 2017-01-19 2018-01-19 Cartridge hold-up volume reduction

Country Status (2)

Country Link
US (2) US10603440B2 (en)
WO (1) WO2018136699A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3777931B1 (en) * 2018-03-28 2025-07-02 CMC-Pharma Co., Ltd Prefilled two-component-mixing syringe kit
US11369789B2 (en) 2021-04-05 2022-06-28 Ishaan Jain Transdermal drug delivery system
WO2022224656A1 (en) * 2021-04-22 2022-10-27 京セラ株式会社 Cylindrical body kit and gasket

Citations (311)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1441508A (en) 1921-12-06 1923-01-09 Jensen Anton Marius Cylindrical slide valve
GB357139A (en) 1929-06-14 1931-09-14 Paul Von Vago
US2198666A (en) 1936-09-30 1940-04-30 Lakeland Foundation Syringe
US2752918A (en) 1949-08-17 1956-07-03 Auguste Rooseboom Hypodermic injection apparatus
GB810488A (en) 1955-03-01 1959-03-18 Eduard Woydt Liquid pressure piston-engine or reciprocating pump
CA606281A (en) 1960-10-04 Dann Morris Cartridge for metering syringe
GB875034A (en) 1957-07-01 1961-08-16 Renault Improvements in or relating to valves for fluids under pressure
US3176712A (en) 1961-10-03 1965-04-06 Ramsden Clement Non-return valve
US3297260A (en) 1964-09-21 1967-01-10 Conrad R Barlow Nozzle and valve assembly
US3464359A (en) 1967-11-13 1969-09-02 Medimeter Corp The Apparatus for moving fluid from one system to a second system
GB1204836A (en) 1968-05-20 1970-09-09 Thermal Hydraulics Corp Thermal actuator
FR2096275A5 (en) 1970-06-13 1972-02-11 Ismatec Sa
US3885662A (en) 1973-12-26 1975-05-27 Ibm Steerable follower selection mechanism
US3947692A (en) 1974-08-05 1976-03-30 Viron E. Payne, Inc. Digital transducers
US3946732A (en) * 1973-08-08 1976-03-30 Ampoules, Inc. Two-chamber mixing syringe
US3993061A (en) 1975-02-28 1976-11-23 Ivac Corporation Syringe pump drive system and disposable syringe cartridge
US4055177A (en) * 1976-05-28 1977-10-25 Cohen Milton J Hypodermic syringe
IL46017A (en) 1974-11-07 1977-11-30 Ampoules Inc Two-chamber mixing syringe
US4108177A (en) 1976-04-23 1978-08-22 Michel Louis Paul Pistor Automatic injector device
US4152098A (en) 1977-01-03 1979-05-01 Clark Ivan P Micropump
GB2008806A (en) 1977-11-03 1979-06-06 Danfoss As Controllable heating means for small masses
US4210173A (en) 1976-12-06 1980-07-01 American Hospital Supply Corporation Syringe pumping system with valves
US4221219A (en) 1978-07-31 1980-09-09 Metal Bellows Corporation Implantable infusion apparatus and method
FR2455269A1 (en) 1978-01-17 1980-11-21 Marceau Serge Dynamic dosing of liquid food product - utilises compressed air operation of cylinders to move liquid dose to outlet
US4257324A (en) 1978-10-30 1981-03-24 Bell & Howell Company Position monitoring methods and apparatus
US4268150A (en) 1980-01-28 1981-05-19 Laurence Chen Disposable camera with simplified film advance and indicator
WO1981001658A1 (en) 1979-12-13 1981-06-25 M Loeb Wearable insulin infusion system having a tubular reservoir and a positive displacement metering means
US4277226A (en) 1979-03-09 1981-07-07 Avi, Inc. IV Pump with empty supply reservoir and occlusion detector
GB2077367A (en) 1978-09-05 1981-12-16 Mandroian Harold Three valve precision pump apparatus with head pressure flow through protection
US4313439A (en) 1980-03-24 1982-02-02 Biotek, Inc. Automated, spring-powered medicament infusion system
FR2507637A1 (en) 1981-06-16 1982-12-17 Libero Elettrotecnica Thermo-electric drive for detergent reservoir of automatic dishwasher - has thermistor heating substance which expands and operates lever
US4371790A (en) 1980-09-19 1983-02-01 Rmr Systems, Inc. Fluid measuring system
US4417889A (en) 1980-12-31 1983-11-29 Choi Soo Bong Device for a portable automatic syringe
US4424720A (en) 1980-12-15 1984-01-10 Ivac Corporation Mechanism for screw drive and syringe plunger engagement/disengagement
US4435173A (en) 1982-03-05 1984-03-06 Delta Medical Industries Variable rate syringe pump for insulin delivery
US4475905A (en) 1982-09-30 1984-10-09 Himmelstrup Anders B Injection device
US4498843A (en) 1982-08-02 1985-02-12 Schneider Philip H Insulin infusion pump
US4507115A (en) 1981-04-01 1985-03-26 Olympus Optical Co., Ltd. Medical capsule device
US4551134A (en) 1982-08-06 1985-11-05 Nuvatec, Inc. Intravenous set
US4562751A (en) 1984-01-06 1986-01-07 Nason Clyde K Solenoid drive apparatus for an external infusion pump
US4567549A (en) 1985-02-21 1986-01-28 Blazer International Corp. Automatic takeup and overload protection device for shape memory metal actuator
US4585439A (en) 1983-09-07 1986-04-29 Disetronic Ag. Portable infusion unit
US4601707A (en) 1980-06-03 1986-07-22 Albisser Anthony M Insulin infusion device
WO1986006796A1 (en) 1985-05-15 1986-11-20 Henning Munk Ejlersen A hose pump, in particular an insulin pump
US4634427A (en) 1984-09-04 1987-01-06 American Hospital Supply Company Implantable demand medication delivery assembly
US4671429A (en) 1983-11-15 1987-06-09 Thomas J. Lipton, Inc. Method and apparatus for volumetric dosing viscous products
US4678408A (en) 1984-01-06 1987-07-07 Pacesetter Infusion, Ltd. Solenoid drive apparatus for an external infusion pump
US4684368A (en) 1984-06-01 1987-08-04 Parker Hannifin Corporation Inverted pump
US4685903A (en) 1984-01-06 1987-08-11 Pacesetter Infusion, Ltd. External infusion pump apparatus
US4755169A (en) 1985-05-20 1988-07-05 Survival Technology, Inc. Automatic medicament ingredient mixing and injecting apparatus
US4766889A (en) 1986-06-26 1988-08-30 Medical Engineering Corporation Infusion erectile system
US4808161A (en) 1986-03-04 1989-02-28 Kamen Dean L Pressure-measurement flow control system
US4846797A (en) 1985-05-14 1989-07-11 Intelligent Medicine, Inc. Syringe positioning device for enhancing fluid flow control
US4858619A (en) 1987-06-29 1989-08-22 Toth Marie A Intracranial pressure monitoring system
US4898579A (en) 1987-06-26 1990-02-06 Pump Controller Corporation Infusion pump
US4908017A (en) 1985-05-14 1990-03-13 Ivion Corporation Failsafe apparatus and method for effecting syringe drive
US4944659A (en) 1987-01-27 1990-07-31 Kabivitrum Ab Implantable piezoelectric pump system
US4969874A (en) 1987-05-18 1990-11-13 Disetronic Ag Infusion device
US4991743A (en) 1989-11-06 1991-02-12 Cobe Laboratories, Inc. Controlled flow accumulator
US5007458A (en) 1990-04-23 1991-04-16 Parker Hannifin Corporation Poppet diaphragm valve
US5020325A (en) 1990-02-13 1991-06-04 Procedes Vernet Heat motor
EP0454331A1 (en) 1990-04-16 1991-10-30 Minimed Inc., doing business as Minimed Technologies Infusionssystem für die Medikation
US5062841A (en) 1988-08-12 1991-11-05 The Regents Of The University Of California Implantable, self-regulating mechanochemical insulin pump
US5147311A (en) 1987-09-09 1992-09-15 Ewald Pickhard Injection device for use with a deformable ampoule
US5178609A (en) 1990-06-19 1993-01-12 Kato Hatsujo Kaisha, Ltd. Medical liquid injector for continuous transfusion
US5205819A (en) 1989-05-11 1993-04-27 Bespak Plc Pump apparatus for biomedical use
US5213483A (en) 1991-06-19 1993-05-25 Strato Medical Corporation Peristaltic infusion pump with removable cassette and mechanically keyed tube set
US5222362A (en) 1989-01-10 1993-06-29 Maus Daryl D Heat-activated drug delivery system and thermal actuators therefor
DE4200595A1 (en) 1992-01-13 1993-07-15 Michail Efune Assembly group for infusion set for insulin pump - involves steel needle inside plastics cannula with only limited axial movement and drawn back into cannula during infusion.
US5236416A (en) 1991-05-23 1993-08-17 Ivac Corporation Syringe plunger position detection and alarm generation
WO1993020864A1 (en) 1992-04-10 1993-10-28 Novo Nordisk A/S Infusion pump
US5261884A (en) 1992-04-29 1993-11-16 Becton, Dickinson And Company Syringe pump control system
US5261882A (en) 1993-04-26 1993-11-16 Sealfon Andrew I Negator spring-powered syringe
US5277338A (en) 1990-12-21 1994-01-11 Odin Developments Limited Fluid metering apparatus
US5281202A (en) 1991-09-03 1994-01-25 Fresenius Ag Device for draining a flexible fluid container
JPH0663133A (en) 1992-06-18 1994-03-08 Raifu Technol Kenkyusho Portable automatic chemical injection device
WO1994015660A1 (en) 1993-01-05 1994-07-21 Berney Jean Claude Powered-plunger infusion device
US5346476A (en) 1992-04-29 1994-09-13 Edward E. Elson Fluid delivery system
JPH06296690A (en) 1993-04-14 1994-10-25 Nippon Medical Supply Corp Syringe pump
US5364342A (en) 1992-02-05 1994-11-15 Nestle S.A. Microsurgical cassette
US5388615A (en) 1992-12-11 1995-02-14 Busak & Luyken Gmbh & Co. Sealing means and sealing valve for container openings
US5433710A (en) 1993-03-16 1995-07-18 Minimed, Inc. Medication infusion pump with fluoropolymer valve seat
US5503628A (en) 1995-03-15 1996-04-02 Jettek, Inc. Patient-fillable hypodermic jet injector
US5520661A (en) 1994-07-25 1996-05-28 Baxter International Inc. Fluid flow regulator
US5533389A (en) 1986-03-04 1996-07-09 Deka Products Limited Partnership Method and system for measuring volume and controlling flow
FR2731475A1 (en) 1995-03-07 1996-09-13 Thomson Dauphinoise Thermal/mechanical device for mounting electric heating or cooling component on thermal actuator
JPH08238324A (en) 1995-03-04 1996-09-17 Nissho Corp Means for mixed injection of plural medicinal liquids
US5582593A (en) 1994-07-21 1996-12-10 Hultman; Barry W. Ambulatory medication delivery system
US5618269A (en) 1995-05-04 1997-04-08 Sarcos, Inc. Pressure-driven attachable topical fluid delivery system
US5628309A (en) 1996-01-25 1997-05-13 Raya Systems, Inc. Meter for electrically measuring and recording injection syringe doses
US5637095A (en) 1995-01-13 1997-06-10 Minimed Inc. Medication infusion pump with flexible drive plunger
EP0789146A1 (en) 1995-07-27 1997-08-13 Seiko Epson Corporation Microvalve and method of manufacturing the same, micropump using the microvalve and method of manufacturing the same, and apparatus using the micropump
US5665070A (en) 1995-01-19 1997-09-09 I-Flow Corporation Infusion pump with magnetic bag compression
US5713875A (en) 1994-07-29 1998-02-03 Abbott Laboratories System for administration of a liquid agent to a patient with a syringe pump
US5747350A (en) 1993-04-02 1998-05-05 Boehringer Mannheim Gmbh System for dosing liquids
US5748827A (en) 1996-10-23 1998-05-05 University Of Washington Two-stage kinematic mount
US5776103A (en) 1995-10-11 1998-07-07 Science Incorporated Fluid delivery device with bolus injection site
US5779676A (en) 1995-10-11 1998-07-14 Science Incorporated Fluid delivery device with bolus injection site
US5785688A (en) 1996-05-07 1998-07-28 Ceramatec, Inc. Fluid delivery apparatus and method
US5797881A (en) 1996-06-20 1998-08-25 Gadot; Amir Intravenous infusion apparatus
DE19723648C1 (en) 1997-06-05 1998-08-27 Disetronic Licensing Ag Controlled infusion equipment with leak and reverse flow prevention used e.g. in insulin therapy
US5800397A (en) 1995-04-20 1998-09-01 Invasatec, Inc. Angiographic system with automatic high/low pressure switching
US5807075A (en) 1993-11-23 1998-09-15 Sarcos, Inc. Disposable ambulatory microprocessor controlled volumetric pump
EP0867196A2 (en) 1997-03-26 1998-09-30 Disetronic Licensing AG Catheter system for transdermal passages
US5839467A (en) 1993-10-04 1998-11-24 Research International, Inc. Micromachined fluid handling devices
WO1998055073A1 (en) 1997-06-03 1998-12-10 Kunshan Wang A medical apparatus comprising an elastic valve-type stopper and a piercing needle
WO1998056293A1 (en) 1997-06-09 1998-12-17 Minimed Inc. Insertion set for a transcutaneous sensor
WO1999010049A1 (en) 1997-08-29 1999-03-04 Cycle-Ops Products, Inc. Exercise resistance device
WO1999010040A1 (en) 1997-08-27 1999-03-04 Science Incorporated Fluid delivery device with temperature controlled energy source
US5891097A (en) 1994-08-12 1999-04-06 Japan Storage Battery Co., Ltd. Electrochemical fluid delivery device
US5897530A (en) 1997-12-24 1999-04-27 Baxter International Inc. Enclosed ambulatory pump
US5906597A (en) 1998-06-09 1999-05-25 I-Flow Corporation Patient-controlled drug administration device
US5911716A (en) 1992-01-24 1999-06-15 I-Flow Corporation Platen pump
US5919167A (en) 1998-04-08 1999-07-06 Ferring Pharmaceuticals Disposable micropump
US5957890A (en) 1997-06-09 1999-09-28 Minimed Inc. Constant flow medication infusion pump
US5971963A (en) 1998-08-18 1999-10-26 Choi; Soo Bong Portable automatic syringe device and injection needle unit thereof
WO1999062576A1 (en) 1998-06-04 1999-12-09 Elan Corporation, Plc Gas driven drug delivery device
US6019747A (en) 1997-10-21 2000-02-01 I-Flow Corporation Spring-actuated infusion syringe
US6050457A (en) 1995-12-06 2000-04-18 The Procter & Gamble Company High pressure manually-actuated spray pump
WO2000029047A1 (en) 1998-11-18 2000-05-25 Phiscience Gmbh, Entwicklung Von Sensoren Portable device and method for the mobile supply of medicaments with wireless transmission of data for control or programming purposes
US6068615A (en) 1994-07-22 2000-05-30 Health Hero Network, Inc. Inductance-based dose measurement in syringes
US6159188A (en) 1998-01-14 2000-12-12 Robert L. Rogers Apparatus and method for delivery of micro and submicro quantities of materials
EP1065378A2 (en) 1999-06-28 2001-01-03 California Institute of Technology Microfabricated elastomeric valve and pump systems
US6190359B1 (en) 1996-04-30 2001-02-20 Medtronic, Inc. Method and apparatus for drug infusion
US6200293B1 (en) 1997-08-27 2001-03-13 Science Incorporated Fluid delivery device with temperature controlled energy source
US20010016710A1 (en) 1999-02-12 2001-08-23 Minimed Inc. Incremental motion pump mechanisms druven by shape memory alloy wire or the like
WO2001078812A1 (en) 2000-04-13 2001-10-25 Novo Nordisk A/S A drug delivery device provided with a one-way mechanism
US20010056258A1 (en) 2000-03-22 2001-12-27 Evans Robert F. Drug delivery and monitoring system
EP1177802A1 (en) 2000-07-31 2002-02-06 Becton Dickinson and Company Wearable, self-contained drug infusion device
US6352522B1 (en) 1996-12-13 2002-03-05 Boo Yoon Tech, Inc. Disposable syringe assembly
US20020029018A1 (en) 1996-03-30 2002-03-07 Peter Jeffrey Materials delivery device
US20020032374A1 (en) 2000-02-10 2002-03-14 Holker James D. Analyte sensor and method of making the same
WO2002020073A2 (en) 2000-09-08 2002-03-14 Insulet Corporation Devices, systems and methods for patient infusion
US20020037221A1 (en) 2000-06-06 2002-03-28 Mastrangelo Carlos H. Thermally activated polymer device
US6363609B1 (en) 2000-10-20 2002-04-02 Short Block Technologies, Inc. Method and apparatus for aligning crankshaft sections
WO2002026282A2 (en) 2000-06-28 2002-04-04 Science Incorporated Fluid delivery device with light activated energy source
WO2002068823A1 (en) 2000-11-06 2002-09-06 Nanostream Inc. Uni-directional flow microfluidic components
WO2002076535A1 (en) 2001-03-27 2002-10-03 Dca Design International Limited Improvements in and relating to an injection device
CN1375338A (en) 2002-03-22 2002-10-23 张�浩 Heating infusion device
US6474219B2 (en) 2000-03-24 2002-11-05 Novo Nordisk A/S Flexible piston rod
US20020173769A1 (en) 2001-05-18 2002-11-21 Gray Larry B. Infusion set for a fluid pump
US20020173830A1 (en) 2000-01-21 2002-11-21 Starkweather Timothy J. Method and apparatus for communicating between an ambulatory medical device and a control device via telemetry using randomized data
US6485462B1 (en) 1997-08-27 2002-11-26 Science Incorporated Fluid delivery device with heat activated energy source
US6485461B1 (en) 2000-04-04 2002-11-26 Insulet, Inc. Disposable infusion device
US6488652B1 (en) 1998-02-02 2002-12-03 Medtronic, Inc. Safety valve assembly for implantable benefical agent infusion device
US6520936B1 (en) 1999-06-08 2003-02-18 Medtronic Minimed, Inc. Method and apparatus for infusing liquids using a chemical reaction in an implanted infusion device
US20030040715A1 (en) 2001-08-21 2003-02-27 D'antonio Nicholas F. Hypodermic jet injection kit
US20030055380A1 (en) 2001-09-19 2003-03-20 Flaherty J. Christopher Plunger for patient infusion device
US6539286B1 (en) 1998-01-26 2003-03-25 Micron Technology, Inc. Fluid level sensor
US6537249B2 (en) 2000-12-18 2003-03-25 Science, Incorporated Multiple canopy
NL1019126C1 (en) 2001-10-05 2003-04-08 Fondse Valves B V Dosing pump for e.g. measuring intercellular moisture, contains pump chamber with ejector and sliding part for sealing inlet and outlet ports
US6569115B1 (en) 1997-08-28 2003-05-27 Mdc Investment Holdings, Inc. Pre-filled retractable needle injection device
US20030109827A1 (en) 2001-12-07 2003-06-12 Elan Pharma International Limited Drug delivery system and method
US6595956B1 (en) 1998-03-23 2003-07-22 Joseph Gross Drug delivery device
US20030163097A1 (en) 2002-02-28 2003-08-28 Fleury Michael T. Huber needle with anti-rebound safety mechanism
US20030199825A1 (en) 2002-04-23 2003-10-23 Flaherty J. Christopher Dispenser for patient infusion device
US20030198558A1 (en) 2002-04-22 2003-10-23 Nason Clyde K. Shape memory alloy wire driven positive displacement micropump with pulsatile output
WO2003097133A1 (en) 2002-05-17 2003-11-27 Owen Mumford Limited Injection device with automatically retractable needle
US6656158B2 (en) 2002-04-23 2003-12-02 Insulet Corporation Dispenser for patient infusion device
US20040010207A1 (en) 2002-07-15 2004-01-15 Flaherty J. Christopher Self-contained, automatic transcutaneous physiologic sensing system
US6699218B2 (en) 2000-11-09 2004-03-02 Insulet Corporation Transcutaneous delivery means
EP1403519A1 (en) 2002-09-27 2004-03-31 Novo Nordisk A/S Membrane pump with stretchable pump membrane
US20040064088A1 (en) 2002-09-30 2004-04-01 William Gorman Dispenser components and methods for patient infusion device
US20040068224A1 (en) 2002-10-02 2004-04-08 Couvillon Lucien Alfred Electroactive polymer actuated medication infusion pumps
US20040069044A1 (en) 1999-04-29 2004-04-15 Gilad Lavi Device for measuring a volume of drug
US6723072B2 (en) 2002-06-06 2004-04-20 Insulet Corporation Plunger assembly for patient infusion device
WO2004032994A2 (en) 2002-10-09 2004-04-22 Therasense, Inc. Fluid delivery device, system and method
US20040092865A1 (en) 2001-11-09 2004-05-13 J. Christopher Flaherty Transcutaneous delivery means
US20040094733A1 (en) 2001-08-31 2004-05-20 Hower Robert W. Micro-fluidic system
US6749407B2 (en) 2002-08-22 2004-06-15 Motorola, Inc. Method of installing valves in a micro-pump
WO2004056412A2 (en) 2002-12-23 2004-07-08 M2 Medical A/S A disposable, wearable insulin dispensing device, a combination of such a device and a programming controller and a method of controlling the operation of such a device
US20040153032A1 (en) 2002-04-23 2004-08-05 Garribotto John T. Dispenser for patient infusion device
JP2004247271A (en) 2003-02-12 2004-09-02 Bimetal Japan Kk Voltage sensing switch
JP2004274719A (en) 2003-02-18 2004-09-30 Fujitsu Hitachi Plasma Display Ltd Predriver circuit, capacitive load drive circuit, and plasma display
WO2004110526A1 (en) 2003-06-17 2004-12-23 Disetronic Licensing Ag Modular infusion pump
US20050020980A1 (en) 2003-06-09 2005-01-27 Yoshio Inoue Coupling system for an infusion pump
US6851260B2 (en) 2001-01-17 2005-02-08 M 2 Medical A/S Shape memory alloy actuator
US6883778B1 (en) 1996-11-18 2005-04-26 Nypro Inc. Apparatus for reducing fluid drawback through a medical valve
JP2005188355A (en) 2003-12-25 2005-07-14 Nikkiso Co Ltd Diaphragm pump
US20050165363A1 (en) 2002-03-18 2005-07-28 Judson Jared A. Medication dispensing apparatus with gear set for mechanical advantage
US20050203461A1 (en) 2002-04-23 2005-09-15 Insulet Corporation Transcutaneous fluid delivery system
US20050238507A1 (en) 2002-04-23 2005-10-27 Insulet Corporation Fluid delivery device
US20050277882A1 (en) 2004-05-26 2005-12-15 Kriesel Marshall S Infusion apparatus
US20060041229A1 (en) 2002-07-16 2006-02-23 Insulet Corporation Flow restriction system and method for patient infusion device
US20060079765A1 (en) 2004-10-13 2006-04-13 Liebel-Flarsheim Company Powerhead of a power injection system
JP2006159228A (en) 2004-12-06 2006-06-22 Mitsubishi Heavy Ind Ltd Brazing method for heat exchanger and preheating apparatus for brazing
US20060155210A1 (en) 2005-01-10 2006-07-13 Ethicon Endo-Surgery, Inc. Biopsy instrument with improved needle penetration
US20060173439A1 (en) 2005-01-18 2006-08-03 Thorne Gale H Jr Syringe drive system
US20060178633A1 (en) 2005-02-03 2006-08-10 Insulet Corporation Chassis for fluid delivery device
US7104275B2 (en) 2002-04-01 2006-09-12 Emerson Electric Co. Pinch valve
JP2006249130A (en) 2005-03-08 2006-09-21 Dainippon Ink & Chem Inc Manufacturing method of oligomer containing fluorinated alkyl group
US7128727B2 (en) 2002-09-30 2006-10-31 Flaherty J Christopher Components and methods for patient infusion device
US20060253085A1 (en) 2005-05-06 2006-11-09 Medtronic Minimed, Inc. Dual insertion set
US20070005018A1 (en) 2005-06-14 2007-01-04 Tengiz Tekbuchava Catheter for introduction of medications to the tissues of a heart or other organ
US7160272B1 (en) 2002-05-31 2007-01-09 Elcam Plastic Y-site medical valve
DE102005040344A1 (en) 2005-08-25 2007-03-01 Fresenius Kabi Deutschland Gmbh Pump for use as infusion pump, has delivery bolt or piston supported in housing in movable manner, and drive unit for driving delivery bolt or piston, where movement of delivery bolt or piston is limited by upper and lower end stops
US20070073236A1 (en) 2005-09-26 2007-03-29 Morten Mernoe Dispensing fluid from an infusion pump system
US20070088271A1 (en) 2005-10-18 2007-04-19 Richards Cynthia C Medication device
US20070118405A1 (en) 2003-04-18 2007-05-24 Insulet Corporation User Interface For Infusion Pump Remote Controller And Method Of Using The Same
WO2007066152A2 (en) 2005-12-08 2007-06-14 Owen Mumford Ltd Substance delivery device
US20070282269A1 (en) 2006-05-31 2007-12-06 Seattle Medical Technologies Cannula delivery apparatus and method for a disposable infusion device
US20080004515A1 (en) 2006-06-30 2008-01-03 Abbott Diabetes Care, Inc. Integrated Analyte Sensor and Infusion Device and Methods Therefor
US20080051738A1 (en) 2006-08-23 2008-02-28 Medtronic Minimed, Inc. Infusion medium delivery system, device and method with needle inserter and needle inserter device and method
US20080114304A1 (en) 2006-11-13 2008-05-15 Medical Components, Inc Syringe for sequential expression of different liquids and method of using same
US20080172028A1 (en) 2006-10-17 2008-07-17 Blomquist Michael L Insulin pump having selectable insulin absorption models
US20080243211A1 (en) 2007-04-02 2008-10-02 Baxter International Inc. User selectable masking sounds for medical instruments
WO2008133702A1 (en) 2007-04-30 2008-11-06 Medtronic Minimed, Inc. Needle inserting and fluid flow connection for infusion medium delivery system
US20080294040A1 (en) 2007-01-10 2008-11-27 Khader Mohiuddin Volumetric pump
US20090024083A1 (en) 2007-06-25 2009-01-22 Kriesel Marshall S Fluid dispenser with additive sub-system
US20090062767A1 (en) 2007-08-29 2009-03-05 Medtronic Minimed, Inc. Combined sensor and infusion set using separated sites
WO2009039203A2 (en) 2007-09-17 2009-03-26 Satish Sundar High precision infusion pump controller
JP2009514580A (en) 2005-11-02 2009-04-09 インジェクティカ アーゲー Implantable injection device
GB2456681A (en) 2006-10-26 2009-07-29 Starbridge Systems Ltd Therapeutic liquid pump with different valve actuation pressures
US20090198215A1 (en) 2007-04-30 2009-08-06 Medtronic Minimed, Inc. Adhesive patch systems and methods
US20090278875A1 (en) 2005-11-14 2009-11-12 Mydata Automation Ab Jetting Apparatus and Method of Improving the Performance of a Jetting Apparatus
WO2009141005A1 (en) 2008-05-20 2009-11-26 Tecpharma Licensing Ag Device for administering an injectable product comprising a residual amount display
US20090326472A1 (en) 2008-06-26 2009-12-31 Calibra Medical, Inc. Disposable infusion device with automatically releasable cannula driver
US20100036326A1 (en) 2007-04-19 2010-02-11 Rudolf Matusch Disposable injector comprising at least one draw hook and a sliding wedge-type gear for unlocking a locking element
WO2010022069A2 (en) 2008-08-18 2010-02-25 Calibra Medical, Inc. Drug infusion system with reusable and disposable components
US20100152658A1 (en) 2008-12-16 2010-06-17 Medtronic Minimed, Inc. Needle insertion systems and methods
WO2010077279A1 (en) 2008-12-09 2010-07-08 Becton, Dickinson And Company Multi-stroke delivery pumping mechanism for a drug delivery device for high pressure injections
US7771392B2 (en) 2007-11-29 2010-08-10 Roche Diagnostics Operations, Inc. Lead screw delivery device using reusable shape memory actuator drive
US20100241066A1 (en) 2006-05-29 2010-09-23 Novo Nordisk A/S Mechanism for Injection Device
WO2010139793A1 (en) 2009-06-04 2010-12-09 Novo Nordisk A/S Mixing device with piston coupling arrangement
WO2011010198A2 (en) 2009-07-23 2011-01-27 Thierry Navarro Fluid delivery system comprising a fluid pumping device and a drive system
US20110054399A1 (en) 2009-09-02 2011-03-03 Medtronic Minimed, Inc. Insertion device systems and methods
WO2011031458A1 (en) 2009-08-25 2011-03-17 Medtronic Minimed, Inc. Reservoir barrier layer systems and methods
US7914499B2 (en) 2006-03-30 2011-03-29 Valeritas, Inc. Multi-cartridge fluid delivery device
US20110073620A1 (en) 2007-11-17 2011-03-31 Brian Leonard Verrilli Twisting translational displacement pump cartridge
US7951114B2 (en) 2002-10-09 2011-05-31 Abbott Diabetes Care Inc. Device and method employing shape memory alloy
US20110144586A1 (en) 2009-07-30 2011-06-16 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
WO2011069935A2 (en) 2009-12-07 2011-06-16 Sanofi-Aventis Deutschland Gmbh Drive assembly for a drug delivery device and drug delivery device
WO2011075042A1 (en) 2009-12-14 2011-06-23 Shl Group Ab Medicament delivery device
US20110180480A1 (en) 2008-08-12 2011-07-28 Peter Kloeffel Reverse-osmosis system with an apparatus for reducing noise and method for reducing noise in a reverse-osmosis system
US20110230833A1 (en) 2010-03-21 2011-09-22 Mania Landman Device and Method for Injecting Fluids or Gels
WO2011133823A1 (en) 2010-04-21 2011-10-27 Abbott Biotechnology Ltd. Wearable automatic injection device for controlled delivery of therapeutic agents
EP2397181A1 (en) 2010-06-18 2011-12-21 F. Hoffmann-La Roche AG Insertion device having a permanently locking rotating needle cover
US20120078161A1 (en) 2004-03-08 2012-03-29 Masterson Steven P Apparatus for electrically mediated delivery of therapeutic agents
WO2012073032A1 (en) 2010-12-02 2012-06-07 Oval Medical Technologies Limited A drive assembly for an autoinjector and a method of assembling an autoinjector
EP2468338A1 (en) 2010-12-21 2012-06-27 Sanofi-Aventis Deutschland GmbH Auto-injector
US20120172817A1 (en) 2009-02-05 2012-07-05 Sanofi-Aventis Deutschland Gmbh Medicament Delivery Devices
US20120209207A1 (en) 2006-02-09 2012-08-16 Gray Larry B Adhesive and peripheral systems and methods for medical devices
US8267921B2 (en) 2007-07-20 2012-09-18 Medingo Ltd. Manually operable portable infusion device
US20130006213A1 (en) 2009-11-03 2013-01-03 Theo Arnitz Device for substantially germ-free provision of a fluid medium
US20130017099A1 (en) 2010-03-17 2013-01-17 Sensile Pat Ag Micropump
US8382703B1 (en) 2011-10-18 2013-02-26 King Saud University Piezoelectric dual-syringe insulin pump
US20130064701A1 (en) 2011-09-12 2013-03-14 Satoshi Konishi Pumping apparatus
WO2013050535A2 (en) 2011-10-07 2013-04-11 Novo Nordisk A/S System for determining position of element
US20130177455A1 (en) 2011-12-21 2013-07-11 DEKA Productions Limited Partnership System, Method, and Apparatus for Infusing Fluid
US20130178803A1 (en) 2008-12-12 2013-07-11 Sanofi-Aventis Deutschland Gmbh Resettable Drive Mechanism for a Medication Delivery Device and Medication Delivery Device
US8499913B2 (en) 2011-05-20 2013-08-06 The Boeing Company Shape memory alloy actuator system and method
WO2013137893A1 (en) 2012-03-15 2013-09-19 Becton, Dickinson And Company Multiple use disposable injection pen
US20130245545A1 (en) 2011-09-20 2013-09-19 Medingo Ltd. Drug Injection Devices, Systems and Methods
WO2013149186A1 (en) 2012-03-30 2013-10-03 Insulet Corporation Fluid delivery device with transcutaneous access tool, insertion mechansim and blood glucose monitoring for use therewith
US20130267932A1 (en) 2010-11-03 2013-10-10 Sanofi-Aventis Deutschland Gmbh Needle Assembly for the Delivery of at Least Two Medicaments
US20130296792A1 (en) 2009-09-15 2013-11-07 Medimop Medical Projects Ltd. Cartridge insertion assembly
US20140018730A1 (en) 2011-03-31 2014-01-16 Sanofi-Aventis Deutschland Gmbh Dosing Mechanism
WO2014029416A1 (en) 2012-08-20 2014-02-27 Roche Diagnostics Gmbh Therapeutic system with an adaptor for an infusion set
EP2703024A1 (en) 2011-04-26 2014-03-05 Taisei Kako Co., Ltd. Elastic sealing body for prefilled syringe
US20140148784A1 (en) 2011-04-21 2014-05-29 Abbvie Inc. Wearable automatic injection device for controlled administration of therapeutic agents
US20140171901A1 (en) 2012-12-13 2014-06-19 Schott Ag Device for retaining and storing liquid media and method of expelling the liquid media
WO2014149357A1 (en) 2013-03-22 2014-09-25 Amgen Inc. Injector and method of assembly
EP1874390B1 (en) 2005-03-28 2014-10-01 Insulet Corporation Fluid delivery device
WO2014179774A1 (en) 2013-05-03 2014-11-06 Becton, Dickinson And Company Drug delivery device
US8905995B2 (en) 2005-04-06 2014-12-09 Asante Solutions, Inc. Medicine dispensing device
US8920376B2 (en) 2010-04-20 2014-12-30 Minipumps, Llc Fill-status sensors for drug pump devices
US8939935B2 (en) 2011-09-02 2015-01-27 Unitract Syringe Pty Ltd Drive mechanism for drug delivery pumps with integrated status indication
US20150041498A1 (en) 2012-02-09 2015-02-12 Arte Corporation Device for accommodating a freeze-dried pharmaceutical product and method of manufacturing a sealed vessel accommodating a freeze-dried pharmaceutical product
US20150051487A1 (en) 2013-03-11 2015-02-19 Boston Scientific Limited Double action infusion system
US20150057613A1 (en) 2013-08-23 2015-02-26 Unitract Syringe Pty Ltd Integrated pierceable seal fluid pathway connection and drug containers for drug delivery pumps
US20150064036A1 (en) 2012-03-19 2015-03-05 B. Braun Melsungen Ag Piston pump
WO2015032772A1 (en) 2013-09-03 2015-03-12 Sanofi Mechanism for a drug delivery device and drug delivery device comprising the mechanism
WO2015048791A1 (en) 2013-09-30 2015-04-02 Medimop Medical Projects Ltd. Adhesive cover peeler and needle cover remover for autoinjector
US20150137017A1 (en) 2013-11-15 2015-05-21 Ivenix, Inc. Fluid flow regulator assembly
WO2015081337A2 (en) 2013-12-01 2015-06-04 Becton, Dickinson And Company Medicament device
US20150202386A1 (en) 2012-08-28 2015-07-23 Osprey Medical, Inc. Volume monitoring device utilizing hall sensor-based systems
WO2015117854A1 (en) 2014-02-06 2015-08-13 Novo Nordisk A/S A cartridge and needle assembly in combination
US20150290389A1 (en) 2012-12-10 2015-10-15 Sanofi-Aventis Deutschland Gmbh Medical pump and method of operating the same
US20150297825A1 (en) 2014-04-18 2015-10-22 Becton, Dickinson And Company Split piston metering pump
WO2015167201A1 (en) 2014-04-29 2015-11-05 최규동 Length-reducing syringe driving device
US9192716B2 (en) 2011-03-16 2015-11-24 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device and drug delivery device
WO2015177082A1 (en) 2014-05-19 2015-11-26 Medicom Innovation Partner A/S A medical cartridge comprising a one way valve
US20160008549A1 (en) 2013-03-13 2016-01-14 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device comprising a feedback feature
CN204972511U (en) 2014-07-02 2016-01-20 贝克顿·迪金森公司 Micropump of medicine is carried through infusion
US20160055842A1 (en) 2014-08-20 2016-02-25 Dreamwell, Ltd Smart pillows and processes for providing active noise cancellation and biofeedback
US20160082242A1 (en) 2013-05-31 2016-03-24 3M Innovative Properties Company Microneedle injection and infusion apparatus and method of using same
US20160129190A1 (en) 2013-06-12 2016-05-12 Daicel Corporation Injector
CN105764543A (en) 2013-12-04 2016-07-13 豪夫迈·罗氏有限公司 Ambulatory infusion system including a step switching mechanism for valve control
US20160213851A1 (en) 2015-01-27 2016-07-28 Weibel Cds Ag Dosing appratus for dispensing a fluid under aseptic conditions
US9539596B2 (en) 2012-03-08 2017-01-10 Musashi Engineering, Inc. Liquid dispensing apparatus, coating apparatus for same, and liquid dispensing method
US20170021096A1 (en) 2014-04-24 2017-01-26 Becton, Dickinson And Company Cannula Insertion and Retraction Device for Infusion Device
US20170021137A1 (en) 2014-04-24 2017-01-26 Becton, Dickinson And Company Catheter insertion mechanism for a patch pump
JP6098988B2 (en) 2012-09-28 2017-03-22 味の素株式会社 Support-containing prepolymer sheet
US20170100541A1 (en) 2014-08-18 2017-04-13 Windgap Medical, Llc Portable Drug Mixing and Delivery Device and Associated Methods
CN206175149U (en) 2014-04-07 2017-05-17 贝克顿·迪金森公司 Rotatory measuring pump
US20170216516A1 (en) 2016-01-28 2017-08-03 Deka Products Limited Partnership Apparatus for monitoring, regulating, or controlling fluid flow
US20170239415A1 (en) 2014-09-10 2017-08-24 Becton, Dickinson And Company Activation system and method for on-body medical devices
CN107096091A (en) 2017-06-08 2017-08-29 广州欧浦瑞医疗科技有限公司 A kind of mechanical infusion pressurizer and pressure method
WO2017148855A1 (en) 2016-03-01 2017-09-08 Novo Nordisk A/S Switch arrangement for drug delivery device with data capture
US20170290975A1 (en) 2016-04-06 2017-10-12 Flextronics Ap, Llc Automatic injection device having a drive system with a shape memory spring
GB2549750A (en) 2016-04-27 2017-11-01 Owen Mumford Ltd Medicament delivery device
US20180021521A1 (en) 2016-07-21 2018-01-25 Amgen Inc Drug delivery device with a rotatable drive mechanism
US20180185579A1 (en) 2017-03-03 2018-07-05 Jerry Joseph Treatment system with automated cannula and sensor inserter, fluid delivery device, and drive mechanism for use therewith
CN108472441A (en) 2016-01-06 2018-08-31 维森楚私人有限公司 A kind of fluid delivery system
US20180313346A1 (en) 2016-01-06 2018-11-01 Vincentra B.V. Shape memory actuator
US20190192782A1 (en) 2016-05-30 2019-06-27 Novo Nordisk A/S Mounting feature for accessory device
US10441723B2 (en) 2016-08-14 2019-10-15 Insulet Corporation Variable fill drug delivery device
US20190365993A1 (en) 2017-01-31 2019-12-05 Societe Industrielle De Sonceboz Sa Drug delivery device
US20200009315A1 (en) 2017-02-20 2020-01-09 Aptar France Sas Automatic fluid product injection device
US10695485B2 (en) 2017-03-07 2020-06-30 Insulet Corporation Very high volume user filled drug delivery device
WO2021016452A1 (en) 2019-07-25 2021-01-28 Becton, Dickinson And Company Rotational metering pump for insulin patch

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011033823A1 (en) 2009-09-16 2011-03-24 シャープ株式会社 Memory device, display device equipped with memory device, drive method for memory device, and drive method for display device

Patent Citations (336)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA606281A (en) 1960-10-04 Dann Morris Cartridge for metering syringe
US1441508A (en) 1921-12-06 1923-01-09 Jensen Anton Marius Cylindrical slide valve
GB357139A (en) 1929-06-14 1931-09-14 Paul Von Vago
US2198666A (en) 1936-09-30 1940-04-30 Lakeland Foundation Syringe
US2752918A (en) 1949-08-17 1956-07-03 Auguste Rooseboom Hypodermic injection apparatus
GB810488A (en) 1955-03-01 1959-03-18 Eduard Woydt Liquid pressure piston-engine or reciprocating pump
GB875034A (en) 1957-07-01 1961-08-16 Renault Improvements in or relating to valves for fluids under pressure
US3176712A (en) 1961-10-03 1965-04-06 Ramsden Clement Non-return valve
US3297260A (en) 1964-09-21 1967-01-10 Conrad R Barlow Nozzle and valve assembly
US3464359A (en) 1967-11-13 1969-09-02 Medimeter Corp The Apparatus for moving fluid from one system to a second system
GB1204836A (en) 1968-05-20 1970-09-09 Thermal Hydraulics Corp Thermal actuator
FR2096275A5 (en) 1970-06-13 1972-02-11 Ismatec Sa
US3946732A (en) * 1973-08-08 1976-03-30 Ampoules, Inc. Two-chamber mixing syringe
US3885662A (en) 1973-12-26 1975-05-27 Ibm Steerable follower selection mechanism
US3947692A (en) 1974-08-05 1976-03-30 Viron E. Payne, Inc. Digital transducers
IL46017A (en) 1974-11-07 1977-11-30 Ampoules Inc Two-chamber mixing syringe
US3993061A (en) 1975-02-28 1976-11-23 Ivac Corporation Syringe pump drive system and disposable syringe cartridge
US4108177A (en) 1976-04-23 1978-08-22 Michel Louis Paul Pistor Automatic injector device
US4055177A (en) * 1976-05-28 1977-10-25 Cohen Milton J Hypodermic syringe
US4210173A (en) 1976-12-06 1980-07-01 American Hospital Supply Corporation Syringe pumping system with valves
US4152098A (en) 1977-01-03 1979-05-01 Clark Ivan P Micropump
GB2008806A (en) 1977-11-03 1979-06-06 Danfoss As Controllable heating means for small masses
FR2455269A1 (en) 1978-01-17 1980-11-21 Marceau Serge Dynamic dosing of liquid food product - utilises compressed air operation of cylinders to move liquid dose to outlet
US4221219A (en) 1978-07-31 1980-09-09 Metal Bellows Corporation Implantable infusion apparatus and method
GB2077367A (en) 1978-09-05 1981-12-16 Mandroian Harold Three valve precision pump apparatus with head pressure flow through protection
US4257324A (en) 1978-10-30 1981-03-24 Bell & Howell Company Position monitoring methods and apparatus
US4277226A (en) 1979-03-09 1981-07-07 Avi, Inc. IV Pump with empty supply reservoir and occlusion detector
WO1981001658A1 (en) 1979-12-13 1981-06-25 M Loeb Wearable insulin infusion system having a tubular reservoir and a positive displacement metering means
US4268150A (en) 1980-01-28 1981-05-19 Laurence Chen Disposable camera with simplified film advance and indicator
US4313439A (en) 1980-03-24 1982-02-02 Biotek, Inc. Automated, spring-powered medicament infusion system
US4601707A (en) 1980-06-03 1986-07-22 Albisser Anthony M Insulin infusion device
US4371790A (en) 1980-09-19 1983-02-01 Rmr Systems, Inc. Fluid measuring system
US4424720A (en) 1980-12-15 1984-01-10 Ivac Corporation Mechanism for screw drive and syringe plunger engagement/disengagement
US4417889A (en) 1980-12-31 1983-11-29 Choi Soo Bong Device for a portable automatic syringe
US4507115A (en) 1981-04-01 1985-03-26 Olympus Optical Co., Ltd. Medical capsule device
FR2507637A1 (en) 1981-06-16 1982-12-17 Libero Elettrotecnica Thermo-electric drive for detergent reservoir of automatic dishwasher - has thermistor heating substance which expands and operates lever
US4435173A (en) 1982-03-05 1984-03-06 Delta Medical Industries Variable rate syringe pump for insulin delivery
US4498843A (en) 1982-08-02 1985-02-12 Schneider Philip H Insulin infusion pump
US4551134A (en) 1982-08-06 1985-11-05 Nuvatec, Inc. Intravenous set
US4475905A (en) 1982-09-30 1984-10-09 Himmelstrup Anders B Injection device
US4585439A (en) 1983-09-07 1986-04-29 Disetronic Ag. Portable infusion unit
US4671429A (en) 1983-11-15 1987-06-09 Thomas J. Lipton, Inc. Method and apparatus for volumetric dosing viscous products
US4678408A (en) 1984-01-06 1987-07-07 Pacesetter Infusion, Ltd. Solenoid drive apparatus for an external infusion pump
US4562751A (en) 1984-01-06 1986-01-07 Nason Clyde K Solenoid drive apparatus for an external infusion pump
US4685903A (en) 1984-01-06 1987-08-11 Pacesetter Infusion, Ltd. External infusion pump apparatus
US4684368A (en) 1984-06-01 1987-08-04 Parker Hannifin Corporation Inverted pump
US4634427A (en) 1984-09-04 1987-01-06 American Hospital Supply Company Implantable demand medication delivery assembly
US4567549A (en) 1985-02-21 1986-01-28 Blazer International Corp. Automatic takeup and overload protection device for shape memory metal actuator
US4846797A (en) 1985-05-14 1989-07-11 Intelligent Medicine, Inc. Syringe positioning device for enhancing fluid flow control
US4908017A (en) 1985-05-14 1990-03-13 Ivion Corporation Failsafe apparatus and method for effecting syringe drive
WO1986006796A1 (en) 1985-05-15 1986-11-20 Henning Munk Ejlersen A hose pump, in particular an insulin pump
US4755169A (en) 1985-05-20 1988-07-05 Survival Technology, Inc. Automatic medicament ingredient mixing and injecting apparatus
US5533389A (en) 1986-03-04 1996-07-09 Deka Products Limited Partnership Method and system for measuring volume and controlling flow
US4808161A (en) 1986-03-04 1989-02-28 Kamen Dean L Pressure-measurement flow control system
US4766889A (en) 1986-06-26 1988-08-30 Medical Engineering Corporation Infusion erectile system
US4944659A (en) 1987-01-27 1990-07-31 Kabivitrum Ab Implantable piezoelectric pump system
US4969874A (en) 1987-05-18 1990-11-13 Disetronic Ag Infusion device
US4898579A (en) 1987-06-26 1990-02-06 Pump Controller Corporation Infusion pump
US4858619A (en) 1987-06-29 1989-08-22 Toth Marie A Intracranial pressure monitoring system
US5147311A (en) 1987-09-09 1992-09-15 Ewald Pickhard Injection device for use with a deformable ampoule
US5062841A (en) 1988-08-12 1991-11-05 The Regents Of The University Of California Implantable, self-regulating mechanochemical insulin pump
US5222362A (en) 1989-01-10 1993-06-29 Maus Daryl D Heat-activated drug delivery system and thermal actuators therefor
US5205819A (en) 1989-05-11 1993-04-27 Bespak Plc Pump apparatus for biomedical use
US4991743A (en) 1989-11-06 1991-02-12 Cobe Laboratories, Inc. Controlled flow accumulator
US5020325A (en) 1990-02-13 1991-06-04 Procedes Vernet Heat motor
EP0454331A1 (en) 1990-04-16 1991-10-30 Minimed Inc., doing business as Minimed Technologies Infusionssystem für die Medikation
US5007458A (en) 1990-04-23 1991-04-16 Parker Hannifin Corporation Poppet diaphragm valve
US5178609A (en) 1990-06-19 1993-01-12 Kato Hatsujo Kaisha, Ltd. Medical liquid injector for continuous transfusion
US5277338A (en) 1990-12-21 1994-01-11 Odin Developments Limited Fluid metering apparatus
US5236416A (en) 1991-05-23 1993-08-17 Ivac Corporation Syringe plunger position detection and alarm generation
US5213483A (en) 1991-06-19 1993-05-25 Strato Medical Corporation Peristaltic infusion pump with removable cassette and mechanically keyed tube set
US5281202A (en) 1991-09-03 1994-01-25 Fresenius Ag Device for draining a flexible fluid container
DE4200595A1 (en) 1992-01-13 1993-07-15 Michail Efune Assembly group for infusion set for insulin pump - involves steel needle inside plastics cannula with only limited axial movement and drawn back into cannula during infusion.
US5911716A (en) 1992-01-24 1999-06-15 I-Flow Corporation Platen pump
US5364342A (en) 1992-02-05 1994-11-15 Nestle S.A. Microsurgical cassette
WO1993020864A1 (en) 1992-04-10 1993-10-28 Novo Nordisk A/S Infusion pump
US5261884A (en) 1992-04-29 1993-11-16 Becton, Dickinson And Company Syringe pump control system
US5346476A (en) 1992-04-29 1994-09-13 Edward E. Elson Fluid delivery system
JPH0663133A (en) 1992-06-18 1994-03-08 Raifu Technol Kenkyusho Portable automatic chemical injection device
US5388615A (en) 1992-12-11 1995-02-14 Busak & Luyken Gmbh & Co. Sealing means and sealing valve for container openings
WO1994015660A1 (en) 1993-01-05 1994-07-21 Berney Jean Claude Powered-plunger infusion device
US5433710A (en) 1993-03-16 1995-07-18 Minimed, Inc. Medication infusion pump with fluoropolymer valve seat
US5747350A (en) 1993-04-02 1998-05-05 Boehringer Mannheim Gmbh System for dosing liquids
JPH06296690A (en) 1993-04-14 1994-10-25 Nippon Medical Supply Corp Syringe pump
US5261882A (en) 1993-04-26 1993-11-16 Sealfon Andrew I Negator spring-powered syringe
US5839467A (en) 1993-10-04 1998-11-24 Research International, Inc. Micromachined fluid handling devices
US5807075A (en) 1993-11-23 1998-09-15 Sarcos, Inc. Disposable ambulatory microprocessor controlled volumetric pump
US5582593A (en) 1994-07-21 1996-12-10 Hultman; Barry W. Ambulatory medication delivery system
US6068615A (en) 1994-07-22 2000-05-30 Health Hero Network, Inc. Inductance-based dose measurement in syringes
US5520661A (en) 1994-07-25 1996-05-28 Baxter International Inc. Fluid flow regulator
US5713875A (en) 1994-07-29 1998-02-03 Abbott Laboratories System for administration of a liquid agent to a patient with a syringe pump
US5891097A (en) 1994-08-12 1999-04-06 Japan Storage Battery Co., Ltd. Electrochemical fluid delivery device
US5637095A (en) 1995-01-13 1997-06-10 Minimed Inc. Medication infusion pump with flexible drive plunger
US5665070A (en) 1995-01-19 1997-09-09 I-Flow Corporation Infusion pump with magnetic bag compression
JPH08238324A (en) 1995-03-04 1996-09-17 Nissho Corp Means for mixed injection of plural medicinal liquids
FR2731475A1 (en) 1995-03-07 1996-09-13 Thomson Dauphinoise Thermal/mechanical device for mounting electric heating or cooling component on thermal actuator
US5503628A (en) 1995-03-15 1996-04-02 Jettek, Inc. Patient-fillable hypodermic jet injector
US5800397A (en) 1995-04-20 1998-09-01 Invasatec, Inc. Angiographic system with automatic high/low pressure switching
US5618269A (en) 1995-05-04 1997-04-08 Sarcos, Inc. Pressure-driven attachable topical fluid delivery system
EP0789146A1 (en) 1995-07-27 1997-08-13 Seiko Epson Corporation Microvalve and method of manufacturing the same, micropump using the microvalve and method of manufacturing the same, and apparatus using the micropump
US5776103A (en) 1995-10-11 1998-07-07 Science Incorporated Fluid delivery device with bolus injection site
US5779676A (en) 1995-10-11 1998-07-14 Science Incorporated Fluid delivery device with bolus injection site
US6050457A (en) 1995-12-06 2000-04-18 The Procter & Gamble Company High pressure manually-actuated spray pump
US5628309A (en) 1996-01-25 1997-05-13 Raya Systems, Inc. Meter for electrically measuring and recording injection syringe doses
US20020029018A1 (en) 1996-03-30 2002-03-07 Peter Jeffrey Materials delivery device
US6190359B1 (en) 1996-04-30 2001-02-20 Medtronic, Inc. Method and apparatus for drug infusion
US5785688A (en) 1996-05-07 1998-07-28 Ceramatec, Inc. Fluid delivery apparatus and method
US5797881A (en) 1996-06-20 1998-08-25 Gadot; Amir Intravenous infusion apparatus
US5748827A (en) 1996-10-23 1998-05-05 University Of Washington Two-stage kinematic mount
US6883778B1 (en) 1996-11-18 2005-04-26 Nypro Inc. Apparatus for reducing fluid drawback through a medical valve
US6352522B1 (en) 1996-12-13 2002-03-05 Boo Yoon Tech, Inc. Disposable syringe assembly
EP0867196A2 (en) 1997-03-26 1998-09-30 Disetronic Licensing AG Catheter system for transdermal passages
WO1998055073A1 (en) 1997-06-03 1998-12-10 Kunshan Wang A medical apparatus comprising an elastic valve-type stopper and a piercing needle
DE19723648C1 (en) 1997-06-05 1998-08-27 Disetronic Licensing Ag Controlled infusion equipment with leak and reverse flow prevention used e.g. in insulin therapy
WO1998056293A1 (en) 1997-06-09 1998-12-17 Minimed Inc. Insertion set for a transcutaneous sensor
US5957890A (en) 1997-06-09 1999-09-28 Minimed Inc. Constant flow medication infusion pump
WO1999010040A1 (en) 1997-08-27 1999-03-04 Science Incorporated Fluid delivery device with temperature controlled energy source
US6200293B1 (en) 1997-08-27 2001-03-13 Science Incorporated Fluid delivery device with temperature controlled energy source
US6485462B1 (en) 1997-08-27 2002-11-26 Science Incorporated Fluid delivery device with heat activated energy source
US6527744B1 (en) 1997-08-27 2003-03-04 Science Incorporated Fluid delivery device with light activated energy source
US5961492A (en) 1997-08-27 1999-10-05 Science Incorporated Fluid delivery device with temperature controlled energy source
US6174300B1 (en) 1997-08-27 2001-01-16 Science Incorporated Fluid delivery device with temperature controlled energy source
US6569115B1 (en) 1997-08-28 2003-05-27 Mdc Investment Holdings, Inc. Pre-filled retractable needle injection device
WO1999010049A1 (en) 1997-08-29 1999-03-04 Cycle-Ops Products, Inc. Exercise resistance device
US6019747A (en) 1997-10-21 2000-02-01 I-Flow Corporation Spring-actuated infusion syringe
US5897530A (en) 1997-12-24 1999-04-27 Baxter International Inc. Enclosed ambulatory pump
US6159188A (en) 1998-01-14 2000-12-12 Robert L. Rogers Apparatus and method for delivery of micro and submicro quantities of materials
US6539286B1 (en) 1998-01-26 2003-03-25 Micron Technology, Inc. Fluid level sensor
US6488652B1 (en) 1998-02-02 2002-12-03 Medtronic, Inc. Safety valve assembly for implantable benefical agent infusion device
US6595956B1 (en) 1998-03-23 2003-07-22 Joseph Gross Drug delivery device
US5919167A (en) 1998-04-08 1999-07-06 Ferring Pharmaceuticals Disposable micropump
WO1999062576A1 (en) 1998-06-04 1999-12-09 Elan Corporation, Plc Gas driven drug delivery device
US5906597A (en) 1998-06-09 1999-05-25 I-Flow Corporation Patient-controlled drug administration device
US5971963A (en) 1998-08-18 1999-10-26 Choi; Soo Bong Portable automatic syringe device and injection needle unit thereof
WO2000029047A1 (en) 1998-11-18 2000-05-25 Phiscience Gmbh, Entwicklung Von Sensoren Portable device and method for the mobile supply of medicaments with wireless transmission of data for control or programming purposes
US6375638B2 (en) 1999-02-12 2002-04-23 Medtronic Minimed, Inc. Incremental motion pump mechanisms powered by shape memory alloy wire or the like
US20010016710A1 (en) 1999-02-12 2001-08-23 Minimed Inc. Incremental motion pump mechanisms druven by shape memory alloy wire or the like
US20040069044A1 (en) 1999-04-29 2004-04-15 Gilad Lavi Device for measuring a volume of drug
US6520936B1 (en) 1999-06-08 2003-02-18 Medtronic Minimed, Inc. Method and apparatus for infusing liquids using a chemical reaction in an implanted infusion device
EP1065378A2 (en) 1999-06-28 2001-01-03 California Institute of Technology Microfabricated elastomeric valve and pump systems
US20020173830A1 (en) 2000-01-21 2002-11-21 Starkweather Timothy J. Method and apparatus for communicating between an ambulatory medical device and a control device via telemetry using randomized data
US20020032374A1 (en) 2000-02-10 2002-03-14 Holker James D. Analyte sensor and method of making the same
US20010056258A1 (en) 2000-03-22 2001-12-27 Evans Robert F. Drug delivery and monitoring system
US6474219B2 (en) 2000-03-24 2002-11-05 Novo Nordisk A/S Flexible piston rod
US6485461B1 (en) 2000-04-04 2002-11-26 Insulet, Inc. Disposable infusion device
WO2001078812A1 (en) 2000-04-13 2001-10-25 Novo Nordisk A/S A drug delivery device provided with a one-way mechanism
US20020037221A1 (en) 2000-06-06 2002-03-28 Mastrangelo Carlos H. Thermally activated polymer device
WO2002026282A2 (en) 2000-06-28 2002-04-04 Science Incorporated Fluid delivery device with light activated energy source
EP1177802A1 (en) 2000-07-31 2002-02-06 Becton Dickinson and Company Wearable, self-contained drug infusion device
US20030097092A1 (en) 2000-09-08 2003-05-22 Flaherty J. Christopher Devices, systems and methods for patient infusion
WO2002020073A2 (en) 2000-09-08 2002-03-14 Insulet Corporation Devices, systems and methods for patient infusion
US7137964B2 (en) 2000-09-08 2006-11-21 Insulet Corporation Devices, systems and methods for patient infusion
US6740059B2 (en) 2000-09-08 2004-05-25 Insulet Corporation Devices, systems and methods for patient infusion
US6363609B1 (en) 2000-10-20 2002-04-02 Short Block Technologies, Inc. Method and apparatus for aligning crankshaft sections
WO2002068823A1 (en) 2000-11-06 2002-09-06 Nanostream Inc. Uni-directional flow microfluidic components
US6699218B2 (en) 2000-11-09 2004-03-02 Insulet Corporation Transcutaneous delivery means
US6537249B2 (en) 2000-12-18 2003-03-25 Science, Incorporated Multiple canopy
US6851260B2 (en) 2001-01-17 2005-02-08 M 2 Medical A/S Shape memory alloy actuator
WO2002076535A1 (en) 2001-03-27 2002-10-03 Dca Design International Limited Improvements in and relating to an injection device
US20020173769A1 (en) 2001-05-18 2002-11-21 Gray Larry B. Infusion set for a fluid pump
US20030040715A1 (en) 2001-08-21 2003-02-27 D'antonio Nicholas F. Hypodermic jet injection kit
US20040094733A1 (en) 2001-08-31 2004-05-20 Hower Robert W. Micro-fluidic system
US20030055380A1 (en) 2001-09-19 2003-03-20 Flaherty J. Christopher Plunger for patient infusion device
NL1019126C1 (en) 2001-10-05 2003-04-08 Fondse Valves B V Dosing pump for e.g. measuring intercellular moisture, contains pump chamber with ejector and sliding part for sealing inlet and outlet ports
US20040092865A1 (en) 2001-11-09 2004-05-13 J. Christopher Flaherty Transcutaneous delivery means
US20030109827A1 (en) 2001-12-07 2003-06-12 Elan Pharma International Limited Drug delivery system and method
US20030163097A1 (en) 2002-02-28 2003-08-28 Fleury Michael T. Huber needle with anti-rebound safety mechanism
US20050165363A1 (en) 2002-03-18 2005-07-28 Judson Jared A. Medication dispensing apparatus with gear set for mechanical advantage
CN1375338A (en) 2002-03-22 2002-10-23 张�浩 Heating infusion device
US7104275B2 (en) 2002-04-01 2006-09-12 Emerson Electric Co. Pinch valve
US20030198558A1 (en) 2002-04-22 2003-10-23 Nason Clyde K. Shape memory alloy wire driven positive displacement micropump with pulsatile output
US20030199825A1 (en) 2002-04-23 2003-10-23 Flaherty J. Christopher Dispenser for patient infusion device
US6656158B2 (en) 2002-04-23 2003-12-02 Insulet Corporation Dispenser for patient infusion device
US20040153032A1 (en) 2002-04-23 2004-08-05 Garribotto John T. Dispenser for patient infusion device
US20050238507A1 (en) 2002-04-23 2005-10-27 Insulet Corporation Fluid delivery device
US20050203461A1 (en) 2002-04-23 2005-09-15 Insulet Corporation Transcutaneous fluid delivery system
WO2003097133A1 (en) 2002-05-17 2003-11-27 Owen Mumford Limited Injection device with automatically retractable needle
US7160272B1 (en) 2002-05-31 2007-01-09 Elcam Plastic Y-site medical valve
US6723072B2 (en) 2002-06-06 2004-04-20 Insulet Corporation Plunger assembly for patient infusion device
US20040010207A1 (en) 2002-07-15 2004-01-15 Flaherty J. Christopher Self-contained, automatic transcutaneous physiologic sensing system
US7018360B2 (en) 2002-07-16 2006-03-28 Insulet Corporation Flow restriction system and method for patient infusion device
US20060041229A1 (en) 2002-07-16 2006-02-23 Insulet Corporation Flow restriction system and method for patient infusion device
US6749407B2 (en) 2002-08-22 2004-06-15 Motorola, Inc. Method of installing valves in a micro-pump
EP1403519A1 (en) 2002-09-27 2004-03-31 Novo Nordisk A/S Membrane pump with stretchable pump membrane
US20040064088A1 (en) 2002-09-30 2004-04-01 William Gorman Dispenser components and methods for patient infusion device
US7128727B2 (en) 2002-09-30 2006-10-31 Flaherty J Christopher Components and methods for patient infusion device
US20060282290A1 (en) 2002-09-30 2006-12-14 Insulet Corporation Components and Methods For Patient Infusion Device
US7144384B2 (en) 2002-09-30 2006-12-05 Insulet Corporation Dispenser components and methods for patient infusion device
US20040068224A1 (en) 2002-10-02 2004-04-08 Couvillon Lucien Alfred Electroactive polymer actuated medication infusion pumps
WO2004032994A2 (en) 2002-10-09 2004-04-22 Therasense, Inc. Fluid delivery device, system and method
US7951114B2 (en) 2002-10-09 2011-05-31 Abbott Diabetes Care Inc. Device and method employing shape memory alloy
WO2004056412A2 (en) 2002-12-23 2004-07-08 M2 Medical A/S A disposable, wearable insulin dispensing device, a combination of such a device and a programming controller and a method of controlling the operation of such a device
US20050273059A1 (en) 2002-12-23 2005-12-08 M 2 Medical A/S Disposable, wearable insulin dispensing device, a combination of such a device and a programming controller and a method of controlling the operation of such a device
JP2004247271A (en) 2003-02-12 2004-09-02 Bimetal Japan Kk Voltage sensing switch
JP2004274719A (en) 2003-02-18 2004-09-30 Fujitsu Hitachi Plasma Display Ltd Predriver circuit, capacitive load drive circuit, and plasma display
US20070118405A1 (en) 2003-04-18 2007-05-24 Insulet Corporation User Interface For Infusion Pump Remote Controller And Method Of Using The Same
US20050020980A1 (en) 2003-06-09 2005-01-27 Yoshio Inoue Coupling system for an infusion pump
WO2004110526A1 (en) 2003-06-17 2004-12-23 Disetronic Licensing Ag Modular infusion pump
JP2005188355A (en) 2003-12-25 2005-07-14 Nikkiso Co Ltd Diaphragm pump
US20120078161A1 (en) 2004-03-08 2012-03-29 Masterson Steven P Apparatus for electrically mediated delivery of therapeutic agents
US20050277882A1 (en) 2004-05-26 2005-12-15 Kriesel Marshall S Infusion apparatus
US20060079765A1 (en) 2004-10-13 2006-04-13 Liebel-Flarsheim Company Powerhead of a power injection system
JP2006159228A (en) 2004-12-06 2006-06-22 Mitsubishi Heavy Ind Ltd Brazing method for heat exchanger and preheating apparatus for brazing
US20060155210A1 (en) 2005-01-10 2006-07-13 Ethicon Endo-Surgery, Inc. Biopsy instrument with improved needle penetration
US20060173439A1 (en) 2005-01-18 2006-08-03 Thorne Gale H Jr Syringe drive system
US20060178633A1 (en) 2005-02-03 2006-08-10 Insulet Corporation Chassis for fluid delivery device
JP2006249130A (en) 2005-03-08 2006-09-21 Dainippon Ink & Chem Inc Manufacturing method of oligomer containing fluorinated alkyl group
EP1874390B1 (en) 2005-03-28 2014-10-01 Insulet Corporation Fluid delivery device
US8905995B2 (en) 2005-04-06 2014-12-09 Asante Solutions, Inc. Medicine dispensing device
US20060253085A1 (en) 2005-05-06 2006-11-09 Medtronic Minimed, Inc. Dual insertion set
US20070005018A1 (en) 2005-06-14 2007-01-04 Tengiz Tekbuchava Catheter for introduction of medications to the tissues of a heart or other organ
DE102005040344A1 (en) 2005-08-25 2007-03-01 Fresenius Kabi Deutschland Gmbh Pump for use as infusion pump, has delivery bolt or piston supported in housing in movable manner, and drive unit for driving delivery bolt or piston, where movement of delivery bolt or piston is limited by upper and lower end stops
US20070073236A1 (en) 2005-09-26 2007-03-29 Morten Mernoe Dispensing fluid from an infusion pump system
US20070088271A1 (en) 2005-10-18 2007-04-19 Richards Cynthia C Medication device
JP2009514580A (en) 2005-11-02 2009-04-09 インジェクティカ アーゲー Implantable injection device
US20090278875A1 (en) 2005-11-14 2009-11-12 Mydata Automation Ab Jetting Apparatus and Method of Improving the Performance of a Jetting Apparatus
WO2007066152A2 (en) 2005-12-08 2007-06-14 Owen Mumford Ltd Substance delivery device
US20200345931A1 (en) 2006-02-09 2020-11-05 Deka Products Limited Partnership Adhesive and Peripheral Systems and Methods for Medical Devices
US20120209207A1 (en) 2006-02-09 2012-08-16 Gray Larry B Adhesive and peripheral systems and methods for medical devices
US20160025544A1 (en) 2006-02-09 2016-01-28 Deka Products Limited Partnership Device to Determine Volume of Fluid Dispensed
US7914499B2 (en) 2006-03-30 2011-03-29 Valeritas, Inc. Multi-cartridge fluid delivery device
US20100241066A1 (en) 2006-05-29 2010-09-23 Novo Nordisk A/S Mechanism for Injection Device
US20070282269A1 (en) 2006-05-31 2007-12-06 Seattle Medical Technologies Cannula delivery apparatus and method for a disposable infusion device
US20080004515A1 (en) 2006-06-30 2008-01-03 Abbott Diabetes Care, Inc. Integrated Analyte Sensor and Infusion Device and Methods Therefor
US20080051738A1 (en) 2006-08-23 2008-02-28 Medtronic Minimed, Inc. Infusion medium delivery system, device and method with needle inserter and needle inserter device and method
US20080172028A1 (en) 2006-10-17 2008-07-17 Blomquist Michael L Insulin pump having selectable insulin absorption models
GB2456681A (en) 2006-10-26 2009-07-29 Starbridge Systems Ltd Therapeutic liquid pump with different valve actuation pressures
US20080114304A1 (en) 2006-11-13 2008-05-15 Medical Components, Inc Syringe for sequential expression of different liquids and method of using same
US20080294040A1 (en) 2007-01-10 2008-11-27 Khader Mohiuddin Volumetric pump
US20080243211A1 (en) 2007-04-02 2008-10-02 Baxter International Inc. User selectable masking sounds for medical instruments
US20100036326A1 (en) 2007-04-19 2010-02-11 Rudolf Matusch Disposable injector comprising at least one draw hook and a sliding wedge-type gear for unlocking a locking element
WO2008133702A1 (en) 2007-04-30 2008-11-06 Medtronic Minimed, Inc. Needle inserting and fluid flow connection for infusion medium delivery system
US20090198215A1 (en) 2007-04-30 2009-08-06 Medtronic Minimed, Inc. Adhesive patch systems and methods
US20090024083A1 (en) 2007-06-25 2009-01-22 Kriesel Marshall S Fluid dispenser with additive sub-system
US8267921B2 (en) 2007-07-20 2012-09-18 Medingo Ltd. Manually operable portable infusion device
US20090062767A1 (en) 2007-08-29 2009-03-05 Medtronic Minimed, Inc. Combined sensor and infusion set using separated sites
WO2009039203A2 (en) 2007-09-17 2009-03-26 Satish Sundar High precision infusion pump controller
US20110073620A1 (en) 2007-11-17 2011-03-31 Brian Leonard Verrilli Twisting translational displacement pump cartridge
US7771392B2 (en) 2007-11-29 2010-08-10 Roche Diagnostics Operations, Inc. Lead screw delivery device using reusable shape memory actuator drive
WO2009141005A1 (en) 2008-05-20 2009-11-26 Tecpharma Licensing Ag Device for administering an injectable product comprising a residual amount display
US20090326472A1 (en) 2008-06-26 2009-12-31 Calibra Medical, Inc. Disposable infusion device with automatically releasable cannula driver
US20110180480A1 (en) 2008-08-12 2011-07-28 Peter Kloeffel Reverse-osmosis system with an apparatus for reducing noise and method for reducing noise in a reverse-osmosis system
WO2010022069A2 (en) 2008-08-18 2010-02-25 Calibra Medical, Inc. Drug infusion system with reusable and disposable components
WO2010077279A1 (en) 2008-12-09 2010-07-08 Becton, Dickinson And Company Multi-stroke delivery pumping mechanism for a drug delivery device for high pressure injections
US20130178803A1 (en) 2008-12-12 2013-07-11 Sanofi-Aventis Deutschland Gmbh Resettable Drive Mechanism for a Medication Delivery Device and Medication Delivery Device
US20100152658A1 (en) 2008-12-16 2010-06-17 Medtronic Minimed, Inc. Needle insertion systems and methods
US20120172817A1 (en) 2009-02-05 2012-07-05 Sanofi-Aventis Deutschland Gmbh Medicament Delivery Devices
WO2010139793A1 (en) 2009-06-04 2010-12-09 Novo Nordisk A/S Mixing device with piston coupling arrangement
CN102498292B (en) 2009-07-23 2015-07-08 斯维斯诺弗产品责任有限公司 Fluid delivery system comprising a fluid pumping device and a drive system
CN102498292A (en) 2009-07-23 2012-06-13 斯维斯诺弗产品责任有限公司 Fluid delivery system comprising a fluid pumping device and a drive system
WO2011010198A2 (en) 2009-07-23 2011-01-27 Thierry Navarro Fluid delivery system comprising a fluid pumping device and a drive system
US20110144586A1 (en) 2009-07-30 2011-06-16 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
WO2011031458A1 (en) 2009-08-25 2011-03-17 Medtronic Minimed, Inc. Reservoir barrier layer systems and methods
US20110054399A1 (en) 2009-09-02 2011-03-03 Medtronic Minimed, Inc. Insertion device systems and methods
US20130296792A1 (en) 2009-09-15 2013-11-07 Medimop Medical Projects Ltd. Cartridge insertion assembly
US20130006213A1 (en) 2009-11-03 2013-01-03 Theo Arnitz Device for substantially germ-free provision of a fluid medium
WO2011069935A2 (en) 2009-12-07 2011-06-16 Sanofi-Aventis Deutschland Gmbh Drive assembly for a drug delivery device and drug delivery device
WO2011075042A1 (en) 2009-12-14 2011-06-23 Shl Group Ab Medicament delivery device
US20130017099A1 (en) 2010-03-17 2013-01-17 Sensile Pat Ag Micropump
US20110230833A1 (en) 2010-03-21 2011-09-22 Mania Landman Device and Method for Injecting Fluids or Gels
US8920376B2 (en) 2010-04-20 2014-12-30 Minipumps, Llc Fill-status sensors for drug pump devices
US9180244B2 (en) 2010-04-21 2015-11-10 Abbvie Biotechnology Ltd Wearable automatic injection device for controlled delivery of therapeutic agents
WO2011133823A1 (en) 2010-04-21 2011-10-27 Abbott Biotechnology Ltd. Wearable automatic injection device for controlled delivery of therapeutic agents
EP2397181A1 (en) 2010-06-18 2011-12-21 F. Hoffmann-La Roche AG Insertion device having a permanently locking rotating needle cover
US20130267932A1 (en) 2010-11-03 2013-10-10 Sanofi-Aventis Deutschland Gmbh Needle Assembly for the Delivery of at Least Two Medicaments
WO2012073032A1 (en) 2010-12-02 2012-06-07 Oval Medical Technologies Limited A drive assembly for an autoinjector and a method of assembling an autoinjector
EP2468338A1 (en) 2010-12-21 2012-06-27 Sanofi-Aventis Deutschland GmbH Auto-injector
US9192716B2 (en) 2011-03-16 2015-11-24 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device and drug delivery device
US20140018730A1 (en) 2011-03-31 2014-01-16 Sanofi-Aventis Deutschland Gmbh Dosing Mechanism
US20140148784A1 (en) 2011-04-21 2014-05-29 Abbvie Inc. Wearable automatic injection device for controlled administration of therapeutic agents
EP2703024A1 (en) 2011-04-26 2014-03-05 Taisei Kako Co., Ltd. Elastic sealing body for prefilled syringe
US8499913B2 (en) 2011-05-20 2013-08-06 The Boeing Company Shape memory alloy actuator system and method
US8939935B2 (en) 2011-09-02 2015-01-27 Unitract Syringe Pty Ltd Drive mechanism for drug delivery pumps with integrated status indication
US20130064701A1 (en) 2011-09-12 2013-03-14 Satoshi Konishi Pumping apparatus
US20130245545A1 (en) 2011-09-20 2013-09-19 Medingo Ltd. Drug Injection Devices, Systems and Methods
WO2013050535A2 (en) 2011-10-07 2013-04-11 Novo Nordisk A/S System for determining position of element
US8382703B1 (en) 2011-10-18 2013-02-26 King Saud University Piezoelectric dual-syringe insulin pump
US20130177455A1 (en) 2011-12-21 2013-07-11 DEKA Productions Limited Partnership System, Method, and Apparatus for Infusing Fluid
US20150041498A1 (en) 2012-02-09 2015-02-12 Arte Corporation Device for accommodating a freeze-dried pharmaceutical product and method of manufacturing a sealed vessel accommodating a freeze-dried pharmaceutical product
US9539596B2 (en) 2012-03-08 2017-01-10 Musashi Engineering, Inc. Liquid dispensing apparatus, coating apparatus for same, and liquid dispensing method
WO2013137893A1 (en) 2012-03-15 2013-09-19 Becton, Dickinson And Company Multiple use disposable injection pen
US20150064036A1 (en) 2012-03-19 2015-03-05 B. Braun Melsungen Ag Piston pump
EP2830499A1 (en) 2012-03-30 2015-02-04 Insulet Corporation Fluid delivery device with transcutaneous access tool, insertion mechansim and blood glucose monitoring for use therewith
US9402950B2 (en) 2012-03-30 2016-08-02 Insulet Corporation Fluid delivery device, transcutaneous access tool and fluid drive mechanism for use therewith
WO2013149186A1 (en) 2012-03-30 2013-10-03 Insulet Corporation Fluid delivery device with transcutaneous access tool, insertion mechansim and blood glucose monitoring for use therewith
US20140127048A1 (en) 2012-03-30 2014-05-08 Insulet Corporation Fluid delivery device, transcutaneous access tool and fluid drive mechanism for use therewith
US20140128839A1 (en) 2012-03-30 2014-05-08 Insulet Corporation Fluid delivery device and transcutaneous access tool with blood glucose monitoring for use therewith
US20140142508A1 (en) 2012-03-30 2014-05-22 Insulet Corporation Fluid delivery device, transcutaneous access tool and insertion mechanism for use therewith
WO2014029416A1 (en) 2012-08-20 2014-02-27 Roche Diagnostics Gmbh Therapeutic system with an adaptor for an infusion set
US20150202386A1 (en) 2012-08-28 2015-07-23 Osprey Medical, Inc. Volume monitoring device utilizing hall sensor-based systems
JP6098988B2 (en) 2012-09-28 2017-03-22 味の素株式会社 Support-containing prepolymer sheet
US20150290389A1 (en) 2012-12-10 2015-10-15 Sanofi-Aventis Deutschland Gmbh Medical pump and method of operating the same
US20140171901A1 (en) 2012-12-13 2014-06-19 Schott Ag Device for retaining and storing liquid media and method of expelling the liquid media
US20150051487A1 (en) 2013-03-11 2015-02-19 Boston Scientific Limited Double action infusion system
US20160008549A1 (en) 2013-03-13 2016-01-14 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device comprising a feedback feature
WO2014149357A1 (en) 2013-03-22 2014-09-25 Amgen Inc. Injector and method of assembly
WO2014179774A1 (en) 2013-05-03 2014-11-06 Becton, Dickinson And Company Drug delivery device
US20160082242A1 (en) 2013-05-31 2016-03-24 3M Innovative Properties Company Microneedle injection and infusion apparatus and method of using same
US20160129190A1 (en) 2013-06-12 2016-05-12 Daicel Corporation Injector
US20150057613A1 (en) 2013-08-23 2015-02-26 Unitract Syringe Pty Ltd Integrated pierceable seal fluid pathway connection and drug containers for drug delivery pumps
US20160193423A1 (en) 2013-09-03 2016-07-07 Sanofi Mechanism for a Drug Delivery Device and Drug Delivery Device Comprising the Mechanism
WO2015032772A1 (en) 2013-09-03 2015-03-12 Sanofi Mechanism for a drug delivery device and drug delivery device comprising the mechanism
WO2015048791A1 (en) 2013-09-30 2015-04-02 Medimop Medical Projects Ltd. Adhesive cover peeler and needle cover remover for autoinjector
US20150137017A1 (en) 2013-11-15 2015-05-21 Ivenix, Inc. Fluid flow regulator assembly
WO2015081337A2 (en) 2013-12-01 2015-06-04 Becton, Dickinson And Company Medicament device
CN105764543B (en) 2013-12-04 2019-05-14 豪夫迈·罗氏有限公司 Portable infusion system including step switch mechanism for valve control
CN105764543A (en) 2013-12-04 2016-07-13 豪夫迈·罗氏有限公司 Ambulatory infusion system including a step switching mechanism for valve control
WO2015117854A1 (en) 2014-02-06 2015-08-13 Novo Nordisk A/S A cartridge and needle assembly in combination
JP2017513577A (en) 2014-04-07 2017-06-01 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company Rotary metering pump for insulin patch
CN206175149U (en) 2014-04-07 2017-05-17 贝克顿·迪金森公司 Rotatory measuring pump
US20150297825A1 (en) 2014-04-18 2015-10-22 Becton, Dickinson And Company Split piston metering pump
US20170021137A1 (en) 2014-04-24 2017-01-26 Becton, Dickinson And Company Catheter insertion mechanism for a patch pump
US20170021096A1 (en) 2014-04-24 2017-01-26 Becton, Dickinson And Company Cannula Insertion and Retraction Device for Infusion Device
WO2015167201A1 (en) 2014-04-29 2015-11-05 최규동 Length-reducing syringe driving device
WO2015177082A1 (en) 2014-05-19 2015-11-26 Medicom Innovation Partner A/S A medical cartridge comprising a one way valve
CN204972511U (en) 2014-07-02 2016-01-20 贝克顿·迪金森公司 Micropump of medicine is carried through infusion
US20170100541A1 (en) 2014-08-18 2017-04-13 Windgap Medical, Llc Portable Drug Mixing and Delivery Device and Associated Methods
US20160055842A1 (en) 2014-08-20 2016-02-25 Dreamwell, Ltd Smart pillows and processes for providing active noise cancellation and biofeedback
US20170239415A1 (en) 2014-09-10 2017-08-24 Becton, Dickinson And Company Activation system and method for on-body medical devices
US20160213851A1 (en) 2015-01-27 2016-07-28 Weibel Cds Ag Dosing appratus for dispensing a fluid under aseptic conditions
CN108472441A (en) 2016-01-06 2018-08-31 维森楚私人有限公司 A kind of fluid delivery system
US20180313346A1 (en) 2016-01-06 2018-11-01 Vincentra B.V. Shape memory actuator
US20170216516A1 (en) 2016-01-28 2017-08-03 Deka Products Limited Partnership Apparatus for monitoring, regulating, or controlling fluid flow
WO2017148855A1 (en) 2016-03-01 2017-09-08 Novo Nordisk A/S Switch arrangement for drug delivery device with data capture
US20170290975A1 (en) 2016-04-06 2017-10-12 Flextronics Ap, Llc Automatic injection device having a drive system with a shape memory spring
WO2017187177A1 (en) 2016-04-27 2017-11-02 Owen Mumford Limited Medicament delivery device
GB2549750A (en) 2016-04-27 2017-11-01 Owen Mumford Ltd Medicament delivery device
US20190192782A1 (en) 2016-05-30 2019-06-27 Novo Nordisk A/S Mounting feature for accessory device
US20180021521A1 (en) 2016-07-21 2018-01-25 Amgen Inc Drug delivery device with a rotatable drive mechanism
US10441723B2 (en) 2016-08-14 2019-10-15 Insulet Corporation Variable fill drug delivery device
US20190365993A1 (en) 2017-01-31 2019-12-05 Societe Industrielle De Sonceboz Sa Drug delivery device
US20200009315A1 (en) 2017-02-20 2020-01-09 Aptar France Sas Automatic fluid product injection device
US20180185579A1 (en) 2017-03-03 2018-07-05 Jerry Joseph Treatment system with automated cannula and sensor inserter, fluid delivery device, and drive mechanism for use therewith
US10695485B2 (en) 2017-03-07 2020-06-30 Insulet Corporation Very high volume user filled drug delivery device
CN107096091A (en) 2017-06-08 2017-08-29 广州欧浦瑞医疗科技有限公司 A kind of mechanical infusion pressurizer and pressure method
WO2021016452A1 (en) 2019-07-25 2021-01-28 Becton, Dickinson And Company Rotational metering pump for insulin patch

Non-Patent Citations (33)

* Cited by examiner, † Cited by third party
Title
"Lind, et al. "Linear Motion Miniature Actuators."" Paper presented at the 2nd Tampere International Conference onMachine Automation, Tampere, Finland (Sep. 1998).
Author unknown, ""The Animas R-1000 Insulin Pump—Animas Corporation intends to exit the insulin pump businessand discontinue the manufacturing and sale of Animas® Vibe® and One Touch Ping® insulin pumps."" [online],Dec. 1999 [retrieved on Jan. 8, 2019]. Retrieved from the Internet URL: http://www.animaspatientsupport.com/.
Author unknown, CeramTec ""Discover the Electro Ceramic Products CeramTec acquired from Morgan Advanced Materials"" [online], Mar. 1, 2001 [retrieved on Jan. 8, 2019. Retrieved from the Internet URL: http://www.morgantechnicalceramics.com/.
EPO Search Report dated Nov. 11, 2015, received in corresponding Application No. 13768938.6, 7 pgs.
European Search Report and Written Opinion for the European Patent Application No. EP19177571, dated Oct. 30, 2019, 8 pages.
European Search Report and Written Opinion for the European Patent Application No. EP20174878, dated Sep. 29, 2020, 8 pages.
Galante, et al., "Design, Modeling, and Performance of a High Force Piezoelectric Inchworm Motor," Journal of Intelligent Material Systems and Structures, vol. 10, 962-972 (1999).
International Preliminary Report on Patentability for International application No. PCT/US2017/034811 dated Nov. 27, 2018 10 pages.
International Preliminary Report on Patentability for the International Patent Application No. PCT/US 1814351, dated Aug. 1, 2019, 6 pages.
International Preliminary Report on Patentability for the International Patent Application No. PCT/US2017/046508 dated Feb. 12, 2019 10 pp.
International Preliminary Report on Patentability for the International Patent Application No. PCT/US2017/046737, dated Feb. 19, 2019, 8 pages.
International Preliminary Report on Patentability for the International Patent Application No. PCT/US2017/046777, dated Feb. 19, 2019, 8 pages.
International Preliminary Report on Patentability for the International Patent Application No. PCT/US2017/055054, dated Apr. 9, 2019, 8 pages.
International Preliminary Report on Patentability for the International Patent Application No. PCT/US2018/045155, dated Feb. 13, 2020, 10 pages.
International Search Report and Written Opinion for application No. PCT/US2017/034811, dated Oct. 18, 2017, 15 pages.
International Search Report and Written Opinion for Application No. PCT/US2019/059854, dated Aug. 26, 2020, 15 pages.
International Search Report and Written Opinion for Interantional application No. PCT/US2017/055054, dated Jan. 25, 2018, 14 pages.
International Search Report and Written Opinion for International application No. PCT/GB2007/004073, dated Jan. 31, 2008.
International Search Report and Written Opinion for International application No. PCT/US2017/034814, dated Oct. 11, 2017, 16 pages.
International Search Report and Written Opinion for International application No. PCT/US2017/046508, dated Jan. 17, 2018, 14 pages.
International Search Report and Written Opinion for International application No. PCT/US2017/046737, dated Dec. 14, 2017, 11 pages.
International Search Report and Written Opinion for International application No. PCT/US2017/046777, dated Dec. 13, 2017, 14 pages.
International Search Report and Written Opinion for International application No. PCT/US2018/045155, dated Oct. 15, 2018, 12 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2022/011356, dated Apr. 29, 2022, 19 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2022/029012, dated Aug. 19, 2022, 12 pages.
International Search Report and Written Opinion for PCT/US2018/014351, dated Jun. 4, 2018, 9 pages.
International Search Report and Written Opinion for the International Patent Application No. PCT/US2019/035756, dated Jul. 31, 2019, 11 pages.
International Search Report and Written Opinion for the International Patent Application No. PCT/US2019/063615, dated May 3, 2020, 16 pages.
International Search Report and Written Opinion for the International Patent Application No. PCT/US2021/055581, dated Feb. 8, 2022, 19 pages.
International Search Report and Written Opinion, Application No. PCT/US2022/016713, dated Aug. 5, 2022, 19 pages.
PCT International Search Report and Written Opinion dated Aug. 6, 2013, received in corresponding PCT Application No. PCT/US13/34674, pp. 1-19.
Schott web-page image from Jul. 9, 2016, https://www.us.schott.com/pharmaceutical_packaging/english/products/cartrid es.html.
Vaughan, M.E., ""The Design, Fabrication, and Modeling of a Piezoelectric Linear Motor."" Master's thesis,Virginia Polytechnic Institute and State University, VA. (2001).

Also Published As

Publication number Publication date
US20200179608A1 (en) 2020-06-11
US20180200444A1 (en) 2018-07-19
WO2018136699A1 (en) 2018-07-26
US10603440B2 (en) 2020-03-31

Similar Documents

Publication Publication Date Title
US20090247955A1 (en) Microliter injector
US11633541B2 (en) Cartridge hold-up volume reduction
EP2589402B1 (en) Spraying device
EP3258995B1 (en) Syringe systems, piston seal systems, stopper systems, and methods of use and assembly
EP3603710B1 (en) Syringe type liquid ejection device
SK3492001A3 (en) Needleless injector cartridge
WO2015155229A1 (en) A cartridge for a medical injection device
US20120271245A1 (en) Malleable stopper for a syringe
ZA200700331B (en) Multiple septum cartridge for medication dispensing device
US20030100883A1 (en) Cartridge for liquid insulin
US20200376195A1 (en) Valve Assembly for Drug Delivery Device
US10363372B2 (en) Plunger for drug delivery device
JP2021515608A (en) Syringe plunger stopper for high dose accuracy drug delivery
US20210331856A1 (en) Container, discharger and method of assembling a discharger
US20210354152A1 (en) Discharger, static piston and method of discharging
US20200078572A1 (en) Discharger and method of discharging
KR20110009755A (en) Prefield Syringe
US20130324927A1 (en) Syringe assembly for a medication pump or the like
AU2002325201B2 (en) A cartridge for liquid insulin
US20230021069A1 (en) Sealed Multi Chamber Syringe for Storage, Mixing and Delivery of Multi Part Substances
EP1225939A1 (en) Medicament cartridge
US20090299296A1 (en) Container for receiving medical liquids
JP2011098163A (en) Syringe serving also as container

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

AS Assignment

Owner name: INSULET CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCCAFFREY, MAUREEN;NAZZARO, DAVID;MCLAUGHLIN, IAN;AND OTHERS;SIGNING DATES FROM 20180314 TO 20180426;REEL/FRAME:052621/0813

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT, MARYLAND

Free format text: SECURITY INTEREST;ASSIGNOR:INSULET CORPORATION;REEL/FRAME:056135/0974

Effective date: 20210504

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT, MARYLAND

Free format text: SECURITY AGREEMENT SUPPLEMENT;ASSIGNOR:INSULET CORPORATION;REEL/FRAME:064840/0181

Effective date: 20230609