[go: up one dir, main page]

US10528682B2 - Automatic performance characterization of a network-on-chip (NOC) interconnect - Google Patents

Automatic performance characterization of a network-on-chip (NOC) interconnect Download PDF

Info

Publication number
US10528682B2
US10528682B2 US14/477,764 US201414477764A US10528682B2 US 10528682 B2 US10528682 B2 US 10528682B2 US 201414477764 A US201414477764 A US 201414477764A US 10528682 B2 US10528682 B2 US 10528682B2
Authority
US
United States
Prior art keywords
load
noc
flows
latency
throughput
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/477,764
Other versions
US20170061041A1 (en
Inventor
Sailesh Kumar
Eric Norige
Pier Giorgio Raponi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
NetSpeed Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NetSpeed Systems Inc filed Critical NetSpeed Systems Inc
Priority to US14/477,764 priority Critical patent/US10528682B2/en
Assigned to Netspeed Systems reassignment Netspeed Systems ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KUMAR, SAILESH, NORIGE, Eric, RAPONI, PIER GIORGIO
Publication of US20170061041A1 publication Critical patent/US20170061041A1/en
Application granted granted Critical
Publication of US10528682B2 publication Critical patent/US10528682B2/en
Assigned to INTEL CORPORATION reassignment INTEL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Netspeed Systems, Inc.
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/394Routing
    • G06F30/3947Routing global
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/32Circuit design at the digital level
    • G06F30/33Design verification, e.g. functional simulation or model checking
    • G06F17/5009
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2115/00Details relating to the type of the circuit
    • G06F2115/02System on chip [SoC] design
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/12Timing analysis or timing optimisation

Definitions

  • Methods and example implementations described herein are directed to an interconnect architecture, and more specifically, to implementation of the automatic performance characterization of a Network on Chip (NoC) interconnect and/or a System on Chip (SoC) architecture.
  • NoC Network on Chip
  • SoC System on Chip
  • SoCs Complex System-on-Chips
  • CMPs Chip Multi-Processors
  • the on-chip interconnect plays a role in providing high-performance communication between the various components. Due to scalability limitations of traditional buses and crossbar based interconnects, Network-on-Chip (NoC) has emerged as a paradigm to interconnect a large number of components on the chip.
  • NoC is a global shared communication infrastructure made up of several routing nodes interconnected with each other using point-to-point physical links denoting connectivity and direction of data flow within the SoC and the NoC.
  • Messages are injected by the source and are routed from the source node to the destination over multiple intermediate nodes and physical links.
  • the destination node then ejects the message and provides the message to the destination.
  • the terms ‘components’, ‘blocks’, ‘hosts’ or ‘cores’ will be used interchangeably to refer to the various system components, which are interconnected using a NoC. Terms ‘routers’ and ‘nodes’ will also be used interchangeably. Without loss of generalization, the system with multiple interconnected components will itself be referred to as a ‘multi-core system’.
  • FIG. 1( a ) Bi-directional rings (as shown in FIG. 1( a ) ), 2-D (two dimensional) mesh (as shown in FIGS. 1( b ) ) and 2-D Torus (as shown in FIG. 1( c ) ) are examples of topologies in the related art.
  • Mesh and Torus can also be extended to 2.5-D (two and half dimensional) or 3-D (three dimensional) organizations.
  • FIG. 1( d ) shows a 3D mesh NoC, where there are three layers of 3 ⁇ 3 2D mesh NoC shown over each other.
  • the NoC routers have up to two additional ports, one connecting to a router in the higher layer, and another connecting to a router in the lower layer.
  • Router 111 in the middle layer of the example has both ports used, one connecting to the router at the top layer and another connecting to the router at the bottom layer.
  • Routers 110 and 112 are at the bottom and top mesh layers respectively, therefore they have only the upper facing port 113 and the lower facing port 114 respectively connected.
  • Packets are message transport units for intercommunication between various components. Routing involves identifying a path composed of a set of routers and physical links of the network over which packets are sent from a source to one or more destination components. Components are connected to one or multiple ports of one or multiple routers; with each such port having a unique ID. Packets carry the destination's router and port ID for use by the intermediate routers to route the packet to the destination components.
  • routing techniques include deterministic routing, which involves choosing the same path from A to B for every packet. This form of routing is independent from the state of the network and does not load balance across path diversities, which might exist in the underlying network. However, such deterministic routing may implemented in hardware, maintains packet ordering and may be rendered free of network level deadlocks. For example, shortest path routing may minimize the latency, as such routing reduces the number of hops from a source to one or more destination(s) and/or reduces the cost of routing a packet from the source to destination(s), wherein the cost of routing depends on bandwidth available between one or more intermediate elements/channels. For this reason, the shortest path may also be the lowest power path for communication between the two components.
  • Dimension-order routing is a form of deterministic shortest path routing in 2-D, 2.5-D, and 3-D mesh networks.
  • messages are routed along each coordinates in a particular sequence until the message reaches the final destination. For example in a 3-D mesh network, one may first route along the X dimension until it reaches a router whose X-coordinate is equal to the X-coordinate of the destination router. Next, the message takes a turn and is routed in along Y dimension and finally takes another turn and moves along the Z dimension until the message reaches the final destination router.
  • Dimension ordered routing may be minimal turn and shortest path routing.
  • FIG. 2( a ) pictorially illustrates an example of XY routing in a two dimensional mesh. More specifically, FIG. 2( a ) illustrates XY routing from node ‘34’ to node ‘00’.
  • each component is connected to only one port of one router.
  • a packet is first routed over the x-axis till the packet reaches node ‘04’ where the x-coordinate of the node is the same as the x-coordinate of the destination node.
  • the packet is next routed over the y-axis until the packet reaches the destination node.
  • dimension order routing may not be feasible between certain source and destination nodes, and alternative paths may have to be taken.
  • the alternative paths may not be shortest or minimum turn.
  • Source routing and routing using tables are other routing options used in NoC.
  • Adaptive routing can dynamically change the path taken between two points on the network based on the state of the network. This form of routing may be complex to analyze and implement.
  • a NoC interconnect may contain multiple physical networks. Over each physical network, there may exist multiple virtual networks, wherein different message types are transmitted over different virtual networks. In this case, at each physical link or channel, there are multiple virtual channels; each virtual channel may have dedicated buffers at both end points. In any given clock cycle, only one virtual channel can transmit data on the physical channel.
  • the physical channels are time sliced into a number of independent logical channels called virtual channels (VCs).
  • VCs provide multiple independent paths to route packets, however they are time-multiplexed on the physical channels.
  • a virtual channel holds the state needed to coordinate the handling of the flits of a packet over a channel. At a minimum, this state identifies the output channel of the current node for the next hop of the route and the state of the virtual channel (idle, waiting for resources, or active).
  • the virtual channel may also include pointers to the flits of the packet that are buffered on the current node and the number of flit buffers available on the next node.
  • NoC interconnects may employ wormhole routing, wherein, a large message or packet is broken into small pieces known as flits (also referred to as flow control digits).
  • the first flit is the header flit, which holds information about this packet's route and key message level info along with payload data and sets up the routing behavior for all subsequent flits associated with the message.
  • one or more body flits follows the head flit, containing the remaining payload of data.
  • the final flit is the tail flit, which in addition to containing the last payload also performs some bookkeeping to close the connection for the message.
  • virtual channels are often implemented.
  • wormhole plays on the way messages are transmitted over the channels: the output port at the next router can be so short that received data can be translated in the head flit before the full message arrives. This allows the router to quickly set up the route upon arrival of the head flit and then opt out from the rest of the conversation. Since a message is transmitted flit by flit, the message may occupy several flit buffers along its path at different routers, creating a worm-like image.
  • different physical channels of the NoC interconnect may experience different levels of load and congestion.
  • the capacity of various physical channels of a NoC interconnect is determined by the width of the channel (number of physical wires) and the clock frequency at which it is operating.
  • Various channels of the NoC may operate at different clock frequencies, and various channels may have different widths based on the bandwidth requirement at the channel.
  • the bandwidth requirement at a channel is determined by the flows that traverse over the channel and their bandwidth values. Flows traversing over various NoC channels are affected by the routes taken by various flows. In a mesh or Torus NoC, there may exist multiple route paths of equal length or number of hops between any pair of source and destination nodes.
  • YX route 203 in addition to the standard XY route between nodes 34 and 00, there are additional routes available, such as YX route 203 or a multi-turn route 202 that makes more than one turn from source to destination.
  • the load at various channels may be controlled by intelligently selecting the routes for various flows.
  • routes can be chosen such that the load on all NoC channels is balanced nearly uniformly, thus avoiding a single point of bottleneck.
  • the NoC channel widths can be determined based on the bandwidth demands of flows on the channels.
  • channel widths cannot be arbitrarily large due to physical hardware design restrictions, such as timing or wiring congestion. There may be a limit on the maximum channel width, thereby putting a limit on the maximum bandwidth of any single NoC channel.
  • a channel width is also limited by the message size in the NoC. Due to these limitations on the maximum NoC channel width, a channel may not have enough bandwidth in spite of balancing the routes.
  • Each NoC may be called a layer, thus creating a multi-layer NoC architecture.
  • Hosts inject a message on a NoC layer; the message is then routed to the destination on the NoC layer, where it is delivered from the NoC layer to the host.
  • each layer operates more or less independently from each other, and interactions between layers may only occur during the injection and ejection times.
  • FIG. 3( a ) illustrates a two layer NoC. Here the two NoC layers are shown adjacent to each other on the left and right, with the hosts connected to the NoC replicated in both left and right diagrams.
  • a host is connected to two routers in this example—a router in the first layer shown as R 1 , and a router is the second layer shown as R 2 .
  • the multi-layer NoC is different from the 3D NoC, i.e. multiple layers are on a single silicon die and are used to meet the high bandwidth demands of the communication between hosts on the same silicon die. Messages do not go from one layer to another.
  • the present application will utilize such a horizontal left and right illustration for multi-layer NoC to differentiate from the 3D NoCs, which are illustrated by drawing the NoCs vertically over each other.
  • FIG. 3( b ) a host connected to a router from each layer, R 1 and R 2 respectively, is illustrated.
  • Each router is connected to other routers in its layer using directional ports 301 , and is connected to the host using injection and ejection ports 302 .
  • a bridge-logic 303 may sit between the host and the two NoC layers to determine the NoC layer for an outgoing message and sends the message from host to the NoC layer, and also perform the arbitration and multiplexing between incoming messages from the two NoC layers and delivers them to the host.
  • the number of layers needed may depend upon a number of factors such as the aggregate bandwidth requirement of all traffic flows in the system, the routes that are used by various flows, message size distribution, maximum channel width, etc.
  • the number of NoC layers in NoC interconnect is determined in a design, different messages and traffic flows may be routed over different NoC layers.
  • the interconnect performance may depend on the NoC topology and where various hosts are placed in the topology with respect to each other and to what routers they are connected to. For example, if two hosts talk to each other frequently and require higher bandwidth than other interconnects, then they should be placed next to each other. This will reduce the latency for this communication, which thereby reduces the global average latency, as well as reduce the number of router nodes and links over which the higher bandwidth of this communication must be provisioned.
  • each traffic condition can include a set of traffic profiles used by the SoC and NoC to fulfill respective condition and/or varying load that is applied for the selected traffic profile(s).
  • Each traffic profile can also include a set of concurrent traffic flows that are active when the traffic profile is enabled, wherein each traffic flow can have a different rate, packet size, and quality of service (QoS), among other attributes.
  • QoS quality of service
  • method of the present disclosure comprises automatically characterizing performance of a Network on Chip (NoC) or a System on Chip (SoC) based on one or more traffic profiles comprising associated one or more heterogeneous traffic flows, and at least one of a NoC model and a SoC model, by performing one or more performance simulations for at least a subset of the associated one or more flows at one or more load levels, and measuring at least one of latency and throughput for the at least the subset of the associated one or more heterogeneous flows.
  • NoC Network on Chip
  • SoC System on Chip
  • traffic flow rate can be varied N times, say from a first load level to a second load level to evaluate latency and/or throughput values at each of the N load levels, and a graph, can automatically be generated based on the N load levels and corresponding latency and/or throughput values to characterize the concerned traffic profile.
  • multiple graphs can be generated for different traffic profiles to characterize the NoC performance.
  • performance attributes such as latency and throughput can also be computed for one or a set of traffic flows, where each traffic flow has its own respective rate, packet size, and QoS attributes.
  • traffic profiles should be interpreted to include a set/subset of traffic flows that form part of the interconnect architecture. Also, although the present disclosure is being explained with reference to NoC elements/channels, the proposed system/method also characterizes performance of the SoC and SoC is therefore completely within the scope of the instant disclosure.
  • aspects of present disclosure are also directed to a non-transitory computer readable medium for executing instructions for carrying out performance evaluation or characterization of NoC and/or SoC under different traffic conditions such as for different traffic profile(s) or different flow rate conditions by measuring latency and/or throughput and/or bandwidth utilization of a Network on Chip (NoC) or a System on Chip (SoC) at different load levels.
  • performance evaluation or characterization of SoC and NoC can be performed by measuring and simulating latency and/or throughput values of a set of one or more heterogeneous traffic flows at one or more load levels (i.e. by applying one or more traffic flow rates for each selected heterogeneous traffic flow).
  • Simulation in an example implementation, can be performed for a given traffic profile/flow(s) at varying load levels (varying from a low level to a high load level) so as to determine latency/throughput values for the traffic profile/flow(s) at different load levels.
  • comparison of automatically generated performance characteristics for one or more traffic profiles/flow(s) can then be performed to identify behavior of each traffic profile under different load conditions and also to gather information about which NoC channels or SoC agents are congested at various load levels.
  • Aggregation of performance characterization can also be performed by one or more statistical means to help evaluate aggregate latency/throughput performance of the entire NoC or of a subset of traffic profiles.
  • Comparison/graphical plotting for recorded values of latency and throughput at different loads obtained during performance simulation can also be used to identify optimum, sub-optimal, and critical conditions for performance of NoC and/or SoC.
  • any statistical measure can be derived from the latency and throughput information collected at different load values and used for characterization of SoC and NoC.
  • FIGS. 1( a ), 1( b ) 1( c ) and 1( d ) illustrate examples of Bidirectional ring, 2D Mesh, 2D Torus, and 3D Mesh NoC Topologies.
  • FIG. 2( a ) illustrates an example of XY routing in a related art two dimensional mesh.
  • FIG. 2( b ) illustrates three different routes between a source and destination nodes.
  • FIG. 3( a ) illustrates an example of a related art two layer NoC interconnect.
  • FIG. 3( b ) illustrates the related art bridge logic between host and multiple NoC layers.
  • FIG. 4 illustrates an example graph of performance characterization of a NoC.
  • FIG. 5 illustrates an exemplary flow diagram for SoC/NoC characterization for one or more traffic profile(s) in accordance with an embodiment of the present disclosure.
  • FIG. 6( a ) through FIG. 6( c ) illustrates an exemplary set of performance characterization graphs for different traffic flow.
  • FIG. 7 illustrates another exemplary performance characterization graph of a NoC in accordance with an example embodiment of the present disclosure.
  • FIG. 8 illustrates an example of computer system on which example implementations can be implemented.
  • each traffic condition can include a set of traffic profiles used by the SoC and NoC to fulfill respective condition and/or varying load that is applied for the selected traffic profile(s).
  • Each traffic profile can also include a set of concurrent traffic flows that are active when the traffic profile is enabled, wherein each traffic flow can have a different rate, packet size, and quality of service (QoS), among other attributes.
  • QoS quality of service
  • method of the present disclosure comprises automatically characterizing performance of a Network on Chip (NoC) or a System on Chip (SoC) based on one or more traffic profiles comprising associated one or more heterogeneous traffic flows, and at least one of a NoC model and a SoC model, by performing one or more performance simulations for at least a subset of the associated one or more flows at one or more load levels, and measuring at least one of latency and throughput for the at least the subset of the associated one or more heterogeneous flows.
  • NoC Network on Chip
  • SoC System on Chip
  • traffic flow rate can be varied N times, say from a first load level to a second load level to evaluate latency and/or throughput values at each of the N load levels, and a graph, can automatically be generated based on the N load levels and corresponding latency and/or throughput values to characterize the concerned traffic profile.
  • multiple graphs can be generated for different traffic profiles to characterize the NoC performance.
  • performance attributes such as latency and throughput can also be computed for one or a set of traffic flows, where each traffic flow has its own respective rate, packet size, and QoS attributes.
  • traffic profiles should be interpreted to include a set/subset of traffic flows that form part of the interconnect architecture. Also, although the present disclosure is being explained with reference to NoC elements/channels, the proposed system/method also characterizes performance of the SoC and SoC is therefore completely within the scope of the instant disclosure.
  • one or more traffic/load levels can include a first load level and a second load level, with the second load being higher than the first load, and wherein the number of performance simulations, and load levels chosen for each performance simulation can be determined starting from the first load to the second load.
  • a traffic profile TP can be simulated by varying the load through scaling down and scaling up of the flow rate of the traffic profile.
  • an initial load level can be used for the first performance simulation, and the number for subsequent performance simulations, and load levels for the subsequent performance simulations can be determined based on prior performance simulations.
  • load levels for one or more traffic profiles/flows can be different. For instance, the number of simulations and the load at which each such simulation is conducted can be different for a first traffic profile when compared with a second traffic profile.
  • latency and/or throughput values obtained from the first load to the second load, for each associated heterogeneous flow can be automatically plotted as a graph so to obtain one or more graphs, one for each flow/traffic profile.
  • the plotting can include representation of latency and/or throughput for each traffic flow/profile selected for NoC characterization with respect to varying loads.
  • a new traffic profile can always be selected from the set of available traffic profiles, wherein performance simulation for one or more flows associated with the new traffic profile can be performed with respect to a first load to a second load, with the second load being higher than the first load.
  • Another aspect further comprising identifying a load capacity of the NoC or the SoC for at least the subset of the associated one or more heterogeneous flows based on the at least one of the measured latency and throughput.
  • one or more heterogeneous flows, performance of whose is to be characterized can be selected based on an association to the at least one of the NoC and SoC agents or based on any other specified properties/conditions/criteria.
  • aspects of present disclosure are also directed to a non-transitory computer readable medium for executing instructions for carrying out performance evaluation or characterization of NoC and/or SoC under different traffic conditions such as for different traffic profile(s) by measuring latency and/or throughput and/or bandwidth utilization of a Network on Chip (NoC) or a System on Chip (SoC) at different load levels.
  • performance evaluation or characterization of SoC and NoC can be performed by measuring and simulating latency and/or throughput values of a set of one or more heterogeneous traffic flows at one or more load levels (i.e. by applying one or more traffic flow rates for each selected heterogeneous traffic flow).
  • Simulation in an example implementation, can be performed for a given traffic profile/flow(s) at varying load levels (varying from a low level to a high load level) so as to determine latency/throughput values for the traffic profile/flow(s) at different load levels.
  • comparison of automatically generated performance characteristics for one or more traffic profiles/flow(s) can then be performed to identify behavior of each traffic profile under different load conditions and also to gather information about which NoC channels or SoC agents are congested at various load levels.
  • Aggregation of performance characterization can also be performed by one or more statistical means to help evaluate aggregate latency/throughput performance of the entire NoC or of a subset of traffic profiles.
  • Comparison/graphical plotting for recorded values of latency and throughput at different loads obtained during performance simulation can also be used to identify optimum, sub-optimal, and critical conditions for performance of NoC and/or SoC.
  • any statistical measure can be derived from the latency and throughput information collected at different load values and used for characterization of SoC and NoC.
  • one or more of weighted average, average, standard deviation, or any other statistical measure can be incorporated for comparison of performance characteristics of multiple traffic flows/profiles and/or for graphical plotting of latency/throughput values at different loads for one or more traffic flows/profiles during the exercise of performance simulation.
  • Such statistical means can also be used to identify optimal, sub-optimal, critical operating conditions, and saturation levels for performance of NoC and/or SoC such as for instance, the optimal latency/throughput levels that should be maintained for one or more traffic profiles.
  • Such statistical measures can also be configured to represent interims of peak traffic, average traffic, throughput saturation or maximum saturation, ideal operating conditions, among any other desired parameter.
  • aspects of the present application may include performance simulation methods for characterization of NoC or SoC that can be based on user-defined properties or attributes including but not limited to Quality of Service (QoS), capacity, coverage of network, packet dropping probability, guaranteed maximum probability or outage probability, among other like parameters.
  • QoS Quality of Service
  • Such performance simulation methods can further be based on an association of one or more heterogeneous flows that can be selected for association with at least one of the NoC and SoC agents.
  • aspects of the present disclosure may also include a system/processor configured to conduct performance simulations for NoC or SoC at different user defined or system defined load levels, and measure/compare/analysis latency and throughput under these different load conditions for one or a combination of traffic flows across the network and network elements and identifying optimal, sub-optimal, and critical and congestion conditions for their operations.
  • a system/processor configured to conduct performance simulations for NoC or SoC at different user defined or system defined load levels, and measure/compare/analysis latency and throughput under these different load conditions for one or a combination of traffic flows across the network and network elements and identifying optimal, sub-optimal, and critical and congestion conditions for their operations.
  • a distributed NoC interconnects various components of a system on chip (SoC) with each other using multiple routers, bridges, and point-to-point links between the routers.
  • NoC is also configured to support different data traffic flows for a given traffic profile specification and therefore performance of NoC in terms of latency and throughput needs to be assessed under various traffic conditions to understand information about which NoC channels, or SoC agents are congested at various load levels.
  • Traffic conditions can include a set of traffic profiles defined by traffic specification, wherein each traffic profile can include one or more traffic flows having certain rates, QoS parameters, and packet sizes.
  • Traffic profile specification can include information about connectivity between agents/elements/components, link/channel bandwidth information, communication protocol used by the SoCs and NoCs.
  • Traffic profile specification can also include link capacities, data flow direction, virtual channels, and capacity of router nodes of the NoC.
  • SoCs today are designed to run a number of different applications, and the resulting NoC traffic profile therefore may differ based on how and where the SoCs are deployed, and what applications are supported by these SoCs. Supporting a variety of traffic profiles offers several challenges in the NoC design, its optimization, and its power management. Traffic profile information may be used to determine how various transactions will be routed in the NoC topology, and accordingly make provisions for the link capacities, virtual channels, and router nodes of the NoC.
  • the design of a NoC or a SoC may be constructed from multiple traffic profiles. Performance measurement/characterization of SoC under different traffic conditions can help provide an indication of loads being supported by the SoC and the NoC for optimal throughput and latency. Based on the multiple traffic profiles, the NoC or SoC can be characterized by the latency and/or throughput supported by the design under various traffic/load conditions.
  • Example implementations disclosed herein are directed to characterization of the performance of a NoC or SoC system for a given a traffic specification and NoC or SoC system model.
  • Example implementations automatically characterize the system performance by conducting performance simulations from a small load to a high load and measuring latency and throughput for some or all flows or traffic profiles of the system/network. Various statistical measurements can be derived and plotted to visualize the performance of SoC and NoC under different traffic conditions.
  • the present disclosure mentions conducting simulations for one or more traffic profiles as each traffic profile includes one or more traffic flows, simulation can also be configured on a defined set of traffic flows of one or a combination of traffic profiles, and therefore references to traffic profile can be interpreted to include traffic flows.
  • FIG. 4 illustrates an example graph 400 of performance characterization of a NoC.
  • X-axis of the graph shows traffic load being injected into the NoC and the Y-axis represents both latency as well as throughput of the NoC with the increase in traffic load.
  • Curve 402 shows the latency curve remains constant till the traffic load reaches a magnitude of A and then increases exponentially after load A.
  • Curve 404 shows the throughput that increases with the load till a load of B, and then flattens out or even decreases. Given these latency and throughput curves, aspects of the present disclosure aim to identify an optimal latency and throughput value that should be maintained and/or is desired by the NoC interconnect.
  • Graph 400 can be configured to represent a given traffic profile or can also be configured to represent a given traffic flow of a traffic profile, wherein various load conditions are tested to identify values of performance attributes such as latency and throughput at each load condition and then plot them to compare with other such graphs for other traffic profiles/flows to identify congestion areas, optimal latency/thresholds, SoC agents/NoC elements performance, and if any design aspects needs to be changed to improve the performance characterization of the NoC.
  • FIG. 5 illustrates an exemplary flow diagram 500 for SoC/NoC characterization for one or more traffic profile(s) in accordance with an embodiment of the present disclosure.
  • one or more traffic profiles for which performance characterization is to be done can be identified.
  • one traffic profile can be simulated, or a set of its traffic flows can be simulated, or all the traffic profiles in the complete system, or a defined set of traffic flows across various traffic profiles can be simulated, any combination of which is completely within the scope of the present disclosure.
  • a traffic flow Fi can have a rate Ri, and its rate can be varied at 15 intervals as Ri/10, Ri/9, Ri/8, Ri/7, Ri/6, Ri/5, Ri/4, Ri/3, Ri/2, Ri/1, Ri*2, Ri*3, Ri*4, Ri*5, and Ri*6.
  • load can be defined as ‘x’ and ‘y’, and rate can be varied from r/x, r/(x ⁇ 1), . . . , r/1, r*2, r*3, . . . , to r*y.
  • rate can be varied from r/x, r/(x ⁇ 1), . . . , r/1, r*2, r*3, . . . , to r*y.
  • any of scaling factor, interval of scaling, number of load conditions to be tested, number of iterations, load increase/decrease condition can all be configurable and are well within the scope of the present disclosure.
  • any other means can be configured so as to change the flow rate by changing traffic load.
  • N samples of varying load can be obtained by varying flow rate as r/x, r*ki/x, . . .
  • varying load values can be configured to vary flow rate as r/x, r/x+i*k, . . . , r/x+n*k. Any mode of varying the traffic load is therefore completely within the scope of the present disclosure.
  • traffic load used for varying flow rate can be configured to represent transactional level traffic.
  • cycle accurate models or cycle approximate models can be incorporated to conduct performance simulation. Fully behavioral models can also be incorporated during the simulation exercise such that no clock cycle is driven.
  • a graph can be plotted for representing latency/throughput values for varying load conditions that are obtained at step 504 by performing rate down and rate up actions for each traffic profile.
  • a comparison and/or analysis can then be done between one or more traffic profiles to generate information on congestion, optimal latency/throughput values, among other performance characterization parameters.
  • latency and/or throughput graphs of one or more traffic profiles can also be aggregated by averaging their latency/throughput values to obtain new graphs showing performance characterization of a combined set of traffic profiles.
  • graphs for one or more traffic flows of one or more traffic profiles can also be aggregated so as to enable generation of SoC/NoC model showing performance models of NoC and SoC agents.
  • performance characterization can be done for all traffic flows from say a particular host such as CPU to a particular memory, or for all or part of traffic flows existing between memories, among other configurable network channels/paths/agents.
  • FIG. 6( a ) through FIG. 6( c ) illustrates an exemplary set of performance characterization graphs for different traffic flow.
  • FIG. 6( a ) shows the performance characterization graph for traffic flow (TF 1 ) representing latency 602 and throughput 604 curves at varying load levels from a low load to a high level.
  • FIG. 6( b ) shows the performance characterization graph for traffic flow (TF 2 ) representing latency 606 and throughput 608 curves at same load levels as for TP 1 .
  • the load levels, their intervals, frequency, and other parameters can always be varied for performance evaluation of each traffic profile/flow.
  • FIG. 6( c ) shows aggregation of performance characterization graphs for TF 1 and TF 2 by aggregating the latency and throughput values at each load level.
  • any number of traffic flows/profiles can be aggregated to evaluate the performance one or more parts of NoC/SoC as well as identify performance of important agents, channels, and their levels of congestion and also to determine optimal performance attributes for each or a combination of flows.
  • FIG. 7 illustrates another exemplary performance characterization graph 700 of a NoC in accordance with an example embodiment of the present disclosure.
  • the X-axis represents different traffic loads that can be applied on the system in incremental manner
  • the y-axis represents the observed latency 702 or throughput 704 for different applied load values.
  • Several statistical measurements using different plots such as graphs of weighted throughput and weighted latency with respect to different load values can also be plotted. Different graphical representations of statistical measures can be drawn for the given traffic condition/profiles.
  • the latency can stay static till a certain load value, and then eventually break down and increase at point 706 as the load on the SoC/NoC is increased further.
  • throughput 704 will increase till a certain load value and then eventually stay static or get the saturation level after a point 708 .
  • the NoC or SoC reaches a saturation value where throughput does not improve further (or can even reduce) and latency increases for increasing load values. Throughput will eventually stop increasing as the load increases or may even reduce after some time as more load is applied on the SoC/NoC.
  • optimal or maximum NoC performance can be evaluated.
  • ⁇ % tolerance in latency performance represented by increase in latency values 712 can be acceptable, meaning that such latency value that reaches at a magnitude that is ⁇ % greater than ideal value represented by point 714 on ideal latency curve 702 - 1 , can be configured as the optimal value.
  • ⁇ % tolerance in throughput performance represented by reduction or saturation in throughput value 710 can be acceptable, wherein curve 704 - 1 can be considered as ideal curve, and a point that is exactly ⁇ % lesser than the corresponding ideal throughput value can be configured as being ideal throughput value.
  • performance simulation can be performed by any desired and appropriate simulation tool, wherein, for instance, example implementations of U.S. Pat. No. 9,471,726, incorporated herein by reference in its entirety for all purposes, can be utilized to generate the behavior model of the NoC or SoC agents and simulate traffic flow, which can be scaled up or down.
  • the traffic can be represented on a transactional level.
  • An example of transactional level representation can be found in the example implementations of U.S. Pat. No. 9,473,359, incorporated herein by reference in its entirety for all purposes.
  • traffic flow for subset of traffic profile statistics can also be generated.
  • example implementations can be utilized to compute average throughput/latency for all the traffic flows and can also be computed based on weighted averages, depending on the desired implementation.
  • Subsets of flows e.g. only to memory, or to I/O, or to cache
  • performance simulations can be conducted to determine the behavior of only the desired flows. Flows that are of interest can thereby be plotted.
  • the traffic conditions for performance simulation for characterization of NoC or SoC system can be based on average traffic flow condition or peak traffic flow condition or traffic burstiness conditions.
  • characterization can be done for entirety or for any subset of NoC or SoC for traffic profiles stored in memory or as specified by user depending on any desired implementation.
  • characterization can be done for entirety or for any subset of NoC or SoC to identify ideal operating or maximum load on maximum throughput conditions.
  • performance simulation can be based on transactional level traffic generated by the system or simulation tool for characterization of SoC and NoC for varying flow rates and provide better accuracy.
  • cycle accurate or cycle approximate transaction level load values can be used to simulate desired traffic flow pattern for performance simulations.
  • cycle-accurate simulator can be used for performance simulation for computer programs that simulates a micro architecture on a cycle-by-cycle basis to simulate desired traffic flow pattern for performance simulations, especially in old hardware, where requirement of time precision can be of most importance from legacy reasons.
  • cycle-accurate simulator can be used for performance simulation when designing new systems as they can provide facility for testing and benchmarking without the requirement of building a physical chip and also allowing for easier implementation and evaluation for all design changes to meet the expected plan.
  • any other performance simulation model based on cycle accurate simulators can be incorporated to ensure that all operations are executed in proper virtual and/or real time for branch prediction, cache misses, fetches, pipeline stalls, thread context switching and many other subtle aspects.
  • performance simulation models can be based on fully behavioral pattern that are not based or clock cycle driven.
  • the number of loads and load levels can be predetermined or specified by the user.
  • loads can be adjusted based on results of prior performance simulations (e.g., upper bound can be set just beyond the saturation point, etc.)
  • any other statistical measure such as weighted average latency, standard deviation, etc.
  • weighted average latency, standard deviation, etc. can be utilized, and all such attributes and parameters that can be computed from such performance simulations are completely within the scope of the present disclosure.
  • Latency statistics such as weighted average latency, latency standard deviation, etc. can be used.
  • Throughput statistics such as weighted average throughput can also be used.
  • Flows are selected based on a specification of the desired properties.
  • User can specify the properties of flows to be utilized such as the Quality of Service (QoS) attribute of the flow, bandwidth specification of the flows, message attributes such as size, type, number of data beats, etc.
  • QoS Quality of Service
  • FIG. 8 illustrates an example computer system 800 on which example implementations may be implemented.
  • the computer system 800 includes a server 805 , which can involve an I/O unit 835 , storage 860 , and a processor 810 operable to execute one or more units as known to one of skill in the art.
  • the term “computer-readable medium” as used herein refers to any medium that participates in providing instructions to processor 810 for execution, which may come in the form of computer-readable storage mediums, such as, but not limited to optical disks, magnetic disks, read-only memories, random access memories, solid state devices and drives, or any other types of tangible media suitable for storing electronic information, or computer-readable signal mediums, which can include carrier waves.
  • the I/O unit processes input from user interfaces 840 and operator interfaces 845 which may utilize input devices such as a keyboard, mouse, touch device, or verbal command.
  • the server 805 may also be connected to an external storage 850 , which can contain removable storage such as a portable hard drive, optical media (CD or DVD), disk media or any other medium from which a computer can read executable code.
  • the server may also be connected an output device 855 , such as a display to output data and other information to a user, as well as request additional information from a user.
  • the connections from the server 802 to the user interface 840 , the operator interface 845 , the external storage 850 , and the output device 855 may via wireless protocols, such as the 802.11 standards, Bluetooth® or cellular protocols, or via physical transmission media, such as cables or fiber optics.
  • the output device 855 may therefore further act as an input device for interacting with a user.
  • the processor 811 may execute one or more modules including a traffic profile selection module 812 , a varying load based simulation module 813 , a graphical representation module 814 , and an analysis module 815 .
  • Traffic profile selection module 812 can be configured to select one or more traffic profiles for which performance characterization is to be conducted.
  • one traffic profile can be simulated, or a defined set of its traffic flows can be simulated, or all the traffic profiles in the complete system can be simulated, or a defined set of traffic flows across various traffic profiles can be simulated, and therefore any combination of traffic profiles and/or flows are completely within the scope of the present disclosure.
  • varying load based simulation module 813 can be configured to, for each selected traffic flow, automatically vary its flow rate (up and down) by varying traffic load conditions in order to simulate different traffic load conditions. Such rate can be varied from say a low level to a high level after different defined intervals, which are configurable, and can also vary for each traffic flow to be simulated.
  • graphical representation module 814 can be configured to, for each traffic flow/profile, plot a graph for representing latency/throughput values for varying load conditions that are obtained from module 813 by performing rate down and rate up actions for each traffic profile.
  • analysis module 814 can be configured to perform a comparison and/or analysis between one or more traffic profiles to generate information on congestion, optimal latency/throughput values, among other performance characterization parameters.
  • latency and/or throughput graphs of one or more traffic profiles can also be aggregated by averaging their latency/throughput values to obtain new graphs showing performance characterization of a combined set of traffic profiles.
  • graphs for one or more traffic flows of one or more traffic profiles can also be aggregated so as to enable generation of SoC/NoC model showing performance models of NoC and SoC agents.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

Methods, systems, and non-transitory computer readable medium for automatically characterizing performance of a System-on-Chip (SoC) and/or Network-on-Chip (NoC) with respect to latency and throughput attributes of one or more traffic flows/profiles under varying traffic load conditions. The characterization of performance may involve a plot representative of latency and throughput, depending on the desired implementation.

Description

BACKGROUND
Technical Field
Methods and example implementations described herein are directed to an interconnect architecture, and more specifically, to implementation of the automatic performance characterization of a Network on Chip (NoC) interconnect and/or a System on Chip (SoC) architecture.
Related Art
The number of components on a chip is rapidly growing due to increasing levels of integration, system complexity and shrinking transistor geometry. Complex System-on-Chips (SoCs) may involve a variety of components e.g., processor cores, DSPs, hardware accelerators, memory and I/O, while Chip Multi-Processors (CMPs) may involve a large number of homogenous processor cores, memory and I/O subsystems. In both SoC and CMP systems, the on-chip interconnect plays a role in providing high-performance communication between the various components. Due to scalability limitations of traditional buses and crossbar based interconnects, Network-on-Chip (NoC) has emerged as a paradigm to interconnect a large number of components on the chip. NoC is a global shared communication infrastructure made up of several routing nodes interconnected with each other using point-to-point physical links denoting connectivity and direction of data flow within the SoC and the NoC.
Messages are injected by the source and are routed from the source node to the destination over multiple intermediate nodes and physical links. The destination node then ejects the message and provides the message to the destination. For the remainder of this application, the terms ‘components’, ‘blocks’, ‘hosts’ or ‘cores’ will be used interchangeably to refer to the various system components, which are interconnected using a NoC. Terms ‘routers’ and ‘nodes’ will also be used interchangeably. Without loss of generalization, the system with multiple interconnected components will itself be referred to as a ‘multi-core system’.
There are several topologies in which the routers can connect to one another to create the system network. Bi-directional rings (as shown in FIG. 1(a)), 2-D (two dimensional) mesh (as shown in FIGS. 1(b)) and 2-D Torus (as shown in FIG. 1(c)) are examples of topologies in the related art. Mesh and Torus can also be extended to 2.5-D (two and half dimensional) or 3-D (three dimensional) organizations. FIG. 1(d) shows a 3D mesh NoC, where there are three layers of 3×3 2D mesh NoC shown over each other. The NoC routers have up to two additional ports, one connecting to a router in the higher layer, and another connecting to a router in the lower layer. Router 111 in the middle layer of the example has both ports used, one connecting to the router at the top layer and another connecting to the router at the bottom layer. Routers 110 and 112 are at the bottom and top mesh layers respectively, therefore they have only the upper facing port 113 and the lower facing port 114 respectively connected.
Packets are message transport units for intercommunication between various components. Routing involves identifying a path composed of a set of routers and physical links of the network over which packets are sent from a source to one or more destination components. Components are connected to one or multiple ports of one or multiple routers; with each such port having a unique ID. Packets carry the destination's router and port ID for use by the intermediate routers to route the packet to the destination components.
Examples of routing techniques include deterministic routing, which involves choosing the same path from A to B for every packet. This form of routing is independent from the state of the network and does not load balance across path diversities, which might exist in the underlying network. However, such deterministic routing may implemented in hardware, maintains packet ordering and may be rendered free of network level deadlocks. For example, shortest path routing may minimize the latency, as such routing reduces the number of hops from a source to one or more destination(s) and/or reduces the cost of routing a packet from the source to destination(s), wherein the cost of routing depends on bandwidth available between one or more intermediate elements/channels. For this reason, the shortest path may also be the lowest power path for communication between the two components. Dimension-order routing is a form of deterministic shortest path routing in 2-D, 2.5-D, and 3-D mesh networks. In this routing scheme, messages are routed along each coordinates in a particular sequence until the message reaches the final destination. For example in a 3-D mesh network, one may first route along the X dimension until it reaches a router whose X-coordinate is equal to the X-coordinate of the destination router. Next, the message takes a turn and is routed in along Y dimension and finally takes another turn and moves along the Z dimension until the message reaches the final destination router. Dimension ordered routing may be minimal turn and shortest path routing.
FIG. 2(a) pictorially illustrates an example of XY routing in a two dimensional mesh. More specifically, FIG. 2(a) illustrates XY routing from node ‘34’ to node ‘00’. In the example of FIG. 2(a), each component is connected to only one port of one router. A packet is first routed over the x-axis till the packet reaches node ‘04’ where the x-coordinate of the node is the same as the x-coordinate of the destination node. The packet is next routed over the y-axis until the packet reaches the destination node.
In heterogeneous mesh topology in which one or more routers or one or more links are absent, dimension order routing may not be feasible between certain source and destination nodes, and alternative paths may have to be taken. The alternative paths may not be shortest or minimum turn.
Source routing and routing using tables are other routing options used in NoC. Adaptive routing can dynamically change the path taken between two points on the network based on the state of the network. This form of routing may be complex to analyze and implement.
A NoC interconnect may contain multiple physical networks. Over each physical network, there may exist multiple virtual networks, wherein different message types are transmitted over different virtual networks. In this case, at each physical link or channel, there are multiple virtual channels; each virtual channel may have dedicated buffers at both end points. In any given clock cycle, only one virtual channel can transmit data on the physical channel.
The physical channels are time sliced into a number of independent logical channels called virtual channels (VCs). VCs provide multiple independent paths to route packets, however they are time-multiplexed on the physical channels. A virtual channel holds the state needed to coordinate the handling of the flits of a packet over a channel. At a minimum, this state identifies the output channel of the current node for the next hop of the route and the state of the virtual channel (idle, waiting for resources, or active). The virtual channel may also include pointers to the flits of the packet that are buffered on the current node and the number of flit buffers available on the next node.
NoC interconnects may employ wormhole routing, wherein, a large message or packet is broken into small pieces known as flits (also referred to as flow control digits). The first flit is the header flit, which holds information about this packet's route and key message level info along with payload data and sets up the routing behavior for all subsequent flits associated with the message. Optionally, one or more body flits follows the head flit, containing the remaining payload of data. The final flit is the tail flit, which in addition to containing the last payload also performs some bookkeeping to close the connection for the message. In wormhole flow control, virtual channels are often implemented.
The term “wormhole” plays on the way messages are transmitted over the channels: the output port at the next router can be so short that received data can be translated in the head flit before the full message arrives. This allows the router to quickly set up the route upon arrival of the head flit and then opt out from the rest of the conversation. Since a message is transmitted flit by flit, the message may occupy several flit buffers along its path at different routers, creating a worm-like image.
Based upon the traffic between various end points, and the routes and physical networks that are used for various messages, different physical channels of the NoC interconnect may experience different levels of load and congestion. The capacity of various physical channels of a NoC interconnect is determined by the width of the channel (number of physical wires) and the clock frequency at which it is operating. Various channels of the NoC may operate at different clock frequencies, and various channels may have different widths based on the bandwidth requirement at the channel. The bandwidth requirement at a channel is determined by the flows that traverse over the channel and their bandwidth values. Flows traversing over various NoC channels are affected by the routes taken by various flows. In a mesh or Torus NoC, there may exist multiple route paths of equal length or number of hops between any pair of source and destination nodes. For example, in FIG. 2(b), in addition to the standard XY route between nodes 34 and 00, there are additional routes available, such as YX route 203 or a multi-turn route 202 that makes more than one turn from source to destination.
In a NoC with statically allocated routes for various traffic slows, the load at various channels may be controlled by intelligently selecting the routes for various flows. When a large number of traffic flows and substantial path diversity is present, routes can be chosen such that the load on all NoC channels is balanced nearly uniformly, thus avoiding a single point of bottleneck. Once routed, the NoC channel widths can be determined based on the bandwidth demands of flows on the channels. Unfortunately, channel widths cannot be arbitrarily large due to physical hardware design restrictions, such as timing or wiring congestion. There may be a limit on the maximum channel width, thereby putting a limit on the maximum bandwidth of any single NoC channel.
Additionally, wider physical channels may not help in achieving higher bandwidth if messages are short. For example, if a packet is a single flit packet with a 64-bit width, then no matter how wide a channel is, the channel will only be able to carry 64 bits per cycle of data if all packets over the channel are similar. Thus, a channel width is also limited by the message size in the NoC. Due to these limitations on the maximum NoC channel width, a channel may not have enough bandwidth in spite of balancing the routes.
To address the above bandwidth concern, multiple parallel physical NoCs may be used. Each NoC may be called a layer, thus creating a multi-layer NoC architecture. Hosts inject a message on a NoC layer; the message is then routed to the destination on the NoC layer, where it is delivered from the NoC layer to the host. Thus, each layer operates more or less independently from each other, and interactions between layers may only occur during the injection and ejection times. FIG. 3(a) illustrates a two layer NoC. Here the two NoC layers are shown adjacent to each other on the left and right, with the hosts connected to the NoC replicated in both left and right diagrams. A host is connected to two routers in this example—a router in the first layer shown as R1, and a router is the second layer shown as R2. In this example, the multi-layer NoC is different from the 3D NoC, i.e. multiple layers are on a single silicon die and are used to meet the high bandwidth demands of the communication between hosts on the same silicon die. Messages do not go from one layer to another. For purposes of clarity, the present application will utilize such a horizontal left and right illustration for multi-layer NoC to differentiate from the 3D NoCs, which are illustrated by drawing the NoCs vertically over each other.
In FIG. 3(b), a host connected to a router from each layer, R1 and R2 respectively, is illustrated. Each router is connected to other routers in its layer using directional ports 301, and is connected to the host using injection and ejection ports 302. A bridge-logic 303 may sit between the host and the two NoC layers to determine the NoC layer for an outgoing message and sends the message from host to the NoC layer, and also perform the arbitration and multiplexing between incoming messages from the two NoC layers and delivers them to the host.
In a multi-layer NoC, the number of layers needed may depend upon a number of factors such as the aggregate bandwidth requirement of all traffic flows in the system, the routes that are used by various flows, message size distribution, maximum channel width, etc. Once the number of NoC layers in NoC interconnect is determined in a design, different messages and traffic flows may be routed over different NoC layers. Additionally, one may design NoC interconnects such that different layers have different topologies in number of routers, channels and connectivity. The channels in different layers may have different widths based on the flows that traverse over the channel and their bandwidth requirements.
In a NoC interconnect, if the traffic profile is not uniform and there is a certain amount of heterogeneity (e.g., certain hosts talking to each other more frequently than the others), the interconnect performance may depend on the NoC topology and where various hosts are placed in the topology with respect to each other and to what routers they are connected to. For example, if two hosts talk to each other frequently and require higher bandwidth than other interconnects, then they should be placed next to each other. This will reduce the latency for this communication, which thereby reduces the global average latency, as well as reduce the number of router nodes and links over which the higher bandwidth of this communication must be provisioned.
With the number of on-chip components growing, and NoC and SoC being configured to support multiple traffic profile, latency and throughput of various traffic profiles and/or traffic flows that form part of such traffic profiles needs to be characterized in order to evaluate the performance/congestion of SoC agents, NoC elements, and/or the NoC channels that form part of the interconnect under varying traffic conditions.
There is therefore need for methods, systems, and mechanisms for automatically characterizing performance of SoC and NoC under different traffic conditions to optimize traffic behavior of the network.
SUMMARY
Aspects of the present disclosure are directed to methods, systems, and non-transitory computer readable medium for automatically characterizing performance of a System-on-Chip (SoC) and/or Network-on-Chip (NoC) with respect to latency and throughput attributes under different traffic conditions. In an aspect, each traffic condition can include a set of traffic profiles used by the SoC and NoC to fulfill respective condition and/or varying load that is applied for the selected traffic profile(s). Each traffic profile can also include a set of concurrent traffic flows that are active when the traffic profile is enabled, wherein each traffic flow can have a different rate, packet size, and quality of service (QoS), among other attributes.
In an aspect, method of the present disclosure comprises automatically characterizing performance of a Network on Chip (NoC) or a System on Chip (SoC) based on one or more traffic profiles comprising associated one or more heterogeneous traffic flows, and at least one of a NoC model and a SoC model, by performing one or more performance simulations for at least a subset of the associated one or more flows at one or more load levels, and measuring at least one of latency and throughput for the at least the subset of the associated one or more heterogeneous flows.
In an example implementation of the proposed method, for each traffic profile of whose performance is to be characterized as part of the NoC characterization, traffic flow rate can be varied N times, say from a first load level to a second load level to evaluate latency and/or throughput values at each of the N load levels, and a graph, can automatically be generated based on the N load levels and corresponding latency and/or throughput values to characterize the concerned traffic profile. Similarly, multiple graphs can be generated for different traffic profiles to characterize the NoC performance. One should appreciate that even through the present disclosure is being made with reference to traffic profiles, performance attributes such as latency and throughput can also be computed for one or a set of traffic flows, where each traffic flow has its own respective rate, packet size, and QoS attributes. Therefore, reference to traffic profiles should be interpreted to include a set/subset of traffic flows that form part of the interconnect architecture. Also, although the present disclosure is being explained with reference to NoC elements/channels, the proposed system/method also characterizes performance of the SoC and SoC is therefore completely within the scope of the instant disclosure.
Aspects of present disclosure are also directed to a non-transitory computer readable medium for executing instructions for carrying out performance evaluation or characterization of NoC and/or SoC under different traffic conditions such as for different traffic profile(s) or different flow rate conditions by measuring latency and/or throughput and/or bandwidth utilization of a Network on Chip (NoC) or a System on Chip (SoC) at different load levels. In an example implementation, performance evaluation or characterization of SoC and NoC can be performed by measuring and simulating latency and/or throughput values of a set of one or more heterogeneous traffic flows at one or more load levels (i.e. by applying one or more traffic flow rates for each selected heterogeneous traffic flow). Simulation, in an example implementation, can be performed for a given traffic profile/flow(s) at varying load levels (varying from a low level to a high load level) so as to determine latency/throughput values for the traffic profile/flow(s) at different load levels.
In another aspect, comparison of automatically generated performance characteristics for one or more traffic profiles/flow(s) can then be performed to identify behavior of each traffic profile under different load conditions and also to gather information about which NoC channels or SoC agents are congested at various load levels. Aggregation of performance characterization can also be performed by one or more statistical means to help evaluate aggregate latency/throughput performance of the entire NoC or of a subset of traffic profiles. Comparison/graphical plotting for recorded values of latency and throughput at different loads obtained during performance simulation can also be used to identify optimum, sub-optimal, and critical conditions for performance of NoC and/or SoC. In an example implementation, any statistical measure can be derived from the latency and throughput information collected at different load values and used for characterization of SoC and NoC.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1(a), 1(b) 1(c) and 1(d) illustrate examples of Bidirectional ring, 2D Mesh, 2D Torus, and 3D Mesh NoC Topologies.
FIG. 2(a) illustrates an example of XY routing in a related art two dimensional mesh.
FIG. 2(b) illustrates three different routes between a source and destination nodes.
FIG. 3(a) illustrates an example of a related art two layer NoC interconnect.
FIG. 3(b) illustrates the related art bridge logic between host and multiple NoC layers.
FIG. 4 illustrates an example graph of performance characterization of a NoC.
FIG. 5 illustrates an exemplary flow diagram for SoC/NoC characterization for one or more traffic profile(s) in accordance with an embodiment of the present disclosure.
FIG. 6(a) through FIG. 6(c) illustrates an exemplary set of performance characterization graphs for different traffic flow.
FIG. 7 illustrates another exemplary performance characterization graph of a NoC in accordance with an example embodiment of the present disclosure.
FIG. 8 illustrates an example of computer system on which example implementations can be implemented.
DETAILED DESCRIPTION
The following detailed description provides further details of the figures and example implementations of the present application. Reference numerals and descriptions of redundant elements between figures are omitted for clarity. Terms used throughout the description are provided as examples and are not intended to be limiting. For example, use of the term “automatic” may involve fully automatic or semi-automatic implementations involving user or administrator control over certain aspects of the implementation, depending on the desired implementation of one of ordinary skill in the art practicing implementations of the present application.
Aspects of the present disclosure are directed to methods, systems, and non-transitory computer readable medium for automatically characterizing performance of a System-on-Chip (SoC) and/or Network-on-Chip (NoC) with respect to latency and throughput attributes under different traffic conditions. In an aspect, each traffic condition can include a set of traffic profiles used by the SoC and NoC to fulfill respective condition and/or varying load that is applied for the selected traffic profile(s). Each traffic profile can also include a set of concurrent traffic flows that are active when the traffic profile is enabled, wherein each traffic flow can have a different rate, packet size, and quality of service (QoS), among other attributes.
In an aspect, method of the present disclosure comprises automatically characterizing performance of a Network on Chip (NoC) or a System on Chip (SoC) based on one or more traffic profiles comprising associated one or more heterogeneous traffic flows, and at least one of a NoC model and a SoC model, by performing one or more performance simulations for at least a subset of the associated one or more flows at one or more load levels, and measuring at least one of latency and throughput for the at least the subset of the associated one or more heterogeneous flows.
In an example implementation of the proposed method, for each traffic profile of whose performance is to be characterized as part of the NoC characterization, traffic flow rate can be varied N times, say from a first load level to a second load level to evaluate latency and/or throughput values at each of the N load levels, and a graph, can automatically be generated based on the N load levels and corresponding latency and/or throughput values to characterize the concerned traffic profile. Similarly, multiple graphs can be generated for different traffic profiles to characterize the NoC performance. One should appreciate that even through the present disclosure is being made with reference to traffic profiles, performance attributes such as latency and throughput can also be computed for one or a set of traffic flows, where each traffic flow has its own respective rate, packet size, and QoS attributes. Therefore, reference to traffic profiles should be interpreted to include a set/subset of traffic flows that form part of the interconnect architecture. Also, although the present disclosure is being explained with reference to NoC elements/channels, the proposed system/method also characterizes performance of the SoC and SoC is therefore completely within the scope of the instant disclosure.
In an aspect, one or more traffic/load levels can include a first load level and a second load level, with the second load being higher than the first load, and wherein the number of performance simulations, and load levels chosen for each performance simulation can be determined starting from the first load to the second load. In an instance, a traffic profile (TP) can be simulated by varying the load through scaling down and scaling up of the flow rate of the traffic profile.
In another aspect, an initial load level can be used for the first performance simulation, and the number for subsequent performance simulations, and load levels for the subsequent performance simulations can be determined based on prior performance simulations. In yet another embodiment, load levels for one or more traffic profiles/flows can be different. For instance, the number of simulations and the load at which each such simulation is conducted can be different for a first traffic profile when compared with a second traffic profile.
In another aspect, latency and/or throughput values obtained from the first load to the second load, for each associated heterogeneous flow can be automatically plotted as a graph so to obtain one or more graphs, one for each flow/traffic profile. In another aspect, the plotting can include representation of latency and/or throughput for each traffic flow/profile selected for NoC characterization with respect to varying loads.
In yet another aspect, a new traffic profile can always be selected from the set of available traffic profiles, wherein performance simulation for one or more flows associated with the new traffic profile can be performed with respect to a first load to a second load, with the second load being higher than the first load. Another aspect further comprising identifying a load capacity of the NoC or the SoC for at least the subset of the associated one or more heterogeneous flows based on the at least one of the measured latency and throughput.
In another aspect of the present disclosure, one or more heterogeneous flows, performance of whose is to be characterized can be selected based on an association to the at least one of the NoC and SoC agents or based on any other specified properties/conditions/criteria.
Aspects of present disclosure are also directed to a non-transitory computer readable medium for executing instructions for carrying out performance evaluation or characterization of NoC and/or SoC under different traffic conditions such as for different traffic profile(s) by measuring latency and/or throughput and/or bandwidth utilization of a Network on Chip (NoC) or a System on Chip (SoC) at different load levels. In an example implementation, performance evaluation or characterization of SoC and NoC can be performed by measuring and simulating latency and/or throughput values of a set of one or more heterogeneous traffic flows at one or more load levels (i.e. by applying one or more traffic flow rates for each selected heterogeneous traffic flow). Simulation, in an example implementation, can be performed for a given traffic profile/flow(s) at varying load levels (varying from a low level to a high load level) so as to determine latency/throughput values for the traffic profile/flow(s) at different load levels.
In another aspect, comparison of automatically generated performance characteristics for one or more traffic profiles/flow(s) can then be performed to identify behavior of each traffic profile under different load conditions and also to gather information about which NoC channels or SoC agents are congested at various load levels. Aggregation of performance characterization can also be performed by one or more statistical means to help evaluate aggregate latency/throughput performance of the entire NoC or of a subset of traffic profiles. Comparison/graphical plotting for recorded values of latency and throughput at different loads obtained during performance simulation can also be used to identify optimum, sub-optimal, and critical conditions for performance of NoC and/or SoC. In an example implementation, any statistical measure can be derived from the latency and throughput information collected at different load values and used for characterization of SoC and NoC.
In an aspect of the present disclosure, one or more of weighted average, average, standard deviation, or any other statistical measure can be incorporated for comparison of performance characteristics of multiple traffic flows/profiles and/or for graphical plotting of latency/throughput values at different loads for one or more traffic flows/profiles during the exercise of performance simulation. Such statistical means can also be used to identify optimal, sub-optimal, critical operating conditions, and saturation levels for performance of NoC and/or SoC such as for instance, the optimal latency/throughput levels that should be maintained for one or more traffic profiles. Such statistical measures can also be configured to represent interims of peak traffic, average traffic, throughput saturation or maximum saturation, ideal operating conditions, among any other desired parameter.
Aspects of the present application may include performance simulation methods for characterization of NoC or SoC that can be based on user-defined properties or attributes including but not limited to Quality of Service (QoS), capacity, coverage of network, packet dropping probability, guaranteed maximum probability or outage probability, among other like parameters. Such performance simulation methods can further be based on an association of one or more heterogeneous flows that can be selected for association with at least one of the NoC and SoC agents.
Aspects of the present disclosure may also include a system/processor configured to conduct performance simulations for NoC or SoC at different user defined or system defined load levels, and measure/compare/analysis latency and throughput under these different load conditions for one or a combination of traffic flows across the network and network elements and identifying optimal, sub-optimal, and critical and congestion conditions for their operations. These performance simulations at different loads and for different traffic flow rates and traffic profiles can be used for characterization of NoC or SoC and their elements.
A distributed NoC interconnects various components of a system on chip (SoC) with each other using multiple routers, bridges, and point-to-point links between the routers. NoC is also configured to support different data traffic flows for a given traffic profile specification and therefore performance of NoC in terms of latency and throughput needs to be assessed under various traffic conditions to understand information about which NoC channels, or SoC agents are congested at various load levels. Traffic conditions can include a set of traffic profiles defined by traffic specification, wherein each traffic profile can include one or more traffic flows having certain rates, QoS parameters, and packet sizes. Traffic profile specification can include information about connectivity between agents/elements/components, link/channel bandwidth information, communication protocol used by the SoCs and NoCs. Traffic profile specification can also include link capacities, data flow direction, virtual channels, and capacity of router nodes of the NoC. A variety of SoCs today are designed to run a number of different applications, and the resulting NoC traffic profile therefore may differ based on how and where the SoCs are deployed, and what applications are supported by these SoCs. Supporting a variety of traffic profiles offers several challenges in the NoC design, its optimization, and its power management. Traffic profile information may be used to determine how various transactions will be routed in the NoC topology, and accordingly make provisions for the link capacities, virtual channels, and router nodes of the NoC.
In example implementations, the design of a NoC or a SoC may be constructed from multiple traffic profiles. Performance measurement/characterization of SoC under different traffic conditions can help provide an indication of loads being supported by the SoC and the NoC for optimal throughput and latency. Based on the multiple traffic profiles, the NoC or SoC can be characterized by the latency and/or throughput supported by the design under various traffic/load conditions.
Example implementations disclosed herein are directed to characterization of the performance of a NoC or SoC system for a given a traffic specification and NoC or SoC system model. Example implementations automatically characterize the system performance by conducting performance simulations from a small load to a high load and measuring latency and throughput for some or all flows or traffic profiles of the system/network. Various statistical measurements can be derived and plotted to visualize the performance of SoC and NoC under different traffic conditions. Although the present disclosure mentions conducting simulations for one or more traffic profiles, as each traffic profile includes one or more traffic flows, simulation can also be configured on a defined set of traffic flows of one or a combination of traffic profiles, and therefore references to traffic profile can be interpreted to include traffic flows.
FIG. 4 illustrates an example graph 400 of performance characterization of a NoC. As shown, X-axis of the graph shows traffic load being injected into the NoC and the Y-axis represents both latency as well as throughput of the NoC with the increase in traffic load. Curve 402 shows the latency curve remains constant till the traffic load reaches a magnitude of A and then increases exponentially after load A. Curve 404, on the other hand shows the throughput that increases with the load till a load of B, and then flattens out or even decreases. Given these latency and throughput curves, aspects of the present disclosure aim to identify an optimal latency and throughput value that should be maintained and/or is desired by the NoC interconnect. Graph 400 can be configured to represent a given traffic profile or can also be configured to represent a given traffic flow of a traffic profile, wherein various load conditions are tested to identify values of performance attributes such as latency and throughput at each load condition and then plot them to compare with other such graphs for other traffic profiles/flows to identify congestion areas, optimal latency/thresholds, SoC agents/NoC elements performance, and if any design aspects needs to be changed to improve the performance characterization of the NoC.
FIG. 5 illustrates an exemplary flow diagram 500 for SoC/NoC characterization for one or more traffic profile(s) in accordance with an embodiment of the present disclosure. At step 502, one or more traffic profiles for which performance characterization is to be done can be identified. In an aspect, one traffic profile can be simulated, or a set of its traffic flows can be simulated, or all the traffic profiles in the complete system, or a defined set of traffic flows across various traffic profiles can be simulated, any combination of which is completely within the scope of the present disclosure.
At step 504, for each selected traffic flow, its flow rate can be automatically varied (up and down) by varying traffic load conditions in order to simulate different traffic load conditions. Such rate can be varied from a low level to a high level after different defined intervals, which are completely configurable, and can also vary for each traffic flow to be simulated. For instance, a traffic flow Fi can have a rate Ri, and its rate can be varied at 15 intervals as Ri/10, Ri/9, Ri/8, Ri/7, Ri/6, Ri/5, Ri/4, Ri/3, Ri/2, Ri/1, Ri*2, Ri*3, Ri*4, Ri*5, and Ri*6. Therefore, in an example, load can be defined as ‘x’ and ‘y’, and rate can be varied from r/x, r/(x−1), . . . , r/1, r*2, r*3, . . . , to r*y. In an aspect, any of scaling factor, interval of scaling, number of load conditions to be tested, number of iterations, load increase/decrease condition, can all be configurable and are well within the scope of the present disclosure. One should appreciate that such change in flow rate is completely exemplary in nature and any other means can be configured so as to change the flow rate by changing traffic load. For instance, N samples of varying load can be obtained by varying flow rate as r/x, r*ki/x, . . . , rkn/x. Similarly, for another traffic flow, varying load values can be configured to vary flow rate as r/x, r/x+i*k, . . . , r/x+n*k. Any mode of varying the traffic load is therefore completely within the scope of the present disclosure. In an aspect, traffic load used for varying flow rate can be configured to represent transactional level traffic. In another aspect, cycle accurate models or cycle approximate models can be incorporated to conduct performance simulation. Fully behavioral models can also be incorporated during the simulation exercise such that no clock cycle is driven.
At step 506, for each traffic flow/profile, a graph can be plotted for representing latency/throughput values for varying load conditions that are obtained at step 504 by performing rate down and rate up actions for each traffic profile. At step 508, a comparison and/or analysis can then be done between one or more traffic profiles to generate information on congestion, optimal latency/throughput values, among other performance characterization parameters. In an aspect, latency and/or throughput graphs of one or more traffic profiles can also be aggregated by averaging their latency/throughput values to obtain new graphs showing performance characterization of a combined set of traffic profiles. Similarly, graphs for one or more traffic flows of one or more traffic profiles can also be aggregated so as to enable generation of SoC/NoC model showing performance models of NoC and SoC agents. For instance, performance characterization can be done for all traffic flows from say a particular host such as CPU to a particular memory, or for all or part of traffic flows existing between memories, among other configurable network channels/paths/agents.
FIG. 6(a) through FIG. 6(c) illustrates an exemplary set of performance characterization graphs for different traffic flow. FIG. 6(a) shows the performance characterization graph for traffic flow (TF1) representing latency 602 and throughput 604 curves at varying load levels from a low load to a high level. Similarly, FIG. 6(b) shows the performance characterization graph for traffic flow (TF2) representing latency 606 and throughput 608 curves at same load levels as for TP1. As mentioned above, the load levels, their intervals, frequency, and other parameters can always be varied for performance evaluation of each traffic profile/flow. FIG. 6(c) shows aggregation of performance characterization graphs for TF1 and TF2 by aggregating the latency and throughput values at each load level. As mentioned above, any number of traffic flows/profiles can be aggregated to evaluate the performance one or more parts of NoC/SoC as well as identify performance of important agents, channels, and their levels of congestion and also to determine optimal performance attributes for each or a combination of flows.
FIG. 7 illustrates another exemplary performance characterization graph 700 of a NoC in accordance with an example embodiment of the present disclosure. In the example of FIG. 7, the X-axis represents different traffic loads that can be applied on the system in incremental manner, and the y-axis represents the observed latency 702 or throughput 704 for different applied load values. Several statistical measurements using different plots such as graphs of weighted throughput and weighted latency with respect to different load values can also be plotted. Different graphical representations of statistical measures can be drawn for the given traffic condition/profiles. As can be seen from present graphs of latency 702 plotted for different traffic loads, the latency can stay static till a certain load value, and then eventually break down and increase at point 706 as the load on the SoC/NoC is increased further. Similarly, for each traffic profile or incremental value of load, throughput 704 will increase till a certain load value and then eventually stay static or get the saturation level after a point 708. As can be seen from present example illustration, at some point, the NoC or SoC reaches a saturation value where throughput does not improve further (or can even reduce) and latency increases for increasing load values. Throughput will eventually stop increasing as the load increases or may even reduce after some time as more load is applied on the SoC/NoC. At some point, latency may also grow exponentially as load is added and no performance increase occurs. The plotted graphs can be used for performance evaluation and different performance attributes/parameters can be extracted out from such graphical plots. For example, optimal load values to be applied on SoC/NoC can be decided or the ideal operating condition for each traffic profile can be identified.
Using such characterization, optimal or maximum NoC performance can be evaluated. In an example implementation, while deciding optimal condition for SoC and NoC performance, Δ% tolerance in latency performance represented by increase in latency values 712 can be acceptable, meaning that such latency value that reaches at a magnitude that is Δ% greater than ideal value represented by point 714 on ideal latency curve 702-1, can be configured as the optimal value. Similarly in an example implementation, while deciding the optimal condition for SoC and NoC performance, Δ% tolerance in throughput performance represented by reduction or saturation in throughput value 710 can be acceptable, wherein curve 704-1 can be considered as ideal curve, and a point that is exactly Δ% lesser than the corresponding ideal throughput value can be configured as being ideal throughput value.
In example implementation, performance simulation can be performed by any desired and appropriate simulation tool, wherein, for instance, example implementations of U.S. Pat. No. 9,471,726, incorporated herein by reference in its entirety for all purposes, can be utilized to generate the behavior model of the NoC or SoC agents and simulate traffic flow, which can be scaled up or down. When the traffic is generated, the traffic can be represented on a transactional level. An example of transactional level representation can be found in the example implementations of U.S. Pat. No. 9,473,359, incorporated herein by reference in its entirety for all purposes.
In example implementations, traffic flow for subset of traffic profile statistics can also be generated. For example, example implementations can be utilized to compute average throughput/latency for all the traffic flows and can also be computed based on weighted averages, depending on the desired implementation. Subsets of flows (e.g. only to memory, or to I/O, or to cache) can be isolated and performance simulations can be conducted to determine the behavior of only the desired flows. Flows that are of interest can thereby be plotted.
In another example embodiment, the traffic conditions for performance simulation for characterization of NoC or SoC system can be based on average traffic flow condition or peak traffic flow condition or traffic burstiness conditions.
In another example implementation, characterization can be done for entirety or for any subset of NoC or SoC for traffic profiles stored in memory or as specified by user depending on any desired implementation.
In another example implementation, characterization can be done for entirety or for any subset of NoC or SoC to identify ideal operating or maximum load on maximum throughput conditions.
In an example implementation, performance simulation can be based on transactional level traffic generated by the system or simulation tool for characterization of SoC and NoC for varying flow rates and provide better accuracy. In other another example implementation, cycle accurate or cycle approximate transaction level load values can be used to simulate desired traffic flow pattern for performance simulations.
In another example implementation, cycle-accurate simulator can be used for performance simulation for computer programs that simulates a micro architecture on a cycle-by-cycle basis to simulate desired traffic flow pattern for performance simulations, especially in old hardware, where requirement of time precision can be of most importance from legacy reasons.
In another example implementation, cycle-accurate simulator can be used for performance simulation when designing new systems as they can provide facility for testing and benchmarking without the requirement of building a physical chip and also allowing for easier implementation and evaluation for all design changes to meet the expected plan.
In another example implementation, any other performance simulation model based on cycle accurate simulators can be incorporated to ensure that all operations are executed in proper virtual and/or real time for branch prediction, cache misses, fetches, pipeline stalls, thread context switching and many other subtle aspects.
In another example implementation, performance simulation models can be based on fully behavioral pattern that are not based or clock cycle driven.
In example implementations, the number of loads and load levels can be predetermined or specified by the user. For subsequent performance simulations, loads can be adjusted based on results of prior performance simulations (e.g., upper bound can be set just beyond the saturation point, etc.)
Instead of straight latency/throughput, any other statistical measure such as weighted average latency, standard deviation, etc., can be utilized, and all such attributes and parameters that can be computed from such performance simulations are completely within the scope of the present disclosure. Latency statistics such as weighted average latency, latency standard deviation, etc. can be used. Throughput statistics such as weighted average throughput can also be used.
Flows are selected based on a specification of the desired properties. User can specify the properties of flows to be utilized such as the Quality of Service (QoS) attribute of the flow, bandwidth specification of the flows, message attributes such as size, type, number of data beats, etc.
FIG. 8 illustrates an example computer system 800 on which example implementations may be implemented. The computer system 800 includes a server 805, which can involve an I/O unit 835, storage 860, and a processor 810 operable to execute one or more units as known to one of skill in the art. The term “computer-readable medium” as used herein refers to any medium that participates in providing instructions to processor 810 for execution, which may come in the form of computer-readable storage mediums, such as, but not limited to optical disks, magnetic disks, read-only memories, random access memories, solid state devices and drives, or any other types of tangible media suitable for storing electronic information, or computer-readable signal mediums, which can include carrier waves. The I/O unit processes input from user interfaces 840 and operator interfaces 845 which may utilize input devices such as a keyboard, mouse, touch device, or verbal command.
The server 805 may also be connected to an external storage 850, which can contain removable storage such as a portable hard drive, optical media (CD or DVD), disk media or any other medium from which a computer can read executable code. The server may also be connected an output device 855, such as a display to output data and other information to a user, as well as request additional information from a user. The connections from the server 802 to the user interface 840, the operator interface 845, the external storage 850, and the output device 855 may via wireless protocols, such as the 802.11 standards, Bluetooth® or cellular protocols, or via physical transmission media, such as cables or fiber optics. The output device 855 may therefore further act as an input device for interacting with a user.
The processor 811 may execute one or more modules including a traffic profile selection module 812, a varying load based simulation module 813, a graphical representation module 814, and an analysis module 815. Traffic profile selection module 812 can be configured to select one or more traffic profiles for which performance characterization is to be conducted. In an aspect, at a given time, one traffic profile can be simulated, or a defined set of its traffic flows can be simulated, or all the traffic profiles in the complete system can be simulated, or a defined set of traffic flows across various traffic profiles can be simulated, and therefore any combination of traffic profiles and/or flows are completely within the scope of the present disclosure.
In an aspect, varying load based simulation module 813 can be configured to, for each selected traffic flow, automatically vary its flow rate (up and down) by varying traffic load conditions in order to simulate different traffic load conditions. Such rate can be varied from say a low level to a high level after different defined intervals, which are configurable, and can also vary for each traffic flow to be simulated.
In another aspect, graphical representation module 814 can be configured to, for each traffic flow/profile, plot a graph for representing latency/throughput values for varying load conditions that are obtained from module 813 by performing rate down and rate up actions for each traffic profile. In yet another aspect, analysis module 814 can be configured to perform a comparison and/or analysis between one or more traffic profiles to generate information on congestion, optimal latency/throughput values, among other performance characterization parameters. In an aspect, latency and/or throughput graphs of one or more traffic profiles can also be aggregated by averaging their latency/throughput values to obtain new graphs showing performance characterization of a combined set of traffic profiles. Similarly, graphs for one or more traffic flows of one or more traffic profiles can also be aggregated so as to enable generation of SoC/NoC model showing performance models of NoC and SoC agents.
Furthermore, some portions of the detailed description are presented in terms of algorithms and symbolic representations of operations within a computer. These algorithmic descriptions and symbolic representations are the means used by those skilled in the data processing arts to most effectively convey the essence of their innovations to others skilled in the art. An algorithm is a series of defined steps leading to a desired end state or result. In the example implementations, the steps carried out require physical manipulations of tangible quantities for achieving a tangible result.
Moreover, other implementations of the present application will be apparent to those skilled in the art from consideration of the specification and practice of the example implementations disclosed herein. Various aspects and/or components of the described example implementations may be used singly or in any combination. It is intended that the specification and examples be considered as examples, with a true scope and spirit of the application being indicated by the following claims.

Claims (20)

What is claimed is:
1. A non-transitory computer readable medium storing instructions for executing a process, the instructions comprising:
characterizing performance of a Network on Chip (NoC) or a System on Chip (SoC) based on one or more traffic profiles comprising associated one or more heterogeneous traffic flows, and at least one of a NoC model and a SoC model, by:
performing one or more performance simulations for at least a subset of the associated one or more flows at one or more load levels; and
measuring at least one of latency and throughput for the at least the subset of the associated one or more heterogeneous flows;
wherein an initial load level is used for a first one of the one or more performance simulations and a number of subsequent performance simulations to be executed, wherein load levels for the subsequent performance simulations are to be determined based on the latency and the throughput gradients between the prior performance simulations in comparison with a latency curve and a throughput curve, wherein an acceptable latency value for the NoC or the SoC is to be determined based at least in part on a latency value that is a variance delta greater than an ideal latency value on the latency curve, wherein an acceptable throughput value for the NoC or the SoC is to be determined based at least in part on a throughput value that is a variance delta lesser than an ideal throughput value on the throughput curve.
2. The non-transitory computer readable medium of claim 1, wherein the one or more load levels comprise a first load and a second load, the second load being higher than the first load, and wherein a number of the one or more performance simulations and load levels chosen for each of the one or more performance simulations is determined starting from the first load to the second load.
3. The non-transitory computer readable medium of claim 1, wherein at least one of the one or more load levels for the one or more flows is different from another one of the one or more load levels for another one of the one or more flows.
4. The non-transitory computer readable medium of claim 1, wherein the instructions further comprise plotting the at least one of the latency and the throughput from the first load to the second load for the at least the subset of the associated one or more heterogeneous flows.
5. The non-transitory computer readable medium of claim 1, wherein the instructions further comprise plotting at least one of a latency statistic and a throughput statistic from the first load to the second load for the at least the subset of the associated one or more heterogeneous flows.
6. The non-transitory computer readable medium of claim 1, wherein the instructions further comprise processing a new traffic profile from the one or more traffic profiles, and performing the performance simulation for one or more flows associated with the new traffic profile from a first load to a second load, the second load being higher than the first load.
7. The non-transitory computer readable medium of claim 1, wherein the instructions further comprise identifying a load capacity of the NoC or the SoC for at least the subset of the associated one or more heterogeneous flows based on the at least one of the measured latency and throughput.
8. The non-transitory computer readable medium of claim 1, wherein the at least the subset of the associated one or more heterogeneous flows subset of flows is selected based on an association to the at least one of the NoC and SoC agents.
9. The non-transitory computer readable medium of claim 1, wherein the at least the subset of the associated one or more heterogeneous flows is selected based on one or more specified properties.
10. The non-transitory computer readable medium of claim 1, wherein a plurality of the one or more heterogeneous traffic flows is to form part of an interconnect architecture.
11. The non-transitory computer readable medium of claim 1, wherein each of the one or more heterogeneous traffic flows comprises a different rate attribute, packet size attribute, and Quality of Service (QoS) attribute.
12. A method comprising:
characterizing performance of a Network on Chip (NoC) or a System on Chip (SoC) based on one or more traffic profiles comprising associated one or more heterogeneous traffic flows, and at least one of a NoC model and a SoC model, by:
performing one or more performance simulations for at least a subset of the associated one or more flows at one or more load levels; and
measuring at least one of latency and throughput for the at least the subset of the associated one or more heterogeneous flows;
wherein an initial load level is used for a first one of the one or more performance simulations and a number of subsequent performance simulations to be executed, wherein load levels for the subsequent performance simulations are to be determined based on the latency and the throughput gradients between the prior performance simulations in comparison with a latency curve and a throughput curve, wherein an acceptable latency value for the NoC or the SoC is determined based at least in part on a latency value that is a variance delta greater than an ideal latency value on the latency curve, wherein an acceptable throughput value for the NoC or the SoC is determined based at least in part on a throughput value that is a variance delta lesser than an ideal throughput value on the throughput curve.
13. The method of claim 12, wherein the one or more load levels comprise a first load and a second load, the second load being higher than the first load, and wherein a number of the one or more performance simulations and load levels chosen for each of the one or more performance simulations is determined starting from the first load to the second load.
14. The method of claim 12, wherein at least one of the one or more load levels for the one or more flows is different from another one of the one or more load levels for another one of the one or more flows.
15. The method of claim 12, further comprising plotting the at least one of the latency and the throughput from the first load to the second load for the at least the subset of the associated one or more heterogeneous flows.
16. The method of claim 12, further comprising plotting at least one of a latency statistic and a throughput statistic from the first load to the second load for the at least the subset of the associated one or more heterogeneous flows.
17. The method of claim 12, further comprising processing a new traffic profile from the one or more traffic profiles, and performing the performance simulation for one or more flows associated with the new traffic profile from a first load to a second load, the second load being higher than the first load.
18. The method of claim 12, further comprising identifying a load capacity of the NoC or the SoC for at least the subset of the associated one or more heterogeneous flows based on the at least one of the measured latency and throughput.
19. The method of claim 12, wherein the at least the subset of the associated one or more heterogeneous flows subset of flows is selected based on an association to the at least one of the NoC and SoC agents.
20. The method of claim 12, wherein the at least the subset of the associated one or more heterogeneous flows is selected based on one or more specified properties.
US14/477,764 2014-09-04 2014-09-04 Automatic performance characterization of a network-on-chip (NOC) interconnect Active 2037-02-17 US10528682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/477,764 US10528682B2 (en) 2014-09-04 2014-09-04 Automatic performance characterization of a network-on-chip (NOC) interconnect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/477,764 US10528682B2 (en) 2014-09-04 2014-09-04 Automatic performance characterization of a network-on-chip (NOC) interconnect

Publications (2)

Publication Number Publication Date
US20170061041A1 US20170061041A1 (en) 2017-03-02
US10528682B2 true US10528682B2 (en) 2020-01-07

Family

ID=58095717

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/477,764 Active 2037-02-17 US10528682B2 (en) 2014-09-04 2014-09-04 Automatic performance characterization of a network-on-chip (NOC) interconnect

Country Status (1)

Country Link
US (1) US10528682B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200036604A1 (en) * 2018-07-25 2020-01-30 Netapp, Inc. Methods for facilitating adaptive quality of service in storage networks and devices thereof

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10021130B2 (en) * 2015-09-28 2018-07-10 Verizon Patent And Licensing Inc. Network state information correlation to detect anomalous conditions
US10776535B2 (en) * 2016-07-11 2020-09-15 Keysight Technologies Singapore (Sales) Pte. Ltd. Methods, systems and computer readable media for testing network devices using variable traffic burst profiles
US10700968B2 (en) * 2016-10-19 2020-06-30 Rex Computing, Inc. Optimized function assignment in a multi-core processor
US10355975B2 (en) 2016-10-19 2019-07-16 Rex Computing, Inc. Latency guaranteed network on chip
JP6832050B2 (en) 2017-02-23 2021-02-24 セレブラス システムズ インク. Accelerated deep learning
US11488004B2 (en) 2017-04-17 2022-11-01 Cerebras Systems Inc. Neuron smearing for accelerated deep learning
JP6860694B2 (en) 2017-04-17 2021-04-21 セレブラス システムズ インク. Accelerated deep learning task activation
WO2018193353A1 (en) 2017-04-17 2018-10-25 Cerebras Systems Inc. Neuron smearing for accelerated deep learning
WO2020044152A1 (en) 2018-08-28 2020-03-05 Cerebras Systems Inc. Scaled compute fabric for accelerated deep learning
WO2020044208A1 (en) 2018-08-29 2020-03-05 Cerebras Systems Inc. Isa enhancements for accelerated deep learning
WO2020044238A1 (en) 2018-08-29 2020-03-05 Cerebras Systems Inc. Processor element redundancy for accelerated deep learning
US11388078B1 (en) 2019-06-10 2022-07-12 Keysight Technologies, Inc. Methods, systems, and computer readable media for generating and using statistically varying network traffic mixes to test network devices
US12177133B2 (en) 2019-10-16 2024-12-24 Cerebras Systems Inc. Dynamic routing for accelerated deep learning
US12169771B2 (en) 2019-10-16 2024-12-17 Cerebras Systems Inc. Basic wavelet filtering for accelerated deep learning
US11394663B1 (en) 2021-03-31 2022-07-19 Juniper Networks, Inc. Selective packet processing including a run-to-completion packet processing data plane
US12332309B2 (en) 2021-08-11 2025-06-17 Intel Corporation Built-in self-test for network on chip fabric

Citations (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432785A (en) 1992-10-21 1995-07-11 Bell Communications Research, Inc. Broadband private virtual network service and system
US5764741A (en) 1995-07-21 1998-06-09 Callmanage Ltd. Least cost rooting system
US5991308A (en) 1995-08-25 1999-11-23 Terayon Communication Systems, Inc. Lower overhead method for data transmission using ATM and SCDMA over hybrid fiber coax cable plant
US6003029A (en) 1997-08-22 1999-12-14 International Business Machines Corporation Automatic subspace clustering of high dimensional data for data mining applications
US6249902B1 (en) 1998-01-09 2001-06-19 Silicon Perspective Corporation Design hierarchy-based placement
US20020071392A1 (en) 2000-10-25 2002-06-13 Telecommunications Research Laboratories, An Alberta Corporation Design of a meta-mesh of chain sub-networks
US20020073380A1 (en) 1998-09-30 2002-06-13 Cadence Design Systems, Inc. Block based design methodology with programmable components
US6415282B1 (en) 1998-04-22 2002-07-02 Nec Usa, Inc. Method and apparatus for query refinement
US20020095430A1 (en) 1999-12-30 2002-07-18 Decode Genetics Ehf SQL query generator utilizing matrix structures
US20030063605A1 (en) * 2001-09-28 2003-04-03 Nec Usa, Inc. Flexible crossbar switching fabric
US20040216072A1 (en) 2003-04-17 2004-10-28 International Business Machines Corporation Porosity aware buffered steiner tree construction
US20050147081A1 (en) 2003-12-26 2005-07-07 Swarup Acharya Route determination method and apparatus for virtually-concatenated data traffic
US6925627B1 (en) 2002-12-20 2005-08-02 Conexant Systems, Inc. Method and apparatus for power routing in an integrated circuit
US20060161875A1 (en) 2005-01-06 2006-07-20 Chae-Eun Rhee Method of creating core-tile-switch mapping architecture in on-chip bus and computer-readable medium for recording the method
US20060268909A1 (en) 2005-05-31 2006-11-30 Stmicroelectronics, Inc. Hyper-Ring-on-Chip (HyRoC) architecture
US20070088537A1 (en) 2005-04-11 2007-04-19 Stmicroelectronics S.R.L. Architecture for dynamically reconfigurable system-on-chip arrangements, related methods and computer program product
US20070118320A1 (en) 2005-11-04 2007-05-24 Synopsys, Inc. Simulating topography of a conductive material in a semiconductor wafer
US20070244676A1 (en) 2006-03-03 2007-10-18 Li Shang Adaptive analysis methods
US20070256044A1 (en) 2006-04-26 2007-11-01 Gary Coryer System and method to power route hierarchical designs that employ macro reuse
US20070267680A1 (en) 2006-05-17 2007-11-22 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device
US7318214B1 (en) 2003-06-19 2008-01-08 Invarium, Inc. System and method for reducing patterning variability in integrated circuit manufacturing through mask layout corrections
US20080072182A1 (en) 2006-09-19 2008-03-20 The Regents Of The University Of California Structured and parameterized model order reduction
US20080120129A1 (en) 2006-05-13 2008-05-22 Michael Seubert Consistent set of interfaces derived from a business object model
US20090070726A1 (en) 2005-06-09 2009-03-12 Pyxis Technology, Inc. Enhanced Routing Grid System and Method
US7590959B2 (en) 2005-10-31 2009-09-15 Seiko Epson Corporation Layout system, layout program, and layout method for text or other layout elements along a grid
US20090268677A1 (en) 2008-04-24 2009-10-29 National Taiwan University network resource allocation system and method of the same
US20090313592A1 (en) 2006-10-10 2009-12-17 Ecole Polytechnique Federale De Lausanne (Epfl) Method to design network-on-chip (noc) - based communication systems
US20100040162A1 (en) 2007-04-10 2010-02-18 Naoki Suehiro Transmission method, transmission device, receiving method, and receiving device
US7725859B1 (en) 2003-08-01 2010-05-25 Cadence Design Systems, Inc. Methods and mechanisms for inserting metal fill data
US7808968B1 (en) 1998-07-06 2010-10-05 At&T Intellectual Property Ii, L.P. Method for determining non-broadcast multiple access (NBMA) connectivity for routers having multiple local NBMA interfaces
US20110022754A1 (en) 2007-12-06 2011-01-27 Technion Research & Development Foundation Ltd Bus enhanced network on chip
US20110035523A1 (en) 2009-08-07 2011-02-10 Brett Stanley Feero Communication infrastructure for a data processing apparatus and a method of operation of such a communication infrastructure
US20110060831A1 (en) 2008-06-12 2011-03-10 Tomoki Ishii Network monitoring device, bus system monitoring device, method and program
US20110072407A1 (en) 2009-09-18 2011-03-24 International Business Machines Corporation Automatic Positioning of Gate Array Circuits in an Integrated Circuit Design
US7917885B2 (en) 2005-06-27 2011-03-29 Tela Innovations, Inc. Methods for creating primitive constructed standard cells
US20110154282A1 (en) 2009-12-17 2011-06-23 Springsoft, Inc. Systems and methods for designing and making integrated circuits with consideration of wiring demand ratio
US20110191774A1 (en) * 2010-02-01 2011-08-04 Yar-Sun Hsu Noc-centric system exploration platform and parallel application communication mechanism description format used by the same
US8050256B1 (en) 2008-07-08 2011-11-01 Tilera Corporation Configuring routing in mesh networks
US20110276937A1 (en) 2005-06-24 2011-11-10 Pulsic Limited Integrated Circuit Routing with Compaction
US8059551B2 (en) 2005-02-15 2011-11-15 Raytheon Bbn Technologies Corp. Method for source-spoofed IP packet traceback
US8099757B2 (en) 2007-10-15 2012-01-17 Time Warner Cable Inc. Methods and apparatus for revenue-optimized delivery of content in a network
US20120022841A1 (en) 2010-07-22 2012-01-26 Polyhedron Software Ltd. Method and apparatus for estimating the state of a system
US20120023473A1 (en) 2010-07-21 2012-01-26 Brown Jeffrey S Granular channel width for power optimization
US20120026917A1 (en) 2009-01-09 2012-02-02 Microsoft Corporation Server-centric high performance network architecture for modular data centers
US8136071B2 (en) 2007-09-12 2012-03-13 Neal Solomon Three dimensional integrated circuits and methods of fabrication
US20120099475A1 (en) 2010-10-21 2012-04-26 Renesas Electronics Corporation NoC SYSTEM AND INPUT SWITCHING DEVICE
US20120110541A1 (en) 2010-10-29 2012-05-03 International Business Machines Corporation Constraint optimization of sub-net level routing in asic design
US20120155250A1 (en) 2010-12-21 2012-06-21 Verizon Patent And Licensing Inc. Method and system of providing micro-facilities for network recovery
US8281297B2 (en) 2003-02-05 2012-10-02 Arizona Board Of Regents Reconfigurable processing
US8312402B1 (en) 2008-12-08 2012-11-13 Cadence Design Systems, Inc. Method and apparatus for broadband electromagnetic modeling of three-dimensional interconnects embedded in multilayered substrates
US20130028090A1 (en) 2010-05-12 2013-01-31 Panasonic Corporation Router and chip circuit
US20130051397A1 (en) 2011-08-26 2013-02-28 Sonics, Inc. Credit flow control scheme in a router with flexible link widths utilizing minimal storage
US8407167B1 (en) * 2009-06-19 2013-03-26 Google Inc. Method for optimizing memory controller configuration in multi-core processors using fitness metrics and channel loads
US20130080073A1 (en) 2010-06-11 2013-03-28 Waters Technologies Corporation Techniques for mass spectrometry peak list computation using parallel processing
US20130103369A1 (en) 2011-10-25 2013-04-25 Massachusetts Institute Of Technology Methods and apparatus for constructing and analyzing component-based models of engineering systems
US8448102B2 (en) 2006-03-09 2013-05-21 Tela Innovations, Inc. Optimizing layout of irregular structures in regular layout context
US20130151215A1 (en) 2011-12-12 2013-06-13 Schlumberger Technology Corporation Relaxed constraint delaunay method for discretizing fractured media
US20130159944A1 (en) 2011-12-15 2013-06-20 Taiga Uno Flare map calculating method and recording medium
US20130174113A1 (en) 2011-12-30 2013-07-04 Arteris SAS Floorplan estimation
US20130185038A1 (en) * 2010-09-27 2013-07-18 Telefonaktiebolaget L M Ericsson (Publ) Performance Calculation, Admission Control, and Supervisory Control for a Load Dependent Data Processing System
US8492886B2 (en) 2010-02-16 2013-07-23 Monolithic 3D Inc 3D integrated circuit with logic
US20130207801A1 (en) 2012-02-14 2013-08-15 James Barnes Approach for prioritizing network alerts
US20130215733A1 (en) * 2012-02-22 2013-08-22 Nan Jiang Speculative reservation for routing networks
US20130219148A1 (en) 2012-02-17 2013-08-22 National Taiwan University Network on chip processor with multiple cores and routing method thereof
US8541819B1 (en) 2010-12-09 2013-09-24 Monolithic 3D Inc. Semiconductor device and structure
US20130263068A1 (en) 2012-03-27 2013-10-03 International Business Machines Corporation Relative ordering circuit synthesis
US8601423B1 (en) 2012-10-23 2013-12-03 Netspeed Systems Asymmetric mesh NoC topologies
US20130326458A1 (en) 2012-06-01 2013-12-05 International Business Machines Corporation Timing refinement re-routing
US8667439B1 (en) 2013-02-27 2014-03-04 Netspeed Systems Automatically connecting SoCs IP cores to interconnect nodes to minimize global latency and reduce interconnect cost
US20140068132A1 (en) 2012-08-30 2014-03-06 Netspeed Systems Automatic construction of deadlock free interconnects
US20140092740A1 (en) 2012-09-29 2014-04-03 Ren Wang Adaptive packet deflection to achieve fair, low-cost, and/or energy-efficient quality of service in network on chip devices
US20140098683A1 (en) 2012-10-09 2014-04-10 Netspeed Systems Heterogeneous channel capacities in an interconnect
US8705368B1 (en) * 2010-12-03 2014-04-22 Google Inc. Probabilistic distance-based arbitration
US8717875B2 (en) 2011-04-15 2014-05-06 Alcatel Lucent Condensed core-energy-efficient architecture for WAN IP backbones
US20150382231A1 (en) * 2014-06-25 2015-12-31 General Electric Company Dynamic adjustment of a wireless network media access control parameter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8914146B2 (en) * 2011-07-11 2014-12-16 Omnicare, Inc. Methods and apparatus for filling of packagings with medications

Patent Citations (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432785A (en) 1992-10-21 1995-07-11 Bell Communications Research, Inc. Broadband private virtual network service and system
US5764741A (en) 1995-07-21 1998-06-09 Callmanage Ltd. Least cost rooting system
US5991308A (en) 1995-08-25 1999-11-23 Terayon Communication Systems, Inc. Lower overhead method for data transmission using ATM and SCDMA over hybrid fiber coax cable plant
US6003029A (en) 1997-08-22 1999-12-14 International Business Machines Corporation Automatic subspace clustering of high dimensional data for data mining applications
US6249902B1 (en) 1998-01-09 2001-06-19 Silicon Perspective Corporation Design hierarchy-based placement
US6415282B1 (en) 1998-04-22 2002-07-02 Nec Usa, Inc. Method and apparatus for query refinement
US7808968B1 (en) 1998-07-06 2010-10-05 At&T Intellectual Property Ii, L.P. Method for determining non-broadcast multiple access (NBMA) connectivity for routers having multiple local NBMA interfaces
US20020073380A1 (en) 1998-09-30 2002-06-13 Cadence Design Systems, Inc. Block based design methodology with programmable components
US20020095430A1 (en) 1999-12-30 2002-07-18 Decode Genetics Ehf SQL query generator utilizing matrix structures
US20020071392A1 (en) 2000-10-25 2002-06-13 Telecommunications Research Laboratories, An Alberta Corporation Design of a meta-mesh of chain sub-networks
US20030063605A1 (en) * 2001-09-28 2003-04-03 Nec Usa, Inc. Flexible crossbar switching fabric
US6925627B1 (en) 2002-12-20 2005-08-02 Conexant Systems, Inc. Method and apparatus for power routing in an integrated circuit
US8281297B2 (en) 2003-02-05 2012-10-02 Arizona Board Of Regents Reconfigurable processing
US20040216072A1 (en) 2003-04-17 2004-10-28 International Business Machines Corporation Porosity aware buffered steiner tree construction
US7065730B2 (en) 2003-04-17 2006-06-20 International Business Machines Corporation Porosity aware buffered steiner tree construction
US7318214B1 (en) 2003-06-19 2008-01-08 Invarium, Inc. System and method for reducing patterning variability in integrated circuit manufacturing through mask layout corrections
US7725859B1 (en) 2003-08-01 2010-05-25 Cadence Design Systems, Inc. Methods and mechanisms for inserting metal fill data
US20050147081A1 (en) 2003-12-26 2005-07-07 Swarup Acharya Route determination method and apparatus for virtually-concatenated data traffic
US20060161875A1 (en) 2005-01-06 2006-07-20 Chae-Eun Rhee Method of creating core-tile-switch mapping architecture in on-chip bus and computer-readable medium for recording the method
US8059551B2 (en) 2005-02-15 2011-11-15 Raytheon Bbn Technologies Corp. Method for source-spoofed IP packet traceback
US20070088537A1 (en) 2005-04-11 2007-04-19 Stmicroelectronics S.R.L. Architecture for dynamically reconfigurable system-on-chip arrangements, related methods and computer program product
US20060268909A1 (en) 2005-05-31 2006-11-30 Stmicroelectronics, Inc. Hyper-Ring-on-Chip (HyRoC) architecture
US20090070726A1 (en) 2005-06-09 2009-03-12 Pyxis Technology, Inc. Enhanced Routing Grid System and Method
US20110276937A1 (en) 2005-06-24 2011-11-10 Pulsic Limited Integrated Circuit Routing with Compaction
US7917885B2 (en) 2005-06-27 2011-03-29 Tela Innovations, Inc. Methods for creating primitive constructed standard cells
US7590959B2 (en) 2005-10-31 2009-09-15 Seiko Epson Corporation Layout system, layout program, and layout method for text or other layout elements along a grid
US20070118320A1 (en) 2005-11-04 2007-05-24 Synopsys, Inc. Simulating topography of a conductive material in a semiconductor wafer
US20070244676A1 (en) 2006-03-03 2007-10-18 Li Shang Adaptive analysis methods
US8448102B2 (en) 2006-03-09 2013-05-21 Tela Innovations, Inc. Optimizing layout of irregular structures in regular layout context
US20070256044A1 (en) 2006-04-26 2007-11-01 Gary Coryer System and method to power route hierarchical designs that employ macro reuse
US20080120129A1 (en) 2006-05-13 2008-05-22 Michael Seubert Consistent set of interfaces derived from a business object model
US20070267680A1 (en) 2006-05-17 2007-11-22 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device
US20080072182A1 (en) 2006-09-19 2008-03-20 The Regents Of The University Of California Structured and parameterized model order reduction
US20090313592A1 (en) 2006-10-10 2009-12-17 Ecole Polytechnique Federale De Lausanne (Epfl) Method to design network-on-chip (noc) - based communication systems
US20100040162A1 (en) 2007-04-10 2010-02-18 Naoki Suehiro Transmission method, transmission device, receiving method, and receiving device
US8136071B2 (en) 2007-09-12 2012-03-13 Neal Solomon Three dimensional integrated circuits and methods of fabrication
US8099757B2 (en) 2007-10-15 2012-01-17 Time Warner Cable Inc. Methods and apparatus for revenue-optimized delivery of content in a network
US20110022754A1 (en) 2007-12-06 2011-01-27 Technion Research & Development Foundation Ltd Bus enhanced network on chip
US20090268677A1 (en) 2008-04-24 2009-10-29 National Taiwan University network resource allocation system and method of the same
US20110060831A1 (en) 2008-06-12 2011-03-10 Tomoki Ishii Network monitoring device, bus system monitoring device, method and program
US8050256B1 (en) 2008-07-08 2011-11-01 Tilera Corporation Configuring routing in mesh networks
US8312402B1 (en) 2008-12-08 2012-11-13 Cadence Design Systems, Inc. Method and apparatus for broadband electromagnetic modeling of three-dimensional interconnects embedded in multilayered substrates
US20120026917A1 (en) 2009-01-09 2012-02-02 Microsoft Corporation Server-centric high performance network architecture for modular data centers
US8407167B1 (en) * 2009-06-19 2013-03-26 Google Inc. Method for optimizing memory controller configuration in multi-core processors using fitness metrics and channel loads
US20110035523A1 (en) 2009-08-07 2011-02-10 Brett Stanley Feero Communication infrastructure for a data processing apparatus and a method of operation of such a communication infrastructure
US20110072407A1 (en) 2009-09-18 2011-03-24 International Business Machines Corporation Automatic Positioning of Gate Array Circuits in an Integrated Circuit Design
US20110154282A1 (en) 2009-12-17 2011-06-23 Springsoft, Inc. Systems and methods for designing and making integrated circuits with consideration of wiring demand ratio
US20110191774A1 (en) * 2010-02-01 2011-08-04 Yar-Sun Hsu Noc-centric system exploration platform and parallel application communication mechanism description format used by the same
US8492886B2 (en) 2010-02-16 2013-07-23 Monolithic 3D Inc 3D integrated circuit with logic
US20130028090A1 (en) 2010-05-12 2013-01-31 Panasonic Corporation Router and chip circuit
US20130080073A1 (en) 2010-06-11 2013-03-28 Waters Technologies Corporation Techniques for mass spectrometry peak list computation using parallel processing
US20120023473A1 (en) 2010-07-21 2012-01-26 Brown Jeffrey S Granular channel width for power optimization
US20120022841A1 (en) 2010-07-22 2012-01-26 Polyhedron Software Ltd. Method and apparatus for estimating the state of a system
US20130185038A1 (en) * 2010-09-27 2013-07-18 Telefonaktiebolaget L M Ericsson (Publ) Performance Calculation, Admission Control, and Supervisory Control for a Load Dependent Data Processing System
US20120099475A1 (en) 2010-10-21 2012-04-26 Renesas Electronics Corporation NoC SYSTEM AND INPUT SWITCHING DEVICE
US20120110541A1 (en) 2010-10-29 2012-05-03 International Business Machines Corporation Constraint optimization of sub-net level routing in asic design
US8543964B2 (en) 2010-10-29 2013-09-24 International Business Machines Corporation Constraint optimization of sub-net level routing in asic design
US8705368B1 (en) * 2010-12-03 2014-04-22 Google Inc. Probabilistic distance-based arbitration
US8541819B1 (en) 2010-12-09 2013-09-24 Monolithic 3D Inc. Semiconductor device and structure
US20120155250A1 (en) 2010-12-21 2012-06-21 Verizon Patent And Licensing Inc. Method and system of providing micro-facilities for network recovery
US8717875B2 (en) 2011-04-15 2014-05-06 Alcatel Lucent Condensed core-energy-efficient architecture for WAN IP backbones
US20130051397A1 (en) 2011-08-26 2013-02-28 Sonics, Inc. Credit flow control scheme in a router with flexible link widths utilizing minimal storage
US20130103369A1 (en) 2011-10-25 2013-04-25 Massachusetts Institute Of Technology Methods and apparatus for constructing and analyzing component-based models of engineering systems
US20130151215A1 (en) 2011-12-12 2013-06-13 Schlumberger Technology Corporation Relaxed constraint delaunay method for discretizing fractured media
US20130159944A1 (en) 2011-12-15 2013-06-20 Taiga Uno Flare map calculating method and recording medium
US20130174113A1 (en) 2011-12-30 2013-07-04 Arteris SAS Floorplan estimation
US20130207801A1 (en) 2012-02-14 2013-08-15 James Barnes Approach for prioritizing network alerts
US20130219148A1 (en) 2012-02-17 2013-08-22 National Taiwan University Network on chip processor with multiple cores and routing method thereof
US20130215733A1 (en) * 2012-02-22 2013-08-22 Nan Jiang Speculative reservation for routing networks
US20130263068A1 (en) 2012-03-27 2013-10-03 International Business Machines Corporation Relative ordering circuit synthesis
US20130326458A1 (en) 2012-06-01 2013-12-05 International Business Machines Corporation Timing refinement re-routing
US8635577B2 (en) 2012-06-01 2014-01-21 International Business Machines Corporation Timing refinement re-routing
US20140068132A1 (en) 2012-08-30 2014-03-06 Netspeed Systems Automatic construction of deadlock free interconnects
CN103684961A (en) 2012-08-30 2014-03-26 网速系统公司 Automatic construction of deadlock free interconnects
US20140092740A1 (en) 2012-09-29 2014-04-03 Ren Wang Adaptive packet deflection to achieve fair, low-cost, and/or energy-efficient quality of service in network on chip devices
US20140098683A1 (en) 2012-10-09 2014-04-10 Netspeed Systems Heterogeneous channel capacities in an interconnect
WO2014059024A1 (en) 2012-10-09 2014-04-17 Netspeed Systems Heterogeneous channel capacities in an interconnect
US20140115218A1 (en) 2012-10-23 2014-04-24 Netspeed Systems ASYMMETRIC MESH NoC TOPOLOGIES
US20140115298A1 (en) 2012-10-23 2014-04-24 Netspeed Systems ASYMMETRIC MESH NoC TOPOLOGIES
US8601423B1 (en) 2012-10-23 2013-12-03 Netspeed Systems Asymmetric mesh NoC topologies
US8667439B1 (en) 2013-02-27 2014-03-04 Netspeed Systems Automatically connecting SoCs IP cores to interconnect nodes to minimize global latency and reduce interconnect cost
US20150382231A1 (en) * 2014-06-25 2015-12-31 General Electric Company Dynamic adjustment of a wireless network media access control parameter

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
Ababei, C., et al., Achieving Network on Chip Fault Tolerance by Adaptive Remapping, Parallel & Distributed Processing, 2009, IEEE International Symposium, 4 pgs.
Abts, D., et al., Age-Based Packet Arbitration in Large-Radix k-ary n-cubes, Supercomputing 2007 (SC07), Nov. 10-16, 2007, 11 pgs.
Beretta, I, et al., A Mapping Flow for Dynamically Reconfigurable Multi-Core System-on-Chip Design, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Aug. 2011, 30(8), pp. 1211-1224.
Das, R., et al., Aergia: Exploiting Packet Latency Slack in On-Chip Networks, 37th International Symposium on Computer Architecture (ISCA '10), Jun. 19-23, 2010, 11 pgs.
Ebrahimi, E., et al., Fairness via Source Throttling: A Configurable and High-Performance Fairness Substrate for Multi-Core Memory Systems, ASPLOS '10, Mar. 13-17, 2010, 12 pgs.
Gindin, R., et al., NoC-Based Fpga: Architecture and Routing, Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07), May 2007, pp. 253-262.
Grot, B., Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for Scalability and Service Guarantees, ISCA '11, Jun. 4-8, 2011, 12 pgs.
Grot, B., Preemptive Virtual Clock: A Flexible, Efficient, and Cost-Effective QOS Scheme for Networks-on-Chip, Micro '09, Dec. Dec. 16, 2009, 12 pgs.
Grot, B., Topology-Aware Quality-of-Service Support in Highly Integrated Chip Multiprocessors, 6th Annual Workshop on the Interaction between Operating Systems and Computer Architecture, Jun. 2006, 11 pgs.
Gwangsun Kim, John Kim Kaist "Memory-centric System Interconnect Design with Hybrid Memory Cubes", 2013 IEEE, p. 145-155. *
International Search Report and Written Opinion for PCT/US2013/064140, dated Jan. 22, 2014, 9 pgs.
International Search Report and Written Opinion for PCT/US2014/012003, dated Mar. 26, 2014, 9 pgs.
International Search Report and Written Opinion for PCT/US2014/012012, dated May 14, 2014, 9 pgs.
International Search Report and Written Opinion for PCT/US2014/023625, dated Jul. 10, 2014, 9 pgs.
Jiang, N., et al., Performance Implications of Age-Based Allocations in On-Chip Networks, CVA MEMO 129, May 24, 2011, 21 pgs.
Lee, J. W., et al., Globally-Synchronized Frames for Guaranteed Quality-of-Service in On-Chip Networks, 35th IEEE/ACM International Symposium on Computer Architecture (ISCA), Jun. 2008, 12 pgs.
Lee, M. M., et al., Approximating Age-Based Arbitration in On-Chip Networks, PACT '10, Sep. 11-15, 2010, 2 pgs.
Li, B., et al., CoQoS: Coordinating QoS-Aware Shared Resources in NoC-based SoCs, J. Parallel Distrib. Comput., 71 (5), May 2011, 14 pgs.
Yang, J., et al., Homogeneous NoC-based FPGA: The Foundation for Virtual FPGA, 10th IEEE International Conference on Computer and Information Technology (CIT 2010), Jun. 2010, pp. 62-67.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200036604A1 (en) * 2018-07-25 2020-01-30 Netapp, Inc. Methods for facilitating adaptive quality of service in storage networks and devices thereof
US10855556B2 (en) * 2018-07-25 2020-12-01 Netapp, Inc. Methods for facilitating adaptive quality of service in storage networks and devices thereof

Also Published As

Publication number Publication date
US20170061041A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
US10528682B2 (en) Automatic performance characterization of a network-on-chip (NOC) interconnect
US10496770B2 (en) System level simulation in Network on Chip architecture
US9473359B2 (en) Transactional traffic specification for network-on-chip design
US10324509B2 (en) Automatic generation of power management sequence in a SoC or NoC
US9444702B1 (en) System and method for visualization of NoC performance based on simulation output
US9660942B2 (en) Automatic buffer sizing for optimal network-on-chip design
US9158882B2 (en) Automatic pipelining of NoC channels to meet timing and/or performance
US9571420B2 (en) Integrated NoC for performing data communication and NoC functions
US9477280B1 (en) Specification for automatic power management of network-on-chip and system-on-chip
US9785732B2 (en) Verification low power collateral generation
US10523599B2 (en) Buffer sizing of a NoC through machine learning
US20180197110A1 (en) Metrics to Train Machine Learning Predictor for NoC Construction
US10419300B2 (en) Cost management against requirements for the generation of a NoC
US10084725B2 (en) Extracting features from a NoC for machine learning construction
US20180198682A1 (en) Strategies for NoC Construction Using Machine Learning
US9928204B2 (en) Transaction expansion for NoC simulation and NoC design

Legal Events

Date Code Title Description
AS Assignment

Owner name: NETSPEED SYSTEMS, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUMAR, SAILESH;NORIGE, ERIC;RAPONI, PIER GIORGIO;REEL/FRAME:034076/0500

Effective date: 20140902

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: INTEL CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NETSPEED SYSTEMS, INC.;REEL/FRAME:060753/0662

Effective date: 20220708

Owner name: INTEL CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNOR'S INTEREST;ASSIGNOR:NETSPEED SYSTEMS, INC.;REEL/FRAME:060753/0662

Effective date: 20220708

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4