[go: up one dir, main page]

TWM525498U - Image processing system for calculating image sub-pixel - Google Patents

Image processing system for calculating image sub-pixel Download PDF

Info

Publication number
TWM525498U
TWM525498U TW105202930U TW105202930U TWM525498U TW M525498 U TWM525498 U TW M525498U TW 105202930 U TW105202930 U TW 105202930U TW 105202930 U TW105202930 U TW 105202930U TW M525498 U TWM525498 U TW M525498U
Authority
TW
Taiwan
Prior art keywords
image
pixel
sub
image processing
matrix
Prior art date
Application number
TW105202930U
Other languages
Chinese (zh)
Inventor
zong-wen Huang
ting-wei Jiang
Original Assignee
Anapex Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anapex Technology Inc filed Critical Anapex Technology Inc
Priority to TW105202930U priority Critical patent/TWM525498U/en
Publication of TWM525498U publication Critical patent/TWM525498U/en

Links

Landscapes

  • Image Analysis (AREA)

Description

用於計算影像次像素的影像處理系統 Image processing system for calculating image sub-pixels

本創作為提供一種用於計算影像次像素的影像處理系統,尤指一種透過儲存次像素位移資訊以及影像匹配後取的次像素的系統。 The present invention provides an image processing system for calculating image sub-pixels, and more particularly, a system for storing sub-pixels by sub-pixel displacement information and image matching.

取得微小移動在目前日新月異的科技趨勢下,以是不可或缺的資訊,從高精度加工、積體電路曝光對位、熱膨脹係數修正等,都需要精確且計算微小的位移量。 Obtaining small movements Under the current trend of technology, it is indispensable information, from high-precision machining, integrated circuit exposure alignment, thermal expansion coefficient correction, etc., all need to accurately and calculate a small amount of displacement.

而使用影像計算次像素的位移方法很多,主要分為兩個不同的方式,其一為使用影像特徵點計算,如:SIFT(Scale Invariant Feature Transform)、Corner等等。藉由提取圖像信息,決定每個圖像的特徵點是否屬於同一個圖像特徵。檢測的結果是把圖像上的點分為不同的子集,這些子集往往屬於孤立的點、連續的曲線或者連續的區域,再透過兩張不同的特徵點進行相似度的幾合運算,進行特徵點的計算求得兩影像間的位移。此種方法定義出的特徵點或是特徵向量,包含次像素的位移資訊,也就是說所描素出的特徵並不是坐落在整數的像素上,所以計算出的匹配結果同樣包含次像素的位移資訊,此方法計算特徵資訊雖可以取得精確的影像位移資訊,但須使用較複雜的演算法則及大量的運算,大多在PC Base上進行計算,並不易以硬體的架構進行呈現。 There are many methods for calculating the displacement of sub-pixels using images, which are mainly divided into two different ways, one is to use image feature point calculation, such as: SIFT (Scale Invariant Feature Transform), Corner, and so on. By extracting image information, it is determined whether the feature points of each image belong to the same image feature. The result of the detection is to divide the points on the image into different subsets. These subsets often belong to isolated points, continuous curves or continuous regions, and then perform similar operations by two different feature points. The calculation of the feature points is performed to obtain the displacement between the two images. The feature point or feature vector defined by this method includes the displacement information of the sub-pixel, that is to say, the feature described is not located on the integer pixel, so the calculated matching result also includes the displacement of the sub-pixel. Information, this method can obtain accurate image displacement information by calculating feature information, but it must use more complicated algorithms and a large number of calculations. Most of them are calculated on PC Base, and it is not easy to be presented in a hardware architecture.

另一為,影像模板匹配的方法,如:SAD、SSD或是NCC等等,但其方法藉由影像的像素相減或是影像摺積的方式進行影像相似度計算,其計算單元均以一個像素為單位,需要在添加上次像素的影像轉換進行匹配,才可以取得次像素的位移資訊,若不加上額外的處理,無法取得次像素的位移資訊。 The other method is image template matching, such as: SAD, SSD, or NCC, but the method performs image similarity calculation by pixel subtraction or image folding of the image, and the calculation unit has a calculation unit. The pixel is a unit, and the image conversion of the last pixel needs to be matched to obtain the displacement information of the sub-pixel. If no additional processing is added, the displacement information of the sub-pixel cannot be obtained.

使用影像模板匹配的方法取的次像素的資訊,須先行將原影 像以像素內差的方式先行建立次像素影像的資訊,進而與待匹配影像進行相似度計算來取得次像素資訊。或是使用預先儲存包含次像素位移資訊的影像,在藉由影像匹配的方式以相似度來決定次像素的位移資訊。 Use the image template matching method to take the sub-pixel information, you must first take the original image The information of the sub-pixel image is first established by the difference in the pixel, and then the similarity calculation is performed with the image to be matched to obtain the sub-pixel information. Alternatively, the image of the sub-pixel displacement information is stored in advance, and the displacement information of the sub-pixel is determined by the similarity by image matching.

其中,使用內插方式進行影像處理,可以算是對像素進行分割,模擬出較小的像素資訊,但所取得的次像素資訊其有效的解析度有限,當分割的次數較高則較易產生影像匹配上的錯誤。 Among them, using the interpolation method for image processing can be regarded as segmentation of pixels to simulate smaller pixel information, but the obtained sub-pixel information has a limited effective resolution, and when the number of divisions is high, the image is more likely to be generated. The error on the match.

另一個使用影像模板匹配的方法取得次像素位移資訊則是使用錄製小於像素大小的影像位移,將其資訊進行儲存,再透過影像模板匹配的比對方式來取得次像素位移,錄製次像素內的影像資訊來取得影像位移變化,因使用影像模板匹配所以必須儲存整張的影像,若需要觀察的距離較大時,則必須儲存極大量的的影像資料,並於影像進行模板匹配時,花費較多的計算時間。 Another method for obtaining sub-pixel displacement information by using image template matching is to record the information by recording the image displacement smaller than the pixel size, and then obtaining the sub-pixel displacement by the image template matching comparison method, and recording the sub-pixel within the sub-pixel. Image information is used to obtain image displacement changes. Because image template matching is used, the entire image must be stored. If the distance to be observed is large, a large amount of image data must be stored, and the image matching is performed when the image is matched. More calculation time.

請參閱第1圖,使用資料庫儲存的方式進行次像素位移資訊的計算,需建立次像素的影像資料,以一個20cm直徑的旋轉平台,若欲取得的解析度在0.5um,且所使用的影像擷取裝置像素大小為7.5um,則影像資料庫單一張影像儲存內容為64像素 x 64像素=4096(像素2)=4K bytes。則一整圈影像記錄下來就會需要:1256638 x 4K約為4.794G的儲存空間。若以傳統的影像匹配演算法則進行計算,則會產生極大的影像儲存需求。 Please refer to Fig. 1, using the database storage method to calculate the sub-pixel displacement information. It is necessary to establish the sub-pixel image data to a 20cm diameter rotating platform. If the resolution to be obtained is 0.5um, and the used The pixel size of the image capture device is 7.5 um, and the image storage content of the image database is 64 pixels x 64 pixels = 4096 (pixel 2) = 4K bytes. A full circle of images will be recorded: 1256638 x 4K is about 4.794G of storage space. If the calculation is performed by the traditional image matching algorithm, it will generate a great image storage requirement.

是以,使用較小的儲存空間以及降低運算的複雜度,即為在影像次像素計算中需改善的方向。 Therefore, using a smaller storage space and reducing the complexity of the operation is the direction that needs to be improved in the calculation of the image sub-pixel.

鑒於上述缺失,本創作係提供一種用於計算影像次像素的影像處理系統,係由資料庫系統與比對系統所構成,其中資料庫系統包括;影像擷取裝置、參考物面、影像儲存裝置、影像處理單元、與矩陣儲存單元所構成;比對系統包括;影像計算單元、與矩陣計算單元所構成,資料庫系統用於提供即時影像對應的資料座標以及匹配資訊;其中影像擷取裝置分別由光源與影像感測裝置構成,用以產生影像;參考物面用於提供光 源照射後產生反射或是散射的資訊進入感測元件當中進行成像;影像儲存裝置用以儲存影像擷取裝置取得的影像資訊;影像處理單元用以將影像轉換為矩陣進行影像壓縮;矩陣儲存單元用以儲存經過影像處理單元壓縮的矩陣資料;比對系統用以提供比對結果計算次像素位移資訊;其中影像計算單元用以使用影像來計算影像相似度提供整數像素位移資訊;矩陣計算單元用以計算矩陣間相似度的匹配結果用於提供次像素位移資訊。 In view of the above-mentioned deficiencies, the present invention provides an image processing system for calculating image sub-pixels, which is composed of a database system and a comparison system, wherein the database system includes: an image capturing device, a reference object surface, and an image storage device. The image processing unit and the matrix storage unit are configured; the comparison system comprises: an image calculation unit and a matrix calculation unit, wherein the database system is configured to provide data coordinates and matching information corresponding to the instant image; wherein the image capture device respectively The light source and the image sensing device are configured to generate an image; the reference object is used to provide light The information generated by the source after reflection or scattering is entered into the sensing element for imaging; the image storage device is used to store the image information obtained by the image capturing device; the image processing unit is used to convert the image into a matrix for image compression; the matrix storage unit The matrix data is compressed by the image processing unit; the comparison system is configured to calculate the sub-pixel displacement information by using the comparison result; wherein the image calculation unit is configured to use the image to calculate the image similarity to provide integer pixel displacement information; The matching result of calculating the similarity between matrices is used to provide sub-pixel displacement information.

本創作的一目的為提供一種有效降低資料儲存空間的影像匹配的系統,用以取得次像素的位移結果。 An object of the present invention is to provide a system for effectively reducing image matching of data storage space for obtaining displacement results of sub-pixels.

A‧‧‧資料庫系統 A‧‧‧Database System

A1‧‧‧影像擷取裝置 A1‧‧‧Image capture device

A1.1‧‧‧光源 A1.1‧‧‧Light source

A1.2‧‧‧影像感測裝置 A1.2‧‧‧Image sensing device

A2‧‧‧參考物面 A2‧‧‧ reference surface

A3‧‧‧影像儲存裝置 A3‧‧‧Image storage device

A4‧‧‧影像處理單元 A4‧‧‧Image Processing Unit

A5‧‧‧矩陣儲存單元 A5‧‧‧ Matrix Storage Unit

B‧‧‧比對系統 B‧‧‧ comparison system

B1‧‧‧影像計算單元 B1‧‧‧Image Computing Unit

B2‧‧‧矩陣計算單元 B2‧‧‧Matrix calculation unit

第1圖:係習用以影像方式進行資料庫儲存示意圖。 Figure 1: Schematic diagram of the storage of data in the image format.

第2圖:本創作較佳實施例之方塊圖。 Figure 2: A block diagram of a preferred embodiment of the present invention.

第3圖:本創作影像處理示意圖。 Figure 3: Schematic diagram of the image processing of this creation.

第4圖:本創作影像模板匹配示意圖。 Figure 4: Schematic diagram of the matching of this creative image template.

第5圖:本創作次像素位移匹配示意圖。 Figure 5: Schematic diagram of the sub-pixel displacement matching of this creation.

第6圖:本創作實施例示意圖。 Figure 6: Schematic diagram of the present embodiment.

請參閱第2圖,係為本創作較佳的實施例之方塊圖。由圖中可清楚看出,本創作用於次像素影像計算之影像處理系統包括有資料庫系統A與比對系統B所構成。資料庫系統A包括;影像擷取裝置A1、參考物面A2、影像儲存裝置A3、影像處理單元A4、與矩陣儲存單元A5所構成。比對系統B包括:影像計算單元B1、矩陣計算單元B2。 Please refer to FIG. 2, which is a block diagram of a preferred embodiment of the present invention. As can be clearly seen from the figure, the image processing system for sub-pixel image calculation of the present invention comprises a database system A and a comparison system B. The database system A includes an image capturing device A1, a reference object surface A2, an image storage device A3, an image processing unit A4, and a matrix storage unit A5. The comparison system B includes an image calculation unit B1 and a matrix calculation unit B2.

其中影像擷取裝置A1分別為光源A1.1與影像感測裝置A1.2,使用光源A1.1照射在參考物面A2,將其反射光源或是散射光源資訊導入影像感測裝置A1.2。 The image capturing device A1 is respectively a light source A1.1 and an image sensing device A1.2, and is irradiated on the reference object surface A2 by using the light source A1.1, and the reflected light source or the scattered light source information is introduced into the image sensing device A1.2. .

透過影像擷取裝置A1照射參考物面A2所產生的整數像素位移影像以及對應的座標資訊儲存於影像儲存裝置A3,小於整數位移的次像素資訊透過影像處理單元A4轉換後儲存於矩陣儲存單元A5。 The integer pixel displacement image generated by the image capturing device A1 illuminating the reference object surface A2 and the corresponding coordinate information are stored in the image storage device A3. The sub-pixel information smaller than the integer displacement is converted by the image processing unit A4 and stored in the matrix storage unit A5. .

請參閱第3圖,影像處理單元A4,影像處理單元將64pixel x 64pixel的影像進行轉換,轉換方式;以列為單位將各列中基數行的灰階值相加,偶數行的灰階值相減最後將數值相加,一張64像素 x 64像素的影像透過上述描述之轉換,形成1 x 64陣列,其中各列數值以2個Byte進行表示,影像即以2 x 64Bytes進行表示並儲存於矩陣儲存裝置A5中。 Referring to FIG. 3, the image processing unit A4 converts the 64 pixel x 64 pixel image into a conversion mode; adds the grayscale values of the base rows in each column in units of columns, and the grayscale values of the even rows are After subtracting the last value, a 64-pixel x 64-pixel image is converted into a 1 x 64 array by the above description, wherein each column value is represented by 2 Bytes, and the image is represented by 2 x 64 Bytes and stored in In the matrix storage device A5.

將影像擷取裝置A1照射參考物面A2所產生的即時影像,透過比對系統B中的影像計算單元B1與資料庫系統A中的影像儲存裝置A3進行相似度計算,取得相似度最高的匹配影像位置。再由資料庫系統A中的矩陣儲存裝置A5取出對應的矩陣資料,將即時影像透過影像處理單元A4轉換為矩陣資料,與矩陣儲存裝置A5中的矩陣資料使用矩陣計算單元B2進行匹配,計算出相似度最高的矩陣並取得次像素的位移。 The image capturing device A1 illuminates the real-time image generated by the reference object surface A2, and performs similarity calculation through the image computing unit B1 in the comparison system B and the image storage device A3 in the database system A to obtain the highest similarity matching. Image location. Then, the corresponding matrix data is taken out by the matrix storage device A5 in the database system A, and the real-time image is converted into matrix data by the image processing unit A4, and the matrix data in the matrix storage device A5 is matched with the matrix calculation unit B2, and the calculation is performed. The matrix with the highest similarity and the displacement of the sub-pixel.

請參閱第4圖,比對系統B中的影像計算單元B1使用影像模板匹配的方式進行計算,由即時影像取出某區塊與資料庫系統A中的影像儲存裝置A3中的影像進行模板匹配。 Referring to FIG. 4, the image calculation unit B1 in the comparison system B performs image template matching, and the image in the image storage device A3 in the database system A is extracted from the real image to perform template matching.

請參閱第5圖,假若影像位移小於一個像素,如圖中所示。請參閱第6圖,比對系統B中的矩陣計算單元B2使用即時影像透過影像計算單元B1產生的即時影像之矩陣與資料庫系統A中的矩陣儲存裝置A5進行矩陣運算,取得最小值即為相似度最高的依據,進而取得次像素位移資訊。 Please refer to Figure 5, if the image displacement is less than one pixel, as shown in the figure. Referring to FIG. 6, the matrix calculation unit B2 in the comparison system B performs a matrix operation on the matrix of the real-time image generated by the instant image transmission image calculation unit B1 and the matrix storage device A5 in the database system A, and the minimum value is obtained. The basis of the highest similarity, and then the sub-pixel displacement information.

請參閱第6圖,若以0.5um的解析度在感測元件像素大小為7.5um下進行影像錄製,所有的影像以影像處理單元A4進行矩陣轉換,轉換後將矩陣資訊儲存於資料庫系統A中的矩陣儲存裝置A5中,而整數像素的部分儲存64像素 x 64像素的影像儲存於資料庫系統A中的影像儲存裝置A3,以直徑為20cm的圓周為例:整數像素的影像儲存張數為200 π mm/7.5um=83776張影像。以Phase Shift方式儲存的矩陣數目為200 π mm/0.5um=1256638張,則所需要的儲存量約為:83776 * 4K bytes+1256638 * (64 * 2)bytes=470.422MB<512MB。 Please refer to Fig. 6. If the image is recorded with a resolution of 0.5um at a pixel size of 7.5um, all the images are matrix-converted by the image processing unit A4, and the matrix information is stored in the database system A after conversion. In the matrix storage device A5, the partial pixel of the integer pixel stores the image of 64 pixels x 64 pixels stored in the image storage device A3 in the database system A, taking the circumference of 20 cm in diameter as an example: the number of images stored in integer pixels It is 200 π mm / 7.5 um = 83776 images. The number of matrices stored in Phase Shift is 200 π mm/0.5um=1256638, and the required storage is approximately: 83776 * 4K bytes + 1256638 * (64 * 2) bytes = 470.422MB < 512MB.

此結果遠小於單純使用影像進行資料庫建立方式減少約10倍的資料庫儲存空間,且計算次數大幅降低。 This result is much smaller than the database storage space that is reduced by about 10 times by simply using image storage, and the number of calculations is greatly reduced.

以上所述者,僅為本創作之一較佳實施例而已,並非用來限定本創作實施之範圍,即凡依本創作申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本創作之申請專利範圍內。 The above description is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, that is, the shape, structure, characteristics and spirit described in the scope of the patent application are equally changed. Modifications shall be included in the scope of the patent application of this creation.

A‧‧‧資料庫系統 A‧‧‧Database System

A1‧‧‧影像擷取裝置 A1‧‧‧Image capture device

A1.1‧‧‧光源 A1.1‧‧‧Light source

A1.2‧‧‧影像感測裝置 A1.2‧‧‧Image sensing device

A2‧‧‧參考物面 A2‧‧‧ reference surface

A3‧‧‧影像儲存裝置 A3‧‧‧Image storage device

A4‧‧‧影像處理單元 A4‧‧‧Image Processing Unit

A5‧‧‧矩陣儲存單元 A5‧‧‧ Matrix Storage Unit

B‧‧‧比對系統 B‧‧‧ comparison system

B1‧‧‧影像計算單元 B1‧‧‧Image Computing Unit

B2‧‧‧矩陣計算單元 B2‧‧‧Matrix calculation unit

Claims (3)

一種可用於計算影像次像素的影像處理系統,包括:一資料庫系統,包括有一影像擷取裝置、一參考物面、一影像儲存裝置、一影像處理單元及一矩陣儲存裝置,該影像擷取裝置將個別電性連接該影像儲存裝置及影像處理單元,而影像處理單元則電性連接該矩陣儲存裝置;及一比對系統,包括有一影像計算單元及一矩陣計算單元;其中該影像擷取裝置可投射一投射光照射參考物面,而參考物面之反射光將被該影像擷取裝置所接收,並轉傳至該影像儲存裝置或該影像處理單元中儲存。 An image processing system for calculating image sub-pixels, comprising: a database system comprising an image capturing device, a reference object surface, an image storage device, an image processing unit and a matrix storage device, wherein the image capturing device The device is electrically connected to the image storage device and the image processing unit, and the image processing unit is electrically connected to the matrix storage device; and a comparison system includes an image calculation unit and a matrix calculation unit; wherein the image capture The device can project a projection light to illuminate the reference object surface, and the reflected light of the reference object surface is received by the image capturing device and transferred to the image storage device or the image processing unit for storage. 如申請專利範圍第1項所述可用於計算影像次像素的影像處理系統,其中該影像處理單元以一影像列為單位,將影像單數行相加後與偶數行相減取得一矩陣壓縮陣列。 The image processing system can be used for calculating an image sub-pixel as described in claim 1, wherein the image processing unit adds a single row of images and subtracts the even rows to obtain a matrix compression array. 如申請專利範圍第1項所述可用於計算影像次像素的影像處理系統,其中該影像擷取裝置中係包括有一光源及一影像感測裝置,光源可產生該投射光,而影像感測裝置則可接收該反射光。 An image processing system for calculating image sub-pixels, as described in claim 1, wherein the image capturing device includes a light source and an image sensing device, the light source can generate the projection light, and the image sensing device The reflected light can then be received.
TW105202930U 2016-03-03 2016-03-03 Image processing system for calculating image sub-pixel TWM525498U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105202930U TWM525498U (en) 2016-03-03 2016-03-03 Image processing system for calculating image sub-pixel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105202930U TWM525498U (en) 2016-03-03 2016-03-03 Image processing system for calculating image sub-pixel

Publications (1)

Publication Number Publication Date
TWM525498U true TWM525498U (en) 2016-07-11

Family

ID=56996249

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105202930U TWM525498U (en) 2016-03-03 2016-03-03 Image processing system for calculating image sub-pixel

Country Status (1)

Country Link
TW (1) TWM525498U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI676920B (en) * 2018-11-22 2019-11-11 國家中山科學研究院 Spot image precision alignment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI676920B (en) * 2018-11-22 2019-11-11 國家中山科學研究院 Spot image precision alignment method

Similar Documents

Publication Publication Date Title
CN111127422B (en) Image labeling method, device, system and host
Fuhrmann et al. MVE-a multi-view reconstruction environment.
US9117267B2 (en) Systems and methods for marking images for three-dimensional image generation
JP5261501B2 (en) Permanent visual scene and object recognition
CN109716348B (en) Processing multiple regions of interest independently
JP6071522B2 (en) Information processing apparatus and information processing method
CN107292925A (en) Based on Kinect depth camera measuring methods
CN110264573A (en) Three-dimensional rebuilding method, device, terminal device and storage medium based on structure light
JP6086491B2 (en) Image processing apparatus and database construction apparatus thereof
US10650584B2 (en) Three-dimensional modeling scanner
CN101661623B (en) Three-dimensional tracking method of deformable body based on linear programming
CN110793441A (en) High-precision object geometric dimension measuring method and device
KR20220004460A (en) Method of matching images for merging the images and data processing device performing the same
TWM525498U (en) Image processing system for calculating image sub-pixel
CN119048466B (en) High-lock bolt detection method, device, electronic equipment and storage medium thereof
CN119648913A (en) A street scene reconstruction method, electronic device and storage medium
JP2018077168A (en) Simulator, simulation method and simulation program
Barbosa et al. Automatic analogue gauge reading using smartphones for industrial scenarios
Wang et al. A computer vision method for measuring angular velocity
CN105809698A (en) Image processing system for calculating image sub-pixel
JP2014032628A (en) Corresponding point search device, program thereof, and camera parameter estimation device
JP7759654B2 (en) Information processing system, information processing method, and information processing program
KR20200030485A (en) Methods and apparatus for processing image data for machine vision
CN111462199A (en) Fast Speckle Image Matching Method Based on GPU
Sung et al. Multi-scale descriptor for robust and fast camera motion estimation

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees