[go: up one dir, main page]

TWI832767B - Hydrological data analysis method and hydrological data analysis system - Google Patents

Hydrological data analysis method and hydrological data analysis system Download PDF

Info

Publication number
TWI832767B
TWI832767B TW112118729A TW112118729A TWI832767B TW I832767 B TWI832767 B TW I832767B TW 112118729 A TW112118729 A TW 112118729A TW 112118729 A TW112118729 A TW 112118729A TW I832767 B TWI832767 B TW I832767B
Authority
TW
Taiwan
Prior art keywords
data
hydrological
abnormal
repair
hydrological data
Prior art date
Application number
TW112118729A
Other languages
Chinese (zh)
Other versions
TW202447452A (en
Inventor
黃振家
Original Assignee
逢甲大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 逢甲大學 filed Critical 逢甲大學
Priority to TW112118729A priority Critical patent/TWI832767B/en
Application granted granted Critical
Publication of TWI832767B publication Critical patent/TWI832767B/en
Publication of TW202447452A publication Critical patent/TW202447452A/en

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

A hydrological data analysis method includes implementing following steps by a processor: obtaining hydrological data of a water area of from a sensing module; filtering the hydrological data; determining whether the hydrological data is normal data or abnormal data; when determining the hydrological data is the abnormal data, selecting one of a plurality of data fixing models as a selected data fixing model according to the type of the water area; inputting the abnormal data into the selected data fixing model to fix the abnormal data. By the aforementioned method, the loss data area or the abnormal data points in the hydrological data may be fixed according to the different water areas, thereby improving the accuracy and the completeness of the hydrological data.

Description

水文資料分析方法及水文資料分析系統 Hydrological data analysis method and hydrological data analysis system

本發明關於水文資料技術領域,特別是一種能進行水文資料修復的水文資料分析方法及水文資料分析系統。 The present invention relates to the technical field of hydrological data, in particular to a hydrological data analysis method and a hydrological data analysis system capable of repairing hydrological data.

自然災害總是會替人類生活帶來災損,且近年發生極端災害的頻率愈趨頻繁。因此,自然災害分析的重要性日趨重要。 Natural disasters always bring disasters to human life, and the frequency of extreme disasters has become more frequent in recent years. Therefore, the importance of natural disaster analysis is increasing day by day.

當颱風所帶來的風雨量過大時,洪水及泥砂量瞬間爆增,泥砂達啟動流速後與水混合受重力作用開始產生輸送現象,大量含砂水體進入水庫造成淤積。由於水庫的泥砂量體過大,在庫區內的感測器常因環境影響或量測限制無法正常運作,造成水流量感測器或泥砂監控器所產生的水文資料不完整,水文資料的不完整導致後期自然災害分析的困難。 When the amount of wind and rain brought by a typhoon is too large, the amount of floods and sediment increases instantly. After the sediment reaches the starting flow rate, it mixes with water and begins to be transported by gravity. A large amount of sand-containing water enters the reservoir and causes siltation. Since the amount of sediment in the reservoir is too large, sensors in the reservoir area often cannot operate normally due to environmental influences or measurement limitations, resulting in incomplete hydrological data generated by water flow sensors or sediment monitors. Leading to difficulties in later analysis of natural disasters.

綜觀前所述,本發明之發明人思索並設計一種水文資料分析方法及系統,以期針對既有技術之缺失加以改善,進而增進產業上之實務利用價值。 In summary, the inventor of the present invention thought about and designed a hydrological data analysis method and system in order to improve the deficiencies of the existing technology and thereby increase the practical application value in industry.

根據前述,本發明的目的在於提供一種水文資料分析方法及水文資料分析系統,可解決水文資料不完整的問題。 According to the foregoing, the purpose of the present invention is to provide a hydrological data analysis method and a hydrological data analysis system, which can solve the problem of incomplete hydrological data.

基於上述目的,本發明提供一種水文資料分析方法,包括藉由處理器執行:從感測模組取得水域的水文資料;過濾水文資料;判斷水文資料是 正常資料或異常資料;當判斷水文資料是異常資料時,根據水域的類型,從複數個資料修補模型選擇至少一個作為選定資料修復模型;以及輸入異常資料至選定資料修復模型,以修復異常資料。 Based on the above objectives, the present invention provides a hydrological data analysis method, which includes executing by a processor: obtaining hydrological data of the water area from the sensing module; filtering the hydrological data; and determining whether the hydrological data is Normal data or abnormal data; when the hydrological data is judged to be abnormal data, at least one of the plurality of data repair models is selected as the selected data repair model according to the type of water area; and the abnormal data is input into the selected data repair model to repair the abnormal data.

在本發明的實施例中,水文資料包括複數個水文資料點,過濾水文資料包括:根據複數個水文資料點,建立信賴區間;判斷複數個水文資料點的每一個是否在信賴區間;以及當水文資料點不在信賴區間時,刪刪除水文資料點。 In an embodiment of the present invention, the hydrological data includes a plurality of hydrological data points, and filtering the hydrological data includes: establishing a trust interval based on the plurality of hydrological data points; determining whether each of the plurality of hydrological data points is within the trust interval; and when the hydrological data points When the data points are not in the confidence interval, delete the hydrological data points.

在本發明的實施例中,判斷水文資料是正常資料或異常資料包括:判斷水文資料是否具有至少一個資料遺失區;當判斷水文資料具有至少一個資料遺失區,標示水文資料為異常資料;以及當判斷水文資料不具有至少一個資料遺失區,標示水文資料為正常資料。 In an embodiment of the present invention, determining whether the hydrological data is normal data or abnormal data includes: determining whether the hydrological data has at least one data missing area; when it is determined that the hydrological data has at least one data missing area, marking the hydrological data as abnormal data; and when it is determined that the hydrological data has at least one data missing area; It is judged that the hydrological data does not have at least one data loss area, and the hydrological data is marked as normal data.

在本發明的實施例中,輸入異常資料至選定資料修復模型以修復異常資料包括:藉由選定資料修復模型修復至少一個資料遺失區。 In an embodiment of the present invention, inputting abnormal data into the selected data repair model to repair the abnormal data includes: repairing at least one data loss area by using the selected data repair model.

在本發明的實施例中,更包括藉由處理器執行:取得地文資料以及災害資料;輸入地文資料、災害資料以及修復後異常資料或正常資料至人工智慧模型,以產生預測泥砂量;以及標示預測泥砂量為複數個災害風險之一。 In an embodiment of the present invention, the method further includes executing by the processor: obtaining topographic data and disaster data; inputting topography data, disaster data, and repaired abnormal data or normal data into the artificial intelligence model to generate a predicted sediment volume; and marking the predicted sediment volume as one of a plurality of hazard risks.

基於上述目的,本發明提供一種水文資料分析系統,包括感測模組以及處理器。感測模組根據水域的氣象狀況、水流變化以及泥砂變化,產生對應水域的水文資料。處理器連接感測模組,並過濾水文資料及判斷水文資料是正常資料或異常資料,當判斷水文資料是異常資料時,處理器從複數個資料修補模型選擇至少一個作為選定資料修復模型,並輸入異常資料至選定資料修復模型,以修復異常資料。 Based on the above objectives, the present invention provides a hydrological data analysis system, including a sensing module and a processor. The sensing module generates hydrological data corresponding to the water area based on the meteorological conditions, water flow changes, and sediment changes in the water area. The processor is connected to the sensing module, filters the hydrological data and determines whether the hydrological data is normal data or abnormal data. When it is determined that the hydrological data is abnormal data, the processor selects at least one from a plurality of data repair models as the selected data repair model, and Input abnormal data to the selected data repair model to repair abnormal data.

在本發明的實施例中,水文資料包括複數個水文資料點,處理器所執行的過濾水文資料包括:根據複數個水文資料點,建立信賴區間;判斷複數個水文資料點的每一個是否在信賴區間;以及當水文資料點不在信賴區間時,刪除水文資料點。 In the embodiment of the present invention, the hydrological data includes a plurality of hydrological data points, and the filtering of the hydrological data performed by the processor includes: establishing a trust interval based on the plurality of hydrological data points; and determining whether each of the plurality of hydrological data points is in trust. interval; and when the hydrological data point is not in the confidence interval, delete the hydrological data point.

在本發明的實施例中,處理器所執行的判斷水文資料是正常資料或異常資料包括:判斷水文資料是否具有至少一個資料遺失區;當判斷水文資料具有至少一個資料遺失區,標示水文資料為異常資料;以及當判斷水文資料不具有至少一個資料遺失區,標示水文資料為正常資料。 In an embodiment of the present invention, determining whether the hydrological data is normal data or abnormal data performed by the processor includes: determining whether the hydrological data has at least one data missing area; when it is determined that the hydrological data has at least one data missing area, marking the hydrological data as abnormal data; and when it is determined that the hydrological data does not have at least one data loss area, the hydrological data is marked as normal data.

在本發明的實施例中,處理器所執行的輸入異常資料至選定資料修復模型以修復異常資料包括:藉由選定資料修復模型修復至少一個資料遺失區。 In an embodiment of the present invention, inputting the abnormal data to the selected data repair model to repair the abnormal data performed by the processor includes: repairing at least one data loss area through the selected data repair model.

在本發明的實施例中,處理器更取得地文資料以及災害資料,並輸入地文資料、災害資料以及修復後異常資料或正常資料至人工智慧模型,人工智慧模型產生預測泥砂量,處理器標示預測泥砂量為複數個災害風險之一。 In an embodiment of the present invention, the processor further obtains geological data and disaster data, and inputs the geological data, disaster data and post-repair abnormal data or normal data into the artificial intelligence model. The artificial intelligence model generates a predicted amount of sediment, and the processor Indicates the predicted sediment volume as one of several hazard risks.

承上所述,本發明的水文資料分析方法及水文資料分析系統可過濾水文資料及判斷水文資料是正常資料或異常資料,並根據水文資料的判斷結果及水文資料所對應的水域選擇性修復異常資料,使水文資料的正確性及完整性提高。 Following the above, the hydrological data analysis method and hydrological data analysis system of the present invention can filter the hydrological data and determine whether the hydrological data is normal data or abnormal data, and selectively repair abnormalities based on the judgment results of the hydrological data and the waters corresponding to the hydrological data. data to improve the accuracy and completeness of hydrological data.

10:感測模組 10: Sensing module

20:處理器 20: Processor

CI1:信賴區間 CI1: confidence interval

DD1:災害資料 DD1: Disaster information

DR1:資料遺失區 DR1: data loss area

FP1:修復雨量資料點 FP1: Repair rainfall data points

GD1:地文資料 GD1: Geographic data

HD1:水文資料 HD1: Hydrological data

S11~S17、S21~S32、S121~S123:步驟 S11~S17, S21~S32, S121~S123: steps

第1圖為依據本發明一實施例所繪示的水文資料分析系統的功能性方塊圖。 Figure 1 is a functional block diagram of a hydrological data analysis system according to an embodiment of the present invention.

第2圖為依據本發明另一實施例所繪示的水文資料分析系統的功能性方塊 圖。 Figure 2 shows functional blocks of a hydrological data analysis system according to another embodiment of the present invention. Figure.

第3圖為依據本發明一實施例所繪示的水文資料分析方法流程圖。 Figure 3 is a flow chart of a hydrological data analysis method according to an embodiment of the present invention.

第4圖為依據本發明一實施例所繪示的水文資料分析方法中過濾水文資料的流程圖。 Figure 4 is a flow chart of filtering hydrological data in a hydrological data analysis method according to an embodiment of the present invention.

第5圖為依據本發明一實施例所繪示的含有信賴區間的雨量對時間圖。 Figure 5 is a plot of rainfall versus time with confidence intervals according to an embodiment of the present invention.

第6圖為使用本發明一實施例所繪示的水文資料分析方法修復資料前的雨量對時間圖。 Figure 6 is a plot of rainfall versus time before data restoration using a hydrological data analysis method according to an embodiment of the present invention.

第7圖為使用本發明一實施例所繪示的水文資料分析方法修復資料前的雨量對時間圖。 Figure 7 is a graph of rainfall versus time before data restoration using a hydrological data analysis method according to an embodiment of the present invention.

第8A圖及第8B圖為依據本發明另一實施例所繪示的水文資料分析方法流程圖。 Figures 8A and 8B are flow charts of a hydrological data analysis method according to another embodiment of the present invention.

本發明之優點、特徵以及達到之技術方法將參照例示性實施例及所附圖式進行更詳細地描述而更容易理解,且本發明可以不同形式來實現,故不應被理解僅限於此處所陳述的實施例。相反地,對所屬技術領域具有通常知識者而言,所提供的實施例將使本揭露更加透徹與全面且完整地傳達本發明的範疇,且本發明將僅為所附加的申請專利範圍所定義。 The advantages, features and technical methods for achieving the present invention will be described in more detail with reference to the exemplary embodiments and accompanying drawings to be more easily understood. The present invention can be implemented in different forms and should not be understood to be limited to what is described herein. Stated Examples. On the contrary, the provided embodiments will make this disclosure more thorough and complete and fully convey the scope of the invention to those of ordinary skill in the art, and the invention will only be defined by the appended patent scope. .

應當理解的是,儘管術語「第一」、「第二」等在本發明中可用於描述各種元件、部件、區域、層及/或部分,但是這些元件、部件、區域、層及/或部分不應受這些術語的限制。這些術語僅用於將一個元件、部件、區域、層及/或部分與另一個元件、部件、區域、層及/或部分區分開。 It will be understood that, although the terms "first," "second," etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections These terms should not be limited. These terms are only used to distinguish one element, component, region, layer and/or section from another element, component, region, layer and/or section.

另外,術語「包括」及/或「包含」指所述特徵、區域、整體、步 驟、操作、元件及/或部件的存在,但不排除一個或多個其他特徵、區域、整體、步驟、操作、元件、部件及/或其組合的存在或添加。 In addition, the terms "comprises" and/or "comprises" refer to stated features, regions, integers, steps The presence or addition of one or more other features, regions, integers, steps, operations, elements, components and/or combinations thereof is not excluded.

請參閱第1圖,其為依據本發明一實施例所繪示的水文資料分析系統的功能性方塊圖。如第1圖所示,本發明的水文資料分析系統包括感測模組10以及處理器20。感測模組10根據水域的氣象狀況、水流變化以及泥砂變化,產生對應水域的水文資料HD1。處理器20連接感測模組10並過濾水文資料HD1及判斷水文資料HD1是正常資料或異常資料,並根據水文資料HD1的判斷結果及水文資料HD1所對應的水域選擇性修復異常資料,過濾水文資料HD1、水文資料HD1的判斷以及修復異常資料的細節將在水文資料分析方法的段落中詳細說明。 Please refer to Figure 1, which is a functional block diagram of a hydrological data analysis system according to an embodiment of the present invention. As shown in Figure 1 , the hydrological data analysis system of the present invention includes a sensing module 10 and a processor 20 . The sensing module 10 generates hydrological data HD1 corresponding to the water area based on the meteorological conditions, water flow changes, and sediment changes of the water area. The processor 20 is connected to the sensing module 10 and filters the hydrological data HD1 and determines whether the hydrological data HD1 is normal data or abnormal data, and selectively repairs the abnormal data based on the judgment results of the hydrological data HD1 and the waters corresponding to the hydrological data HD1, and filters the hydrological data. The details of the judgment of data HD1, hydrological data HD1 and the repair of abnormal data will be explained in detail in the paragraph of hydrological data analysis method.

在本實施例中,感測模組10包括雨量感測器、水流量感測器、泥砂量感測器以及水位感測器。雨量感測器根據水域的氣象狀況產生多個雨量資料點,水流量感測器根據水域的水流變化產生多個水流量資料點,泥砂量感測器根據泥砂變化產生多個泥砂量資料點,水位感測器根據水域的水位變化產生多個水位資料點;舉例來說,雨量感測器、水流量感測器、泥砂量監測器以及水位感測器可於每單位小時產生單個雨量資料點、單個水流量資料點、單個泥砂量資料點以及單個水位資料。水文資料包括複數個水文資料點,複數個水文資料點包括複數個雨量資料點、複數個水流量資料點、複數個泥砂量資料點以及複數個水位資料點,處理器20根據複數個雨量資料點、複數個水流量資料點、複數個泥砂量資料點以及複數個水位資料點產生雨量圖、水流量圖、泥砂量圖以及水位圖。需說明的是,水域可為集水區、水庫區或下游河道區,可在集水區、水庫區或下游河道區分別設置感測模組10。 In this embodiment, the sensing module 10 includes a rain sensor, a water flow sensor, a sediment volume sensor, and a water level sensor. The rainfall sensor generates multiple rainfall data points according to the meteorological conditions of the water area. The water flow sensor generates multiple water flow data points according to the water flow changes in the water area. The sediment volume sensor generates multiple sediment volume data points based on the changes in sediment. The water level The sensor generates multiple water level data points according to the water level changes in the water area; for example, a rainfall sensor, a water flow sensor, a sediment volume monitor, and a water level sensor can generate a single rainfall data point per unit hour. A single water flow data point, a single sediment volume data point and a single water level data. The hydrological data includes a plurality of hydrological data points, and the plurality of hydrological data points includes a plurality of rainfall data points, a plurality of water flow data points, a plurality of sediment volume data points, and a plurality of water level data points. The processor 20 operates according to the plurality of rainfall data points. , a plurality of water flow data points, a plurality of sediment volume data points and a plurality of water level data points to generate rainfall maps, water flow maps, sediment volume maps and water level maps. It should be noted that the water area can be a water catchment area, a reservoir area or a downstream river channel area, and the sensing modules 10 can be respectively provided in the water catchment area, reservoir area or downstream river channel area.

在本實施例中,處理器20可為中央處理器(central processing unit,CPU)、微控制器(microcontroller unit,MCU)或其他具有處理資料功能的處理器。在一實施態樣中,處理器20設置於運算裝置中,運算裝置可為電腦或超級電腦;在另一實施態樣中,處理器20設置於或伺服器中,伺服器設置於雲端或邊緣端。 In this embodiment, the processor 20 may be a central processing unit (CPU), a microcontroller unit (MCU), or other processors with data processing functions. In one implementation, the processor 20 is disposed in a computing device, which may be a computer or a supercomputer; in another implementation, the processor 20 is disposed in a server, and the server is disposed in the cloud or edge. end.

請參閱第2圖,其為依據本發明另一實施例所繪示的水文資料分析系統的功能性方塊。如第2圖所示,本發明的水文資料分析系統,包括感測模組10以及處理器20,感測模組10以及處理器20的配置與第1圖所示的配置類似,於此不再重複敘述。但第2圖的配置與第1圖的配置仍有差異之處:處理器20可例如從水利署取得地文資料GD1以及災害資料DD1,處理器20也可從其他公開地文資料GD1以及災害資料DD1的網路平台取得地文資料GD1以及災害資料DD1,而不限於本發明所陳述的範圍。處理器20輸入地文資料GD1、災害資料DD1、修復後異常資料或正常資料至人工智慧模型,人工智慧模型產生預測結果,人工智慧模型的預測結果的細節將在水文資料分析方法的段落中詳細說明。 Please refer to Figure 2, which illustrates functional blocks of a hydrological data analysis system according to another embodiment of the present invention. As shown in Figure 2, the hydrological data analysis system of the present invention includes a sensing module 10 and a processor 20. The configurations of the sensing module 10 and the processor 20 are similar to those shown in Figure 1. There are no differences here. Repeat the narrative again. However, the configuration in Figure 2 is still different from the configuration in Figure 1: the processor 20 can obtain the geography data GD1 and disaster data DD1 from the Water Resources Department, for example, and the processor 20 can also obtain the geography data GD1 and disaster data from other public sources. The network platform of data DD1 obtains geographical data GD1 and disaster data DD1, without being limited to the scope stated in the present invention. The processor 20 inputs the geological data GD1, the disaster data DD1, the abnormal data after repair or the normal data to the artificial intelligence model. The artificial intelligence model generates prediction results. The details of the prediction results of the artificial intelligence model will be detailed in the paragraph on the hydrological data analysis method. instruction.

請參閱第3圖,其為依據本發明一實施例所繪示的水文資料分析方法流程圖。如第3圖所示,本發明的水文資料分析方法,包括步驟S11~步驟S17。第3圖所示的水文資料分析方法適用於第1圖或第2圖所示的水文資料分析系統,但不以此為限。以下示例性地以第1圖所示水文資料分析系統之運作來說明步驟S11~步驟S17。 Please refer to Figure 3, which is a flow chart of a hydrological data analysis method according to an embodiment of the present invention. As shown in Figure 3, the hydrological data analysis method of the present invention includes steps S11 to S17. The hydrological data analysis method shown in Figure 3 is suitable for the hydrological data analysis system shown in Figure 1 or 2, but is not limited to this. Steps S11 to S17 are explained below by taking the operation of the hydrological data analysis system shown in Figure 1 as an example.

步驟S11:取得水域的水文資料HD1。具體而言,處理器20從感測模組10取得水文資料HD1,水文資料HD1包括複數個雨量資料點、複數個水流量資料點、複數個泥砂量資料點以及複數個水位資料點,處理器20根據複 數個雨量資料點、複數個水流量資料點、複數個泥砂量資料點以及複數個水位資料點產生雨量圖、水流量圖、泥砂量圖以及水位圖。 Step S11: Obtain the hydrological data HD1 of the water area. Specifically, the processor 20 obtains the hydrological data HD1 from the sensing module 10. The hydrological data HD1 includes a plurality of rainfall data points, a plurality of water flow data points, a plurality of sediment volume data points and a plurality of water level data points. The processor 20 obtains the hydrological data HD1 from the sensing module 10. 20 According to the complex Several rainfall data points, a plurality of water flow data points, a plurality of sediment volume data points and a plurality of water level data points generate rainfall maps, water flow maps, sediment volume maps and water level maps.

下文將以雨量圖為例說明步驟S12~步驟S17,步驟S12~步驟S17對水流量圖、泥砂量圖以及水位圖的資料處理細節與步驟S12~步驟S17對雨量圖的資料處理細節相同而不再重複敘述。 The following will take the rain gauge as an example to illustrate steps S12 to S17. The data processing details of the water flow map, sediment volume map and water level map in steps S12 to S17 are the same as the data processing details of the rain gauge in steps S12 to S17. Repeat the narrative again.

步驟S12:過濾水文資料HD1。具體而言,處理器20保留雨量圖中正常雨量資料點,並去除雨量圖中異常雨量資料點;其中,正常雨量資料點和異常雨量資料點為兩個類別,屬於正常雨量資料點的雨量資料點數目為複數個,屬於異常雨量資料點的雨量資料點數目為至少一個。 Step S12: Filter the hydrological data HD1. Specifically, the processor 20 retains the normal rainfall data points in the rain gauge, and removes the abnormal rainfall data points in the rain gauge; wherein, the normal rainfall data points and the abnormal rainfall data points are two categories, which belong to the rainfall data of the normal rainfall data points. The number of points is plural, and the number of rainfall data points belonging to abnormal rainfall data points is at least one.

進一步而言,處理器20根據多個雨量資料點產生信賴區間,並根據信賴區間區分正常雨量資料點及異常雨量資料點,再保留正常雨量資料點及去除異常雨量資料點。請進一步參考第4圖,第4圖為依據本發明一實施例所繪示的水文資料分析方法中過濾水文資料的流程圖。如第4圖所示,過濾水文資料的步驟包括步驟S121~步驟S123。以下示例性地以第1圖所示水文資料分析系統之運作來說明步驟S121~步驟S123。 Furthermore, the processor 20 generates trust intervals based on multiple rainfall data points, distinguishes normal rainfall data points and abnormal rainfall data points based on the trust intervals, and then retains normal rainfall data points and removes abnormal rainfall data points. Please further refer to Figure 4. Figure 4 is a flow chart of filtering hydrological data in a hydrological data analysis method according to an embodiment of the present invention. As shown in Figure 4, the steps of filtering hydrological data include steps S121 to S123. Steps S121 to S123 are described below by taking the operation of the hydrological data analysis system shown in Figure 1 as an example.

步驟S121:根據複數個水文資料點,建立信賴區間CI1。具體而言,處理器20根據複數個雨量資料點計算平均值以及標準差,並根據平均值、標準差以及複數個雨量資料點的個數計算信賴區間CI1。 Step S121: Establish a confidence interval CI1 based on a plurality of hydrological data points. Specifically, the processor 20 calculates the average value and the standard deviation based on the plurality of rainfall data points, and calculates the confidence interval CI1 based on the average value, the standard deviation, and the number of the plurality of rainfall data points.

步驟S122:判斷複數個水文資料點的每一個是否在信賴區間CI1。具體而言,如第S圖所示,處理器20根據信賴區間CI1的上限值及下限值標示信賴區間CI1於雨量圖,並判斷雨量圖中每一個雨量資料點是否在信賴區間CI1內。以單個雨量資料點為例,當雨量資料點落入信賴區間CI1內時,處理器20 判斷前述雨量資料點為正常雨量資料點;當雨量資料點落入信賴區間CI1外時,處理器20判斷前述雨量資料點為異常雨量資料點;當雨量資料點的數值為信賴區間CI1的上限值或下限值時,處理器20判斷前述雨量資料點為正常雨量資料點。其餘雨量資料點是否在信賴區間CI1內的判斷機制與單個雨量資料點是否在信賴區間CI1內的判斷機制相同,於此不再重複敘述。 Step S122: Determine whether each of the plurality of hydrological data points is within the confidence interval CI1. Specifically, as shown in Figure S, the processor 20 marks the trust interval CI1 on the rain gauge according to the upper limit and lower limit of the trust interval CI1, and determines whether each rainfall data point in the rain gauge is within the trust interval CI1. . Taking a single rainfall data point as an example, when the rainfall data point falls within the confidence interval CI1, the processor 20 The aforementioned rainfall data point is determined to be a normal rainfall data point; when the rainfall data point falls outside the confidence interval CI1, the processor 20 determines the aforementioned rainfall data point to be an abnormal rainfall data point; when the value of the rainfall data point is the upper limit of the confidence interval CI1 When the value or the lower limit value is reached, the processor 20 determines that the aforementioned rainfall data point is a normal rainfall data point. The mechanism for determining whether the remaining rainfall data points are within the confidence interval CI1 is the same as the mechanism for determining whether a single rainfall data point is within the confidence interval CI1, and will not be described again here.

步驟S123:當水文資料點不在信賴區間時,刪除水文資料點。具體而言,以信賴區間CI1為基準,處理器20刪除在信賴區間CI1外的異常雨量資料點。 Step S123: When the hydrological data point is not in the trust interval, delete the hydrological data point. Specifically, based on the trust interval CI1, the processor 20 deletes abnormal rainfall data points outside the trust interval CI1.

步驟S13:判斷水文資料HD1是正常資料或異常資料。具體而言,處理器20判斷雨量圖中是否具有如第6圖所示的資料遺失區DR1。當處理器20判斷雨量圖中沒有任何資料遺失區DR1時,處理器20接續執行步驟S14;當處理器20判斷雨量圖中具有一個或複數個資料遺失區DR1時,處理器20接續執行步驟S15。需說明的是,資料遺失區DR1為雨量感測器在特定時間區段並未產生雨量資料點的區域,根據水域、氣象狀況、水流變化以及泥砂變化,資料遺失區DR1的時間區段可能產生變化,因而不限定資料遺失區DR1所產生的時間區段。 Step S13: Determine whether the hydrological data HD1 is normal data or abnormal data. Specifically, the processor 20 determines whether there is a data loss area DR1 as shown in FIG. 6 in the rainfall map. When the processor 20 determines that there is no data loss area DR1 in the rain gauge, the processor 20 continues to execute step S14; when the processor 20 determines that there is one or more data loss areas DR1 in the rain gauge, the processor 20 continues to execute step S15. . It should be noted that the data loss area DR1 is an area where the rainfall sensor does not generate rainfall data points in a specific time period. Depending on the water area, meteorological conditions, water flow changes, and sediment changes, the time period in the data loss area DR1 may occur. changes, so the time period generated by the data loss area DR1 is not limited.

步驟S14:標示水文資料為正常資料。具體而言,處理器20標示複數個正常雨量資料點及雨量圖為正常資料。 Step S14: Mark the hydrological data as normal data. Specifically, the processor 20 marks a plurality of normal rainfall data points and rainfall patterns as normal data.

步驟S15:標示水文資料為異常資料。具體而言,處理器20標示複數個正常雨量資料點及雨量圖為異常資料。 Step S15: Mark the hydrological data as abnormal data. Specifically, the processor 20 marks a plurality of normal rainfall data points and rainfall patterns as abnormal data.

步驟S16:根據水域的類型,從複數個資料修補模型選擇至少一個作為選定資料修復模型。具體而言,處理器20判斷水域為集水區、水庫區或 下游水道的其中一種而產生判斷結果,並根據判斷結果選用至少一個資料修補模型作為選定資料修復模型。 Step S16: Select at least one from a plurality of data repair models as the selected data repair model according to the type of water area. Specifically, the processor 20 determines that the water area is a water catchment area, a reservoir area, or One of the downstream water channels generates a judgment result, and at least one data repair model is selected as the selected data repair model according to the judgment result.

舉例來說,複數個資料修補模型為3個且分別為第一資料修補模型、第二資料修補模型以及第三資料修補模型,下文將舉例說明水文資料修補模型作為第一資料修補模型、第二資料修補模型或第三資料修補模型。 For example, the number of data repair models is three and they are the first data repair model, the second data repair model and the third data repair model respectively. The following will give an example of the hydrological data repair model as the first data repair model, the second data repair model and the third data repair model. Data patching model or tertiary data patching model.

水文資料修補模型可選取常應用於台灣水利領域的一、二維輸砂數值模式,利用其模擬成果進行資料修補。台灣水利領域的一、二維輸砂數值模式可參考論文「Huang,C.C.,Lai,Y.G.,Lai,J.S.,& Tan,Y.C.(2019).Field and numerical modeling study of turbidity current in Shimen Reservoir during typhoon events.Journal of Hydraulic Engineering,145(5),05019003」。 The hydrological data repair model can select one- and two-dimensional sand transport numerical models that are often used in Taiwan's water conservancy field, and use their simulation results to perform data repair. For the one- and two-dimensional sand transport numerical models in Taiwan's water conservancy field, please refer to the paper "Huang, CC, Lai, YG, Lai, JS, & Tan, YC (2019). Field and numerical modeling study of turbidity current in Shimen Reservoir during typhoon events . Journal of Hydraulic Engineering , 145 (5),05019003".

在一實施態樣中,處理器20根據判斷結果選用第一資料修補模型、第二資料修補模型以及第三資料修補模型的其中一種作為選定資料修復模型。具體而言,當判斷結果為集水區,處理器20選用第一資料修補模型作為選定資料修復模型;當判斷結果為水庫區,處理器20選用第二資料修補模型作為選定資料修復模型;當判斷結果為下游河道區,處理器20選用第三資料修補模型作為選定資料修復模型。 In one implementation, the processor 20 selects one of the first data repair model, the second data repair model, and the third data repair model as the selected data repair model according to the judgment result. Specifically, when the judgment result is a water catchment area, the processor 20 selects the first data repair model as the selected data repair model; when the judgment result is a reservoir area, the processor 20 selects the second data repair model as the selected data repair model; when the judgment result is a reservoir area, the processor 20 selects the second data repair model as the selected data repair model. The judgment result is the downstream river channel area, and the processor 20 selects the third data repair model as the selected data repair model.

在另一實施態樣中,處理器20根據判斷結果選用第一資料修補模型、第二資料修補模型以及第三資料修補模型作為選定資料修復模型。換句話說,當判斷結果為集水區、水庫區或下游河道區時,處理器20選用第一資料修補模型、第二資料修補模型以及第三資料修補模型作為選定資料修復模型。 In another implementation, the processor 20 selects the first data repair model, the second data repair model and the third data repair model as the selected data repair model according to the judgment result. In other words, when the judgment result is a water catchment area, a reservoir area or a downstream river channel area, the processor 20 selects the first data repair model, the second data repair model and the third data repair model as the selected data repair model.

步驟S16:輸入異常資料至選定資料修復模型,以修復異常資料。具體而言,處理器20輸入異常資料至選定資料修復模型,選定資料修復模型修 復如第6圖所示的異常資料中複數個資料遺失區DR1。 Step S16: Input the abnormal data into the selected data repair model to repair the abnormal data. Specifically, the processor 20 inputs abnormal data to the selected data repair model, and the selected data repair model repairs As shown in Figure 6, there are multiple data loss areas DR1 in the abnormal data.

在步驟S16中,如第7圖所示,選定資料修復模型藉由數值模式的不可中斷性及一致性在每個資料遺失區DR1增加複數個修復雨量資料點FP1,以修復複數個資料遺失區DR1。根據每個資料遺失區DR1的狀況,修復雨量資料點FP1的數目有所變動,在此不限制修復雨量資料點FP1的數目。 In step S16, as shown in Figure 7, the selected data repair model uses the uninterruptibility and consistency of the numerical model to add a plurality of repaired rainfall data points FP1 to each data loss area DR1 to repair a plurality of data loss areas. DR1. According to the status of each data loss area DR1, the number of restored rainfall data points FP1 changes, and there is no limit on the number of restored rainfall data points FP1 here.

因此,當環境極端惡劣導致感測模組10必須中斷或無法量測時,導致水文資料產生複數個資料遺失區DR1,透過本發明的水文資料分析方法,即時修復水文資料的複數個資料遺失區DR1,使水文資料趨於完整而有利於後續自然災害分析及評估。 Therefore, when the environment is extremely harsh and causes the sensing module 10 to be interrupted or unable to measure, resulting in a plurality of data loss areas DR1 in the hydrological data, the hydrological data analysis method of the present invention can be used to instantly repair the plurality of data loss areas in the hydrological data. DR1 makes hydrological data more complete and facilitates subsequent natural disaster analysis and assessment.

請參閱第8A圖及第8B圖,為依據本發明另一實施例所繪示的水文資料分析方法流程圖。如第8A圖及第8B圖所示,本發明的水文資料分析方法,包括步驟S21~步驟S32;其中,步驟S21~步驟S27與第3圖所示的步驟S11~步驟S17相同,於此不再重複敘述。第8A圖及第8B圖所示的水文資料分析方法適用於第2圖所示的水文資料分析系統,但不以此為限。以下示例性地以第2圖所示水文資料分析系統之運作來說明步驟S28~步驟S32。 Please refer to Figure 8A and Figure 8B, which is a flow chart of a hydrological data analysis method according to another embodiment of the present invention. As shown in Figures 8A and 8B, the hydrological data analysis method of the present invention includes steps S21 to S32; wherein steps S21 to S27 are the same as steps S11 to S17 shown in Figure 3, and there are no differences here. Repeat the narrative again. The hydrological data analysis methods shown in Figure 8A and Figure 8B are suitable for the hydrological data analysis system shown in Figure 2, but are not limited to this. Steps S28 to S32 are described below by taking the operation of the hydrological data analysis system shown in Figure 2 as an example.

步驟S28:取得地文資料GD1及災害資料DD1。具體而言,處理器20從水資源局取得地文資料GD1及災害資料DD1;其中,地文資料GD1包括集水區的崩塌資料、水庫區的淤積資料以及地形資料,災害資料DD1包括災害事件量。 Step S28: Obtain geography data GD1 and disaster data DD1. Specifically, the processor 20 obtains topographic data GD1 and disaster data DD1 from the Water Resources Bureau; wherein, the topographic data GD1 includes collapse data in the watershed area, siltation data in the reservoir area, and terrain data, and the disaster data DD1 includes disaster events. quantity.

步驟S29:檢驗地文資料GD1。具體而言,處理器20先就崩塌資料和淤積資料的相關性進行判斷,並接著判斷地文資料中地形變化是否合理。 Step S29: Verify the geography data GD1. Specifically, the processor 20 first determines the correlation between collapse data and sedimentation data, and then determines whether the terrain changes in the physiographic data are reasonable.

先就崩塌資料和淤積資料的相關性而言,處理器20計算崩塌資料 和淤積資料之間的相關係數,並比較相關係數和閾值來選擇性採用崩塌資料和淤積資料。當相關係數大於閾值時,處理器20採用崩塌資料和淤積資料;當相關係數小於閾值時,處理器20不採用崩塌資料和淤積資料,並重新從水資源局取得新的崩塌資料和淤積資料。 First, regarding the correlation between collapse data and sedimentation data, the processor 20 calculates the collapse data and the correlation coefficient between the sedimentation data, and compare the correlation coefficient and the threshold to selectively use collapse data and sedimentation data. When the correlation coefficient is greater than the threshold, the processor 20 uses the collapse data and sedimentation data; when the correlation coefficient is less than the threshold, the processor 20 does not use the collapse data and sedimentation data, and re-obtains new collapse data and sedimentation data from the Water Resources Bureau.

就地形資料的地形變化的合理性而言,處理器20判斷地形資料的地形變化是否為因天然災害所導致或因人為開發天然環境所導致。 In terms of the rationality of the terrain changes of the terrain data, the processor 20 determines whether the terrain changes of the terrain data are caused by natural disasters or caused by artificial development of the natural environment.

步驟S30:檢驗災害資料DD1。具體而言,處理器20比較災害事件量和臨界範圍來產生比較結果,並根據比較結果選擇性採用災害資料DD1。當比較結果指示災害事件量在臨界值範圍內,處理器20採用災害資料DD1;當比較結果指示災害事件量不在臨界值範圍內,處理器20不採用災害資料DD1並重新從水資源局取得新的災害資料DD1。需說明的是,災害事件為在集水區、水庫區或下游水道中所造成的明顯災害(例如土石流),步驟S30為確認前述所定義的災害事件量是否足夠,避免因災害事件量過多或過少影響後續人工智慧模型的預測。 Step S30: Check disaster data DD1. Specifically, the processor 20 compares the disaster event amount and the critical range to generate a comparison result, and selectively adopts the disaster data DD1 according to the comparison result. When the comparison result indicates that the amount of disaster events is within the critical value range, the processor 20 uses the disaster data DD1; when the comparison result indicates that the disaster event amount is not within the critical value range, the processor 20 does not use the disaster data DD1 and obtains new data from the Water Resources Bureau. Disaster information DD1. It should be noted that disaster events are obvious disasters (such as landslides) caused in water catchment areas, reservoir areas or downstream waterways. Step S30 is to confirm whether the amount of disaster events defined above is sufficient to avoid excessive disaster events or Too little will affect the predictions of subsequent artificial intelligence models.

步驟S31:輸入地文資料GD1、災害資料DD1以及修復後異常資料或正常資料至人工智慧模型,以產生預測泥砂量。具體而言,處理器20輸入地文資料GD1、災害資料DD1以及修復後異常資料或正常資料至人工智慧模型,人工智慧模型根據地文資料GD1、災害資料DD1以及修復後異常資料或正常資料產生預測泥砂量。需說明的是,人工智慧模型為預先訓練好的模型,而能針對所輸入的地文資料GD1、災害資料DD1以及水文資料HD1預估水庫所排出的泥砂量,前述人工智慧模型所預估水庫所排出的泥砂量為預測泥砂量。 Step S31: Input topographic data GD1, disaster data DD1, and post-repair abnormal data or normal data into the artificial intelligence model to generate predicted sediment volume. Specifically, the processor 20 inputs the geological data GD1, the disaster data DD1, and the abnormal data or normal data after repair to the artificial intelligence model. The artificial intelligence model generates predictions based on the geological data GD1, the disaster data DD1, and the abnormal data or normal data after repair. Amount of mud and sand. It should be noted that the artificial intelligence model is a pre-trained model and can estimate the amount of sediment discharged from the reservoir based on the input geological data GD1, disaster data DD1 and hydrological data HD1. The aforementioned artificial intelligence model estimates the amount of sediment discharged by the reservoir. The amount of sediment discharged is the predicted amount of sediment.

步驟S32:標示預測泥砂量為複數個災害風險之一。具體而言, 人工智慧模型能根據預估泥砂量及水域的種類從複數個災害風險選擇其中一個,並將所選擇的災害風險標示於預測泥砂量。其中,集水區、水庫區以及下游水道分別對應複數個災害風險,複數個災害風險包括低度風險、中度風險以及高度風險。 Step S32: Mark the predicted amount of sediment as one of a plurality of disaster risks. Specifically, The artificial intelligence model can select one of several disaster risks based on the estimated sediment volume and type of water area, and mark the selected disaster risk on the predicted sediment volume. Among them, the water catchment area, reservoir area and downstream waterway respectively correspond to a plurality of disaster risks, and the plurality of disaster risks include low risk, medium risk and high risk.

承上所述,本發明的水文資料分析方法及水文資料分析系統,過濾水文資料及判斷水文資料是正常資料或異常資料,並根據水文資料的判斷結果及水文資料所對應的水域選擇性修復異常資料,使水文資料的正確性及完整性提高。 Following the above, the hydrological data analysis method and hydrological data analysis system of the present invention filter the hydrological data and determine whether the hydrological data is normal data or abnormal data, and selectively repair abnormalities based on the judgment results of the hydrological data and the waters corresponding to the hydrological data. data to improve the accuracy and completeness of hydrological data.

以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。 The above is only illustrative and not restrictive. Any equivalent modifications or changes that do not depart from the spirit and scope of the present invention shall be included in the appended patent scope.

S11~S17:步驟 S11~S17: Steps

Claims (8)

一種水文資料分析方法,包括藉由一處理器執行:從一感測模組取得一水域的一水文資料;過濾該水文資料;判斷該水文資料是一正常資料或一異常資料;當判斷該水文資料是該異常資料時,根據該水域的類型,從複數個資料修補模型選擇至少一個作為一選定資料修復模型;以及輸入該異常資料至該選定資料修復模型,以修復該異常資料;其中各該複數個資料修補模型係包含一維輸砂數值模式或二維輸砂數值模式,以利用其模擬成果進行資料修補;其中該處理器進一步執行:取得一地文資料以及一災害資料;輸入一地文資料、一災害資料以及修復後該異常資料或該正常資料至訓練好的一人工智慧模型,以產生一預測泥砂量;以及標示該預測泥砂量為複數個災害風險之一,其中該複數個災害風險包括低度風險、中度風險以及高度風險。 A hydrological data analysis method includes executing by a processor: obtaining hydrological data of a water area from a sensing module; filtering the hydrological data; determining whether the hydrological data is normal data or abnormal data; when determining the hydrological data When the data is the abnormal data, select at least one from a plurality of data repair models as a selected data repair model according to the type of the water area; and input the abnormal data into the selected data repair model to repair the abnormal data; wherein each of the A plurality of data repair models include a one-dimensional sand transport numerical model or a two-dimensional sand transport numerical model to use the simulation results to perform data repair; wherein the processor further executes: obtaining a landform data and a disaster data; inputting a landform The text data, a disaster data and the repaired abnormal data or the normal data are added to a trained artificial intelligence model to generate a predicted sediment amount; and mark the predicted sediment amount as one of a plurality of disaster risks, of which the plurality Disaster risk includes low risk, medium risk and high risk. 如請求項1所述的水文資料分析方法,其中該水文資料包括複數個水文資料點,過濾該水文資料包括:根據該複數個水文資料點,建立一信賴區間; 判斷該複數個水文資料點的每一個是否在該信賴區間;以及當該水文資料點不在該信賴區間時,刪除該水文資料點。 The hydrological data analysis method as described in claim 1, wherein the hydrological data includes a plurality of hydrological data points, and filtering the hydrological data includes: establishing a confidence interval based on the plurality of hydrological data points; Determine whether each of the plurality of hydrological data points is within the trust interval; and when the hydrological data point is not in the trust interval, delete the hydrological data point. 如請求項1所述的水文資料分析方法,判斷該水文資料是該正常資料或該異常資料包括:判斷該水文資料是否具有至少一資料遺失區;當判斷該水文資料具有該至少一資料遺失區,標示該水文資料為該異常資料;以及當判斷該水文資料不具有該至少一資料遺失區,標示該水文資料為該正常資料。 According to the hydrological data analysis method described in claim 1, determining whether the hydrological data is the normal data or the abnormal data includes: determining whether the hydrological data has at least one data loss area; when determining whether the hydrology data has the at least one data loss area; , marking the hydrological data as abnormal data; and when it is determined that the hydrological data does not have the at least one data loss area, marking the hydrological data as normal data. 如請求項3所述的水文資料分析方法,輸入該異常資料至該選定資料修復模型以修復該異常資料包括:藉由該選定資料修復模型修復該至少一資料遺失區。 According to the hydrological data analysis method described in claim 3, inputting the abnormal data into the selected data repair model to repair the abnormal data includes: repairing the at least one data loss area through the selected data repair model. 一種水文資料分析系統,包括:一感測模組,根據一水域的一氣象狀況、一水流變化以及一泥砂變化,產生對應該水域的一水文資料;一處理器,連接該感測模組,並過濾該水文資料及判斷該水文資料是一正常資料或一異常資料,當判斷該水文資料是該異常資料時,該處理器從複數個資料修補模型選擇至少一個作為一選定資料修復模型,並輸入該異常資料至該選定資料修復模型,以修復該異常資料;其中各該複數個資料修補模型係包含一維輸砂數值模式或二維輸砂數值模式,以利用其模擬成果進行資料修補;其中該處理器更取得一地文資料以及一災害資料,並輸入該 地文資料、該災害資料以及修復後該異常資料或該正常資料至訓練好的一人工智慧模型,該人工智慧模型產生一預測泥砂量並標示該預測泥砂量為複數個災害風險之一,其中該複數個災害風險包括低度風險、中度風險以及高度風險。 A hydrological data analysis system includes: a sensing module that generates hydrological data corresponding to the water area based on a meteorological condition, a water flow change, and a sediment change in the water area; a processor connected to the sensing module, And filter the hydrological data and determine whether the hydrological data is normal data or abnormal data. When determining that the hydrological data is the abnormal data, the processor selects at least one from a plurality of data repair models as a selected data repair model, and Input the abnormal data into the selected data repair model to repair the abnormal data; each of the plurality of data repair models includes a one-dimensional sand transport numerical model or a two-dimensional sand transport numerical model to use its simulation results for data repair; The processor further obtains a local language data and a disaster data, and inputs the The geological data, the disaster data and the restored abnormal data or the normal data are combined into a trained artificial intelligence model. The artificial intelligence model generates a predicted sediment amount and marks the predicted sediment amount as one of a plurality of disaster risks, where The plurality of disaster risks include low risk, medium risk and high risk. 如請求項5所述的水文資料分析系統,其中該水文資料包括複數個水文資料點,該處理器所執行的過濾該水文資料包括:根據該複數個水文資料點,建立一信賴區間;判斷該複數個水文資料點的每一個是否在該信賴區間;以及當該水文資料點不在該信賴區間時,刪除該水文資料點。 The hydrological data analysis system as described in claim 5, wherein the hydrological data includes a plurality of hydrological data points, and filtering the hydrological data performed by the processor includes: establishing a trust interval based on the plurality of hydrological data points; determining the Whether each of the plurality of hydrological data points is within the confidence interval; and when the hydrological data point is not in the confidence interval, delete the hydrological data point. 如請求項5所述的水文資料分析系統,其中該處理器所執行的判斷該水文資料是該正常資料或該異常資料包括:判斷該水文資料是否具有至少一資料遺失區;當判斷該水文資料具有該至少一資料遺失區,標示該水文資料為該異常資料;以及當判斷該水文資料不具有該至少一資料遺失區,標示該水文資料為該正常資料。 The hydrological data analysis system as described in claim 5, wherein the determination performed by the processor whether the hydrological data is the normal data or the abnormal data includes: determining whether the hydrological data has at least one data loss area; when determining whether the hydrological data has at least one data loss area; If the at least one data loss area is present, the hydrological data is marked as abnormal data; and when it is determined that the hydrological data does not have the at least one data loss area, the hydrological data is marked as normal data. 如請求項5所述的水文資料分析系統,其中該處理器所執行的輸入該異常資料至該選定資料修復模型以修復該異常資料包括:藉由該選定資料修復模型修復該至少一資料遺失區。 The hydrological data analysis system as described in claim 5, wherein inputting the abnormal data to the selected data repair model to repair the abnormal data performed by the processor includes: repairing the at least one data loss area through the selected data repair model. .
TW112118729A 2023-05-19 2023-05-19 Hydrological data analysis method and hydrological data analysis system TWI832767B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112118729A TWI832767B (en) 2023-05-19 2023-05-19 Hydrological data analysis method and hydrological data analysis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112118729A TWI832767B (en) 2023-05-19 2023-05-19 Hydrological data analysis method and hydrological data analysis system

Publications (2)

Publication Number Publication Date
TWI832767B true TWI832767B (en) 2024-02-11
TW202447452A TW202447452A (en) 2024-12-01

Family

ID=90824978

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112118729A TWI832767B (en) 2023-05-19 2023-05-19 Hydrological data analysis method and hydrological data analysis system

Country Status (1)

Country Link
TW (1) TWI832767B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201727589A (en) * 2016-01-20 2017-08-01 群創光電股份有限公司 Notification system of environment abnormality and the notification method of the same
CN114580762A (en) * 2022-03-10 2022-06-03 河海大学 An error correction method for hydrological forecast based on XGBoost
CN115357847A (en) * 2022-08-28 2022-11-18 水利部交通运输部国家能源局南京水利科学研究院 A daily-scale satellite-terrestrial precipitation fusion method based on error decomposition
CN115982658A (en) * 2022-12-02 2023-04-18 浙江省水文管理中心 A Method for Abnormal Identification and Repair of Hydrological Data Based on Federated Learning Framework

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201727589A (en) * 2016-01-20 2017-08-01 群創光電股份有限公司 Notification system of environment abnormality and the notification method of the same
CN114580762A (en) * 2022-03-10 2022-06-03 河海大学 An error correction method for hydrological forecast based on XGBoost
CN115357847A (en) * 2022-08-28 2022-11-18 水利部交通运输部国家能源局南京水利科学研究院 A daily-scale satellite-terrestrial precipitation fusion method based on error decomposition
CN115982658A (en) * 2022-12-02 2023-04-18 浙江省水文管理中心 A Method for Abnormal Identification and Repair of Hydrological Data Based on Federated Learning Framework

Also Published As

Publication number Publication date
TW202447452A (en) 2024-12-01

Similar Documents

Publication Publication Date Title
CN111080030B (en) Snowmelt flood prediction method, device, electronic device and storage medium
Jat et al. Monitoring and modelling of urban sprawl using remote sensing and GIS techniques
Jato-Espino et al. Flood risk assessment in urban catchments using multiple regression analysis
Pradhan et al. Flood inundation mapping using GIS and Hydraulic model (HEC-RAS): a case study of the Burhi Gandak river, Bihar, India
JP2008050903A (en) Flood prediction method and flood prediction system
CN113988460A (en) Drainage pipe network drainage prediction method, device, equipment and storage medium
CN119250303B (en) Rainwater runoff non-point source pollution load prediction method and device based on watershed
Sahoo et al. A methodology for determining runoff based on imperviousness in an ungauged peri-urban catchment
CN118627411A (en) Method, device and equipment for automatic modeling of urban floods using multi-resolution data coupling
Perez et al. Design methodology for the selection of temporary erosion and sediment control practices based on regional hydrological conditions
Ahmed Numerical modeling of the Rideau valley watershed
Yuan et al. Using SWMM for emergency response planning: A case study evaluating biological agent transport under various rainfall scenarios and urban surfaces
TWI832767B (en) Hydrological data analysis method and hydrological data analysis system
Choi et al. A new algorithm for grid-based hydrologic analysis by incorporating stormwater infrastructure
Hooker et al. A multi-system comparison of forecast flooding extent using a scale-selective approach
Dobson et al. SWMManywhere: A workflow for generation and sensitivity analysis of synthetic urban drainage models, anywhere
CN114118870A (en) A downstream flood estimation method for coupling glacial lake outburst floods and snowmelt floods
CN109326332B (en) Calculation method of water environment capacity in tidal water network area
Birkhead et al. The Elephant Marsh, Malawi–Part 2: two-dimensional hydrodynamic modelling in support of an eco-social assessment
JP4734295B2 (en) Apparatus and method for creating rainwater / pollutant inflow calculation model
CN115861003A (en) Intelligent processing method and system for urban water affairs
Ibrahim et al. An overview of some hydrological models in water resources engineering systems
Dagnachew Adinew et al. Evaluation of hydraulic adequacy of runoff disposal in urban watersheds of rapidly expanding towns
KR20050112700A (en) Monitoring method and system of non-point sources
TWI873901B (en) Disaster warning method and disaster warning system