TWI828324B - Parameters adjustment system and method in wireless communication based on online reinforcement learning - Google Patents
Parameters adjustment system and method in wireless communication based on online reinforcement learning Download PDFInfo
- Publication number
- TWI828324B TWI828324B TW111135830A TW111135830A TWI828324B TW I828324 B TWI828324 B TW I828324B TW 111135830 A TW111135830 A TW 111135830A TW 111135830 A TW111135830 A TW 111135830A TW I828324 B TWI828324 B TW I828324B
- Authority
- TW
- Taiwan
- Prior art keywords
- wireless communication
- neural network
- distribution
- communication parameter
- original signal
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 98
- 238000000034 method Methods 0.000 title claims abstract description 30
- 230000002787 reinforcement Effects 0.000 title claims abstract description 29
- 238000009826 distribution Methods 0.000 claims abstract description 152
- 238000013528 artificial neural network Methods 0.000 claims abstract description 93
- 238000012549 training Methods 0.000 claims abstract description 71
- 238000013480 data collection Methods 0.000 claims abstract description 15
- 238000010276 construction Methods 0.000 claims abstract description 12
- 239000000284 extract Substances 0.000 claims abstract description 7
- 238000013527 convolutional neural network Methods 0.000 claims description 16
- 238000011176 pooling Methods 0.000 claims description 16
- 230000006870 function Effects 0.000 claims description 13
- 230000005540 biological transmission Effects 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 8
- 238000005070 sampling Methods 0.000 claims description 8
- 238000005457 optimization Methods 0.000 claims description 7
- 238000012935 Averaging Methods 0.000 claims 1
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 12
- 238000012545 processing Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
Description
本發明是有關於一種無線通訊參數調整系統及其方法,且特別是有關於一種基於線上強化學習之無線通訊參數調整系統及其方法。The present invention relates to a wireless communication parameter adjustment system and a method thereof, and in particular, to a wireless communication parameter adjustment system and method based on online reinforcement learning.
由於用戶對行動網路數據量需求日益漸增,行動通訊網路已朝向Heterogeneous Network (HetNet) 網路發展,多層次及高密度佈建方式為各營運商發展趨勢,以提高每單位面積的頻譜效率。但於高密度基地台密集佈建環境下,基地台間干擾問題為營運商所需面對的重要議題之一,當基地台間干擾增加時,會導致系統的傳輸品質及頻譜效益降低,進而降低整體用戶的使用感受,例如用戶在使用行動通訊網路觀看影片時,可能出現會延遲(lag)而無法順暢播放影片、或有聲音而無畫面等狀況,從而影響用戶的使用感受。Due to the increasing user demand for mobile network data, mobile communication networks have developed towards Heterogeneous Network (HetNet) networks. Multi-level and high-density deployment methods are a development trend for operators to improve spectrum efficiency per unit area. . However, in an environment where high-density base stations are densely deployed, the problem of interference between base stations is one of the important issues that operators need to face. When the interference between base stations increases, it will lead to a reduction in the transmission quality and spectrum efficiency of the system, and thus Decrease the overall user experience. For example, when a user watches a video using a mobile communication network, there may be a delay (lag) and the video cannot be played smoothly, or there may be sound but no picture, etc., thus affecting the user's experience.
此外,在高密度基地台佈建環境下,小型化基地台(Small Cell)為營運商選擇方案之一,其特色為小功率、即插即用、佈建方便…等,但也因此營運商對其管控較不易,且因小型化基地台功能較簡單,雖有即插即用功能,但也易對周圍其它基地台造成干擾。In addition, in a high-density base station deployment environment, small cell base stations (Small Cell) are one of the options for operators. They are characterized by low power, plug-and-play, easy deployment, etc. However, this is also why operators are interested in Its management and control is difficult, and because the functions of miniaturized base stations are relatively simple, although they have plug-and-play functions, they are also prone to causing interference to other surrounding base stations.
本發明提供一種基於線上強化學習之無線通訊參數調整系統及其方法,不僅提升無線通訊用戶速率,同時提升網路系統效能。The present invention provides a wireless communication parameter adjustment system and method based on online reinforcement learning, which not only improves wireless communication user speed, but also improves network system performance.
本發明的一種基於線上強化學習之無線通訊參數調整系統,適用於行動網路系統,行動網路系統包括多個基地台,無線通訊參數調整系統包括收發器、儲存媒體以及處理器。儲存媒體儲存多個模組。處理器耦接儲存媒體和收發器,並且存取和執行該些模組,其中該些模組包括行動網路資料蒐集模組、特徵建構模組、神經網路訓練模組。其中行動網路資料蒐集模組用以獲取行動網路系統的行動網路運作狀態資料。特徵建構模組與行動網路資料蒐集模組電性連接,對行動網路運作狀態資料進行萃取以建構一時間點的原始訊號強度分布、用戶聚集地分佈。神經網路訓練模組與特徵建構模組電性連接,神經網路訓練模組用以依據原始訊號強度分布、用戶聚集地分佈獲取各基地台的無線通訊參數配置機率分佈,令各基地台依據無線通訊參數配置機率分佈實際發射,更新原始訊號強度分布且獲取用戶品質反饋,以修正神經網路訓練模組的神經網路參數。The invention provides a wireless communication parameter adjustment system based on online reinforcement learning, which is suitable for mobile network systems. The mobile network system includes multiple base stations, and the wireless communication parameter adjustment system includes a transceiver, a storage medium and a processor. Storage media stores multiple modules. The processor is coupled to the storage medium and the transceiver, and accesses and executes the modules, where the modules include a mobile network data collection module, a feature construction module, and a neural network training module. The mobile network data collection module is used to obtain the mobile network operation status data of the mobile network system. The feature construction module is electrically connected to the mobile network data collection module, and extracts mobile network operation status data to construct the original signal strength distribution and user gathering location distribution at a point in time. The neural network training module is electrically connected to the feature construction module. The neural network training module is used to obtain the wireless communication parameter configuration probability distribution of each base station based on the original signal strength distribution and user gathering location distribution, so that each base station can be configured based on The wireless communication parameter configuration probability distribution is actually transmitted, the original signal strength distribution is updated and user quality feedback is obtained to correct the neural network parameters of the neural network training module.
在本發明的一實施例中,上述的基於線上強化學習之無線通訊參數調整系統,其中神經網路訓練模組更用以依據更新後的原始訊號強度分布、用戶品質反饋、原始訊號強度分布以及用戶聚集地分佈執行神經網路訓練以輸出各基地台的最佳無線通訊參數配置至行動網路系統以進行佈署優化。In an embodiment of the present invention, in the above-mentioned wireless communication parameter adjustment system based on online reinforcement learning, the neural network training module is further used to adjust the parameters based on the updated original signal strength distribution, user quality feedback, original signal strength distribution and Users gather to perform neural network training in a distributed manner to output the optimal wireless communication parameter configuration of each base station to the mobile network system for deployment optimization.
在本發明的一實施例中,上述的基於線上強化學習之無線通訊參數調整系統,其中行動網路運作狀態資料至少包括基地台組態管理資訊、性能管理資訊以及用戶終端量測回報資訊。In an embodiment of the present invention, in the wireless communication parameter adjustment system based on online reinforcement learning, the mobile network operation status data at least includes base station configuration management information, performance management information and user terminal measurement report information.
在本發明的一實施例中,上述的基於線上強化學習之無線通訊參數調整系統,其中無線通訊參數調整系統更包括與行動網路資料蒐集模組電性連接的Queue匯集模組,Queue匯集模組用以將行動網路運作狀態資料整理成多維陣列。In an embodiment of the present invention, the above-mentioned wireless communication parameter adjustment system based on online reinforcement learning, wherein the wireless communication parameter adjustment system further includes a Queue collection module electrically connected to the mobile network data collection module, and the Queue collection module Groups are used to organize mobile network operation status data into multi-dimensional arrays.
在本發明的一實施例中,上述的基於線上強化學習之無線通訊參數調整系統,其中神經網路訓練模組用以依據原始訊號強度分布、用戶聚集地分佈獲取各基地台的無線通訊參數配置機率分佈,令各基地台依據無線通訊參數配置機率分佈實際發射,更新原始訊號強度分布且獲取用戶品質反饋,以修正神經網路訓練模組的神經網路參數的操作中,更包括神經網路訓練模組更用以經由Queue匯集模組將行動網路運作狀態資料整理成多維陣列,並且經卷積神經網路操作、池化操作後轉成三維陣列,神經網路訓練模組更用以取arg max運算子以取得各基地台的無線通訊參數配置機率分佈以實際發射,更新原始訊號強度分布且獲取用戶品質反饋,神經網路訓練模組更用以將更新後的原始訊號強度分布經過另一組原始訊號強度分布的卷積神經網路操作、池化操作後轉成三維陣列,神經網路訓練模組更用以取 max運算子取得最佳無線通訊參數配置機率分布,最佳無線通訊參數配置機率分布與用戶品質反饋進行非線性組合,再和原始訊號強度分布組成陣列進行均方誤差計算,神經網路訓練模組更用以輸出機率矩陣對應的波束方向再執行 以取得純量熵,神經網路訓練模組更用以將均方誤差經機率收縮獲得機率函數及取樣權重,以及神經網路訓練模組更用以重複上述步驟蒐集訓練神經網路資料以修正神經網路訓練模組的神經網路參數。 In an embodiment of the present invention, in the above-mentioned wireless communication parameter adjustment system based on online reinforcement learning, the neural network training module is used to obtain the wireless communication parameter configuration of each base station based on the original signal strength distribution and user gathering location distribution. Probability distribution, allowing each base station to actually transmit according to the probability distribution configured by wireless communication parameters, updating the original signal strength distribution and obtaining user quality feedback to correct the neural network parameters of the neural network training module, including the neural network The training module is also used to organize the mobile network operating status data into a multi-dimensional array through the Queue collection module, and then converts it into a three-dimensional array after convolutional neural network operations and pooling operations. The neural network training module is also used to The arg max operator is used to obtain the wireless communication parameter configuration probability distribution of each base station for actual transmission, update the original signal strength distribution and obtain user quality feedback. The neural network training module is also used to pass the updated original signal strength distribution through Another set of convolutional neural network operations and pooling operations on the original signal intensity distribution are converted into a three-dimensional array. The neural network training module is also used to take the max operator to obtain the optimal wireless communication parameter configuration probability distribution, and the optimal wireless The communication parameter configuration probability distribution and user quality feedback are nonlinearly combined, and then combined with the original signal strength distribution to form an array for mean square error calculation. The neural network training module is also used to output the beam direction corresponding to the probability matrix and then execute To obtain scalar entropy, the neural network training module is further used to shrink the mean square error to obtain the probability function and sampling weight, and the neural network training module is further used to repeat the above steps to collect training neural network data for correction. Neural network parameters of the neural network training module.
本發明的一種基於線上強化學習之無線通訊參數調整方法,適用於行動網路系統,行動網路系統包括多個基地台,無線通訊參數調整方法包括:獲取行動網路系統的行動網路運作狀態資料;對行動網路運作狀態資料進行萃取以建構一時間點的原始訊號強度分布、用戶聚集地分佈;以及依據原始訊號強度分布、用戶聚集地分佈獲取各基地台的無線通訊參數配置機率分佈,令各基地台依據無線通訊參數配置機率分佈實際發射,更新原始訊號強度分布且獲取用戶品質反饋,以修正神經網路參數。A wireless communication parameter adjustment method based on online reinforcement learning of the present invention is suitable for mobile network systems. The mobile network system includes multiple base stations. The wireless communication parameter adjustment method includes: obtaining the mobile network operating status of the mobile network system. Data; extract the mobile network operation status data to construct the original signal strength distribution and user gathering place distribution at a point in time; and obtain the wireless communication parameter configuration probability distribution of each base station based on the original signal strength distribution and user gathering place distribution. Let each base station actually transmit according to the probability distribution configured by wireless communication parameters, update the original signal strength distribution and obtain user quality feedback to correct the neural network parameters.
在本發明的一實施例中,上述的基於線上強化學習之無線通訊參數調整方法,其中方法更包括:依據更新後的原始訊號強度分布、用戶品質反饋、原始訊號強度分布以及用戶聚集地分佈執行神經網路訓練以輸出各基地台的最佳無線通訊參數配置至行動網路系統以進行佈署優化。In an embodiment of the present invention, the above-mentioned wireless communication parameter adjustment method based on online reinforcement learning further includes: executing based on the updated original signal strength distribution, user quality feedback, original signal strength distribution and user gathering place distribution. Neural network training is used to output the optimal wireless communication parameter configuration of each base station to the mobile network system for deployment optimization.
在本發明的一實施例中,上述的基於線上強化學習之無線通訊參數調整方法,其中行動網路運作狀態資料至少包括基地台組態管理資訊、性能管理資訊以及用戶終端量測回報資訊。In an embodiment of the present invention, in the wireless communication parameter adjustment method based on online reinforcement learning, the mobile network operation status data at least includes base station configuration management information, performance management information and user terminal measurement report information.
在本發明的一實施例中,上述的基於線上強化學習之無線通訊參數調整方法,其中方法更包括:將行動網路運作狀態資料整理成多維陣列。In an embodiment of the present invention, the above-mentioned wireless communication parameter adjustment method based on online reinforcement learning further includes: organizing mobile network operation status data into a multi-dimensional array.
在本發明的一實施例中,上述的基於線上強化學習之無線通訊參數調整方法,其中依據原始訊號強度分布、用戶聚集地分佈獲取各基地台的無線通訊參數配置機率分佈,令各基地台依據無線通訊參數配置機率分佈實際發射,更新原始訊號強度分布且獲取用戶品質反饋,以修正神經網路訓練模組的神經網路參數的步驟中,更包括:將行動網路運作狀態資料整理成多維陣列,並且經卷積神經網路操作、池化操作後轉成三維陣列;取arg max運算子以取得各基地台的無線通訊參數配置機率分佈以實際發射,更新原始訊號強度分布且獲取用戶品質反饋;將更新後的原始訊號強度分布經過另一組原始訊號強度分布的卷積神經網路操作、池化操作後轉成三維陣列;取 max運算子取得最佳無線通訊參數配置機率分布,最佳無線通訊參數配置機率分布與用戶品質反饋進行非線性組合,再和原始訊號強度分布組成陣列進行均方誤差計算;輸出機率矩陣對應的波束方向再執行 以取得純量熵;將均方誤差經機率收縮獲得機率函數及取樣權重;以及重複上述步驟蒐集訓練神經網路資料以訓練神經網路訓練模組。 In an embodiment of the present invention, the above-mentioned wireless communication parameter adjustment method based on online reinforcement learning obtains the wireless communication parameter configuration probability distribution of each base station based on the original signal strength distribution and user gathering location distribution, so that each base station is configured according to The steps of configuring the probability distribution of wireless communication parameters for actual transmission, updating the original signal strength distribution and obtaining user quality feedback to correct the neural network parameters of the neural network training module also include: organizing the mobile network operation status data into multi-dimensional Array, and converted into a three-dimensional array after convolutional neural network operation and pooling operation; take the arg max operator to obtain the probability distribution of wireless communication parameter configuration of each base station for actual transmission, update the original signal strength distribution and obtain user quality Feedback; convert the updated original signal intensity distribution into a three-dimensional array after undergoing another set of convolutional neural network operations and pooling operations on the original signal intensity distribution; use the max operator to obtain the optimal wireless communication parameter configuration probability distribution, and finally The optimal wireless communication parameter configuration probability distribution is nonlinearly combined with the user quality feedback, and then combined with the original signal strength distribution to form an array for mean square error calculation; the beam direction corresponding to the probability matrix is output and then executed To obtain scalar entropy; shrink the mean square error to obtain the probability function and sampling weight; and repeat the above steps to collect training neural network data to train the neural network training module.
基於上述,本發明提供一種基於線上強化學習之無線通訊參數調整系統及其方法,不僅通過使用多基地台頻率複用之低成本正交編碼方式舒緩輸入多維度資料造成GPU(Graphical Processing Unit)記憶體不敷使用而需降低解析度的窘境,且透過週期性、中央集中的方式蒐集基地台和用戶終端之相關資訊,並且考量系統的整體性,優化同一區域中多個基地台的網路效能,更引入具有經驗轉移的線上學習機制,使得神經網路能更快速地學習並修正適應環境改變的神經網路參數,提升無線通訊用戶速率,同時透過自動化搜集基地台運作的數據,以人工智能方式即時選擇最佳無線通訊參數參數配置,減輕營運商維運成本,同時提升網路系統效能。Based on the above, the present invention provides a wireless communication parameter adjustment system and method based on online reinforcement learning, which not only alleviates the GPU (Graphical Processing Unit) memory caused by inputting multi-dimensional data by using a low-cost orthogonal coding method of multi-base station frequency reuse In order to solve the problem of insufficient space and need to reduce the resolution, we collect relevant information about base stations and user terminals in a periodic and centralized manner, and consider the integrity of the system to optimize the network performance of multiple base stations in the same area. , it also introduces an online learning mechanism with experience transfer, allowing the neural network to learn more quickly and modify the neural network parameters to adapt to environmental changes, improving wireless communication user speeds, and at the same time automatically collecting data on base station operations to use artificial intelligence This method instantly selects the optimal wireless communication parameter configuration to reduce operator maintenance costs and improve network system performance.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, embodiments are given below and described in detail with reference to the accompanying drawings.
本發明的部份實施例接下來將會配合附圖來詳細描述,以下的描述所引用的元件符號,當不同附圖出現相同的元件符號將視為相同或相似的元件。這些實施例只是本發明的一部份,並未揭示所有本發明的可實施方式。更確切的說,這些實施例只是本發明的專利申請範圍中的方法、電子裝置以及電腦可讀取儲存媒體的範例。Some embodiments of the present invention will be described in detail with reference to the accompanying drawings. The component symbols cited in the following description will be regarded as the same or similar components when the same component symbols appear in different drawings. These embodiments are only part of the present invention and do not disclose all possible implementations of the present invention. Rather, these embodiments are only examples of methods, electronic devices, and computer-readable storage media within the scope of the patent application of the present invention.
圖1是依照本發明的一種基於線上強化學習之無線通訊參數調整系統的示意圖。Figure 1 is a schematic diagram of a wireless communication parameter adjustment system based on online reinforcement learning according to the present invention.
請參照圖1,基於線上強化學習之無線通訊參數調整系統10包括收發器110、儲存裝置120以及處理器130。無線通訊參數調整系統10適用於行動網路系統20,行動網路系統20包括多個基地台。Referring to FIG. 1 , the wireless communication parameter adjustment system 10 based on online reinforcement learning includes a transceiver 110 , a storage device 120 and a processor 130 . The wireless communication parameter adjustment system 10 is suitable for a mobile network system 20. The mobile network system 20 includes multiple base stations.
收發器110以無線或有線的方式傳送及接收訊號。收發器110還可以執行例如低噪聲放大、阻抗匹配、混頻、向上或向下頻率轉換、濾波、放大以及類似的操作。The transceiver 110 transmits and receives signals in a wireless or wired manner. Transceiver 110 may also perform, for example, low noise amplification, impedance matching, mixing, up or down frequency conversion, filtering, amplification, and similar operations.
儲存媒體120例如是任何型態的固定式或可移動式的隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)、硬碟(hard disk drive,HDD)、固態硬碟(solid state drive,SSD)或類似元件或上述元件的組合,儲存裝置102用以記錄可由處理器130執行的多個指令,更用於儲存可由處理器130執行的多個模組或各種應用程式。在一實施例中,儲存媒體120可儲存行動網路資料蒐集模組1201、Queue匯集模組1202、特徵建構模組1203以及神經網路訓練模組1204等多個模組,其功能將於後續說明。The storage medium 120 is, for example, any type of fixed or removable random access memory (RAM), read-only memory (ROM), or flash memory. , hard disk drive (HDD), solid state drive (SSD) or similar components or a combination of the above components, the storage device 102 is used to record multiple instructions that can be executed by the processor 130, and is also used to store Multiple modules or various applications that can be executed by the processor 130 . In one embodiment, the storage medium 120 can store multiple modules such as a mobile network data collection module 1201, a Queue collection module 1202, a feature construction module 1203, and a neural network training module 1204. Their functions will be discussed later. instruction.
處理器130例如是中央處理單元(central processing unit,CPU),或是其他可程式化之一般用途或特殊用途的微控制單元(micro control unit,MCU)、微處理器(microprocessor)、數位訊號處理器(digital signal processor,DSP)、可程式化控制器、特殊應用積體電路(application specific integrated circuit,ASIC)、圖形處理器(graphics processing unit,GPU)、算數邏輯單元(arithmetic logic unit,ALU)、複雜可程式邏輯裝置(complex programmable logic device,CPLD)、現場可程式化邏輯閘陣列(field programmable gate array,FPGA)或其他類似元件或上述元件的組合。處理器130可耦接至儲存媒體120以及收發器110,並且存取和執行儲存於儲存媒體120中的多個模組和各種應用程式,以控制無線通訊參數調整系統10的整體運作。The processor 130 is, for example, a central processing unit (CPU), or other programmable general-purpose or special-purpose micro control unit (MCU), microprocessor, digital signal processing Digital signal processor (DSP), programmable controller, application specific integrated circuit (ASIC), graphics processing unit (GPU), arithmetic logic unit (ALU) , complex programmable logic device (CPLD), field programmable gate array (FPGA) or other similar components or a combination of the above components. The processor 130 can be coupled to the storage medium 120 and the transceiver 110, and access and execute multiple modules and various applications stored in the storage medium 120 to control the overall operation of the wireless communication parameter adjustment system 10.
行動網路資料蒐集模組1201用以獲取行動網路系統的行動網路運作狀態資料,其中行動網路運作狀態資料可包括基地台組態管理資訊、性能管理資訊以及用戶終端量測回報資訊,在一實施例中,行動網路運作狀態資料可包括行動網路運作狀態(例如CM、PM、FM、KPI …)、用戶識別(例如位置、服務類型、訊務量、移動路徑…)、用戶終端量測回報(例如MR)、RF訊號、Radio Signal相關資訊(例如Scanner量測、手機量測)等基地台相關資料。本發明並不以此為限。The mobile network data collection module 1201 is used to obtain mobile network operation status data of the mobile network system, where the mobile network operation status data may include base station configuration management information, performance management information and user terminal measurement report information. In one embodiment, the mobile network operation status data may include mobile network operation status (such as CM, PM, FM, KPI...), user identification (such as location, service type, traffic volume, movement path...), user identification Terminal measurement reports (such as MR), RF signals, Radio Signal related information (such as Scanner measurements, mobile phone measurements) and other base station related data. The present invention is not limited thereto.
Queue匯集模組1202與行動網路資料蒐集模組1201電性連接,用以將上述行動網路運作狀態資料整理成多維陣列。The Queue collection module 1202 is electrically connected to the mobile network data collection module 1201, and is used to organize the above mobile network operation status data into a multi-dimensional array.
特徵建構模組1203與行動網路資料蒐集模組1201電性連接,對行動網路運作狀態資料進行萃取以建構一時間點的原始訊號強度分布、用戶聚集地分佈。The feature construction module 1203 is electrically connected to the mobile network data collection module 1201, and extracts the mobile network operation status data to construct the original signal strength distribution and user gathering place distribution at a point in time.
神經網路訓練模組1204與特徵建構模組1203電性連接,神經網路訓練模組1204用以依據原始訊號強度分布、用戶聚集地分佈獲取各基地台的無線通訊參數配置機率分佈,令各基地台依據無線通訊參數配置機率分佈實際發射,更新原始訊號強度分布且獲取用戶品質反饋,以修正神經網路訓練模組1204的神經網路參數。The neural network training module 1204 is electrically connected to the feature construction module 1203. The neural network training module 1204 is used to obtain the wireless communication parameter configuration probability distribution of each base station based on the original signal strength distribution and user gathering location distribution, so that each The base station actually transmits according to the wireless communication parameter configuration probability distribution, updates the original signal strength distribution and obtains user quality feedback to correct the neural network parameters of the neural network training module 1204.
於上述操作中,神經網路訓練模組1204更用以經由Queue匯集模組1202將行動網路運作狀態資料整理成多維陣列,並且經卷積神經網路操作、池化操作後轉成三維陣列,取arg max運算子以取得各基地台的無線通訊參數配置機率分佈以實際發射,更新原始訊號強度分布且獲取用戶品質反饋,將更新後的原始訊號強度分布經過另一組原始訊號強度分布的卷積神經網路操作、池化操作後轉成三維陣列,取 max運算子取得最佳無線通訊參數配置機率分布,最佳無線通訊參數配置機率分布與用戶品質反饋進行非線性組合,再和原始訊號強度分布組成陣列進行均方誤差計算,輸出機率矩陣對應的波束方向再執行 以取得純量熵,將均方誤差經機率收縮獲得機率函數及取樣權重,重複上述步驟蒐集訓練神經網路資料以訓練神經網路訓練模組1204。 In the above operation, the neural network training module 1204 is further used to organize the mobile network operation status data into a multi-dimensional array through the Queue collection module 1202, and convert it into a three-dimensional array after the convolutional neural network operation and pooling operation. , take the arg max operator to obtain the wireless communication parameter configuration probability distribution of each base station for actual transmission, update the original signal strength distribution and obtain user quality feedback, and pass the updated original signal strength distribution through another set of original signal strength distributions After the convolutional neural network operation and pooling operation, it is converted into a three-dimensional array. The max operator is used to obtain the probability distribution of the optimal wireless communication parameter configuration. The probability distribution of the optimal wireless communication parameter configuration is nonlinearly combined with the user quality feedback, and then combined with the original The signal intensity distribution is formed into an array for mean square error calculation, and the beam direction corresponding to the probability matrix is output and then executed. To obtain scalar entropy, shrink the mean square error to obtain the probability function and sampling weight, and repeat the above steps to collect training neural network data to train the neural network training module 1204.
於一實施例中,神經網路訓練模組1204更用以依據更新後的原始訊號強度分布、用戶品質反饋、原始訊號強度分布以及用戶聚集地分佈執行神經網路訓練以輸出各基地台的最佳無線通訊參數配置至行動網路系統20以進行佈署優化。In one embodiment, the neural network training module 1204 is further used to perform neural network training based on the updated original signal strength distribution, user quality feedback, original signal strength distribution, and user gathering place distribution to output the optimal signal strength of each base station. The best wireless communication parameters are configured to the mobile network system 20 for deployment optimization.
圖2是依照本發明的一種基於線上強化學習之無線通訊參數調整方法的示意圖。Figure 2 is a schematic diagram of a wireless communication parameter adjustment method based on online reinforcement learning according to the present invention.
請參照圖2,於步驟S201中,行動網路資料蒐集模組1201獲取行動網路系統的行動網路運作狀態資料。Referring to Figure 2, in step S201, the mobile network data collection module 1201 obtains mobile network operation status data of the mobile network system.
於步驟S202中,特徵建構模組1203對行動網路運作狀態資料進行萃取以建構一時間點的原始訊號強度分布、用戶聚集地分佈。In step S202, the feature construction module 1203 extracts the mobile network operation status data to construct the original signal strength distribution and user gathering place distribution at a point in time.
於步驟S203中,神經網路訓練模組1204依據原始訊號強度分布、用戶聚集地分佈獲取各基地台的無線通訊參數配置機率分佈,令各基地台依據無線通訊參數配置機率分佈實際發射,更新原始訊號強度分布且獲取用戶品質反饋,以修正神經網路參數。In step S203, the neural network training module 1204 obtains the wireless communication parameter configuration probability distribution of each base station based on the original signal strength distribution and user gathering place distribution, so that each base station actually transmits according to the wireless communication parameter configuration probability distribution, and updates the original Signal strength distribution and user quality feedback are obtained to modify neural network parameters.
於步驟S204中,神經網路訓練模組1204依據更新後的原始訊號強度分布、用戶品質反饋、原始訊號強度分布以及用戶聚集地分佈執行神經網路訓練以輸出各基地台的最佳無線通訊參數配置至行動網路系統20以進行佈署優化。In step S204, the neural network training module 1204 performs neural network training based on the updated original signal strength distribution, user quality feedback, original signal strength distribution, and user gathering location distribution to output the optimal wireless communication parameters of each base station. Configured to the mobile network system 20 for deployment optimization.
圖3是依照本發明的一第一實施例的訓練神經網路參數的示意圖。Figure 3 is a schematic diagram of training neural network parameters according to a first embodiment of the present invention.
請參照圖3,於步驟S301中,提取目前場域訊號分佈、基地台頻率稀疏編碼與用戶位置輸入神經網路訓練模組1204。Please refer to Figure 3. In step S301, the current field signal distribution, base station frequency sparse coding and user location are extracted and input into the neural network training module 1204.
於步驟S302中,取得各基地台的無線通訊參數配置機率分佈以實際發射,更新場域訊號分佈且獲取用戶品質反饋。In step S302, the wireless communication parameter configuration probability distribution of each base station is obtained for actual transmission, the field signal distribution is updated and user quality feedback is obtained.
於步驟S303中,更新後的場域訊號分佈輸入另一神經網路以得到訊號分佈綜合評分。In step S303, the updated field signal distribution is input into another neural network to obtain a comprehensive score of signal distribution.
於步驟S304中,依據訊號分佈綜合評分及用戶品質反饋計算非線性加權分數。In step S304, a nonlinear weighted score is calculated based on the signal distribution comprehensive score and user quality feedback.
於步驟S305中,依據非線性加權分數及原始分數計算均方誤差並且與純量熵取平均。In step S305, the mean square error is calculated based on the nonlinear weighted score and the original score and averaged with the scalar entropy.
於步驟S306中,將均方誤差轉換為機率格式並且轉換為取樣權重,以訓練神經網路參數。In step S306, the mean square error is converted into a probability format and into a sampling weight to train neural network parameters.
圖4是依照本發明的一第二實施例的訓練神經網路參數的示意圖。Figure 4 is a schematic diagram of training neural network parameters according to a second embodiment of the present invention.
請參照圖4,於步驟S401中,經由Queue匯集模組1202將行動網路運作狀態資料整理成多維陣列,並且經卷積神經網路操作、池化操作後轉成三維陣列。Please refer to Figure 4. In step S401, the mobile network operation status data is organized into a multi-dimensional array through the Queue collection module 1202, and converted into a three-dimensional array after a convolutional neural network operation and a pooling operation.
於步驟S402中,取arg max運算子以取得各基地台的無線通訊參數配置機率分佈以實際發射,更新原始訊號強度分布且獲取用戶品質反饋。In step S402, the arg max operator is used to obtain the wireless communication parameter configuration probability distribution of each base station for actual transmission, update the original signal strength distribution and obtain user quality feedback.
具體而言,在GPU(Graphical Processing Unit)上切割多個子程式(Sub Process),在每個Sub Process執行以下:Specifically, multiple subprograms (Sub Process) are cut on the GPU (Graphical Processing Unit), and each Sub Process executes the following:
目前各個基地台的天線方向所形成的RF Map組 成「狀態」,其維度為B x L x W其中B為基地台個數,L與W分別為場域長與寬;At present, the RF Map formed by the antenna directions of each base station constitutes the "state", and its dimension is B x L x W, where B is the number of base stations, L and W are the field length and width respectively;
納入各個基地台之間的頻率正交編碼及用戶位置;Incorporate frequency orthogonal coding and user location between each base station;
以Epsilon Greedy執行天線方向設定:以低比例執行Random Action;以低比例執行Random Action;Next State打開為[Batch x B x L x W]其中B 為基地台個數,L與W分別為場域長與寬 (去除頻率正交編碼及用戶位置資訊);Use Epsilon Greedy to perform antenna direction setting: perform Random Action at a low ratio; perform Random Action at a low ratio; Next State is opened as [Batch x B x L x W], where B is the number of base stations, and L and W are the fields respectively. Length and width (removing frequency orthogonal coding and user location information);
將上述Sub Process結果組成Batch,其內容物為 [Batch Size x State x Action x Reward x Next State]。The above Sub Process results are composed into a Batch, and its content is [Batch Size x State x Action x Reward x Next State].
於步驟S403中,將更新後的原始訊號強度分布經過另一組原始訊號強度分布的卷積神經網路操作、池化操作後轉成三維陣列。In step S403, the updated original signal intensity distribution is converted into a three-dimensional array after undergoing another set of convolutional neural network operations and pooling operations on the original signal intensity distribution.
具體而言,將之前取得的[Batch Size x Next State] 打開為[Batch x B x L x W]其中B為基地台個數,L與W分別為場域長與寬;Specifically, open the previously obtained [Batch Size x Next State] as [Batch x B x L x W], where B is the number of base stations, L and W are the field length and width respectively;
將[Batch x B x L x W]的東西輸入神經網路NN並令其輸出格式為[Batch x B x Antenna]。Input [Batch x B x L x W] into the neural network NN and make its output format [Batch x B x Antenna].
於步驟S404中,取 max運算子取得最佳無線通訊參數配置機率分布,最佳無線通訊參數配置機率分布與用戶品質反饋進行非線性組合,再和原始訊號強度分布組成陣列進行均方誤差計算。In step S404, the max operator is used to obtain the optimal wireless communication parameter configuration probability distribution. The optimal wireless communication parameter configuration probability distribution is nonlinearly combined with the user quality feedback, and then combined with the original signal strength distribution to form an array for mean square error calculation.
具體而言,將 [Batch x B x Antenna]各自的B元素取 max運算得[Batch x B];Specifically, take the max operation of the respective B elements of [Batch x B x Antenna] to obtain [Batch x B];
將[Batch x B]乘上alpha和Reward相加得 [Batch x B];將State輸入NN再取arg max,將Action對應元素取出得到 [Batch x B];將此兩個[Batch x B]矩陣取MSE,輸出維度為[Batch]。Multiply [Batch x B] by alpha and Reward to get [Batch x B]; input State into NN and then take arg max, take out the corresponding element of Action to get [Batch x B]; these two [Batch x B] The matrix takes MSE, and the output dimension is [Batch].
於步驟S405中,輸出機率矩陣對應的波束方向再執行 以取得純量熵。 In step S405, output the beam direction corresponding to the probability matrix and then execute to obtain scalar entropy.
具體而言,於上述步驟S403中獲得[Batch x B x Antenna],也即是說,對每個Batch而言[B x Antenna]都是機率分佈,執行 以取得純量熵,其輸出維度為[Batch]。 Specifically, [Batch x B x Antenna] is obtained in the above step S403. That is to say, for each Batch, [B x Antenna] is a probability distribution. Execute To obtain scalar entropy, its output dimension is [Batch].
於步驟S406中,將均方誤差經機率收縮獲得機率函數及取樣權重。In step S406, the mean square error is subjected to probability shrinkage to obtain the probability function and sampling weight.
具體而言,於步驟S404中獲取的[Batch]的MSE及步驟S405中獲取的純量熵相加得到[Batch],經機率收縮獲得機率函數,並且經方程式 獲得取樣權重。 Specifically, the MSE of [Batch] obtained in step S404 and the scalar entropy obtained in step S405 are added to obtain [Batch]. The probability function is obtained through probability contraction, and the probability function is obtained through Eq. Get the sampling weight.
於步驟S407中,重複上述步驟蒐集訓練神經網路資料以訓練神經網路訓練模組1204。In step S407, the above steps are repeated to collect training neural network data to train the neural network training module 1204.
圖5是依照本發明的一第三實施例的訓練神經網路參數的示意圖。Figure 5 is a schematic diagram of training neural network parameters according to a third embodiment of the present invention.
請參照圖5,於步驟S501中,將原始訊號強度分布、用戶聚集地分佈由分布式Queue中提取並整理為四維陣列,將四維陣列經卷積神經網路操作、池化操作後轉成三維陣列。Please refer to Figure 5. In step S501, the original signal intensity distribution and user gathering place distribution are extracted from the distributed Queue and organized into a four-dimensional array. The four-dimensional array is converted into a three-dimensional array after a convolutional neural network operation and a pooling operation. array.
於步驟S502中,取arg max運算子以取得各基地台的無線通訊參數配置機率分佈以實際發射,更新原始訊號強度分布且獲取用戶品質反饋。In step S502, the arg max operator is used to obtain the wireless communication parameter configuration probability distribution of each base station for actual transmission, update the original signal strength distribution and obtain user quality feedback.
於步驟S503中,將更新後的原始訊號強度分布經過另一組原始訊號強度分布的卷積神經網路操作、池化操作後轉成三維陣列。In step S503, the updated original signal intensity distribution is converted into a three-dimensional array after undergoing another set of convolutional neural network operations and pooling operations on the original signal intensity distribution.
於步驟S504中,取 max運算子取得最佳無線通訊參數配置機率分布,最佳無線通訊參數配置機率分布與用戶品質反饋進行非線性組合,再和原始訊號強度分布組成陣列進行均方誤差計算。In step S504, the max operator is used to obtain the optimal wireless communication parameter configuration probability distribution. The optimal wireless communication parameter configuration probability distribution is nonlinearly combined with the user quality feedback, and then combined with the original signal strength distribution to form an array for mean square error calculation.
於步驟S505中,將均方誤差經機率收縮獲取機率函數,經 獲得權重。 In step S505, the mean square error is subjected to probability shrinkage to obtain a probability function. Get weight.
於步驟S506中,重複上述步驟蒐集訓練神經網路資料以訓練神經網路訓練模組1204。In step S506, the above steps are repeated to collect training neural network data to train the neural network training module 1204.
圖6是依照本發明的一第四實施例的訓練神經網路參數的示意圖。Figure 6 is a schematic diagram of training neural network parameters according to a fourth embodiment of the present invention.
請參照圖6,於步驟S601中,將原始訊號強度分布、用戶聚集地分佈從多線程Queue中提取並整理為四維陣列,將四維陣列經卷積神經網路操作、池化操作後轉成三維陣列。Please refer to Figure 6. In step S601, the original signal intensity distribution and user gathering place distribution are extracted from the multi-thread Queue and organized into a four-dimensional array. The four-dimensional array is converted into a three-dimensional array after a convolutional neural network operation and a pooling operation. array.
於步驟S602中,取arg max運算子以取得各基地台的無線通訊參數配置機率分佈以實際發射,更新原始訊號強度分布且獲取用戶品質反饋。In step S602, the arg max operator is obtained to obtain the wireless communication parameter configuration probability distribution of each base station for actual transmission, update the original signal strength distribution and obtain user quality feedback.
於步驟S603中,將更新後的原始訊號強度分布經過另一組原始訊號強度分布的卷積神經網路操作、池化操作後轉成三維陣列。In step S603, the updated original signal intensity distribution is converted into a three-dimensional array after undergoing another set of convolutional neural network operations and pooling operations on the original signal intensity distribution.
於步驟S604中,取 max運算子取得最佳無線通訊參數配置機率分布,最佳無線通訊參數配置機率分布與用戶品質反饋進行非線性組合,再和原始訊號強度分布組成陣列進行均方誤差計算。In step S604, the max operator is used to obtain the optimal wireless communication parameter configuration probability distribution. The optimal wireless communication parameter configuration probability distribution is nonlinearly combined with the user quality feedback, and then combined with the original signal strength distribution to form an array for mean square error calculation.
於步驟S605中,輸出機率矩陣對應的無線通訊參數配置再執行 以取得純量熵。 In step S605, output the wireless communication parameter configuration corresponding to the probability matrix and then execute to obtain scalar entropy.
於步驟S606中,將步驟S604與步驟S605的結果相加。In step S606, the results of steps S604 and S605 are added.
於步驟S607中,由均方誤差經機率收縮獲取機率函數,經 獲得權重。 In step S607, the probability function is obtained from the mean square error through probability shrinkage. Get weight.
於步驟S608中,重複上述步驟蒐集訓練神經網路資料以訓練神經網路訓練模組1204。In step S608, the above steps are repeated to collect training neural network data to train the neural network training module 1204.
需要說明的是,上述實施例中所述的三維陣列中,第一個維度可以是同一區域中的基地台數目,第二個及第三個維度可以是該區域的長度及寬度,也即是該區域的尺寸。It should be noted that in the three-dimensional array described in the above embodiments, the first dimension may be the number of base stations in the same area, and the second and third dimensions may be the length and width of the area, that is, The size of the area.
於上述圖3至圖6所述的第一至第四實施例的訓練神經網路參數的操作之後,可修正神經網路訓練模組1204的神經網路參數,從而令神經網路訓練模組1204依據更新後的原始訊號強度分布、用戶品質反饋、原始訊號強度分布以及用戶聚集地分佈執行神經網路訓練以輸出各基地台的最佳無線通訊參數配置至行動網路系統20,從而進行佈署優化。After the operations of training neural network parameters in the first to fourth embodiments described above in FIGS. 3 to 6 , the neural network parameters of the neural network training module 1204 can be modified, so that the neural network training module 1204 performs neural network training based on the updated original signal strength distribution, user quality feedback, original signal strength distribution, and user gathering location distribution to output the optimal wireless communication parameter configuration of each base station to the mobile network system 20 for deployment. Department optimization.
基於上述,本發明提供一種基於線上強化學習之無線通訊參數調整系統及其方法,不僅通過使用多基地台頻率複用之低成本正交編碼方式舒緩輸入多維度資料造成GPU(Graphical Processing Unit)記憶體不敷使用而需降低解析度的窘境,且透過週期性、中央集中的方式蒐集基地台和用戶終端之相關資訊,並且考量系統的整體性,優化同一區域中多個基地台的網路效能,更引入具有經驗轉移的線上學習機制,使得神經網路能更快速地學習並修正適應環境改變的神經網路參數,提升無線通訊用戶速率,同時透過自動化搜集基地台運作的數據,以人工智能方式即時選擇最佳無線通訊參數參數配置,減輕營運商維運成本,同時提升網路系統效能。Based on the above, the present invention provides a wireless communication parameter adjustment system and method based on online reinforcement learning, which not only alleviates the GPU (Graphical Processing Unit) memory caused by inputting multi-dimensional data by using a low-cost orthogonal coding method of multi-base station frequency reuse In order to solve the problem of insufficient space and need to reduce the resolution, we collect relevant information about base stations and user terminals in a periodic and centralized manner, and consider the integrity of the system to optimize the network performance of multiple base stations in the same area. , it also introduces an online learning mechanism with experience transfer, allowing the neural network to learn more quickly and modify the neural network parameters to adapt to environmental changes, improving wireless communication user speeds, and at the same time automatically collecting data on base station operations to use artificial intelligence This method instantly selects the optimal wireless communication parameter configuration to reduce operator maintenance costs and improve network system performance.
雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露的精神和範圍內,當可作些許的更動與潤飾,故本揭露的保護範圍當視後附的申請專利範圍所界定者為準。Although the disclosure has been disclosed above through embodiments, they are not intended to limit the disclosure. Anyone with ordinary knowledge in the technical field may make slight changes and modifications without departing from the spirit and scope of the disclosure. Therefore, The scope of protection of this disclosure shall be determined by the scope of the appended patent application.
10:無線通訊參數調整系統10: Wireless communication parameter adjustment system
110:收發器110:Transceiver
120:儲存裝置120:Storage device
130:處理器130: Processor
20:行動網路系統20:Mobile network system
1201:行動網路資料蒐集模組1201:Mobile network data collection module
1202:Queue匯集模組1202:Queue collection module
1203:特徵建構模組1203: Feature construction module
1204:神經網路訓練模組1204:Neural network training module
S201、S202、S203、S204、S301、S302、S303、S304、S305、S306、S401、S402、S403、S404、S405、S406、S407、S501、S502、S503、S504、S505、S506、S601、S602、S603、S604、S605、S606、S607、S608:步驟S201, S202, S203, S204, S301, S302, S303, S304, S305, S306, S401, S402, S403, S404, S405, S406, S407, S501, S502, S503, S504, S505, S506, S601, S602 , S603, S604, S605, S606, S607, S608: steps
圖1是依照本發明的一種基於線上強化學習之無線通訊參數調整系統的示意圖。 圖2是依照本發明的一種基於線上強化學習之無線通訊參數調整方法的示意圖。 圖3是依照本發明的一第一實施例的訓練神經網路參數的示意圖。 圖4是依照本發明的一第二實施例的訓練神經網路參數的示意圖。 圖5是依照本發明的一第三實施例的訓練神經網路參數的示意圖。 圖6是依照本發明的一第四實施例的訓練神經網路參數的示意圖。 Figure 1 is a schematic diagram of a wireless communication parameter adjustment system based on online reinforcement learning according to the present invention. Figure 2 is a schematic diagram of a wireless communication parameter adjustment method based on online reinforcement learning according to the present invention. Figure 3 is a schematic diagram of training neural network parameters according to a first embodiment of the present invention. Figure 4 is a schematic diagram of training neural network parameters according to a second embodiment of the present invention. Figure 5 is a schematic diagram of training neural network parameters according to a third embodiment of the present invention. Figure 6 is a schematic diagram of training neural network parameters according to a fourth embodiment of the present invention.
S201、S202、S203、S204:步驟 S201, S202, S203, S204: steps
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW111135830A TWI828324B (en) | 2022-09-22 | 2022-09-22 | Parameters adjustment system and method in wireless communication based on online reinforcement learning |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW111135830A TWI828324B (en) | 2022-09-22 | 2022-09-22 | Parameters adjustment system and method in wireless communication based on online reinforcement learning |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI828324B true TWI828324B (en) | 2024-01-01 |
| TW202415107A TW202415107A (en) | 2024-04-01 |
Family
ID=90458892
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW111135830A TWI828324B (en) | 2022-09-22 | 2022-09-22 | Parameters adjustment system and method in wireless communication based on online reinforcement learning |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI828324B (en) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW202224472A (en) * | 2020-12-11 | 2022-06-16 | 中華電信股份有限公司 | Beam selection method based on neural network and management server |
| US20220294666A1 (en) * | 2021-03-05 | 2022-09-15 | Samsung Electronics Co., Ltd. | Method for support of artificial intelligence or machine learning techniques for channel estimation and mobility enhancements |
-
2022
- 2022-09-22 TW TW111135830A patent/TWI828324B/en active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW202224472A (en) * | 2020-12-11 | 2022-06-16 | 中華電信股份有限公司 | Beam selection method based on neural network and management server |
| US20220294666A1 (en) * | 2021-03-05 | 2022-09-15 | Samsung Electronics Co., Ltd. | Method for support of artificial intelligence or machine learning techniques for channel estimation and mobility enhancements |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202415107A (en) | 2024-04-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108260075B (en) | Addressing method and device for deployment position of base station | |
| CN111147163A (en) | Wireless communication link loss prediction method based on DNN neural network | |
| CN112867147B (en) | Positioning method and positioning device | |
| CN112839345B (en) | Network parameter configuration method and device | |
| CN112738883A (en) | A method and device for determining the position of an air base station | |
| CN116419257A (en) | A communication method and device | |
| CN108632849A (en) | A kind of method of adjustment of antenna-feed parameter, device and equipment | |
| Bahaghighat et al. | Image transmission over cognitive radio networks for smart grid applications | |
| TWI828324B (en) | Parameters adjustment system and method in wireless communication based on online reinforcement learning | |
| CN117014120A (en) | Measurement feedback method, device and storage medium | |
| CN115914980A (en) | Positioning method, device and processor-readable storage medium | |
| CN103905233B (en) | Realize method, system and the access network device of analog sensor plug and play | |
| CN117196071A (en) | A method and device for model training | |
| CN112512115B (en) | Method and device for determining position of air base station and electronic equipment | |
| US20250217718A1 (en) | Ensemble superpixel based compression complexity reduction | |
| CN113507120A (en) | Method, device and electronic device for calculating bearing capacity | |
| CN119012350A (en) | Beam prediction method, device and storage medium | |
| EP4562482A1 (en) | Method and network node for transfer of a digital twin of a network | |
| CN119923839A (en) | Data compression transmission method, device, equipment and storage medium | |
| CN116980915B (en) | Configuration methods, devices, equipment and media for distributed beam management | |
| WO2025033254A1 (en) | Communication device and communication method | |
| CN118677790A (en) | Base station coverage radius analysis system based on artificial intelligence | |
| US20240348507A1 (en) | Graph based anomaly detection in cellular networks | |
| CN110351680A (en) | A kind of smart grid information management system and method based on wireless sensor network | |
| WO2025157088A1 (en) | Node selection method and communication apparatus |