TWI823126B - 5g adaptive contention access system with shared wireless channels for multiple traffic categories and method thereof - Google Patents
5g adaptive contention access system with shared wireless channels for multiple traffic categories and method thereof Download PDFInfo
- Publication number
- TWI823126B TWI823126B TW110128132A TW110128132A TWI823126B TW I823126 B TWI823126 B TW I823126B TW 110128132 A TW110128132 A TW 110128132A TW 110128132 A TW110128132 A TW 110128132A TW I823126 B TWI823126 B TW I823126B
- Authority
- TW
- Taiwan
- Prior art keywords
- random access
- traffic
- contention
- adaptive
- physical layer
- Prior art date
Links
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 19
- 230000005540 biological transmission Effects 0.000 claims abstract description 18
- 230000007246 mechanism Effects 0.000 claims description 11
- 238000004458 analytical method Methods 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 6
- 230000001186 cumulative effect Effects 0.000 claims description 6
- 238000005315 distribution function Methods 0.000 claims description 5
- 238000004088 simulation Methods 0.000 description 6
- 230000001934 delay Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000002860 competitive effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
Images
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
Description
一種5G通訊系統及其方法,尤其是指一種自適性地決定衝突域的隨機存取競爭範圍所需的隨機存取前置訊號以及每種類型流量的競爭範圍上限值與下限值的多流量類型共用無線通道的5G適性競爭存取系統及其方法。 A 5G communication system and a method thereof, in particular, a method that adaptively determines the random access pre-signal required for the random access contention range of a conflict domain and the upper and lower limits of the contention range for each type of traffic. A 5G adaptive contention access system and method where traffic types share wireless channels.
5G有許多新的機制與功能被提出與定義,其中包括Virtualizing Network Function(VNF)、Software Defined Network(SDN),Service Function Chaining(SFC)、Network Slicing(NS),Mobile Edge Computing(MEC)、Traffic Steering…等。 5G has many new mechanisms and functions that have been proposed and defined, including Virtualizing Network Function (VNF), Software Defined Network (SDN), Service Function Chaining (SFC), Network Slicing (NS), Mobile Edge Computing (MEC), Traffic Steering...etc.
由於5G具備了上述機制與功能,5G能實現下列功能:依分散式路由將資料封包轉送到用於發送資料流數據的集中基於軟體定義網路流量,以及提升實體機/虛擬機與網路在分配上的彈性…等。 Because 5G has the above mechanisms and functions, 5G can achieve the following functions: forward data packets according to decentralized routing to centralized software-defined network traffic for sending data flow data, and improve the connection between physical machines/virtual machines and the network. Distributive elasticity…etc.
在5G新無線傳輸中基於競爭隨機方問前置訊號,雖然3GPP提供數個前置訊號型態模式,但由於大量且不同的流量對應的E2E服務品質/關 鍵績效指標並無碰撞值域區分且對於衝突競爭缺少動態退避機制,導致碰撞機率嚴重增加。因此,具有高衝突機率之高優先權流量必定會降低5G整體存取延遲、未完成的流量資料傳輸、淨利、吞吐量…等。 In 5G new wireless transmission, preamble signals are based on competitive random methods. Although 3GPP provides several preamble signal types, due to the large and different traffic corresponding to the E2E service quality/relevance The key performance index has no collision value range distinction and lacks a dynamic backoff mechanism for conflict competition, resulting in a serious increase in the probability of collision. Therefore, high-priority traffic with high collision probability will definitely reduce the overall 5G access latency, outstanding traffic data transmission, net profit, throughput, etc.
綜上所述,可知先前技術中長期以來一直存在現有5G資料傳輸時高優先權流量的高競爭衝突率導致5G整體存取延遲的問題,因此有必要提出改進的技術手段,來解決此一問題。 In summary, it can be seen that there has long been a problem in the previous technology that the high contention conflict rate of high-priority traffic during existing 5G data transmission leads to the overall 5G access delay. Therefore, it is necessary to propose improved technical means to solve this problem. .
有鑒於先前技術存在現有5G資料傳輸時高優先權流量的高競爭衝突率導致5G整體存取延遲的問題,本發明遂揭露一種多流量類型共用無線通道的5G適性競爭存取系統及其方法,其中:本發明所揭露的多流量類型共用無線通道的5G適性競爭存取系統,適用於5G通訊的行動終端裝置,其包含:分配模組、預測分析模組、動態調整模組以及自適應計算模組。 In view of the problem in the prior art that the high contention conflict rate of high-priority traffic during existing 5G data transmission causes overall 5G access delay, the present invention discloses a 5G adaptive contention access system and method for multiple traffic types to share wireless channels. Among them: the 5G adaptive contention access system for multiple traffic types sharing wireless channels disclosed in the present invention is suitable for mobile terminal devices of 5G communication, and includes: allocation module, prediction analysis module, dynamic adjustment module and adaptive calculation Mods.
分配模組是將低模數(modulo)分配給5G流量資料傳輸時的高流量類型,以及將高模數分配給5G流量資料傳輸時的低流量類型;預測分析模組是預測每一種流量類型的請求資料速率;動態調整模組是動態決定實體層(Port Physical Layer,PHY)訊框(frame)的隨機存取(Random Access,RA)子訊框(subframe)數量;及自適應計算模組是依據每一種流量類型自適應決定隨機存取子訊框內所需的隨機存取前置訊號(preamble)範圍以及每一種流量類型的競爭範圍中上限值以及下限值。 The allocation module allocates low modulo to high traffic types when transmitting 5G traffic data, and allocates high modulo to low traffic types when transmitting 5G traffic data; the predictive analysis module predicts each traffic type. The request data rate; the dynamic adjustment module dynamically determines the number of random access (Random Access, RA) subframes (subframes) of the physical layer (Port Physical Layer, PHY) frame; and the adaptive calculation module The required random access preamble range in the random access subframe and the upper and lower limits of the contention range for each traffic type are adaptively determined based on each traffic type.
本發明所揭露的多流量類型共用無線通道的5G適性競爭存取方法,適用於5G通訊的行動終端裝置,其包含下列步驟:首先,將低模數(modulo)分配給5G流量資料傳輸時的高流量類型;接著,將高模數分配給5G流量資料傳輸時的低流量類型:接著,預測每一種流量類型的請求資料速率;接著,動態決定實體層(Port Physical Layer,PHY)訊框(frame)的隨機存取(Random Access,RA)子訊框(subframe)數量;最後,依據每一種流量類型自適應決定隨機存取子訊框內所需的隨機存取前置訊號(preamble)範圍以及每一種流量類型的競爭範圍中上限值以及下限值。 The 5G adaptive contention access method for multiple traffic types sharing wireless channels disclosed by the present invention is suitable for mobile terminal devices for 5G communications. It includes the following steps: first, allocate a low modulo to 5G traffic data transmission. High traffic types; then, assign high modulus to low traffic types during 5G traffic data transmission: then, predict the requested data rate of each traffic type; then, dynamically determine the physical layer (Port Physical Layer, PHY) frame ( frame; finally, the required random access preamble range in the random access subframe is adaptively determined according to each traffic type As well as the upper and lower limits of the competition range for each traffic type.
本發明所揭露的系統及方法如上,與先前技術之間的差異在於將低模數分配給5G流量資料傳輸時的高流量類型,將高模數分配給5G流量資料傳輸時的低流量類型,預測每一種流量類型的請求資料速率,動態決定實體層訊框的隨機存取子訊框數量,依據每一種流量類型自適應決定隨機存取子訊框內所需的隨機存取前置訊號範圍以及每一種流量類型的競爭範圍中上限值以及下限值。 The system and method disclosed by the present invention are as above. The difference between the system and the previous technology is that the low modulus is assigned to the high traffic type when 5G traffic data is transmitted, and the high modulus is assigned to the low traffic type when 5G traffic data is transmitted. Predict the requested data rate of each traffic type, dynamically determine the number of random access sub-frames in the physical layer frame, and adaptively determine the required random access preamble range in the random access sub-frame based on each traffic type. As well as the upper and lower limits of the competition range for each traffic type.
本發明在5G中所實現的重要目標如下:最小化流量類型的隨機存取衝突機率以及競爭衝突,並且最大化不同流量類型的連接獎勵以及效能,最小化E2E延遲和最大化SFC對更高類型流量的可靠性,最大化低流量類型(例如:eMBB、mMTC…等)的數據速率等。 The important goals achieved by the present invention in 5G are as follows: minimizing the random access conflict probability and contention conflicts of traffic types, maximizing connection rewards and performance of different traffic types, minimizing E2E delay and maximizing SFC for higher types Traffic reliability, maximizing the data rate of low traffic types (such as: eMBB, mMTC...etc.), etc.
透過上述的技術手段,本發明可以達成增加優先權較高流量的5G存取競爭機率,使衝突機率最小化與降低5G存取延遲的技術功效。 Through the above technical means, the present invention can achieve the technical effects of increasing the probability of 5G access competition for higher-priority traffic, minimizing the probability of conflict, and reducing 5G access delay.
10:行動終端裝置 10: Mobile terminal device
11:分配模組 11: Assign modules
12:預測分析模組 12: Predictive analysis module
13:動態調整模組 13:Dynamic adjustment module
14:自適應計算模組 14:Adaptive computing module
21:延時數據 21: Delayed data
22:模擬數據 22:Simulated data
步驟101:將低模數分配給5G流量資料傳輸時的高流量類型 Step 101: Assign low modulus to high traffic types during 5G traffic data transmission
步驟102:將高模數分配給5G流量資料傳輸時的低流量類型 Step 102: Assign high modulus to low traffic type during 5G traffic data transmission
步驟103:預測每一種流量類型的請求資料速率 Step 103: Predict the requested data rate for each traffic type
步驟104:動態決定實體層訊框的隨機存取子訊框數量 Step 104: Dynamically determine the number of random access sub-frames of the physical layer frame
步驟105:依據每一種流量類型自適應決定隨機存取子訊框內所需的隨機存取前置訊號範圍以及每一種流量類型的競爭範圍中上限值以及下限值 Step 105: Adaptively determine the required random access preamble range in the random access subframe and the upper and lower limits of the contention range for each traffic type based on each traffic type.
第1圖繪示為本發明多流量類型共用無線通道的5G適性競爭存取系統的系統方塊圖。 Figure 1 is a system block diagram of a 5G adaptive contention access system for multiple traffic types sharing wireless channels according to the present invention.
第2圖繪示為本發明多流量類型共用無線通道的5G適性競爭存取的不同類型單一頻率網路模數下的平均存取延時數據圖。 Figure 2 shows the average access delay data under different types of single frequency network modules for 5G adaptive contention access of multiple traffic types sharing wireless channels according to the present invention.
第3圖繪示為本發明多流量類型共用無線通道的5G適性競爭存取的不同競爭次數下的成功率模擬數據圖。 Figure 3 shows a simulation data diagram of the success rate under different competition times for 5G adaptive contention access of multiple traffic types sharing wireless channels according to the present invention.
第4圖繪示為本發明多流量類型共用無線通道的5G適性競爭存取方法的方法流程圖。 Figure 4 shows a method flow chart of the 5G adaptive contention access method for multiple traffic types sharing wireless channels according to the present invention.
以下將配合圖式及實施例來詳細說明本發明的實施方式,藉此對本發明如何應用技術手段來解決技術問題並達成技術功效的實現過程能充分理解並據以實施。 The embodiments of the present invention will be described in detail below with reference to the drawings and examples, so that the implementation process of how to apply technical means to solve technical problems and achieve technical effects of the present invention can be fully understood and implemented accordingly.
以下首先要說明本發明所揭露的多流量類型共用無線通道的5G適性競爭存取系統,並請參考「第1圖」所示,「第1圖」繪示為本發明多流量類型共用無線通道的5G適性競爭存取系統的系統方塊圖。 The following will first describe the 5G adaptive contention access system for multi-traffic types sharing wireless channels disclosed in the present invention, and please refer to "Figure 1". "Figure 1" illustrates the multi-traffic types sharing wireless channels of the present invention. System block diagram of the 5G adaptive contention access system.
本發明所揭露的多流量類型共用無線通道的5G適性競爭存取系統,適用於5G通訊的行動終端裝置10,其包含:分配模組11、預測分析模組12、動態調整模組13以及自適應計算模組14。
The 5G adaptive contention access system for multiple traffic types sharing wireless channels disclosed by the present invention is suitable for
在延遲(delay)、可靠性(reliability)、損失(loss)、資料速率(data rate)…等具有不同服務品質(Quality of Service,QoS)/關鍵績效指標(Key Performance Indicator,KPI)服務的各式各樣應用程式,在流量資料傳輸之前需要在5G新無線傳輸(New Radio,NR)的隨機存取(Random Access,RA)子訊框(subframe)中有限的實體層(Port Physical Layer,PHY)前置訊號(preamble)進行競爭,儘管額外的隨機存取自長期演進技術(Long Term Evolution-Advanced,LTE-A)進行擴展,但極大數量的流量資料封包透過5G上行鏈結(UpLink)實體層隨機存取頻道(PHY Random Access Channel,PRACH)會增加競爭衝突的機率以及隨機存取的明顯延遲,5G新無線傳輸依據不同類型的單一頻率網路(Single Frequency Network,SFN)模數(modulus)的行動終端裝置(User Equipment,UE)指定不同的實體層隨機存取頻道配置索引進而需要高效的隨機存取衝突與競爭延遲的隨機存取競爭機制。 In terms of delay, reliability, loss, data rate, etc., various services with different Quality of Service (QoS)/Key Performance Indicator (KPI) Various applications require limited physical layer (Port Physical Layer, PHY) in the Random Access (RA) subframe (subframe) of 5G New Radio (NR) before traffic data transmission. ) preamble competes. Although additional random access is extended from Long Term Evolution-Advanced (LTE-A), a huge amount of traffic data packets pass through the 5G UpLink entity. The layer random access channel (PHY Random Access Channel, PRACH) will increase the probability of contention conflicts and the obvious delay of random access. 5G new wireless transmission is based on different types of single frequency network (Single Frequency Network, SFN) modulus. )'s mobile terminal device (User Equipment, UE) specifies different physical layer random access channel configuration indexes, thereby requiring an efficient random access contention mechanism for random access collisions and contention delays.
為了增加高流量類型的存取機率,分配模組11是將模數(modulo)x=1分配給高流量類型的切片(slicing),例如:eMERGENCY以及uRLLC…等,在此僅為舉例說明之,並不以侷限本發明的應用範疇,再自適應地確定其他較大的模數x值()分配給低流量類型的切片,例如:eMBB以及mMTC…等,反之亦然,在此僅為舉例說明之,並不以侷限本發明的應用範疇。
In order to increase the access probability of high-traffic types, the
接著,預測分析模組12是預測每種流量類型的請求資料速率()以及動態調整模組13是動態決定實體層訊框T+1所需要的隨機存取子訊框數量(),除此之外,如果隨機存取的子訊框
數量超過門檻值時,則可以將快取檔案置換機制(Least recently used,LRU)隨機存取子訊框分配給行動終端裝置。
Next, the
具體而言,隨機存取子訊框所需求的數量為3,配置的索引為q=23,可用的隨機存取子訊框分別為2、5以及8,快取檔案置換機制的子訊框其中之一將會進行配置。 Specifically, the required number of random access subframes is 3, the configured index is q =23, the available random access subframes are 2, 5, and 8 respectively, and the subframes of the cache file replacement mechanism One of them will be configured.
自適應計算模組14是對於每個流量類型自適應決定隨機存取子訊框內所需的隨機存取前置訊號(即衝突域的競爭隨機存取範圍)以及每個流量類型的競爭範圍中上限值以及下限值。
The
首先,分類隨機存取配置索引、單一頻率網路模數x以及動態決定隨機存取子訊框數量(),為了區分不同流量類型的衝突域,將前置訊號配置索引進行劃分,即基於模數x以及子訊框數量的k流量類型從q映入k類型,其中x {1,2,4,8,16},子訊框{1,2,3,5,10},使得在每個實體層訊框中引起不同的競爭。 First, the classified random access configuration index, single frequency network modulus x and dynamically determine the number of random access subframes ( ), in order to distinguish the collision domains of different traffic types, the pre-signal configuration index is divided, that is, the k traffic type based on the modulus x and the number of subframes is mapped from q to k type, where x {1,2,4,8,16}, subframe {1,2,3,5,10}, causing different contentions in each physical layer frame.
為了提高隨機存取機會(Random Access Opportunity,RAO)以及利用率,可以通過使用不同的實體層隨機存取頻道配置索引依據需求或週期性地動態調整實體層隨機存取頻道的資源。基於所提出的區分競爭域方案,具有不同業務分類TCID的不同類型流量的實體層隨機存取頻道配置索引因此由服務基地台(Generation Node B,gNB)動態確定。然後,服務基地台通過系統訊息方塊(System Information Block,SIB)消息向行動終端裝置發送不同類型流量的最新實體層隨機存取頻道配置索引。 In order to improve Random Access Opportunity (RAO) and utilization, the resources of the physical layer random access channel can be dynamically adjusted based on demand or periodically by using different physical layer random access channel configuration indexes. Based on the proposed scheme for distinguishing contention domains, the physical layer random access channel configuration index for different types of traffic with different service classification TCIDs is therefore dynamically determined by the serving base station (Generation Node B, gNB). Then, the serving base station sends the latest physical layer random access channel configuration index of different types of traffic to the mobile terminal device through a System Information Block (SIB) message.
對於最高類型的流量(例如:eMERGENCY)為了最大化存取機率以及最小化競爭延遲,將帶有模數x=1以及{5,10}配置索引 q分配給eMERGENCY,其中q {25,26,27},使eMERGENCY可以與任何單一頻率網路進行競爭。 For the highest type of traffic (e.g. eMERGENCY) to maximize access probability and minimize contention delay, modulus x =1 and {5,10} configuration index q is assigned to eMERGENCY, where q {25,26,27}, allowing eMERGENCY to compete with any single frequency network.
對於更高類型的流量(例如:uRLLC),為了增加存取機率以及減少競爭延遲,將帶有模數x=1以及{1,2,3}配置索引q分配給uRLLC,其中q {16,…,24}。 For higher types of traffic (for example: uRLLC), in order to increase access probability and reduce contention delay, modulus x =1 and {1,2,3} configuration index q is assigned to uRLLC, where q {16,…,24}.
反之,對於較低(例如:eMBB或Gaming…等)以及最低(即mMTC)類型的流量,我們將具有其他較大值x的配置索引q以及最小數量的隨機存取子訊框{1},分配給這些低流量類型,其中x {2,4,8,16}。也就是說,對於較低類型的流量(例如:eMBB或Gaming…等),將帶有模數x {2,4}以及{1}配置索引q分配給較低類型的流量,其中q {8,…,15},對於最低類型的流量(例如:mMTC),將帶有模數x {8,16}以及{1}配置索引q分配給最低類型的流量,其中q {0,…,7}。 On the contrary, for lower (e.g. eMBB or Gaming...etc.) and lowest (i.e. mMTC) type traffic, we will have other configuration index q with larger value x and a minimum number of random access subframes {1}, assigned to these low traffic types, where x {2,4,8,16}. That is, for lower types of traffic (eg: eMBB or Gaming... etc.), there will be a modulus x {2,4} and {1} Configure index q to be assigned to lower type traffic, where q {8,…,15}, for the lowest type of traffic (eg: mMTC), will be with modulus x {8,16} and {1} Configure index q to be assigned to the lowest type of traffic, where q {0,…,7}.
請參考「第2圖」所示,「第2圖」繪示為本發明多流量類型共用無線通道的5G適性競爭存取的不同類型單一頻率網路模數下的平均存取延時數據圖。 Please refer to "Figure 2". "Figure 2" shows the average access delay data under different types of single frequency network modules for 5G adaptive contention access of multiple traffic types sharing wireless channels according to the present invention.
基於使用不同的配置索引q以及不同數量的隨機存取子訊框進行動態競爭機率,評估了不同行動終端裝置數量下不同類型單一頻率網路模數x的存取延遲,所有存取延遲都隨著行動終端裝置數量的增加而增加。單一頻率網路模數x=1的類型產生最小的存取延遲,因為允許在任何給定的單一頻率網路上連接隨機存取前置訊號。反之,單一頻率網路模數x=16
的類型導致最長的存取延遲,因為競爭機率下降到,延時數據21請參考「第2圖」所示,在此不再進行贅述。
Based on dynamic contention probabilities using different configuration indexes q and different numbers of random access subframes, the access delays of different types of single-frequency networks modulus x under different numbers of mobile terminal devices are evaluated. All access delays vary with Increased with the increase in the number of mobile terminal devices. The type of single-frequency network modulus x = 1 produces the smallest access delay because random access preambles are allowed to be connected on any given single-frequency network. On the contrary, the type of single-frequency network modulus x =16 leads to the longest access delay, because the contention probability drops to , please refer to "Figure 2" for the
此外,為了最小化碰撞機率,將高類型的流量(例如:eMERGENCY以及uRLLC…等)增加動態可用的隨機存取子訊框,用於更高類型的流量(即eMERGENCY以及uRLLC…等),即為eMERGENCY設置x=1以及{5,10}進行分配以及為uRLLC設置x=1以及{1,2,3}進行分配。對於這兩種情況(即k=1 or 2),用於競爭前置訊號的隨機存取子訊框,是根據實體層訊框T+1,處的預測所需類型k競爭確定,即可由下列公式確定:
其中,F total 為一個隨機存取子訊框中前置訊號的總數,即可為預測請求分配最佳擬合,即當越大時也會越大,反之亦然。具體而言,假設uRLLC(例如:k=2)在實體層訊框T+1的預測競爭次數為,則將選擇產生最小值的值n,如下公式所示:或
如果>1,則採用最近最少使用(Least Recently Used,LRU)機制來選擇最優配置索引q。例如,假設對於uRLLC已決定並且具有使用累積計數的配置索引q {22,23,24},決定最優配置索
引即{},即實體層訊框T+1的子訊框集為子訊框2、5、8。
if >1, then the least recently used (Least Recently Used, LRU) mechanism is used to select the optimal configuration index q . For example, suppose For uRLLC has been decided and has configuration index q using cumulative count {22,23,24}, determine the optimal configuration index, which is { }, that is, the sub-frame of the physical layer frame T +1 The sets are
反之,對於較低類型的流量(例如:eMBB、Gaming以及mMTC…等),儘管實體層訊框中的隨機存取子訊框數量設置為1,即1,對於eMBB以及mMTC方塊…等,單一頻率網路模數,x {2,4}為根據預測所需的實體層訊框T+1,的類型k競爭確定,如下列公式所示:
為預測請求分配最佳擬合,因此,當越小時,會越大。例如,假設mMTC(k=4)在實體層訊框T+1的預測競爭次數為,則將選擇產生最大值16,如下列公式所示:或
對於的另一個舉例而言,當,將選擇產生最大值8,如下列公式所示:或
分析實體層訊框T,子訊框t中可用隨機存取前置訊號的成功競爭機率,如下列公式所示:
此外,從行動終端裝置的角度來看,如下列公式所示:
請參考「第3圖」所示,「第3圖」繪示為本發明多流量類型共用無線通道的5G適性競爭存取的不同競爭次數下的成功率模擬數據圖。 Please refer to "Figure 3". "Figure 3" illustrates a simulation data diagram of the success rate under different competition times for 5G adaptive contention access of multiple traffic types sharing wireless channels according to the present invention.
分別評估了分析以及模擬的成功機率,分析的成功機率以及不同競爭次數下的模擬非常接近。此外,分析以及模擬的成功機率以對數方式增加到最高點,然後以指數方式下降到零,模擬數據22請參考「第3圖」所示,在此不再進行贅述。
The success probabilities of analysis and simulation were evaluated separately. The success probabilities of analysis and simulation under different competition times were very close. In addition, the probability of success in analysis and simulation increases logarithmically to the highest point, and then decreases exponentially to zero. Please refer to "Figure 3" for the
為了在5G新無線傳輸的有限隨機存取前置訊號中有效地最大化成功競爭或最小化衝突機率,基於擴展的Sigmoid函數,透過自適應衝突域機制來區分不同類型流量的衝突域。自適應衝突域機制來區在不同類型的流量應具有單獨的衝突域以最小化類型間衝突以及具有不同競爭請求的不同類型流量應具有適當分離的前置訊號的隨機存取競爭範圍。 In order to effectively maximize successful competition or minimize the probability of collision in the limited random access preamble signal of 5G new wireless transmission, an adaptive collision domain mechanism is used to distinguish the collision domains of different types of traffic based on the extended Sigmoid function. The adaptive collision domain mechanism to differentiate between different types of traffic should have separate collision domains to minimize inter-type collisions and different types of traffic with different contention requests should have appropriately separated random access contention ranges of preambles.
對於每種類型的流量,自適應地確定一個隨機存取子訊框內所需的隨機存取前置訊號以及競爭範圍的下限值以及上限值。為了自適應地區分以及確定碰撞域,將考慮了擴展的Sigmoid函數,基於常態分佈的累積分佈函數(Cumulative Distribution Function,CDF),如下列公式:
其中,erf表示誤差函數,y表示影響因子,μ表示分佈的平均值或期望值,σ表示標準差。 Among them, erf represents the error function, y represents the influence factor, μ represents the mean or expected value of the distribution, and σ represents the standard deviation.
參數μ的ACB因子函數作為期望值決定了Sigmoid函數曲線的均值,參數μ公式如下:
作為標準差的參數σ的ACB因子函數影響Sigmoid函數曲線的寬度。我們擴展採用參數為b的Sigmoid函數,其中機率,因此參數σ公式如下:
較高值的σ平滑地在0 f id 53增加函數,但是,較低值的σ急劇增加ACB(y,u,σ)函數。 Higher values of σ lie smoothly at 0 f id 53 increases the function, however, lower values of σ sharply increase the ACB ( y,u,σ ) function.
參數y的ACB因子函數作為Sigmoid函數的影響因子,在隨機存取中最關鍵的因子是競爭成功機率,所以為了高效傳輸應該增加。參數如下列公式:
其中,y的範圍可以根據Sigmoid函數-3 x 4曲線確定。
Among them, the range of y can be based on the Sigmoid function-3
在動態確定行動終端裝置的每一類型流量的前置訊號,根據下列公式製定權重:
其中,F total 是54個非常競爭子訊框的競爭前置訊號,E[]表示k類型流量的預期平均ACB因子。 Among them, F total is the competitive pre-signal of 54 very competitive sub-frames, E [ ] represents the expected average ACB factor for type k traffic.
即可得到行動終端裝置每k類型流量的上限值以及下限值,當k=1時如下所示:
當k≠1時如下所示:
其中,表示最低類型(k=K)的下限值。 in, Represents the lower bound value of the lowest type ( k = K ).
假設行動終端裝置k類型流量的平均存取類型限制因子E[],如下所示:
以及
然後,前置訊號範圍可以由下列公式決定:
以及
最後,所有類型的上限值以及下限值即可由下列公式決定:當k=1時,
當k≠1時,如下所示:以及 When k ≠1, as follows: as well as
以及 as well as
以及 as well as
最後,按需求以及週期性地計算以決定,服務基地台通過系統訊息方塊(System Information Block,SIB)訊息向行動終端裝置發送最新訊息,藉由流量類型ID、前置訊號集的第一個索引()以及前置訊號競爭範圍() Finally, based on demand and periodic calculation to determine, the serving base station sends the latest information to the mobile terminal device through the System Information Block (SIB) message, using the traffic type ID and the first index of the preamble signal set ( ) and the pre-signal competition range ( )
基於使用不同的配置索引以及不同數量的隨機存取子訊框動態競爭機率以及自適應區分隨機存取子訊框內的衝突域,即可實現增加更高類型流的存取競爭機率以及最小化衝突機率。 Based on the use of different configuration indexes and different numbers of random access subframes with dynamic contention probabilities and adaptive differentiation of collision domains within random access subframes, the access contention probability of higher types of flows can be increased and minimized Probability of conflict.
接著,以下將說明本發明的運作方法,並請同時參考「第1圖」以及「第4圖」所示,「第4圖」繪示為本發明多流量類型共用無線通道的5G適性競爭存取方法的方法流程圖。 Next, the operation method of the present invention will be described below, and please refer to "Figure 1" and "Figure 4" at the same time. "Figure 4" illustrates the 5G adaptive contention storage of multiple traffic types sharing wireless channels of the present invention. Method flow chart of the method.
首先,將低模數分配給5G流量資料傳輸時的高流量類型(步驟101);接著,將高模數分配給5G流量資料傳輸時的低流量類型(步驟102):接著,預測每一種流量類型的請求資料速率(步驟103);接著,動態決定實體層訊框的隨機存取子訊框數量(步驟104);最後,依據每一種流量類型自適應決定隨機存取子訊框內所需的隨機存取前置訊號範圍以及每一種流量類型的競爭範圍中上限值以及下限值(步驟105)。 First, assign a low modulus to the high traffic type when transmitting 5G traffic data (step 101); then, assign a high modulus to the low traffic type when transmitting 5G traffic data (step 102): Next, predict each type of traffic The requested data rate of the type (step 103); then, dynamically determine the number of random access subframes of the physical layer frame (step 104); finally, adaptively determine the required number of random access subframes according to each traffic type. The random access preamble range and the upper and lower bounds of the contention range for each traffic type (step 105).
綜上所述,可知本發明與先前技術之間的差異在於將低模數分配給5G流量資料傳輸時的高流量類型,將高模數分配給5G流量資料傳輸時的低流量類型,預測每一種流量類型的請求資料速率,動態決定實體層訊框的隨機存取子訊框數量,依據每一種流量類型自適應決定隨機存取子訊框內所需的隨機存取前置訊號範圍以及每一種流量類型的競爭範圍中上限值以及下限值。 To sum up, it can be seen that the difference between the present invention and the prior art is that the low modulus is assigned to the high traffic type when 5G traffic data is transmitted, and the high modulus is assigned to the low traffic type when 5G traffic data is transmitted. It is predicted that each The requested data rate of a traffic type dynamically determines the number of random access subframes of the physical layer frame, and adaptively determines the required random access preamble signal range and each random access subframe according to each traffic type. The upper and lower limits of the contention range for a traffic type.
本發明在5G中所實現的重要目標如下:最小化流量類型的隨機存取衝突機率以及競爭衝突,並且最大化不同流量類型的連接獎勵以及效能,最小化E2E延遲和最大化SFC對更高類型流量的可靠性,最大化低流量類型(例如:eMBB、mMTC…等)的數據速率等。 The important goals achieved by the present invention in 5G are as follows: minimizing the random access conflict probability and contention conflicts of traffic types, maximizing connection rewards and performance of different traffic types, minimizing E2E delay and maximizing SFC for higher types Traffic reliability, maximizing the data rate of low traffic types (such as: eMBB, mMTC...etc.), etc.
藉由此一技術手段可以來解決先前技術所存在現有5G資料傳輸時高優先權流量的高競爭衝突率導致5G整體存取延遲的問題,進而達成增加優先權較高流量的5G存取競爭機率,使衝突機率最小化與降低5G存取延遲的技術功效。 This technical means can solve the problem of the previous technology that the high contention conflict rate of high-priority traffic during 5G data transmission leads to the overall 5G access delay, thereby increasing the probability of 5G access competition for higher-priority traffic. , the technical effect of minimizing the probability of conflicts and reducing 5G access delays.
雖然本發明所揭露的實施方式如上,惟所述的內容並非用以直接限定本發明的專利保護範圍。任何本發明所屬技術領域中具有通常知識者,在不脫離本發明所揭露的精神和範圍的前提下,可以在實施的形式上及細節上作些許的更動。本發明的專利保護範圍,仍須以所附的申請專利範圍所界定者為準。 Although the embodiments disclosed in the present invention are as above, the described contents are not used to directly limit the patent protection scope of the present invention. Anyone with ordinary knowledge in the technical field to which the present invention belongs may make slight changes in the form and details of the implementation without departing from the spirit and scope of the disclosure of the present invention. The patent protection scope of the present invention must still be defined by the attached patent application scope.
10:行動終端裝置 10: Mobile terminal device
11:分配模組 11: Assign module
12:預測分析模組 12: Predictive analysis module
13:動態調整模組 13:Dynamic adjustment module
14:自適應計算模組 14:Adaptive computing module
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW110128132A TWI823126B (en) | 2021-07-30 | 2021-07-30 | 5g adaptive contention access system with shared wireless channels for multiple traffic categories and method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW110128132A TWI823126B (en) | 2021-07-30 | 2021-07-30 | 5g adaptive contention access system with shared wireless channels for multiple traffic categories and method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW202306420A TW202306420A (en) | 2023-02-01 |
| TWI823126B true TWI823126B (en) | 2023-11-21 |
Family
ID=86661465
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW110128132A TWI823126B (en) | 2021-07-30 | 2021-07-30 | 5g adaptive contention access system with shared wireless channels for multiple traffic categories and method thereof |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI823126B (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW200924431A (en) * | 2007-08-08 | 2009-06-01 | Qualcomm Inc | Apparatus and method for channel reservation in wireless communication systems |
| TW201331837A (en) * | 2011-12-16 | 2013-08-01 | Intel Corp | Generational thread scheduler |
| US10367677B2 (en) * | 2016-05-13 | 2019-07-30 | Telefonaktiebolaget Lm Ericsson (Publ) | Network architecture, methods, and devices for a wireless communications network |
-
2021
- 2021-07-30 TW TW110128132A patent/TWI823126B/en active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW200924431A (en) * | 2007-08-08 | 2009-06-01 | Qualcomm Inc | Apparatus and method for channel reservation in wireless communication systems |
| TW201331837A (en) * | 2011-12-16 | 2013-08-01 | Intel Corp | Generational thread scheduler |
| US10367677B2 (en) * | 2016-05-13 | 2019-07-30 | Telefonaktiebolaget Lm Ericsson (Publ) | Network architecture, methods, and devices for a wireless communications network |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202306420A (en) | 2023-02-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12035347B2 (en) | Medium access control schedulers for wireless communication | |
| CN1097893C (en) | Method and device for accessing communication system | |
| US7843943B2 (en) | Differentiation for bandwidth request contention | |
| Khatibi et al. | Modelling and implementation of virtual radio resources management for 5G Cloud RAN | |
| CN1157984C (en) | Radio resource planning method based on GPRS service type | |
| Pacheco-Paramo et al. | Delay-aware dynamic access control for mMTC in wireless networks using deep reinforcement learning | |
| CN114885376B (en) | Frame structure configuration method, device and storage medium | |
| KR101948872B1 (en) | Method of Joint Optimization of Channel Selection and Frame Scheduling for Coexistence of LTE and WLAN in Unlicensed Band | |
| WO2015096011A1 (en) | Method, device, user equipment, and network side device for multicarrier aggregation | |
| US9907090B2 (en) | Method and apparatus for random access in virtual cell network system | |
| CN104219772B (en) | A kind of channel access method and channel access device | |
| CN117412383A (en) | Bandwidth allocation method, system, electronic equipment and storage medium | |
| Nafaa | Provisioning of multimedia services in 802.11-based networks: facts and challenges | |
| CN114845338B (en) | A random backoff method for user access | |
| TWI823126B (en) | 5g adaptive contention access system with shared wireless channels for multiple traffic categories and method thereof | |
| CN113473419B (en) | Method for accessing machine type communication device into cellular data network based on reinforcement learning | |
| CN101841870B (en) | Admission control method and device for soft frequency reuse scene | |
| Asheralieva et al. | Resource allocation for LTE-based cognitive radio network with queue stability and interference constraints | |
| US8045577B2 (en) | Method and apparatus for allocating wireless resource and wireless network system | |
| US20180331964A1 (en) | Scheduling Mechanism for Ultra-Reliable Low-Latency Communication Data Transmissions | |
| Chang et al. | Adaptive flowing traffic prediction in contention random access for optimizing virtual/physical resource in B5G/5G new radio and core network | |
| CN109905922B (en) | A Massive Terminal Access Method Based on Slotted Aloha and Adaptive ACB Hybrid | |
| CN112261693A (en) | Resource allocation method and device | |
| CN116709567A (en) | A joint learning access method based on channel characteristics | |
| KR101606951B1 (en) | Method of allocating channel time for variable bit rate (vbr) traffic, apparatus for processing data and method thereof |