[go: up one dir, main page]

TWI810688B - Intelligent displacement monitoring system and method thereof - Google Patents

Intelligent displacement monitoring system and method thereof Download PDF

Info

Publication number
TWI810688B
TWI810688B TW110139431A TW110139431A TWI810688B TW I810688 B TWI810688 B TW I810688B TW 110139431 A TW110139431 A TW 110139431A TW 110139431 A TW110139431 A TW 110139431A TW I810688 B TWI810688 B TW I810688B
Authority
TW
Taiwan
Prior art keywords
data
point cloud
displacement
output
intelligent
Prior art date
Application number
TW110139431A
Other languages
Chinese (zh)
Other versions
TW202317935A (en
Inventor
黃韋凱
羅偉庭
邱家吉
Original Assignee
財團法人中興工程顧問社
洛特科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人中興工程顧問社, 洛特科技有限公司 filed Critical 財團法人中興工程顧問社
Priority to TW110139431A priority Critical patent/TWI810688B/en
Publication of TW202317935A publication Critical patent/TW202317935A/en
Application granted granted Critical
Publication of TWI810688B publication Critical patent/TWI810688B/en

Links

Landscapes

  • Jib Cranes (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

An intelligent displacement monitoring system is disclosed. The intelligent displacement monitoring system includes at least one Lidar scanner, a point cloud construction engine, a displacement analysis engine and an output device. The Lidar scanner is adapted to scan a monitored surface and output a first scanning data at a first timing and output a second scanning data at a second timing. The point cloud construction engine is adapted to output a first point cloud data according to the first scanning data, and output a second point cloud data according to the second scanning data. The displacement analysis engine is adapted to analyze the first point cloud data and the second point cloud data, thereby outputting a displacement data. The output device is adapted to receive the displacement data and display the displacement data in visual. An intelligent displacement monitoring method is further disclosed.

Description

智慧型變位監測系統與方法 Intelligent displacement monitoring system and method

本發明係提供一種監測系統與方法,尤指一種藉由光達掃描器所建立的一種智慧型變位監測系統與方法。 The present invention provides a monitoring system and method, especially an intelligent displacement monitoring system and method established by a LiDAR scanner.

人工設施在建造過程中,必須對於建設到一半的結構進行監控,以防止產生破壞性的位移。此外,設置在風險高的區域的設施在建造完成後,也需定期監測,以防止設施被地震或風災等自然現象破壞。可利用光達掃描器(LIDAR)對關鍵的表面定期進行量測,然而若破壞性位移發生在量測期間的空檔期,且進一步造成災害,經常會造成無可挽回的遺憾。 During the construction of artificial facilities, the half-built structure must be monitored to prevent destructive displacement. In addition, facilities installed in high-risk areas also need to be regularly monitored after construction to prevent them from being damaged by natural phenomena such as earthquakes or wind disasters. Critical surfaces can be measured regularly with LiDAR scanners, however, if destructive displacements occur during the gaps between measurements and cause further disasters, it is often irreparable.

發明人遂竭其心智悉心研究,進而研發出一種智慧型變位監測系統與方法,以期達到即時監控與預警的目的。 The inventor then exhausted his mind to study carefully, and then developed an intelligent displacement monitoring system and method, in order to achieve the purpose of real-time monitoring and early warning.

本發明的第一態樣提供一種智慧型變位監測系統,其包含至少一光達掃描器、一點雲建構引擎、一變位分析引擎以及一輸出裝置。該光達掃描器適於掃描一被監測表面,並於一第一時間輸出一第一掃描數據,以及於一第二時間輸出一第二掃描數據。該點雲建構引擎耦接於該光達掃描器並適於依據該第一掃描數據與該第二掃描數據輸出一第一點雲數據與一第二點雲數據。該變位分析引擎偶接於該點雲建構引擎,並適於針對該第一點雲數據與該第二點雲數據進行分析,以輸出一變位數據。該輸出裝置偶接於該變位分析引擎,並適於接收該變位數據且以一視覺化方式顯示該變位數據。 A first aspect of the present invention provides an intelligent displacement monitoring system, which includes at least one LiDAR scanner, a point cloud construction engine, a displacement analysis engine, and an output device. The lidar scanner is suitable for scanning a monitored surface, and outputs a first scan data at a first time, and outputs a second scan data at a second time. The point cloud construction engine is coupled to the lidar scanner and is adapted to output a first point cloud data and a second point cloud data according to the first scan data and the second scan data. The displacement analysis engine is coupled to the point cloud construction engine, and is suitable for analyzing the first point cloud data and the second point cloud data to output a displacement data. The output device is coupled to the displacement analysis engine and is suitable for receiving the displacement data and displaying the displacement data in a visual manner.

本發明的第二態樣提供一種智慧型變位監測方法,其包含以下步驟:提供至少一光達掃描器,並使用該光達掃描器掃描一被監測表面,以於一第一時間輸出一第一掃描數據,以及於一第二時間輸出一第二掃描數據;提供一點雲建構引擎,該點雲建構引擎是依據該第一掃描數據與該第二掃描數據輸出一第一點雲數據與一第二點雲數據;提供一變位分析引擎,該變位分析引擎是針對該第一點雲數據與該第二點雲數據進行分析,以輸出一變位數據;以及提供一輸出裝置,該輸出裝置接收該變位數據,且以一視覺化方式顯示該變位數據。 The second aspect of the present invention provides an intelligent displacement monitoring method, which includes the following steps: providing at least one LiDAR scanner, and using the LiDAR scanner to scan a monitored surface to output a The first scan data, and output a second scan data at a second time; provide a point cloud construction engine, the point cloud construction engine is based on the first scan data and the second scan data output a first point cloud data and the second scan data A second point cloud data; providing a displacement analysis engine, the displacement analysis engine analyzes the first point cloud data and the second point cloud data to output a displacement data; and provides an output device, The output device receives the displacement data and displays the displacement data in a visual manner.

在一實施例中,該點雲建構引擎對該第一掃描數據與該第二掃描數據進行一雜訊濾除程序,以輸出該第一點雲數據與該第二點雲數據。 In one embodiment, the point cloud construction engine performs a noise filtering process on the first scan data and the second scan data to output the first point cloud data and the second point cloud data.

在一實施例中,該雜訊濾除程序是藉由多尺度模對模雲比對(Multiscale Model to Model Cloud Comparison,M3C2)演算法,來分析該第一點雲數據與該第二點雲數據。 In one embodiment, the noise filtering process is to analyze the first point cloud data and the second point cloud by using a multiscale model to model cloud comparison (M3C2) algorithm. data.

在一實施例中,該變位分析引擎是將該變位數據與一變位閥值進行比較,當該變位數據超過該變位閥值時,向該輸出裝置輸出一變位警報。 In one embodiment, the displacement analysis engine compares the displacement data with a displacement threshold, and outputs a displacement alarm to the output device when the displacement data exceeds the displacement threshold.

在一實施例中,該視覺化方式包括藉由顏色的分布來顯示該被監測表面的位移狀況。 In one embodiment, the visualization method includes displaying the displacement status of the monitored surface through the distribution of colors.

在一實施例中,該輸出裝置為一行動通訊裝置或一顯示器。 In one embodiment, the output device is a mobile communication device or a display.

在一實施例中,該被監測表面為一人工構造物的表面。 In one embodiment, the monitored surface is a surface of an artificial structure.

藉此,本發明的智慧型變位監測系統與方法可保持對於被監測表面的監控,從而在發生破壞性位移時即時發出預警。 In this way, the intelligent displacement monitoring system and method of the present invention can maintain monitoring of the monitored surface, so as to issue an early warning when destructive displacement occurs.

1:智慧型變位監測系統 1: Intelligent displacement monitoring system

10:光達掃描器 10:Lidar Scanner

11:點雲建構引擎 11: Point cloud construction engine

12:變位分析引擎 12: Displacement analysis engine

13:輸出裝置 13: Output device

13A:顯示器 13A: Display

13B:行動通訊裝置 13B: Mobile communication device

4:資料儲存與即時解算伺服器 4: Data storage and real-time calculation server

5:擋土牆 5: retaining wall

50:表面 50: surface

6:建物地基 6: Building foundation

8:建築物 8: Buildings

80:外牆面 80: Exterior wall

D/2:半徑 D/2: Radius

d/2:半徑 d/2: radius

G1:第一點雲群 G1: The first point cloud group

G2:第二點雲群 G2: The second point cloud group

i:核心點 i: core point

i1:點 i 1 : point

i2:點 i 2 : point

L:距離 L: distance

Figure 110139431-A0305-02-0010-3
:平面法線方向
Figure 110139431-A0305-02-0010-3
: plane normal direction

R1:綠色區域 R1: Green area

R2:黃色區域 R2: Yellow area

R3:紅色區域 R3: red zone

S1:第一擬合平面 S 1 : the first fitting plane

S2:第二擬合平面 S 2 : the second fitting plane

S101:步驟 S101: step

S102:步驟 S102: step

S103:步驟 S103: step

S104:步驟 S104: step

圖1是本發明具體實施例的智慧型變位監測系統的方塊示意圖。 FIG. 1 is a schematic block diagram of an intelligent displacement monitoring system according to a specific embodiment of the present invention.

圖2是本發明具體實施例的智慧型變位監測方法的流程示意圖。 Fig. 2 is a schematic flowchart of a smart displacement monitoring method according to a specific embodiment of the present invention.

圖3是本發明具體實施例的智慧型變位監測系統應用於監測滑坡的示意圖。 Fig. 3 is a schematic diagram of the application of the intelligent displacement monitoring system of the specific embodiment of the present invention in monitoring landslides.

圖4是本發明具體實施例的智慧型變位監測系統應用於監測建築物的示意圖。 Fig. 4 is a schematic diagram of the application of the intelligent displacement monitoring system of the specific embodiment of the present invention in monitoring buildings.

圖5A是應用於本發明的點雲建構引擎進行雜訊濾除的示意圖一。 FIG. 5A is a first schematic diagram of noise filtering performed by the point cloud construction engine applied in the present invention.

圖5B是應用於本發明的點雲建構引擎進行雜訊濾除的示意圖二。 FIG. 5B is a second schematic diagram of noise filtering applied to the point cloud construction engine of the present invention.

圖6是本發明具體實施例的智慧型變位監測系統的輸出裝置顯示視覺化變位數據的示意圖。 FIG. 6 is a schematic diagram of displaying visual displacement data by an output device of an intelligent displacement monitoring system according to a specific embodiment of the present invention.

為充分瞭解本發明之目的、特徵及功效,茲藉由下述具體之實施例,並配合所附之圖式,對本發明做一詳細說明,說明如後: In order to fully understand the purpose, features and effects of the present invention, the present invention will be described in detail through the following specific embodiments and accompanying drawings, as follows:

如圖1所示,本發明的第一態樣是提供一種智慧型變位監測系統1。智慧型變位監測系統1包含至少一光達掃描器10、一點雲建構引擎11、一變位分析引擎12以及一輸出裝置13。該光達掃描器10適於掃描一被監測表面,並於一第一時間輸出一第一掃描數據,以及於一第二時間輸出一第二掃描數據。該點雲建構引擎11耦接於該光達掃描器10且適於依據該第一掃描數據與該第二掃描數據輸出一第一點雲數據與一第二點雲數據。該變位分析引擎12耦接於該 點雲建構引擎11且適於針對該第一點雲數據與該第二點雲數據進行分析,以輸出一變位數據。該輸出裝置13耦接於該變位分析引擎12,且適於接收該變位數據,從而以一視覺化方式顯示該變位數據。 As shown in FIG. 1 , the first aspect of the present invention is to provide an intelligent displacement monitoring system 1 . The intelligent displacement monitoring system 1 includes at least one LiDAR scanner 10 , a point cloud construction engine 11 , a displacement analysis engine 12 and an output device 13 . The LiDAR scanner 10 is adapted to scan a surface to be monitored, and output a first scan data at a first time, and output a second scan data at a second time. The point cloud construction engine 11 is coupled to the LiDAR scanner 10 and is adapted to output a first point cloud data and a second point cloud data according to the first scan data and the second scan data. The displacement analysis engine 12 is coupled to the The point cloud construction engine 11 is suitable for analyzing the first point cloud data and the second point cloud data to output a displacement data. The output device 13 is coupled to the displacement analysis engine 12 and is suitable for receiving the displacement data so as to display the displacement data in a visual manner.

如圖1及圖2所示,本發明的第二態樣是提供一種智慧型變位監測方法,其包含以下步驟: As shown in Figure 1 and Figure 2, the second aspect of the present invention is to provide an intelligent displacement monitoring method, which includes the following steps:

S101:提供至少一光達掃描器(例如圖1所示的光達掃描器10),並使用該光達掃描器掃描一被監測表面,以於一第一時間輸出一第一掃描數據,以及於一第二時間輸出一第二掃描數據。 S101: Provide at least one LiDAR scanner (such as the LiDAR scanner 10 shown in FIG. 1), and use the LiDAR scanner to scan a monitored surface to output a first scan data at a first time, and Outputting a second scan data at a second time.

S102:提供一點雲建構引擎(例如圖1所示的點雲建構引擎11),該點雲建構引擎是依據該第一掃描數據與該第二掃描數據輸出一第一點雲數據與一第二點雲數據。 S102: Provide a point cloud construction engine (such as the point cloud construction engine 11 shown in FIG. point cloud data.

S103:提供一變位分析引擎(例如圖1所示的變位分析引擎12),該變位分析引擎是針對該第一點雲數據與該第二點雲數據進行分析,以輸出一變位數據。 S103: Provide a displacement analysis engine (such as the displacement analysis engine 12 shown in FIG. 1 ), the displacement analysis engine analyzes the first point cloud data and the second point cloud data to output a displacement data.

S104:提供一輸出裝置(例如圖1所示的輸出裝置13),該輸出裝置接收該變位數據,且以一視覺化方式顯示該變位數據。 S104: Provide an output device (such as the output device 13 shown in FIG. 1 ), the output device receives the displacement data, and displays the displacement data in a visual manner.

如上所述,本發明的智慧型變位監測系統1與方法可保持對於被監測表面的監控,從而在發生破壞性位移時即時發出預警。 As mentioned above, the intelligent displacement monitoring system 1 and method of the present invention can maintain monitoring of the monitored surface, so as to issue an early warning when destructive displacement occurs.

如圖1所示,在一實施例中,該變位分析引擎12是將該變位數據與一變位閥值進行比較,當該變位數據超過該變位閥值時,向該輸出裝置13輸出一變位警報,例如警告視窗及/或警報聲響。 As shown in Figure 1, in one embodiment, the displacement analysis engine 12 compares the displacement data with a displacement threshold, and when the displacement data exceeds the displacement threshold, the output device 13 Outputting a displacement alarm, such as a warning window and/or an alarm sound.

如圖1及3所示,在一實施例中,該被監測表面可為一人工構造物的表面,例如用於阻擋滑坡的擋土牆5的表面50。在此實施例中,是使用複數光達掃描器10以不同的角度來掃描表面50。該點雲建構引擎11及該變位分析引擎12可整合在一資料儲存與即時解算伺服器4中,例如可為安裝在該資料儲存與即時解算伺服器4中的軟體或應用程式。資料儲存與即時解算伺服器4可設置在滑坡附近的一機房(未繪示)中,並藉由線路連接於該些光達掃描器10。資料儲存與即時解算伺服器4也可設置在遠端,滑坡附近的機房可僅設置用於連接該些光達掃描器10的電腦(未繪示),再透過網路將光達掃描器10所掃描得到的數據傳輸到資料儲存與即時解算伺服器4進行分析。該些光達掃描器10是以每小時一次、每日一次或其他的頻率對坡面進行掃描以獲得掃描數據。輸出裝置13可為電性連接於該資料儲存與即時解算伺服器4的顯示器13A,或透過網際網路連接到該資料儲存與即時解算伺服器4的行動通訊裝置13B。當監控者有多位時,除了顯示器13A以外,資料儲存與即時解算伺服器4也可將變位數據以及相關的圖像透過網際網路傳送到多位監控者的行動通訊裝置13B中。此外,該點雲建構引擎11及該變位分析引擎12也可儲存在一非暫態多媒體儲存裝置(未繪示)中來執行,例如可儲存在一光碟或一隨身硬碟中。 As shown in FIGS. 1 and 3 , in one embodiment, the monitored surface may be a surface of an artificial structure, such as a surface 50 of a retaining wall 5 used to prevent landslides. In this embodiment, multiple LiDAR scanners 10 are used to scan the surface 50 at different angles. The point cloud construction engine 11 and the displacement analysis engine 12 can be integrated in a data storage and real-time calculation server 4 , such as software or application programs installed in the data storage and real-time calculation server 4 . The data storage and real-time calculation server 4 can be set in a machine room (not shown) near the landslide, and connected to the LiDAR scanners 10 by wires. The data storage and real-time calculation server 4 can also be set at the remote end, and the computer room near the landslide can only be provided with computers (not shown) used to connect the lidar scanners 10, and then connect the lidar scanners 10 through the network. 10 The scanned data is transmitted to the data storage and real-time calculation server 4 for analysis. The LiDAR scanners 10 scan the slope once an hour, once a day or other frequencies to obtain scanning data. The output device 13 can be a display 13A electrically connected to the data storage and real-time calculation server 4, or a mobile communication device 13B connected to the data storage and real-time calculation server 4 through the Internet. When there are multiple monitors, in addition to the display 13A, the data storage and real-time calculation server 4 can also transmit the displacement data and related images to the mobile communication devices 13B of multiple monitors through the Internet. In addition, the point cloud construction engine 11 and the displacement analysis engine 12 can also be stored in a non-transitory multimedia storage device (not shown), such as an optical disc or a portable hard disk, for execution.

如圖1及4所示,在一實施例中,本發明的智慧型變位監測系統1所監測的被監測表面也可為鄰近建物地基6的建築物8的外牆面80以及建物地基6的壁面,藉由監控外牆面80及建物地基6的壁面的變位,以了解建物地基6的開挖是否對於附近的建築物8造成損壞。 As shown in Figures 1 and 4, in one embodiment, the monitored surface monitored by the intelligent displacement monitoring system 1 of the present invention may also be the outer wall surface 80 of the building 8 adjacent to the building foundation 6 and the building foundation 6 By monitoring the displacement of the outer wall surface 80 and the wall surface of the building foundation 6, it is known whether the excavation of the building foundation 6 has caused damage to the nearby buildings 8.

如圖1所示,該光達掃描器10可發出大約850奈米至950奈米(較佳地約905奈米)之間的雷射波長,並具有防塵與防水特性,而此範圍波長的雷 射並不會對人眼造成傷害。該光達掃描器10在水平方向的掃描角度可約為70度,垂直方向約為77度。該光達掃描器10每秒可掃描大約720000點的點雲數據量,且適用於與被監測表面相隔大於約3公尺的距離。 As shown in FIG. 1, the LiDAR scanner 10 can emit laser wavelengths between about 850 nm to 950 nm (preferably about 905 nm), and has dustproof and waterproof characteristics, and the wavelength of this range thunder Shooting does not cause damage to the human eye. The scanning angle of the LiDAR scanner 10 may be about 70 degrees in the horizontal direction, and about 77 degrees in the vertical direction. The lidar scanner 10 can scan about 720,000 points of point cloud data per second, and is suitable for a distance greater than about 3 meters from the surface to be monitored.

如圖1及圖6所示,在一實施例中,該輸出裝置13所輸出的視覺化方式包括藉由顏色的分布來顯示該被監測表面的位移狀況,以讓監測者可由顏色的分布快速了解位移的程度以及位移區域,例如在圖6中所示的行動通訊裝置13B所接收到的視覺化變位數據,藉由空心圓圈來表示的綠色區域R1、藉由具有斜線的圓圈來表示的黃色區域R2以及藉由實心圓圈來表示的紅色區域R3,從而分別表示不同的變位量。 As shown in Figures 1 and 6, in one embodiment, the visualization mode output by the output device 13 includes displaying the displacement status of the monitored surface through the distribution of colors, so that the monitor can quickly view the displacement of the monitored surface from the distribution of colors. Understand the degree of displacement and the displacement area, such as the visual displacement data received by the mobile communication device 13B shown in FIG. The yellow region R2 and the red region R3 represented by solid circles represent different displacement amounts, respectively.

如圖1及圖5A至圖5B所示,在一實施例中,該點雲建構引擎11對該第一掃描數據與該第二掃描數據進行一雜訊濾除程序,以輸出該第一點雲數據與該第二點雲數據。較佳地,該雜訊濾除程序是藉由多尺度模對模雲比對(Multiscale Model to Model Cloud Comparison,M3C2)演算法,來分析該第一點雲數據與該第二點雲數據。如圖5A所示,第一時間與第二時間分別所擷取的第一點雲數據與第二點雲數據在該點雲建構引擎11中可分別表示為一第一點雲群G1與一第二點雲群G2。第一點雲群G1與第二點雲群G2分別包括一第一擬合平面S1與一第二擬合平面S2。首先在第一點雲群G1中先取一核心點i,可在此核心點i的周圍定義半徑為D/2的範圍,並藉此找出第一點雲群G1朝向第二點雲群G2(即垂直於第一擬合平面S1)的一平面法線方向

Figure 110139431-A0305-02-0008-1
。如圖5B所示,接著在平面法線方向
Figure 110139431-A0305-02-0008-2
上定義半徑為d/2的一圓柱範圍,並計算核心點i所投影到第一擬合平面S1與第二擬合平面S2的複數組點雲距離,包括從第一擬合平面S1往第二擬合平面S2的投影距離以及從第二擬合平面S2往第一擬合平面S1的投影距離,兩投 影距離的平均值可為圖5B所示的點i1與點i2之間的距離L,而藉由兩投影距離的兩倍標準差可計算出點雲粗糙度(cloud roughness),從而將雜訊濾除。 As shown in FIG. 1 and FIG. 5A to FIG. 5B, in one embodiment, the point cloud construction engine 11 performs a noise filtering process on the first scan data and the second scan data to output the first point cloud data and the second point cloud data. Preferably, the noise filtering program analyzes the first point cloud data and the second point cloud data by using a Multiscale Model to Model Cloud Comparison (M3C2) algorithm. As shown in FIG. 5A, the first point cloud data and the second point cloud data captured at the first time and the second time respectively can be represented as a first point cloud group G1 and a point cloud group G1 in the point cloud construction engine 11. The second point cloud group G2. The first point cloud group G1 and the second point cloud group G2 respectively include a first fitting plane S 1 and a second fitting plane S 2 . First, take a core point i in the first point cloud group G1, and define a radius of D/2 around the core point i, and find out the direction of the first point cloud group G1 towards the second point cloud group G2 (that is, the normal direction of a plane perpendicular to the first fitting plane S 1 )
Figure 110139431-A0305-02-0008-1
. As shown in Figure 5B, then in the plane normal direction
Figure 110139431-A0305-02-0008-2
Define the range of a cylinder with a radius of d/2 above, and calculate the complex group point cloud distance projected from the core point i to the first fitting plane S 1 and the second fitting plane S 2 , including from the first fitting plane S The projection distance from 1 to the second fitting plane S2 and the projection distance from the second fitting plane S2 to the first fitting plane S1 , the average of the two projection distances can be the points i1 and 1 shown in Figure 5B The distance L between point i 2 , and the point cloud roughness (cloud roughness) can be calculated by twice the standard deviation of the two projection distances, so as to filter out noise.

如圖1至圖4所示,綜上所述,本發明的智慧型變位監測系統1與方法,使用者可自訂光達掃描器10的掃描頻率,利用光達掃描器10針對平整且單一材料的人工構造物表面進行掃描,再由點雲建構引擎11及變位分析引擎12進行監測與分析,本發明的智慧型變位監測系統1與方法對於變位的計算可達正負5公厘的平均誤差度,尤其對於慢速滑動(大約每天兩公分)的破壞性位移,可達到即時發現與預警的效果。 As shown in Figures 1 to 4, in summary, in the intelligent displacement monitoring system 1 and method of the present invention, the user can customize the scanning frequency of the LiDAR scanner 10, and use the LiDAR scanner 10 to target flat and The surface of the artificial structure of a single material is scanned, and then monitored and analyzed by the point cloud construction engine 11 and the displacement analysis engine 12. The intelligent displacement monitoring system 1 and method of the present invention can calculate the displacement up to plus or minus 5 kilometers The average error degree of centimeters, especially for the destructive displacement of slow sliding (about two centimeters per day), can achieve the effect of instant detection and early warning.

本發明在上文中已以較佳實施例揭露,然熟習本項技術者應理解的是,該實施例僅用於描繪本發明,而不應解讀為限制本發明之範圍。應注意的是,舉凡與該實施例等效之變化與置換,均應設為涵蓋於本發明之範疇內。因此,本發明之保護範圍當以申請專利範圍所界定者為準。 The present invention has been disclosed above with preferred embodiments, but those skilled in the art should understand that the embodiments are only used to describe the present invention, and should not be construed as limiting the scope of the present invention. It should be noted that all changes and substitutions equivalent to the embodiment should be included in the scope of the present invention. Therefore, the scope of protection of the present invention should be defined by the scope of the patent application.

1:智慧型變位監測系統 1: Intelligent displacement monitoring system

10:光達掃描器 10:Lidar Scanner

11:點雲建構引擎 11: Point cloud construction engine

12:變位分析引擎 12: Displacement analysis engine

13:輸出裝置 13: Output device

4:資料儲存與即時解算伺服器 4: Data storage and real-time calculation server

Claims (10)

一種智慧型變位監測系統,包含:至少一光達掃描器,其適於掃描一被監測表面,並於一第一時間輸出一第一掃描數據,以及於一第二時間輸出一第二掃描數據;一點雲建構引擎,其耦接於該光達掃描器,並適於依據該第一掃描數據與該第二掃描數據輸出一第一點雲數據與一第二點雲數據;一變位分析引擎,其耦接於該點雲建構引擎,並適於針對該第一點雲數據與該第二點雲數據進行分析,以輸出一變位數據;以及一輸出裝置,其耦接於該變位分析引擎,並適於接收該變位數據且以一視覺化方式顯示該變位數據。 An intelligent displacement monitoring system, comprising: at least one LiDAR scanner, which is suitable for scanning a monitored surface, and outputs a first scan data at a first time, and outputs a second scan data at a second time Data; a point cloud construction engine, which is coupled to the LiDAR scanner, and is adapted to output a first point cloud data and a second point cloud data according to the first scan data and the second scan data; a displacement an analysis engine, which is coupled to the point cloud construction engine, and is suitable for analyzing the first point cloud data and the second point cloud data to output a displacement data; and an output device, which is coupled to the The displacement analysis engine is suitable for receiving the displacement data and displaying the displacement data in a visual manner. 如請求項1所述的智慧型變位監測系統,其中該點雲建構引擎對該第一掃描數據與該第二掃描數據進行一雜訊濾除程序,以輸出該第一點雲數據與該第二點雲數據。 The intelligent displacement monitoring system as described in claim 1, wherein the point cloud construction engine performs a noise filtering process on the first scan data and the second scan data to output the first point cloud data and the The second point cloud data. 如請求項2所述的智慧型變位監測系統,其中該雜訊濾除程序是藉由多尺度模對模雲比對(Multiscale Model to Model Cloud Comparison,M3C2)演算法,來分析該第一點雲數據與該第二點雲數據。 The intelligent displacement monitoring system as described in claim 2, wherein the noise filtering program analyzes the first The point cloud data and the second point cloud data. 如請求項1所述的智慧型變位監測系統,其中該變位分析引擎是將該變位數據與一變位閥值進行比較,當該變位數據超過該變位閥值時,向該輸出裝置輸出一變位警報。 The intelligent displacement monitoring system as described in claim item 1, wherein the displacement analysis engine compares the displacement data with a displacement threshold, and when the displacement data exceeds the displacement threshold, the The output device outputs a displacement alarm. 如請求項1所述的智慧型變位監測系統,其中該視覺化方式包括藉由顏色的分布來顯示該被監測表面的位移狀況。 The intelligent displacement monitoring system as described in claim 1, wherein the visualization method includes displaying the displacement status of the monitored surface through the distribution of colors. 如請求項1所述的智慧型變位監測系統,其中該輸出裝置為一行動通訊裝置或一顯示器。 The intelligent displacement monitoring system according to claim 1, wherein the output device is a mobile communication device or a display. 如請求項1所述的智慧型變位監測系統,其中該被監測表面為一人工構造物的表面。 The intelligent displacement monitoring system according to claim 1, wherein the monitored surface is a surface of an artificial structure. 一種智慧型變位監測方法,包含以下步驟:提供至少一光達掃描器,並使用該光達掃描器掃描一被監測表面,以於一第一時間輸出一第一掃描數據,以及於一第二時間輸出一第二掃描數據;提供一點雲建構引擎,該點雲建構引擎是依據該第一掃描數據與該第二掃描數據輸出一第一點雲數據與一第二點雲數據;提供一變位分析引擎,該變位分析引擎是針對該第一點雲數據與該第二點雲數據進行分析,以輸出一變位數據;以及提供一輸出裝置,該輸出裝置接收該變位數據,且以一視覺化方式顯示該變位數據。 A smart displacement monitoring method, comprising the following steps: providing at least one LiDAR scanner, and using the LiDAR scanner to scan a monitored surface to output a first scan data at a first time, and at a first time Output a second scan data at two times; provide a point cloud construction engine, and the point cloud construction engine outputs a first point cloud data and a second point cloud data based on the first scan data and the second scan data; provide a point cloud construction engine. a displacement analysis engine, which analyzes the first point cloud data and the second point cloud data to output a displacement data; and provides an output device, which receives the displacement data, And display the displacement data in a visual way. 如請求項8所述的智慧型變位監測方法,其中該點雲建構引擎對該第一掃描數據與該第二掃描數據進行一雜訊濾除程序,以輸出該第一點雲數據與該第二點雲數據。 The intelligent displacement monitoring method as described in claim 8, wherein the point cloud construction engine performs a noise filtering process on the first scan data and the second scan data to output the first point cloud data and the The second point cloud data. 如請求項9所述的智慧型變位監測方法,其中該雜訊濾除程序是藉由多尺度模對模雲比對(Multiscale Model to Model Cloud Comparison,M3C2)演算法,來分析該第一點雲數據與該第二點雲數據。 The intelligent displacement monitoring method as described in claim item 9, wherein the noise filtering program analyzes the first The point cloud data and the second point cloud data.
TW110139431A 2021-10-25 2021-10-25 Intelligent displacement monitoring system and method thereof TWI810688B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110139431A TWI810688B (en) 2021-10-25 2021-10-25 Intelligent displacement monitoring system and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110139431A TWI810688B (en) 2021-10-25 2021-10-25 Intelligent displacement monitoring system and method thereof

Publications (2)

Publication Number Publication Date
TW202317935A TW202317935A (en) 2023-05-01
TWI810688B true TWI810688B (en) 2023-08-01

Family

ID=87378791

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110139431A TWI810688B (en) 2021-10-25 2021-10-25 Intelligent displacement monitoring system and method thereof

Country Status (1)

Country Link
TW (1) TWI810688B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997040342A2 (en) * 1996-04-24 1997-10-30 Cyra Technologies, Inc. Integrated system for imaging and modeling three-dimensional objects
US20140268098A1 (en) * 2013-03-14 2014-09-18 Pouch Holdings LLC Lidar scanner
TWI526986B (en) * 2015-03-04 2016-03-21 Virtual positioning board and construction detecting method using the same
TW202113307A (en) * 2019-09-18 2021-04-01 正修學校財團法人正修科技大學 Cultural relic digital archive and restoration system
TWM626729U (en) * 2021-10-25 2022-05-11 財團法人中興工程顧問社 Intelligent displacement monitoring system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997040342A2 (en) * 1996-04-24 1997-10-30 Cyra Technologies, Inc. Integrated system for imaging and modeling three-dimensional objects
US20140268098A1 (en) * 2013-03-14 2014-09-18 Pouch Holdings LLC Lidar scanner
TWI526986B (en) * 2015-03-04 2016-03-21 Virtual positioning board and construction detecting method using the same
TW202113307A (en) * 2019-09-18 2021-04-01 正修學校財團法人正修科技大學 Cultural relic digital archive and restoration system
TWM626729U (en) * 2021-10-25 2022-05-11 財團法人中興工程顧問社 Intelligent displacement monitoring system

Also Published As

Publication number Publication date
TW202317935A (en) 2023-05-01

Similar Documents

Publication Publication Date Title
US11893538B1 (en) Intelligent system and method for assessing structural damage using aerial imagery
JP7533946B2 (en) Optical fiber sensing system, behavior identification device, behavior identification method, and program
KR100773393B1 (en) Real-time monitoring system of dam facility and its method
US12354299B2 (en) Throwing position acquisition method and apparatus, computer device and storage medium
US9852620B1 (en) System and method for detecting sound and performing an action on the detected sound
AU2014236959A1 (en) Determining object volume from mobile device images
US20240203054A1 (en) Streamlined single software workflow with ml-based point cloud clustering for virtual reality building inspection
CN116311770A (en) House safety early warning system, method and terminal based on Internet of things edge computing gateway
US10991049B1 (en) Systems and methods for acquiring insurance related informatics
CN105516653A (en) Security and protection monitoring system
US12315183B1 (en) System and method for detecting deviations in building structures using reconstructed 3D models
CN114463948A (en) A kind of geological disaster monitoring and early warning method and system
CN113256269A (en) Engineering management system based on BIM, cloud computing and big data technology
CN116720242A (en) A digital twin panoramic monitoring system for high-voltage cable tunnels
CN118351654A (en) A geological disaster and engineering safety monitoring intelligent early warning method and system
CN112288320A (en) Subway operation risk monitoring and management system
JP2023109757A (en) MONITORING SYSTEM, MONITORING DEVICE, MONITORING METHOD, AND PROGRAM
CN119274319A (en) Contact-non-contact combined dangerous rock mass monitoring and early warning method, device and equipment
TWI810688B (en) Intelligent displacement monitoring system and method thereof
CN116311772B (en) A near-electricity alarm method and device
TWM626729U (en) Intelligent displacement monitoring system
CN120219380B (en) Control method, equipment and storage medium of construction management system
CN120103506A (en) Dynamic detection device for loosened surrounding rock zone in semi-coal-rock tunnel based on 3D laser scanning
CN115359396A (en) Slope monitoring method and device, electronic equipment and storage medium
CN106067963B (en) Distributed automatic report method for remote large monitor abnormity