TWI809595B - A Hierarchical Parameter System for Predicting Machine Abnormalities - Google Patents
A Hierarchical Parameter System for Predicting Machine Abnormalities Download PDFInfo
- Publication number
- TWI809595B TWI809595B TW110146127A TW110146127A TWI809595B TW I809595 B TWI809595 B TW I809595B TW 110146127 A TW110146127 A TW 110146127A TW 110146127 A TW110146127 A TW 110146127A TW I809595 B TWI809595 B TW I809595B
- Authority
- TW
- Taiwan
- Prior art keywords
- machine
- time series
- past
- factory
- module
- Prior art date
Links
- 230000005856 abnormality Effects 0.000 title claims abstract description 27
- 230000002159 abnormal effect Effects 0.000 claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 claims abstract description 8
- 230000010354 integration Effects 0.000 claims abstract description 6
- 230000006870 function Effects 0.000 claims description 15
- 108010076504 Protein Sorting Signals Proteins 0.000 claims description 14
- 230000004913 activation Effects 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 6
- 238000013528 artificial neural network Methods 0.000 claims description 5
- 238000011478 gradient descent method Methods 0.000 claims description 3
- 210000002569 neuron Anatomy 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 238000013507 mapping Methods 0.000 abstract description 7
- 238000012423 maintenance Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000007476 Maximum Likelihood Methods 0.000 description 3
- 238000010801 machine learning Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- General Factory Administration (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Control Of Electric Motors In General (AREA)
- Manipulator (AREA)
Abstract
本發明係提供一種預測機台異常之階層式參數系統,該系統包括:與廠內主機連接的伺服器;連接於該伺服器的整合模組及與該整合模組連接的學習模組;以及與該學習模組連接的預測模組,藉該伺服器將運轉中機台的各種參數收集,並藉該整合模組根據時間類別將過去不同時間段的參數整理成不同單位時間的序列,做為「機台資料」,且標記運轉中機台「過去故障異常紀錄」,再整合成一維向量串接後,透過該學習模組與預測模組以最大化或然率的方式,將所述「機台資料」與「過去故障異常紀錄」之間的映射關係進行模擬,來判斷運轉中機台故障的可能性,將判斷為故障的「機台資料」作為「預測參數」應用於運轉中機台,而能夠正確的提供對所述機台的運轉狀況提出異常預警的預測,讓工廠人員可以事先安排維修或是調整產線的機台,避免臨時性的停工減少工廠損失,將工廠員工、產線機台與生產原料作更好的安排,並增加工廠整體效能。The present invention provides a hierarchical parameter system for predicting machine abnormalities. The system includes: a server connected to a host in the factory; an integrated module connected to the server and a learning module connected to the integrated module; and The prediction module connected to the learning module uses the server to collect various parameters of the machine in operation, and uses the integration module to sort the parameters of different time periods in the past into sequences of different unit times according to the time category, making It is the "machine data", and marks the "past failure and abnormal record" of the machine in operation, and then integrates it into a one-dimensional vector. Simulate the mapping relationship between "machine data" and "past failure abnormal records" to judge the possibility of machine failure in operation, and apply the "machine data" judged to be a failure as "prediction parameters" to the machine in operation , and can correctly provide an abnormal warning forecast for the operation status of the machine, so that the factory personnel can arrange maintenance or adjust the machine in the production line in advance, avoid temporary shutdowns and reduce factory losses, and reduce factory employees and production Make better arrangements for production line machines and production materials, and increase the overall efficiency of the factory.
Description
本發明係有關於一種機台異常預測系統,特別是指一種可以將不同時間尺度的參數妥切的輸入得到更正確預測結果之預測機台異常之階層式參數系統。The present invention relates to a machine abnormality prediction system, in particular to a hierarchical parameter system for predicting machine abnormalities that can properly input parameters of different time scales to obtain more accurate prediction results.
隨著現在工廠機台的數位化與演進,以及機器學習算法的發展,建構參數去預測機台健康狀況(正常、異常、故障),用於進行保養規劃變的更加重要。傳統工廠的機台異常的參數預測只能利用最近一段特定時間做預測,例如:過去60秒的資料,如此無法偵測不同尺度的參數序列特徵(patten),也就是用過去數天的資料來做預測跟用過去數月甚至是數年的資料往往有很大的差異,且隨著時間的使用,機台的性能差異往往會日漸增大,因此使用固定的參數值並不能有效的反應實際狀態,換言之,傳統工廠的機台異常的參數預測並無法做中長期的預測,且在做參數預測時,如果結合不同的時間尺度如最近一個月、最近一年、最近5到10年的資料時,往往又因時間尺度差異太大造成許多預測上的困難與預測結果的不正確。With the digitalization and evolution of factory machines and the development of machine learning algorithms, it is more important to construct parameters to predict the health status of machines (normal, abnormal, and failure) for maintenance planning. The parameter prediction of machine abnormalities in traditional factories can only be predicted using the latest specific period of time, for example: the data of the past 60 seconds, so it is impossible to detect the parameter sequence characteristics (patten) of different scales, that is, the data of the past few days can be used to predict There is often a big difference between making predictions and using the data of the past few months or even years, and with the use of time, the performance difference of the machine will tend to increase day by day, so using fixed parameter values cannot effectively reflect the actual situation. State, in other words, the parameter prediction of machine abnormalities in traditional factories cannot be predicted in the medium and long term, and when making parameter predictions, if the data of different time scales such as the last month, the last year, and the last 5 to 10 years are combined When the time scale is too large, it often causes many difficulties in prediction and incorrect prediction results.
根據機器學習中的監督學習( supervised learning )是解決這個問題的一個方法,此方式的應用通常需要大量資料的標註,再利用神經網路分類器的方式,根據最大化或然率(Maximum Likelihood)的方式訓練該神經網路分類器,學習機器資料與故障異常之間的映射關係(mapping)。但是,這類方法通常一開始需要大量的人力去判斷與標註機台資料是否為異常,此外如前面所述隨著時間的使用,機台的老化也會造成數值會有所差異,因此,如何建構不同時段的機台參數資料來預測機台的異常狀態,確為有待突破的課題。According to supervised learning in machine learning is a method to solve this problem, the application of this method usually requires the labeling of a large amount of data, and then use the method of neural network classifier, according to the method of maximum likelihood (Maximum Likelihood) The neural network classifier is trained to learn the mapping relationship (mapping) between machine data and fault exceptions. However, this type of method usually requires a lot of manpower to judge and mark whether the machine data is abnormal at the beginning. In addition, as mentioned above, the aging of the machine will also cause the value to be different. Therefore, how to Constructing machine parameter data at different time periods to predict the abnormal state of the machine is indeed a subject to be broken through.
本案發明人本於多年從事廠內相關工作經驗,結合工廠經驗、網路與機器學習的設計並從錯誤中學習,而開創出本發明。The inventor of this case originally engaged in related work experience in the factory for many years, combined factory experience, network and machine learning design and learned from mistakes, and created the present invention.
本發明之目的,即在於提供一種預測機台異常之階層式參數系統,該系統將運轉中機台的各種參數收集,並根據時間類別將過去不同時間段的參數整理成不同單位時間的序列,做為「機台資料」,且標記(label)運轉中機台「過去故障異常紀錄」,再整合成一維向量串接後,透過最大化或然率(Maximum Likelihood)的方式,將所述「機台資料」與「過去故障異常紀錄」之間的映射關係(mapping)進行模擬,來判斷運轉中機台是否故障,將判斷為故障的「機台資料」作為「預測參數」應用於運轉中機台,而能夠正確的提供對所述機台的運轉狀況提出異常預警的預測,讓工廠人員可以事先安排維修或是調整產線的機台,避免臨時性的停工減少工廠損失。The purpose of the present invention is to provide a hierarchical parameter system for predicting machine abnormality. The system collects various parameters of the machine in operation, and sorts the parameters of different time periods in the past into sequences of different unit time according to the time category. As "machine data", and mark (label) the "past failure record" of the machine in operation, and then integrate it into a one-dimensional vector. After concatenation, the said "machine Simulate the mapping relationship (mapping) between "data" and "abnormal record of past faults" to judge whether the machine in operation is faulty, and apply the "machine data" judged to be faulty as "prediction parameters" to the machine in operation , and can correctly provide an abnormal early warning forecast for the operation status of the machine, so that factory personnel can arrange maintenance or adjust the machine in the production line in advance, avoiding temporary shutdowns and reducing factory losses.
為達到上述目的,本發明一種預測機台異常之階層式參數系統,該系統包括:一伺服器,係與廠內主機或工廠產線機器設備連接,用於收集並存儲存廠內運轉中機台的各種參數,並根據時間類別將過去不同時間段的參數整理成不同單位時間的序列,做為「機台資料」,且標記(label)運轉中機台「過去故障異常紀錄」;一整合模組,係連接於該伺服器,包含時間序列編碼器(Time Series Encoder)和解碼器(Decoder),該時間序列編碼器將所述「機台資料」中以一維向量建構可變長度的時間序列(下稱可變時間序列),萃取所述可變時間序列轉變為固定長度的一維向量(下稱固定向量);該解碼器透過演算將所述固定向量轉變為可變長度的目標信號序列(下稱目標信號序列)輸出;及一學習模組,係與該整合模組連接,包含 神經網路分類器(DNN classifier),係對所述目標信號序列進行訓練,以求得機台異常的目標概率;以及一預測模組,係與該學習模組連接,利用最小化模型將所述目標概率與所述「過去故障異常紀錄」進行優化模型,已取得機台異常的預測參數。In order to achieve the above purpose, the present invention provides a hierarchical parameter system for predicting machine abnormalities. The system includes: a server, which is connected to the main machine in the factory or the machinery and equipment of the factory production line, and is used to collect and store the operating machines in the factory. According to the time category, the parameters of different time periods in the past are sorted into sequences of different unit time, which are used as "machine data", and the "past failure and abnormal records" of the running machine are marked (label); an integrated model The group is connected to the server and includes a time series encoder (Time Series Encoder) and a decoder (Decoder). The time series encoder constructs a variable-length time from the "machine data" in a one-dimensional vector Sequence (hereinafter referred to as variable time series), extracting the variable time series into a fixed-length one-dimensional vector (hereinafter referred to as fixed vector); the decoder converts the fixed vector into a variable-length target signal through calculation Sequence (hereinafter referred to as the target signal sequence) output; and a learning module connected to the integrated module, including a neural network classifier (DNN classifier), which trains the target signal sequence to obtain the machine Abnormal target probability; and a prediction module connected with the learning module, using the minimization model to optimize the target probability and the "past fault abnormal record" to obtain the prediction parameters of machine abnormality.
根據上述,其中該時間序列編碼器自所述「機台資料」中給定一個時間長度的時間序列作為原始資料,如:過去60秒以秒鐘為單位的時間序列Xsec,過去30分鐘以分鐘為單位的時間序列Xmin,以及過去12小時以30分鐘為單位的時間序列Xhr,再以溫度、濕度、壓力或工廠機台的參數作為一維向量的每一維度的原始資料參數值,而輸出所述一維向量的可變時間序列。According to the above, the time series encoder is given a time series with a length of time from the "machine data" as the original data, such as: the time series Xsec in seconds in the past 60 seconds, and minutes in the past 30 minutes The time series Xmin in unit, and the time series Xhr in units of 30 minutes in the past 12 hours, and then use the parameters of temperature, humidity, pressure or factory machine as the original data parameter value of each dimension of the one-dimensional vector, and output mutable time series of the 1D vector.
根據上述,該解碼器透過如下3步驟演算式將所述固定向量轉變為可變長度的目標信號序列:According to the above, the decoder converts the fixed vector into a variable-length target signal sequence through the following three-step algorithm:
1.計算注意力權值1. Calculate attention weights
2.標準化處理算出注意力輸出值2. Standardized processing to calculate the attention output value
3.結合注意力得分和隱狀態值計算上下文狀態 C 3. Combining the attention score and the hidden state value to calculate the context state C
根據上述,其中該學習模組對所述目標信號序列以演算法進行訓練,該演算法採用反向傳播算法,並對反向傳播算法中的權重更新以隨機梯度下降法求解,所述反向傳播算法如下:According to the above, wherein the learning module trains the target signal sequence with an algorithm, the algorithm uses a backpropagation algorithm, and uses a stochastic gradient descent method to solve the weight update in the backpropagation algorithm, and the inverse The propagation algorithm is as follows:
(其中,η為學習率, C為代價函數) (wherein, η is the learning rate, and C is the cost function)
所述 C代價函數使用交叉熵;定義為 (其中 dj代表輸出單元j 的目標概率, pj代表應用了激活函數後對單元j 的概率輸出),所述激活函數選用修正線性單元(Rectified linear unit,ReLU)作為神經元的啟動函數。 The C cost function uses cross-entropy; defined as (where dj represents the target probability of the output unit j, and pj represents the probability output of the unit j after the activation function is applied), and the activation function uses a rectified linear unit (ReLU) as the activation function of the neuron.
根據上述,該預測模組係透過所述目標概率與所述「過去故障異常紀錄」的交叉熵(cross entropy loss)來進行優化模型。According to the above, the forecasting module optimizes the model through the cross entropy loss of the target probability and the "abnormal past fault record".
請參閱圖1為本發明預測機台異常之階層式參數系統的整合模組之架構圖,如圖所示,本發明預測機台異常之階層式參數系統1係包括:伺服器2、整合模組3及學習模組4,以及預測模組5,其中該伺服器2,係與廠內主機6連接,用於收集並存儲存廠內運轉中機台的各種參數,並根據時間類別將過去不同時間段的參數整理成不同單位時間的序列,做為「機台資料」,且標記(label)運轉中機台「過去故障異常紀錄」。Please refer to FIG. 1, which is a structural diagram of the integrated module of the hierarchical parameter system for predicting machine abnormality in the present invention. As shown in the figure, the
該整合模組3係連接於該伺服器2,該整合模組3如圖3包含時間序列編碼器31(Time Series Encoder)和解碼器32 (Decoder),該時間序列編碼器31的架構如圖2,在給定長度為t一個時間序列[x1,...,xt],每一個項目xi為原始資料(raw data),其每一個維度為一個參數值(e.g., 溫度、濕度、壓力或工廠機台參數),目標是輸出一個一維向量,作為這一個一維向量代表該時間序列,將利用xi轉換為hi,接下來利用注意力(attention;參後述)機制計算出權重(weight) αi,並利用αi將hi進行權種總和(weighted sum)得到時間序列嵌入的平均向量 S(serires emebdding s)。The
進言之,該時間序列編碼器31將所述「機台資料」中以一維向量建構可變長度的時間序列(下稱可變時間序列),萃取所述可變時間序列轉變為固定長度的一維向量(下稱固定向量);該解碼器透過演算將所述固定向量轉變為可變長度的目標信號序列(下稱目標信號序列)輸出,進言之,其中該時間序列編碼器31自所述「機台資料」中給定一個時間長度t的時間序列作為原始資料,如:過去60秒以秒鐘為單位的時間序列Xsec,過去30分鐘以分鐘為單位的時間序列Xmin,以及過去12小時以30分鐘為單位的時間序列Xhr(圖4參照),再以溫度、濕度或壓力作為一維向量的每一維度的原始資料參數值,而輸出所述一維向量的可變時間序列。In other words, the
該解碼器32透過如下3步驟演算式將所述固定向量轉變為可變長度的目標信號序列:1.計算注意力權值;2.標準化處理算出注意力輸出值;3.結合注意力得分和隱狀態值計算上下文狀態 C,如下相對演算式:
The
該學習模組4係與該整合模組3連接,如圖4包含神經網路分類器41(DNN classifier),係對所述目標信號序列進行訓練,以求得機台異常的目標概率,該學習模組4對所述目標信號序列以演算法進行訓練,該演算法採用反向傳播算法,並對反向傳播算法中的權重更新以隨機梯度下降法求解,所述反向傳播算法如下:The
(其中,η為學習率, C為代價函數) (wherein, η is the learning rate, and C is the cost function)
所述 C代價函數使用交叉熵;定義為
(其中 dj代表輸出單元j 的目標概率, pj代表應用了激活函數後對單元j 的概率輸出),所述激活函數選用修正線性單元(Rectified linear unit,ReLU)作為神經元的啟動函數。該預測模組5係與該學習模組4連接,利用最小化模型預測結果(y
pred)將所述目標概率與所述「過去故障異常紀錄」進行優化模型,已取得機台異常的預測參數,即,透過所述目標概率與所述「過去故障異常紀錄」的交叉熵(cross entropy loss)來進行優化模型。
The C cost function uses cross-entropy; defined as (where dj represents the target probability of the output unit j, and pj represents the probability output of the unit j after the activation function is applied), and the activation function uses a rectified linear unit (ReLU) as the activation function of the neuron. The
如是,請看回圖1並配合圖4觀之,本發明預測機台異常之階層式參數系統藉該伺服器2將運轉中機台的各種參數收集,並藉該整合模組3的時間序列編碼器31根據時間類別將過去不同時間段的參數整理成不同單位時間的序列(如前段所述),做為「機台資料」,且標記(label)運轉中機台「過去故障異常紀錄」,再整合成一維向量串接後,透過該學習模組4與預測模組5以最大化或然率(Maximum Likelihood)的方式,將所述「機台資料」與「過去故障異常紀錄」之間的映射關係(mapping)進行模擬,來判斷運轉中機台是否故障,將判斷為故障的「機台資料」作為「預測參數」應用於運轉中機台,而能夠正確的提供對所述機台的運轉狀況提出異常預警的預測,讓工廠人員可以事先安排維修或是調整產線的機台,避免臨時性的停工減少工廠損失。If so, please look back at FIG. 1 and observe it in conjunction with FIG. 4. The hierarchical parameter system for predicting machine abnormalities of the present invention uses the
綜上所述,本發明預測機台異常之階層式參數系統確能達到發明之目的,符合專利要件,惟,以上所述者,僅為本發明之較佳實施例而已,大凡依據本發明所為之各種修飾與變化仍應包含於本專利申請範圍內。In summary, the hierarchical parameter system for predicting machine abnormalities in the present invention can indeed achieve the purpose of the invention and meet the requirements of the patent. However, the above-mentioned ones are only preferred embodiments of the present invention. Various modifications and changes should still be included within the scope of this patent application.
1:預測機台異常之階層式參數系統 2:伺服器 3:整合模組 4:學習模組 5:預測模組 6:廠內主機 31:時間序列編碼器 32:解碼器 xi:原始資料 hi:時間序列 αi:權重 1: Hierarchical parameter system for predicting machine abnormalities 2: Server 3: Integrated modules 4: Learning modules 5: Prediction module 6: Host in the factory 31: Time Series Encoder 32: Decoder xi: original data hi: time series αi: weight
圖1為本發明預測機台異常之階層式參數系統之架構圖。 圖2為本發明預測機台異常之階層式參數系統的整合模組之架構圖。 圖3為本發明預測機台異常之階層式參數系統的學習模組之架構圖。 圖4為本發明預測機台異常之階層式參數系統的預測模組之架構圖。 FIG. 1 is a structure diagram of a hierarchical parameter system for predicting machine abnormality according to the present invention. FIG. 2 is a structural diagram of an integrated module of a hierarchical parameter system for predicting machine abnormality according to the present invention. FIG. 3 is a structure diagram of the learning module of the hierarchical parameter system for predicting machine abnormality according to the present invention. FIG. 4 is a structural diagram of the prediction module of the hierarchical parameter system for predicting machine abnormality according to the present invention.
1:預測機台異常之階層式參數系統 2:伺服器 3:整合模組 4:學習模組 5:預測模組 6:廠內主機 1: Hierarchical parameter system for predicting machine abnormality 2: Server 3: Integrated modules 4: Learning modules 5: Prediction module 6: Host in the factory
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW110146127A TWI809595B (en) | 2021-12-09 | 2021-12-09 | A Hierarchical Parameter System for Predicting Machine Abnormalities |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW110146127A TWI809595B (en) | 2021-12-09 | 2021-12-09 | A Hierarchical Parameter System for Predicting Machine Abnormalities |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW202324010A TW202324010A (en) | 2023-06-16 |
| TWI809595B true TWI809595B (en) | 2023-07-21 |
Family
ID=87803587
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW110146127A TWI809595B (en) | 2021-12-09 | 2021-12-09 | A Hierarchical Parameter System for Predicting Machine Abnormalities |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI809595B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN117669240B (en) * | 2023-12-12 | 2024-12-20 | 江苏省特种设备安全监督检验研究院 | Crane accident simulation method, system and its application |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20190227528A1 (en) * | 2018-01-24 | 2019-07-25 | Milwaukee Electric Tool Corporation | Power tool including a machine learning block |
| CN110622013A (en) * | 2017-02-28 | 2019-12-27 | 绿动有限公司 | Equipment operation signal processing system and method |
| US20210240145A1 (en) * | 2020-01-30 | 2021-08-05 | Milwaukee Electric Tool Corporation | Automatic step bit detection |
| WO2021211787A1 (en) * | 2020-04-15 | 2021-10-21 | Children's Hospital Medical Center | Systems and methods for quantification of liver fibrosis with mri and deep learning |
-
2021
- 2021-12-09 TW TW110146127A patent/TWI809595B/en active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110622013A (en) * | 2017-02-28 | 2019-12-27 | 绿动有限公司 | Equipment operation signal processing system and method |
| US20190227528A1 (en) * | 2018-01-24 | 2019-07-25 | Milwaukee Electric Tool Corporation | Power tool including a machine learning block |
| US20210240145A1 (en) * | 2020-01-30 | 2021-08-05 | Milwaukee Electric Tool Corporation | Automatic step bit detection |
| WO2021211787A1 (en) * | 2020-04-15 | 2021-10-21 | Children's Hospital Medical Center | Systems and methods for quantification of liver fibrosis with mri and deep learning |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202324010A (en) | 2023-06-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN118568471A (en) | Intelligent power distribution station operation fault prediction method and system | |
| CN112462734B (en) | Industrial production equipment fault prediction analysis method and model | |
| CN113339204B (en) | A Wind Turbine Fault Identification Method Based on Hybrid Neural Network | |
| CN109977624A (en) | Photovoltaic plant soft fault monitoring method based on deep neural network | |
| CN117454771A (en) | Mechanical equipment dynamic maintenance decision-making method based on evaluation and prediction information | |
| CN110764474B (en) | Method and system for monitoring running state of equipment | |
| CN119167805A (en) | Power fault calculation prediction method and system based on digital twin | |
| CN118536963B (en) | Transformer maintenance decision method and system based on state evaluation and fault rate correction | |
| CN118367550B (en) | Power distribution cabinet state detection method and system based on artificial intelligence | |
| CN114974540A (en) | Medical equipment service life prediction and analysis method, system, medium, equipment and terminal | |
| CN118965247B (en) | Power plant data management method and system based on multi-source data | |
| CN119538099B (en) | Correction method for ground wind speed measurement and calculation considering convection complex environment characteristics | |
| TWI809595B (en) | A Hierarchical Parameter System for Predicting Machine Abnormalities | |
| CN118194183A (en) | A method and system for detecting abnormal natural gas consumption behavior based on unsupervised model | |
| CN117390556A (en) | Fault monitoring method and device for diesel generator set | |
| CN120433173B (en) | A digital twin-based method for monitoring and early warning of factory power load | |
| CN119885068B (en) | Air compressor fault prediction method and system based on transformer | |
| CN120655272A (en) | Ship equipment maintenance support system and method based on artificial intelligence | |
| Bangalore | Load and risk based maintenance management of wind turbines | |
| CN119596818A (en) | Monitoring system based on health monitoring platform of Internet of things equipment | |
| CN120031314A (en) | A method, device, storage medium and program product for designing a shift and production scheduling model | |
| CN119647778A (en) | Energy consumption analysis driven electricity meter preventive maintenance scheduling method and platform | |
| CN119599169A (en) | A method for predicting the failure probability of HVAC equipment suitable for multiple working conditions | |
| CN117635103A (en) | A SNN-based smart substation equipment status maintenance method | |
| CN120746208B (en) | Work order cost prediction method and system based on semantic analysis and multi-source data fusion |