[go: up one dir, main page]

TWI809595B - A Hierarchical Parameter System for Predicting Machine Abnormalities - Google Patents

A Hierarchical Parameter System for Predicting Machine Abnormalities Download PDF

Info

Publication number
TWI809595B
TWI809595B TW110146127A TW110146127A TWI809595B TW I809595 B TWI809595 B TW I809595B TW 110146127 A TW110146127 A TW 110146127A TW 110146127 A TW110146127 A TW 110146127A TW I809595 B TWI809595 B TW I809595B
Authority
TW
Taiwan
Prior art keywords
machine
time series
past
factory
module
Prior art date
Application number
TW110146127A
Other languages
Chinese (zh)
Other versions
TW202324010A (en
Inventor
林香君
Original Assignee
智影顧問股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 智影顧問股份有限公司 filed Critical 智影顧問股份有限公司
Priority to TW110146127A priority Critical patent/TWI809595B/en
Publication of TW202324010A publication Critical patent/TW202324010A/en
Application granted granted Critical
Publication of TWI809595B publication Critical patent/TWI809595B/en

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Control Of Electric Motors In General (AREA)
  • Manipulator (AREA)

Abstract

本發明係提供一種預測機台異常之階層式參數系統,該系統包括:與廠內主機連接的伺服器;連接於該伺服器的整合模組及與該整合模組連接的學習模組;以及與該學習模組連接的預測模組,藉該伺服器將運轉中機台的各種參數收集,並藉該整合模組根據時間類別將過去不同時間段的參數整理成不同單位時間的序列,做為「機台資料」,且標記運轉中機台「過去故障異常紀錄」,再整合成一維向量串接後,透過該學習模組與預測模組以最大化或然率的方式,將所述「機台資料」與「過去故障異常紀錄」之間的映射關係進行模擬,來判斷運轉中機台故障的可能性,將判斷為故障的「機台資料」作為「預測參數」應用於運轉中機台,而能夠正確的提供對所述機台的運轉狀況提出異常預警的預測,讓工廠人員可以事先安排維修或是調整產線的機台,避免臨時性的停工減少工廠損失,將工廠員工、產線機台與生產原料作更好的安排,並增加工廠整體效能。The present invention provides a hierarchical parameter system for predicting machine abnormalities. The system includes: a server connected to a host in the factory; an integrated module connected to the server and a learning module connected to the integrated module; and The prediction module connected to the learning module uses the server to collect various parameters of the machine in operation, and uses the integration module to sort the parameters of different time periods in the past into sequences of different unit times according to the time category, making It is the "machine data", and marks the "past failure and abnormal record" of the machine in operation, and then integrates it into a one-dimensional vector. Simulate the mapping relationship between "machine data" and "past failure abnormal records" to judge the possibility of machine failure in operation, and apply the "machine data" judged to be a failure as "prediction parameters" to the machine in operation , and can correctly provide an abnormal warning forecast for the operation status of the machine, so that the factory personnel can arrange maintenance or adjust the machine in the production line in advance, avoid temporary shutdowns and reduce factory losses, and reduce factory employees and production Make better arrangements for production line machines and production materials, and increase the overall efficiency of the factory.

Description

預測機台異常之階層式參數系統A Hierarchical Parameter System for Predicting Machine Abnormalities

本發明係有關於一種機台異常預測系統,特別是指一種可以將不同時間尺度的參數妥切的輸入得到更正確預測結果之預測機台異常之階層式參數系統。The present invention relates to a machine abnormality prediction system, in particular to a hierarchical parameter system for predicting machine abnormalities that can properly input parameters of different time scales to obtain more accurate prediction results.

隨著現在工廠機台的數位化與演進,以及機器學習算法的發展,建構參數去預測機台健康狀況(正常、異常、故障),用於進行保養規劃變的更加重要。傳統工廠的機台異常的參數預測只能利用最近一段特定時間做預測,例如:過去60秒的資料,如此無法偵測不同尺度的參數序列特徵(patten),也就是用過去數天的資料來做預測跟用過去數月甚至是數年的資料往往有很大的差異,且隨著時間的使用,機台的性能差異往往會日漸增大,因此使用固定的參數值並不能有效的反應實際狀態,換言之,傳統工廠的機台異常的參數預測並無法做中長期的預測,且在做參數預測時,如果結合不同的時間尺度如最近一個月、最近一年、最近5到10年的資料時,往往又因時間尺度差異太大造成許多預測上的困難與預測結果的不正確。With the digitalization and evolution of factory machines and the development of machine learning algorithms, it is more important to construct parameters to predict the health status of machines (normal, abnormal, and failure) for maintenance planning. The parameter prediction of machine abnormalities in traditional factories can only be predicted using the latest specific period of time, for example: the data of the past 60 seconds, so it is impossible to detect the parameter sequence characteristics (patten) of different scales, that is, the data of the past few days can be used to predict There is often a big difference between making predictions and using the data of the past few months or even years, and with the use of time, the performance difference of the machine will tend to increase day by day, so using fixed parameter values cannot effectively reflect the actual situation. State, in other words, the parameter prediction of machine abnormalities in traditional factories cannot be predicted in the medium and long term, and when making parameter predictions, if the data of different time scales such as the last month, the last year, and the last 5 to 10 years are combined When the time scale is too large, it often causes many difficulties in prediction and incorrect prediction results.

根據機器學習中的監督學習( supervised learning )是解決這個問題的一個方法,此方式的應用通常需要大量資料的標註,再利用神經網路分類器的方式,根據最大化或然率(Maximum Likelihood)的方式訓練該神經網路分類器,學習機器資料與故障異常之間的映射關係(mapping)。但是,這類方法通常一開始需要大量的人力去判斷與標註機台資料是否為異常,此外如前面所述隨著時間的使用,機台的老化也會造成數值會有所差異,因此,如何建構不同時段的機台參數資料來預測機台的異常狀態,確為有待突破的課題。According to supervised learning in machine learning is a method to solve this problem, the application of this method usually requires the labeling of a large amount of data, and then use the method of neural network classifier, according to the method of maximum likelihood (Maximum Likelihood) The neural network classifier is trained to learn the mapping relationship (mapping) between machine data and fault exceptions. However, this type of method usually requires a lot of manpower to judge and mark whether the machine data is abnormal at the beginning. In addition, as mentioned above, the aging of the machine will also cause the value to be different. Therefore, how to Constructing machine parameter data at different time periods to predict the abnormal state of the machine is indeed a subject to be broken through.

本案發明人本於多年從事廠內相關工作經驗,結合工廠經驗、網路與機器學習的設計並從錯誤中學習,而開創出本發明。The inventor of this case originally engaged in related work experience in the factory for many years, combined factory experience, network and machine learning design and learned from mistakes, and created the present invention.

本發明之目的,即在於提供一種預測機台異常之階層式參數系統,該系統將運轉中機台的各種參數收集,並根據時間類別將過去不同時間段的參數整理成不同單位時間的序列,做為「機台資料」,且標記(label)運轉中機台「過去故障異常紀錄」,再整合成一維向量串接後,透過最大化或然率(Maximum Likelihood)的方式,將所述「機台資料」與「過去故障異常紀錄」之間的映射關係(mapping)進行模擬,來判斷運轉中機台是否故障,將判斷為故障的「機台資料」作為「預測參數」應用於運轉中機台,而能夠正確的提供對所述機台的運轉狀況提出異常預警的預測,讓工廠人員可以事先安排維修或是調整產線的機台,避免臨時性的停工減少工廠損失。The purpose of the present invention is to provide a hierarchical parameter system for predicting machine abnormality. The system collects various parameters of the machine in operation, and sorts the parameters of different time periods in the past into sequences of different unit time according to the time category. As "machine data", and mark (label) the "past failure record" of the machine in operation, and then integrate it into a one-dimensional vector. After concatenation, the said "machine Simulate the mapping relationship (mapping) between "data" and "abnormal record of past faults" to judge whether the machine in operation is faulty, and apply the "machine data" judged to be faulty as "prediction parameters" to the machine in operation , and can correctly provide an abnormal early warning forecast for the operation status of the machine, so that factory personnel can arrange maintenance or adjust the machine in the production line in advance, avoiding temporary shutdowns and reducing factory losses.

為達到上述目的,本發明一種預測機台異常之階層式參數系統,該系統包括:一伺服器,係與廠內主機或工廠產線機器設備連接,用於收集並存儲存廠內運轉中機台的各種參數,並根據時間類別將過去不同時間段的參數整理成不同單位時間的序列,做為「機台資料」,且標記(label)運轉中機台「過去故障異常紀錄」;一整合模組,係連接於該伺服器,包含時間序列編碼器(Time Series Encoder)和解碼器(Decoder),該時間序列編碼器將所述「機台資料」中以一維向量建構可變長度的時間序列(下稱可變時間序列),萃取所述可變時間序列轉變為固定長度的一維向量(下稱固定向量);該解碼器透過演算將所述固定向量轉變為可變長度的目標信號序列(下稱目標信號序列)輸出;及一學習模組,係與該整合模組連接,包含 神經網路分類器(DNN classifier),係對所述目標信號序列進行訓練,以求得機台異常的目標概率;以及一預測模組,係與該學習模組連接,利用最小化模型將所述目標概率與所述「過去故障異常紀錄」進行優化模型,已取得機台異常的預測參數。In order to achieve the above purpose, the present invention provides a hierarchical parameter system for predicting machine abnormalities. The system includes: a server, which is connected to the main machine in the factory or the machinery and equipment of the factory production line, and is used to collect and store the operating machines in the factory. According to the time category, the parameters of different time periods in the past are sorted into sequences of different unit time, which are used as "machine data", and the "past failure and abnormal records" of the running machine are marked (label); an integrated model The group is connected to the server and includes a time series encoder (Time Series Encoder) and a decoder (Decoder). The time series encoder constructs a variable-length time from the "machine data" in a one-dimensional vector Sequence (hereinafter referred to as variable time series), extracting the variable time series into a fixed-length one-dimensional vector (hereinafter referred to as fixed vector); the decoder converts the fixed vector into a variable-length target signal through calculation Sequence (hereinafter referred to as the target signal sequence) output; and a learning module connected to the integrated module, including a neural network classifier (DNN classifier), which trains the target signal sequence to obtain the machine Abnormal target probability; and a prediction module connected with the learning module, using the minimization model to optimize the target probability and the "past fault abnormal record" to obtain the prediction parameters of machine abnormality.

根據上述,其中該時間序列編碼器自所述「機台資料」中給定一個時間長度的時間序列作為原始資料,如:過去60秒以秒鐘為單位的時間序列Xsec,過去30分鐘以分鐘為單位的時間序列Xmin,以及過去12小時以30分鐘為單位的時間序列Xhr,再以溫度、濕度、壓力或工廠機台的參數作為一維向量的每一維度的原始資料參數值,而輸出所述一維向量的可變時間序列。According to the above, the time series encoder is given a time series with a length of time from the "machine data" as the original data, such as: the time series Xsec in seconds in the past 60 seconds, and minutes in the past 30 minutes The time series Xmin in unit, and the time series Xhr in units of 30 minutes in the past 12 hours, and then use the parameters of temperature, humidity, pressure or factory machine as the original data parameter value of each dimension of the one-dimensional vector, and output mutable time series of the 1D vector.

根據上述,該解碼器透過如下3步驟演算式將所述固定向量轉變為可變長度的目標信號序列:According to the above, the decoder converts the fixed vector into a variable-length target signal sequence through the following three-step algorithm:

1.計算注意力權值1. Calculate attention weights

2.標準化處理算出注意力輸出值2. Standardized processing to calculate the attention output value

3.結合注意力得分和隱狀態值計算上下文狀態 C 3. Combining the attention score and the hidden state value to calculate the context state C

根據上述,其中該學習模組對所述目標信號序列以演算法進行訓練,該演算法採用反向傳播算法,並對反向傳播算法中的權重更新以隨機梯度下降法求解,所述反向傳播算法如下:According to the above, wherein the learning module trains the target signal sequence with an algorithm, the algorithm uses a backpropagation algorithm, and uses a stochastic gradient descent method to solve the weight update in the backpropagation algorithm, and the inverse The propagation algorithm is as follows:

(其中,η為學習率, C為代價函數) (wherein, η is the learning rate, and C is the cost function)

所述 C代價函數使用交叉熵;定義為 (其中 dj代表輸出單元j 的目標概率, pj代表應用了激活函數後對單元j 的概率輸出),所述激活函數選用修正線性單元(Rectified linear unit,ReLU)作為神經元的啟動函數。 The C cost function uses cross-entropy; defined as (where dj represents the target probability of the output unit j, and pj represents the probability output of the unit j after the activation function is applied), and the activation function uses a rectified linear unit (ReLU) as the activation function of the neuron.

根據上述,該預測模組係透過所述目標概率與所述「過去故障異常紀錄」的交叉熵(cross entropy loss)來進行優化模型。According to the above, the forecasting module optimizes the model through the cross entropy loss of the target probability and the "abnormal past fault record".

請參閱圖1為本發明預測機台異常之階層式參數系統的整合模組之架構圖,如圖所示,本發明預測機台異常之階層式參數系統1係包括:伺服器2、整合模組3及學習模組4,以及預測模組5,其中該伺服器2,係與廠內主機6連接,用於收集並存儲存廠內運轉中機台的各種參數,並根據時間類別將過去不同時間段的參數整理成不同單位時間的序列,做為「機台資料」,且標記(label)運轉中機台「過去故障異常紀錄」。Please refer to FIG. 1, which is a structural diagram of the integrated module of the hierarchical parameter system for predicting machine abnormality in the present invention. As shown in the figure, the hierarchical parameter system 1 for predicting machine abnormality in the present invention includes: a server 2, an integrated module Group 3, learning module 4, and forecasting module 5, wherein the server 2 is connected to the host computer 6 in the factory, and is used to collect and store various parameters of the machine in operation in the factory, and to record the past data according to the time category. The parameters of the time period are organized into sequences of different unit times, which are used as "machine data", and the "past failure and abnormal records" of the machines in operation are marked.

該整合模組3係連接於該伺服器2,該整合模組3如圖3包含時間序列編碼器31(Time Series Encoder)和解碼器32 (Decoder),該時間序列編碼器31的架構如圖2,在給定長度為t一個時間序列[x1,...,xt],每一個項目xi為原始資料(raw data),其每一個維度為一個參數值(e.g., 溫度、濕度、壓力或工廠機台參數),目標是輸出一個一維向量,作為這一個一維向量代表該時間序列,將利用xi轉換為hi,接下來利用注意力(attention;參後述)機制計算出權重(weight) αi,並利用αi將hi進行權種總和(weighted sum)得到時間序列嵌入的平均向量 S(serires emebdding s)。The integration module 3 is connected to the server 2. The integration module 3 includes a time series encoder 31 (Time Series Encoder) and a decoder 32 (Decoder) as shown in FIG. 2. In a time series [x1,...,xt] with a given length t, each item xi is raw data, and each dimension is a parameter value (e.g., temperature, humidity, pressure or Factory machine parameters), the goal is to output a one-dimensional vector, as this one-dimensional vector represents the time series, convert xi to hi, and then use the attention (attention; see later) mechanism to calculate the weight (weight) αi, and use αi to carry out the weighted sum of hi to obtain the average vector S (serires emebdding s) of the time series embedding.

進言之,該時間序列編碼器31將所述「機台資料」中以一維向量建構可變長度的時間序列(下稱可變時間序列),萃取所述可變時間序列轉變為固定長度的一維向量(下稱固定向量);該解碼器透過演算將所述固定向量轉變為可變長度的目標信號序列(下稱目標信號序列)輸出,進言之,其中該時間序列編碼器31自所述「機台資料」中給定一個時間長度t的時間序列作為原始資料,如:過去60秒以秒鐘為單位的時間序列Xsec,過去30分鐘以分鐘為單位的時間序列Xmin,以及過去12小時以30分鐘為單位的時間序列Xhr(圖4參照),再以溫度、濕度或壓力作為一維向量的每一維度的原始資料參數值,而輸出所述一維向量的可變時間序列。In other words, the time series encoder 31 constructs a variable-length time series (hereinafter referred to as variable time series) from the "machine data" with a one-dimensional vector, extracts the variable time series and converts it into a fixed-length A one-dimensional vector (hereinafter referred to as a fixed vector); the decoder converts the fixed vector into a variable-length target signal sequence (hereinafter referred to as a target signal sequence) output through calculation. In other words, the time series encoder 31 is from the Given a time series of time length t in the above "machine data" as the original data, such as: the time series Xsec of the past 60 seconds in seconds, the time series Xmin of the past 30 minutes in minutes, and the past 12 The hour is the time series Xhr with 30 minutes as the unit (refer to FIG. 4 ), and then the temperature, humidity or pressure is used as the raw data parameter value of each dimension of the one-dimensional vector, and the variable time series of the one-dimensional vector is output.

該解碼器32透過如下3步驟演算式將所述固定向量轉變為可變長度的目標信號序列:1.計算注意力權值;2.標準化處理算出注意力輸出值;3.結合注意力得分和隱狀態值計算上下文狀態 C,如下相對演算式: The decoder 32 converts the fixed vector into a variable-length target signal sequence through the following 3-step calculation formula: 1. Calculate the attention weight; 2. Calculate the attention output value through standardization processing; 3. Combine the attention score and The hidden state value calculates the context state C, and the relative calculation formula is as follows:

該學習模組4係與該整合模組3連接,如圖4包含神經網路分類器41(DNN classifier),係對所述目標信號序列進行訓練,以求得機台異常的目標概率,該學習模組4對所述目標信號序列以演算法進行訓練,該演算法採用反向傳播算法,並對反向傳播算法中的權重更新以隨機梯度下降法求解,所述反向傳播算法如下:The learning module 4 is connected with the integration module 3, as shown in Fig. 4 , it includes a neural network classifier 41 (DNN classifier), which trains the target signal sequence to obtain the target probability of machine abnormality. The learning module 4 trains the target signal sequence with an algorithm, the algorithm adopts a backpropagation algorithm, and solves the weight update in the backpropagation algorithm with a stochastic gradient descent method, and the backpropagation algorithm is as follows:

(其中,η為學習率, C為代價函數) (wherein, η is the learning rate, and C is the cost function)

所述 C代價函數使用交叉熵;定義為 (其中 dj代表輸出單元j 的目標概率, pj代表應用了激活函數後對單元j 的概率輸出),所述激活函數選用修正線性單元(Rectified linear unit,ReLU)作為神經元的啟動函數。該預測模組5係與該學習模組4連接,利用最小化模型預測結果(y pred)將所述目標概率與所述「過去故障異常紀錄」進行優化模型,已取得機台異常的預測參數,即,透過所述目標概率與所述「過去故障異常紀錄」的交叉熵(cross entropy loss)來進行優化模型。 The C cost function uses cross-entropy; defined as (where dj represents the target probability of the output unit j, and pj represents the probability output of the unit j after the activation function is applied), and the activation function uses a rectified linear unit (ReLU) as the activation function of the neuron. The prediction module 5 is connected with the learning module 4, and uses the minimized model prediction result (y pred ) to optimize the model of the target probability and the "past failure abnormal record", and obtains the prediction parameters of machine abnormality , that is, optimize the model through the cross entropy loss of the target probability and the "past fault anomaly record".

如是,請看回圖1並配合圖4觀之,本發明預測機台異常之階層式參數系統藉該伺服器2將運轉中機台的各種參數收集,並藉該整合模組3的時間序列編碼器31根據時間類別將過去不同時間段的參數整理成不同單位時間的序列(如前段所述),做為「機台資料」,且標記(label)運轉中機台「過去故障異常紀錄」,再整合成一維向量串接後,透過該學習模組4與預測模組5以最大化或然率(Maximum Likelihood)的方式,將所述「機台資料」與「過去故障異常紀錄」之間的映射關係(mapping)進行模擬,來判斷運轉中機台是否故障,將判斷為故障的「機台資料」作為「預測參數」應用於運轉中機台,而能夠正確的提供對所述機台的運轉狀況提出異常預警的預測,讓工廠人員可以事先安排維修或是調整產線的機台,避免臨時性的停工減少工廠損失。If so, please look back at FIG. 1 and observe it in conjunction with FIG. 4. The hierarchical parameter system for predicting machine abnormalities of the present invention uses the server 2 to collect various parameters of the machine in operation, and uses the time series of the integration module 3 The encoder 31 organizes the parameters of different time periods in the past into sequences of different unit times according to the time category (as described in the previous paragraph), as "machine data", and labels the "past failure and abnormal records" of the machine in operation , and then integrated into a one-dimensional vector and concatenated, through the learning module 4 and the prediction module 5 to maximize the likelihood (Maximum Likelihood), the relationship between the "machine data" and the "past failure record" The mapping relationship (mapping) is simulated to determine whether the machine in operation is faulty, and the "machine data" judged to be faulty is applied to the machine in operation as a "prediction parameter", so that the correct information on the machine can be provided. The operation status provides abnormal early warning predictions, allowing factory personnel to arrange maintenance or adjust production line machines in advance, avoiding temporary shutdowns and reducing factory losses.

綜上所述,本發明預測機台異常之階層式參數系統確能達到發明之目的,符合專利要件,惟,以上所述者,僅為本發明之較佳實施例而已,大凡依據本發明所為之各種修飾與變化仍應包含於本專利申請範圍內。In summary, the hierarchical parameter system for predicting machine abnormalities in the present invention can indeed achieve the purpose of the invention and meet the requirements of the patent. However, the above-mentioned ones are only preferred embodiments of the present invention. Various modifications and changes should still be included within the scope of this patent application.

1:預測機台異常之階層式參數系統 2:伺服器 3:整合模組 4:學習模組 5:預測模組 6:廠內主機 31:時間序列編碼器 32:解碼器 xi:原始資料 hi:時間序列 αi:權重 1: Hierarchical parameter system for predicting machine abnormalities 2: Server 3: Integrated modules 4: Learning modules 5: Prediction module 6: Host in the factory 31: Time Series Encoder 32: Decoder xi: original data hi: time series αi: weight

圖1為本發明預測機台異常之階層式參數系統之架構圖。 圖2為本發明預測機台異常之階層式參數系統的整合模組之架構圖。 圖3為本發明預測機台異常之階層式參數系統的學習模組之架構圖。 圖4為本發明預測機台異常之階層式參數系統的預測模組之架構圖。 FIG. 1 is a structure diagram of a hierarchical parameter system for predicting machine abnormality according to the present invention. FIG. 2 is a structural diagram of an integrated module of a hierarchical parameter system for predicting machine abnormality according to the present invention. FIG. 3 is a structure diagram of the learning module of the hierarchical parameter system for predicting machine abnormality according to the present invention. FIG. 4 is a structural diagram of the prediction module of the hierarchical parameter system for predicting machine abnormality according to the present invention.

1:預測機台異常之階層式參數系統 2:伺服器 3:整合模組 4:學習模組 5:預測模組 6:廠內主機 1: Hierarchical parameter system for predicting machine abnormality 2: Server 3: Integrated modules 4: Learning modules 5: Prediction module 6: Host in the factory

Claims (4)

一種預測機台異常之階層式參數系統,該系統包括:一伺服器,係與廠內主機或工廠產線機器設備連接,用於收集並存儲存廠內運轉中機台的各種參數,並根據時間類別將過去不同時間段的參數整理成不同單位時間的序列,做為「機台資料」,且標記(label)運轉中機台「過去故障異常紀錄」;一整合模組,係連接於該伺服器,包含時間序列編碼器(Time Series Encoder)和解碼器(Decoder),該時間序列編碼器將所述「機台資料」中以一維向量建構可變長度的時間序列(下稱可變時間序列),萃取所述可變時間序列轉變為固定長度的一維向量(下稱固定向量);該解碼器透過演算將所述固定向量轉變為可變長度的目標信號序列(下稱目標信號序列)輸出;及一學習模組,係與該整合模組連接,包含神經網路分類器(DNN classifier),係對所述目標信號序列進行訓練,以求得機台異常的目標概率;以及一預測模組,係與該學習模組連接,利用最小化模型將所述目標概率與所述「過去故障異常紀錄」進行優化模型,已取得機台異常的預測參數;其中:該時間序列編碼器自所述「機台資料」中給定一個時間長度的時間序列作為原始資料,如:過去60秒以秒鐘為單位的時間序列Xsec,過去30分鐘以分鐘為單位的時間序列Xmin,以及過去12小時以30分鐘為單位的時間序列Xhr,再以溫度、濕度或壓力作為一維向量的每一維度的原始資料參數值,而輸出所述一維向量的可變時間序列。 A hierarchical parameter system for predicting machine abnormality, the system includes: a server, which is connected to the main machine in the factory or the factory production line equipment, used to collect and store various parameters of the machine in operation in the factory, and according to the time The category organizes the parameters of different time periods in the past into sequences of different unit times, as "machine data", and labels the "past failure and abnormal records" of the running machine; an integrated module is connected to the servo The device includes a time series encoder (Time Series Encoder) and a decoder (Decoder). The time series encoder constructs a variable-length time series (hereinafter referred to as variable time series) with a one-dimensional vector in the "machine data". sequence), extracting the variable time sequence into a fixed-length one-dimensional vector (hereinafter referred to as a fixed vector); the decoder converts the fixed vector into a variable-length target signal sequence (hereinafter referred to as a target signal sequence) through calculation ) output; and a learning module connected to the integration module, including a neural network classifier (DNN classifier), which trains the target signal sequence to obtain the target probability of machine abnormality; and a The prediction module is connected with the learning module, and uses the minimization model to optimize the target probability and the "abnormal record of past faults" to obtain the prediction parameters of machine abnormalities; wherein: the time series encoder A time series with a given time length from the "machine data" is used as the original data, such as: the time series Xsec in seconds in the past 60 seconds, the time series Xmin in minutes in the past 30 minutes, and the past The 12-hour time series Xhr with a unit of 30 minutes is used, and then the temperature, humidity or pressure is used as the raw data parameter value of each dimension of the one-dimensional vector, and the variable time series of the one-dimensional vector is output. 如請求項1之預測機台異常之階層式參數系統,其中該解碼器透過如下3步驟演算式將所述固定向量轉變為可變長度的目標信號序列:1.計算 注意力權值;2.標準化處理算出注意力輸出值;3.結合注意力得分和隱狀態值計算上下文狀態C,如下相對演算式:
Figure 110146127-A0305-02-0012-7
Attention weights
Figure 110146127-A0305-02-0012-9
Attention output y2=f( c t ,h t )=tanh( W c [ c t h t ]) Final output
A hierarchical parameter system for predicting machine abnormality as in claim item 1, wherein the decoder converts the fixed vector into a variable-length target signal sequence through the following three-step calculation formula: 1. Calculating attention weights; 2. Calculate the attention output value through standardized processing; 3. Calculate the context state C by combining the attention score and the hidden state value, as follows:
Figure 110146127-A0305-02-0012-7
Attention weights
Figure 110146127-A0305-02-0012-9
Attention output y 2 = f ( c t , h t )=tanh( W c [ c t : h t ]) Final output
如請求項1之預測機台異常之階層式參數系統,其中該學習模組對所述目標信號序列以演算法進行訓練,該演算法採用反向傳播算法,並對反向傳播算法中的權重更新以隨機梯度下降法求解,所述反向傳播算法如下:
Figure 110146127-A0305-02-0012-1
(其中,η為學習率,C為代價函數) 所述C代價函數使用交叉熵;定義為
Figure 110146127-A0305-02-0012-2
(其中dj代表輸出單元j的目標概率,pj代表應用了激活函數後對單元j的概率輸出),所述激活函數選用修正線性單元(Rectified linear unit,ReLU)作為神經元的啟動函數。
A hierarchical parameter system for predicting machine abnormality as in claim item 1, wherein the learning module uses an algorithm to train the target signal sequence, the algorithm uses a backpropagation algorithm, and weights in the backpropagation algorithm The update is solved by the stochastic gradient descent method, and the backpropagation algorithm is as follows:
Figure 110146127-A0305-02-0012-1
(wherein, n is the learning rate, and C is the cost function) The C cost function uses cross entropy; defined as
Figure 110146127-A0305-02-0012-2
(where dj represents the target probability of the output unit j, and pj represents the probability output of the unit j after the activation function is applied), and the activation function uses a rectified linear unit (ReLU) as the activation function of the neuron.
如請求項1之預測機台異常之階層式參數系統,其中該預測模組係透過所述目標概率與所述「過去故障異常紀錄」的交叉熵(cross entropy loss)來進行優化模型。 A hierarchical parameter system for predicting machine abnormality as in Claim 1, wherein the prediction module optimizes the model through the cross entropy loss of the target probability and the "past fault abnormal record".
TW110146127A 2021-12-09 2021-12-09 A Hierarchical Parameter System for Predicting Machine Abnormalities TWI809595B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110146127A TWI809595B (en) 2021-12-09 2021-12-09 A Hierarchical Parameter System for Predicting Machine Abnormalities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110146127A TWI809595B (en) 2021-12-09 2021-12-09 A Hierarchical Parameter System for Predicting Machine Abnormalities

Publications (2)

Publication Number Publication Date
TW202324010A TW202324010A (en) 2023-06-16
TWI809595B true TWI809595B (en) 2023-07-21

Family

ID=87803587

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110146127A TWI809595B (en) 2021-12-09 2021-12-09 A Hierarchical Parameter System for Predicting Machine Abnormalities

Country Status (1)

Country Link
TW (1) TWI809595B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117669240B (en) * 2023-12-12 2024-12-20 江苏省特种设备安全监督检验研究院 Crane accident simulation method, system and its application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190227528A1 (en) * 2018-01-24 2019-07-25 Milwaukee Electric Tool Corporation Power tool including a machine learning block
CN110622013A (en) * 2017-02-28 2019-12-27 绿动有限公司 Equipment operation signal processing system and method
US20210240145A1 (en) * 2020-01-30 2021-08-05 Milwaukee Electric Tool Corporation Automatic step bit detection
WO2021211787A1 (en) * 2020-04-15 2021-10-21 Children's Hospital Medical Center Systems and methods for quantification of liver fibrosis with mri and deep learning

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110622013A (en) * 2017-02-28 2019-12-27 绿动有限公司 Equipment operation signal processing system and method
US20190227528A1 (en) * 2018-01-24 2019-07-25 Milwaukee Electric Tool Corporation Power tool including a machine learning block
US20210240145A1 (en) * 2020-01-30 2021-08-05 Milwaukee Electric Tool Corporation Automatic step bit detection
WO2021211787A1 (en) * 2020-04-15 2021-10-21 Children's Hospital Medical Center Systems and methods for quantification of liver fibrosis with mri and deep learning

Also Published As

Publication number Publication date
TW202324010A (en) 2023-06-16

Similar Documents

Publication Publication Date Title
CN118568471A (en) Intelligent power distribution station operation fault prediction method and system
CN112462734B (en) Industrial production equipment fault prediction analysis method and model
CN113339204B (en) A Wind Turbine Fault Identification Method Based on Hybrid Neural Network
CN109977624A (en) Photovoltaic plant soft fault monitoring method based on deep neural network
CN117454771A (en) Mechanical equipment dynamic maintenance decision-making method based on evaluation and prediction information
CN110764474B (en) Method and system for monitoring running state of equipment
CN119167805A (en) Power fault calculation prediction method and system based on digital twin
CN118536963B (en) Transformer maintenance decision method and system based on state evaluation and fault rate correction
CN118367550B (en) Power distribution cabinet state detection method and system based on artificial intelligence
CN114974540A (en) Medical equipment service life prediction and analysis method, system, medium, equipment and terminal
CN118965247B (en) Power plant data management method and system based on multi-source data
CN119538099B (en) Correction method for ground wind speed measurement and calculation considering convection complex environment characteristics
TWI809595B (en) A Hierarchical Parameter System for Predicting Machine Abnormalities
CN118194183A (en) A method and system for detecting abnormal natural gas consumption behavior based on unsupervised model
CN117390556A (en) Fault monitoring method and device for diesel generator set
CN120433173B (en) A digital twin-based method for monitoring and early warning of factory power load
CN119885068B (en) Air compressor fault prediction method and system based on transformer
CN120655272A (en) Ship equipment maintenance support system and method based on artificial intelligence
Bangalore Load and risk based maintenance management of wind turbines
CN119596818A (en) Monitoring system based on health monitoring platform of Internet of things equipment
CN120031314A (en) A method, device, storage medium and program product for designing a shift and production scheduling model
CN119647778A (en) Energy consumption analysis driven electricity meter preventive maintenance scheduling method and platform
CN119599169A (en) A method for predicting the failure probability of HVAC equipment suitable for multiple working conditions
CN117635103A (en) A SNN-based smart substation equipment status maintenance method
CN120746208B (en) Work order cost prediction method and system based on semantic analysis and multi-source data fusion