[go: up one dir, main page]

TWI893445B - Intelligent nutrient assessment system and method - Google Patents

Intelligent nutrient assessment system and method

Info

Publication number
TWI893445B
TWI893445B TW112133731A TW112133731A TWI893445B TW I893445 B TWI893445 B TW I893445B TW 112133731 A TW112133731 A TW 112133731A TW 112133731 A TW112133731 A TW 112133731A TW I893445 B TWI893445 B TW I893445B
Authority
TW
Taiwan
Prior art keywords
nutrient
negative
weighted value
nutrients
value
Prior art date
Application number
TW112133731A
Other languages
Chinese (zh)
Other versions
TW202512215A (en
Inventor
陳欣湄
Original Assignee
陳欣湄
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陳欣湄 filed Critical 陳欣湄
Priority to TW112133731A priority Critical patent/TWI893445B/en
Publication of TW202512215A publication Critical patent/TW202512215A/en
Application granted granted Critical
Publication of TWI893445B publication Critical patent/TWI893445B/en

Links

Landscapes

  • Medical Treatment And Welfare Office Work (AREA)

Abstract

This invention provides an intelligent nutrient evaluation system and method. Based on academic literature, this invention deduces the nutrient weighting values between negative factors and specific nutrients, and establishes negative factor weighting values through a negative factor grading table. Therefore, the invention can provide customized nutrient supplement recommendations based on nutrient weighting values and negative factor weighting values, according to the subject's data (such as a health questionnaire).

Description

智慧營養素評估系統以及方法Intelligent nutrient assessment system and method

本發明有關於功能醫學的技術領域,特別是指一種結合非侵入式檢查結合電腦演算法,提供客觀的營養評估資訊給受測者。The present invention relates to the technical field of functional medicine, and more particularly to a method of combining non-invasive examinations with computer algorithms to provide objective nutritional assessment information to subjects.

現代人由於生活壓力大,越來越多人們出現各種病痛,即便是在醫學發達的如今,人們還是難以擺脫病痛的困擾。此外,鑒於現有的醫療體制,醫者往往會給予患者一個明確的病症(如,上呼吸道發炎、氣喘、過敏性鼻炎)再給予相應的藥物治療。但有些藥物治療僅僅只是緩解症狀,大多都是依靠人體自身的免疫系統痊癒。而預後的患者,除了謹遵醫囑維持良好的生活習慣,往往不知道要如何提升身體的健康水平。Due to the high stress of modern life, more and more people are suffering from various illnesses. Even with the advancement of medicine today, it remains difficult to escape the burden of illness. Furthermore, within the current medical system, doctors often prescribe a specific condition (such as upper respiratory tract inflammation, asthma, or allergic rhinitis) and then prescribe appropriate medication. However, some medications merely alleviate symptoms, while most rely on the body's own immune system for recovery. Patients with these conditions often lack the ability to improve their overall health, beyond simply following their doctor's instructions and maintaining a healthy lifestyle.

因此,坊間推出各種保健食品或營養師提供各種食物的營養素的成分,目的是希望人們可以多補充一些營養素,以提升健康水平。卻導致人們只是無根據地主觀地攝取大量營養品,卻也衍生出額外的副作用(如,服用大量的保健食品可能會增加肝、腎代謝的負擔)。Therefore, various health foods are marketed, or nutritionists provide nutritional information for various foods, hoping that people can supplement their nutrition and improve their health. However, this leads to people consuming large amounts of nutrients without any basis, which in turn leads to additional side effects (for example, consuming large amounts of health foods may increase the burden on liver and kidney metabolism).

再者,許多人們長期處於一些不良習慣(如,熬夜、高脂飲食)或一些輕微症狀(如,半夜抽筋、偏頭痛、時常感冒),即便是前往就醫,可能也只是取得一些緩解症狀的藥物。Furthermore, many people have long-term bad habits (such as staying up late, eating a high-fat diet) or mild symptoms (such as night cramps, migraines, and frequent colds). Even if they go to the doctor, they may only get some medication to relieve the symptoms.

有鑑於此,基於上述的問題,目前未有同時提供非侵入性、客觀、客製化、便捷的營養評估方法,故即成為所屬技術領域中有待解決的問題。In view of this, and based on the above-mentioned issues, there is currently no non-invasive, objective, customized, and convenient nutritional assessment method, making it an unresolved problem in the relevant technical field.

本發明提供一種智慧營養素評估系統,訊號連接至少一文獻資料庫,智慧營養素評估系統包括:文獻檢索模組、文獻加權模組、負面因子加權模組以及處理模組。上述文獻檢索模組,訊號連接至少一文獻資料庫,文獻檢索模組透過具有複數個負面因子與複數個營養素的關鍵字組成檢索指令,向至少一文獻資料庫取得同時記載複數個負面因子其中至少一與複數個營養素其中至少一的內容的複數個文獻報告,其中複數個負面因子包括疾病以及不良生活習慣。上述文獻加權模組,訊號連接文獻檢索模組,文獻加權模組透過文獻分級表對複數個文獻報告進行分級,並根據複數個文獻報告各自對應的文獻級別,對複數個文獻報告各自記載的營養素設置對應文獻級別的營養素加權值,其中營養素加權值係對應複數個負面因子其中之一。上述處理模組,訊號連接文獻加權模組,處理模組篩選出每一複數個負面因子關聯的每一複數個營養素的營養素加權值並加總,再根據對應的複數個文獻報告的數量進行算術平均,以生成每一複數個負面因子對應的營養素平均加權值。The present invention provides a smart nutrient assessment system, signal-connected to at least one literature database. The smart nutrient assessment system includes a literature retrieval module, a literature weighting module, a negative factor weighting module, and a processing module. The literature retrieval module is signal-connected to the at least one literature database. The literature retrieval module uses a search command composed of keywords containing multiple negative factors and multiple nutrients to obtain from the at least one literature database multiple literature reports that simultaneously record at least one of the multiple negative factors and at least one of the multiple nutrients. The multiple negative factors include diseases and unhealthy lifestyle habits. The literature weighting module is signal-connected to the literature retrieval module. The literature weighting module classifies the plurality of literature reports using a literature rating table and, based on the literature ratings corresponding to the plurality of literature reports, sets nutrient weighting values corresponding to the literature ratings for the nutrients recorded in the plurality of literature reports, wherein the nutrient weighting value corresponds to one of the plurality of negative factors. The processing module is signal-connected to the literature weighting module. The processing module selects and sums the nutrient weighted values of each nutrient associated with each of the multiple negative factors. The nutrient weighted values are then arithmetic averaged based on the number of corresponding literature reports to generate an average nutrient weighted value corresponding to each of the multiple negative factors.

其中,處理模組更訊號連接執行模組,執行模組訊號連接使用者裝置,用於接收使用者裝置提供的受測者對應的受測者資訊,受測者資訊記載複數個負面因子其中至少一,處理模組提取受測者資訊記載的每一負面因子對應的營養素平均加權值,作為第一客製化營養素補充建議值。The processing module is signal-connected to the execution module, which is signal-connected to the user device for receiving subject information corresponding to the subject provided by the user device. The subject information records at least one of a plurality of negative factors. The processing module extracts the average weighted value of the nutrient corresponding to each negative factor recorded in the subject information as the first customized nutrient supplement recommendation value.

其中,文獻加權模組更根據自然語言處理(Natural Language Processing, NLP),判斷每一複數個文獻報告記載的複數個營養素對於負面因子的營養素效益,以對複數個文獻報告各自記載的營養素設置對應文獻級別的正面營養素加權值的總和、負面營養素加權值的總和以及無效營養素加權值的總和,並根據對應的複數個文獻報告的數量進行算術平均,以生成每一複數個負面因子對應的正面營養素平均加權值、負面營養素平均加權值以及無效營養素平均加權值。The literature weighting module uses natural language processing (NLP) to determine the nutritional benefits of each nutrient reported in multiple literature reports for negative factors. It then assigns a corresponding literature-level weighted sum of the positive nutrient weights, the negative nutrient weights, and the ineffective nutrient weights for each nutrient reported in the multiple literature reports. The module then arithmetic averages these sums based on the number of corresponding literature reports to generate the average positive nutrient weights, the average negative nutrient weights, and the average ineffective nutrient weights for each negative factor.

其中,處理模組更訊號連接執行模組,執行模組訊號連接使用者裝置,用於接收使用者裝置提供的受測者對應的受測者資訊,受測者資訊記載複數個負面因子其中至少一,處理模組提取受測者資訊記載的每一負面因子對應的正面營養素平均加權值、負面營養素平均加權值以及無效營養素平均加權值,作為第二客製化營養素補充建議值。The processing module is signal-connected to the execution module, which is signal-connected to the user device for receiving subject information corresponding to the subject provided by the user device. The subject information records at least one of a plurality of negative factors. The processing module extracts the average weighted value of positive nutrients, the average weighted value of negative nutrients, and the average weighted value of ineffective nutrients corresponding to each negative factor recorded in the subject information as a second customized nutrient supplement recommendation value.

其中,處理模組還將負面營養素平均加權值以及無效營養素平均加權值分別除以在除以正面營養素平均加權值,分別產生營養素負面效益比值以及營養素無效益比值,作為第三客製化營養素補充建議值。The processing module also divides the average weighted value of negative nutrients and the average weighted value of ineffective nutrients by the average weighted value of positive nutrients to generate a nutrient negative benefit ratio and a nutrient ineffective benefit ratio, respectively, as the third customized nutrient supplement recommendation value.

其中,處理模組更訊號連接負面因子加權模組,負面因子加權模組基於負面因子分級表,對每一複數個負面因子提供對應的負面因子加權值,以讓處理模組將每一複數個負面因子對應的營養素平均加權值與負面因子加權值相乘,產生每一複數個負面因子對應的營養素複加權值。The processing module is further connected to a negative factor weighting module. The negative factor weighting module provides a corresponding negative factor weighting value for each of the multiple negative factors based on a negative factor grading table, so that the processing module multiplies the average nutrient weighting value corresponding to each of the multiple negative factors by the negative factor weighting value to generate a nutrient composite weighting value corresponding to each of the multiple negative factors.

其中,處理模組更訊號連接執行模組,執行模組訊號連接使用者裝置,用於接收使用者裝置提供的受測者對應的受測者資訊,受測者資訊記載複數個負面因子其中至少一,處理模組提取受測者資訊記載的每一負面因子對應的營養素複加權值,作為第四客製化營養素補充建議值。The processing module is further signal-connected to the execution module, which is signal-connected to the user device for receiving subject information corresponding to the subject provided by the user device. The subject information records at least one of a plurality of negative factors. The processing module extracts the nutrient complex weight value corresponding to each negative factor recorded in the subject information as a fourth customized nutrient supplement recommendation value.

其中,處理模組更訊號連接負面因子加權模組,負面因子加權模組基於負面因子分級表,對每一複數個負面因子提供對應的負面因子加權值,以讓處理模組將每一複數個負面因子對應的正面營養素平均加權值、負面營養素平均加權值以及無效營養素平均加權值分別與負面因子加權值相乘,產生每一複數個負面因子對應的正面營養素複加權值、負面營養素複加權值以及無效營養素複加權值。The processing module is further connected to the negative factor weighting module. The negative factor weighting module provides corresponding negative factor weighting values for each of the multiple negative factors based on the negative factor grading table, so that the processing module multiplies the average weighted value of positive nutrients, the average weighted value of negative nutrients, and the average weighted value of ineffective nutrients corresponding to each of the multiple negative factors by the negative factor weighting values, respectively, to generate the positive nutrient composite weighting value, the negative nutrient composite weighting value, and the ineffective nutrient composite weighting value corresponding to each of the multiple negative factors.

其中,處理模組更訊號連接執行模組,執行模組訊號連接使用者裝置,用於接收使用者裝置提供的受測者對應的受測者資訊,受測者資訊記載複數個負面因子其中至少一,處理模組提取受測者資訊記載的每一負面因子對應的正面營養素複加權值、負面營養素複加權值以及無效營養素複加權值,作為第五客製化營養素補充建議值。The processing module is further signal-connected to the execution module, which is signal-connected to the user device for receiving subject information corresponding to the subject provided by the user device. The subject information records at least one of a plurality of negative factors. The processing module extracts the positive nutrient composite weight, negative nutrient composite weight, and ineffective nutrient composite weight corresponding to each negative factor recorded in the subject information as the fifth customized nutrient supplement recommendation value.

其中,處理模組還將負面營養素複加權值以及無效營養素複加權值分別除以正面營養素複加權值,分別產生複營養素負面效益比值以及複營養素無效益比值,作為第六客製化營養素補充建議值。The processing module also divides the negative nutrient complex weights and the ineffective nutrient complex weights by the positive nutrient complex weights to generate a complex nutrient negative benefit ratio and a complex nutrient ineffectiveness ratio, respectively, as the sixth customized nutrient supplement recommendation value.

本發明更提供一種智慧營養素評估方法,包括以下步驟:透過複數個負面因子與複數個營養素組成的檢索指令,獲取同時記載複數個負面因子其中至少一與複數個營養素其中至少一的內容的複數個文獻報告;透過文獻分級表對複數個文獻報告進行分級;根據複數個文獻報告各自對應的文獻級別,對複數個文獻報告各自記載的營養素設置對應文獻級別的營養素加權值,其中營養素加權值係對應複數個負面因子其中之一;篩選每一複數個負面因子關聯的每一複數個營養素的營養素加權值並加總,再根據對應的複數個文獻報告的數量進行算術平均,以生成每一複數個負面因子對應的營養素平均加權值。The present invention further provides a smart nutrient evaluation method, comprising the following steps: obtaining a plurality of literature reports that simultaneously record at least one of the plurality of negative factors and at least one of the plurality of nutrients through a search instruction consisting of a plurality of negative factors and a plurality of nutrients; grading the plurality of literature reports through a literature grading table; and grading the plurality of literature reports according to the literature grades corresponding to the plurality of literature reports. Nutrient weighting values corresponding to the literature level were set for each nutrient reported in multiple literature reports, where the nutrient weighting value corresponded to one of the multiple negative factors. The nutrient weighting values of each nutrient associated with each multiple negative factors were screened and summed up, and then arithmetic averaged based on the number of corresponding nutrient weighting values in the multiple literature reports was performed to generate the average nutrient weighting value corresponding to each multiple negative factors.

其中,當獲取受測者資訊時,還包括:提取受測者資訊記載的每一負面因子對應的營養素平均加權值。When obtaining the subject information, it also includes: extracting the average weighted value of nutrients corresponding to each negative factor recorded in the subject information.

其中,根據複數個文獻報告各自對應的文獻級別,對複數個文獻報告各自記載的營養素設置對應文獻級別的營養素加權值的步驟包括:判斷每一複數個文獻報告記載的複數個營養素其中至少一於對應的負面因子的營養素效益,以對營養素加權值拆分為正面營養素加權值、負面營養素加權值以及無效營養素加權值。The step of setting nutrient weighting values corresponding to the literature levels for the nutrients recorded in the plurality of literature reports includes: determining the nutritional benefits of at least one of the plurality of nutrients recorded in the plurality of literature reports relative to the corresponding negative factors, and splitting the nutrient weighting values into positive nutrient weighting values, negative nutrient weighting values, and ineffective nutrient weighting values.

所述智慧營養素評估方法進一步還包括以下步驟:將每一複數個負面因子對應的營養素平均加權值與負面因子加權值相乘,以獲取每一複數個負面因子對應的營養素複加權值。The smart nutrient assessment method further includes the following steps: multiplying the average weighted value of the nutrients corresponding to each of the multiple negative factors by the weighted value of the negative factors to obtain the composite weighted value of the nutrients corresponding to each of the multiple negative factors.

其中,將每一複數個負面因子對應的營養素平均加權值以及負面因子加權值相乘,以獲取每一複數個負面因子對應的營養素複加權值的步驟更包括:將營養素平均加權值拆分為正面營養素平均加權值、負面營養素平均加權值以及無效營養素平均加權值,其中每一複數個負面因子對應的正面營養素平均加權值、負面營養素平均加權值以及無效營養素平均加權值分別與負面因子加權值相乘,以取得每一複數個負面因子對應的正面營養素複加權值、負面營養素複加權值以及無效營養素複加權值。The step of multiplying the average weighted value of nutrients corresponding to each of the plurality of negative factors by the weighted value of the negative factors to obtain the composite weighted value of nutrients corresponding to each of the plurality of negative factors further includes: splitting the average weighted value of nutrients into an average weighted value of positive nutrients, an average weighted value of negative nutrients, and an average weighted value of ineffective nutrients, wherein the average weighted value of positive nutrients, the average weighted value of negative nutrients, and the average weighted value of ineffective nutrients corresponding to each of the plurality of negative factors are respectively multiplied by the weighted value of the negative factors to obtain the composite weighted value of positive nutrients, the composite weighted value of negative nutrients, and the composite weighted value of ineffective nutrients corresponding to each of the plurality of negative factors.

所述智慧營養素評估方法進一步還包括以下步驟:透過負面營養素複加權值以及無效營養素複加權值分別除以正面營養素複加權值,分別產生營養素負面效益比值以及營養素無效益比值。The smart nutrient assessment method further includes the following steps: dividing the negative nutrient composite weights and the ineffective nutrient composite weights by the positive nutrient composite weights, respectively, to generate a nutrient negative benefit ratio and a nutrient ineffective benefit ratio, respectively.

與先前技術相比,本發明可主張的功效如下所述。Compared with the prior art, the present invention can claim the following effects.

(1) 提供智慧營養素評估:本發明能夠對各種負面因子(如疾病或不良生活習慣),以了解其與營養素之間的關聯。(1) Providing intelligent nutritional assessment: The present invention can analyze various negative factors (such as diseases or bad living habits) to understand their relationship with nutrients.

(2) 確保文獻報告的參考價值:本發明以實證醫學(Evidence-based medicine, EBM)的精神,以具有公信力(證據力)的文獻級別的分類方法,對每一文獻報告給予對應的級別。且相對的,根據每一文獻報告的級別對文獻報告記載的各營養素給予同等的營養素加權值。(2) Ensuring the reference value of literature reports: This invention, in the spirit of evidence-based medicine (EBM), uses a credible (evidence-based) literature classification method to assign a corresponding level to each literature report. Correspondingly, the same nutrient weighting value is given to each nutrient reported in the literature report based on the level of each literature report.

(3) 提供客觀的專業建議:基於各種負面因子對人體的危害的風險程度不一,但公眾往往無法去分辨負面因子的嚴重度。本發明基於此,且欲排除單一專家(如,醫師、營養師)對負面因子的風險程度看法不一,可透過德爾菲法多輪反覆的問卷評估,使各專家對負面因子對人體的危害的風險程度趨於統一,從而將其量化為各負面因子的負面因子加權值。(3) Providing objective professional advice: The risk levels of various negative factors on the human body vary, but the public is often unable to distinguish the severity of negative factors. Based on this, and in order to eliminate the different opinions of individual experts (e.g., doctors, nutritionists) on the risk level of negative factors, the present invention can use the Delphi method to conduct multiple rounds of questionnaire assessments to make the experts' opinions on the risk level of negative factors on the human body more unified, thereby quantifying it as the negative factor weighted value of each negative factor.

(4) 客製化營養素補充建議值:基於營養素加權值以及負面因子加權值,即可對各文獻報告記載的負面因子所對應的營養素進行加權(即,營養素加權值乘以負面因子加權值),得到各種負面因子對應的各種營養素補充建議值。因此,透過本發明評估受測者資訊中記載的負面因子,即可透過本系統或方法產生對應的客製化營養素補充建議值。(4) Customized nutrient supplementation recommendations: Based on the nutrient weights and negative factor weights, the nutrients corresponding to the negative factors reported in each literature report can be weighted (i.e., the nutrient weights multiplied by the negative factor weights) to obtain the various nutrient supplementation recommendations corresponding to the various negative factors. Therefore, by evaluating the negative factors recorded in the subject information through the present invention, the corresponding customized nutrient supplementation recommendations can be generated through the present system or method.

後文藉由具體實施例配合所附的圖式詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。The following text provides a detailed description of the present invention through specific embodiments and accompanying drawings, which will make it easier to understand the purpose, technical content, features and effects achieved by the present invention.

本發明之實施例將藉由下文配合相關圖式進一步加以解說。盡可能的,於圖式與說明書中,相同標號係代表相同或相似構件。可以理解的是,未特別顯示於圖式中或描述於說明書中之元件,為所屬技術領域中具有通常技術者所知之形態。本領域之通常技術者可依據本發明之內容而進行多種之改變與修改。The embodiments of the present invention are further explained below with reference to the accompanying drawings. Whenever possible, identical reference numerals in the drawings and the specification represent identical or similar components. It should be understood that components not specifically shown in the drawings or described in the specification are of a type known to those skilled in the art. Those skilled in the art may make various changes and modifications based on the teachings of the present invention.

第一實施例First embodiment

如圖1,圖1為本發明所提供的實施例的智慧營養素評估方法的流程圖,包括步驟S1~S7,詳述如下。As shown in Figure 1, Figure 1 is a flow chart of the smart nutrient assessment method according to an embodiment of the present invention, including steps S1 to S7, which are described in detail below.

於步驟S1:獲取同時記載負面因子以及營養素的多個文獻報告。根據一些實施態樣,負面因子與營養素例如可為下表1,本實施可透過各式負面因子與營養素的關鍵字向至少一個學術文獻資料庫,提取大量的文獻報告。故負面因子與營養素的具體選擇項目在本實施例不被限制,可依據所需進行對應的設置。In step S1, multiple literature reports are obtained that simultaneously record negative factors and nutrients. According to some embodiments, the negative factors and nutrients may be, for example, those listed in Table 1 below. This embodiment can retrieve a large number of literature reports from at least one academic literature database using keywords for various negative factors and nutrients. Therefore, the specific selection of negative factors and nutrients is not limited in this embodiment and can be configured accordingly.

表1:負面因子與營養素範例 負面因子 疾病 1. 心血管、新陳代謝系統:高血糖、腦中風等。2. 荷爾蒙系統:多囊性卵巢症候群、更年期等。 3. 免疫系統:異味性皮膚炎、紅斑性狼瘡等。 4. 神經系統、精神系統:失眠、焦慮症等。 5. 肌肉骨骼系統:纖維肌痛症、骨質疏鬆等。 6. 腸道相關系統:胃潰瘍、腸躁症等。 7. 其他慢性疾病:慢性腎臟病、黃斑部病變等。 不良生活習慣 時常熬夜、飲酒、吸菸、外食族、少纖維飲食習慣、飲食習慣高油、飲食習慣高糖、生活壓力大、常使用3C產品、使用超過五種以上慢性藥物。 營養素 維生素 維生素A、 維生素B1(硫胺素)、 維生素B2(核黃素)、 維生素B3(菸鹼酸)、 維生素B5(泛酸)、 維生素B6(吡哆醇)、 維生素B7(生物素)、 維生素B9(葉酸)、 維生素B12(腦素)、 維生素C、 維生素D、 維生素E、 維生素K 礦物質 鈣、 鎂、 鉀、 磷、 鐵、 鋅、 銅、 硒、 鉻、 锰、 鈷、 鈉、 鉀、 硫 其他營養素 魚油(DHA、EPA)、Q10、益生菌、膳食纖維、谷胱甘肽、消化酵素、葉黃素、蝦紅素、血清素、多巴胺、γ-胺基丁酸(GABA)等 Table 1: Examples of Negative Factors and Nutrients Negative factors disease 1. Cardiovascular and metabolic systems: hyperglycemia, stroke, etc. 2. Hormonal system: polycystic ovary syndrome, menopause, etc. 3. Immune system: atopic dermatitis, lupus erythematosus, etc. 4. Nervous and psychiatric systems: insomnia, anxiety, etc. 5. Musculoskeletal system: fibromyalgia, osteoporosis, etc. 6. Intestinal system: gastric ulcers, irritable bowel syndrome, etc. 7. Other chronic diseases: chronic kidney disease, macular degeneration, etc. Bad living habits Frequently staying up late, drinking, smoking, eating out, low-fiber diet, high-fat diet, high-sugar diet, high-stress lifestyle, frequent use of consumer electronics, and use of more than five chronic medications. nutrients vitamins Vitamin A, Vitamin B1 (Thiamine), Vitamin B2 (Riboflavin), Vitamin B3 (Niacin), Vitamin B5 (Pantothenic Acid), Vitamin B6 (Pyridoxine), Vitamin B7 (Biotin), Vitamin B9 (Folic Acid), Vitamin B12 (Cholesterol), Vitamin C, Vitamin D, Vitamin E, Vitamin K Minerals Calcium, magnesium, potassium, phosphorus, iron, zinc, copper, selenium, chromium, manganese, cobalt, sodium, potassium, sulfur Other nutrients Fish oil (DHA, EPA), Q10, probiotics, dietary fiber, glutathione, digestive enzymes, lutein, crayfish, serotonin, dopamine, gamma-aminobutyric acid (GABA), etc.

於步驟S2:透過文獻分級表對文獻報告進行分級,並對文獻報告各自記載的營養素設置對應文獻級別的營養素加權值。並篩選每一複數個負面因子關聯的每一複數個營養素的營養素加權值並加總,再根據對應的複數個文獻報告的數量進行算術平均,以生成每一複數個負面因子對應的營養素平均加權值。In step S2, the literature reports are graded using the literature grading table, and nutrient weights corresponding to the literature grade are assigned to each nutrient reported in the literature report. The nutrient weights of each nutrient associated with each of the multiple negative factors are screened and summed. The nutrient weights are then arithmetic averaged based on the number of corresponding literature reports to generate the average nutrient weight for each of the multiple negative factors.

根據一些實施態樣,所述「篩選每一複數個負面因子關聯的每一複數個營養素的營養素加權值並加總,再根據對應的複數個文獻報告的數量進行算術平均」可包括以下態樣: (1) 根據每一文獻級別對應的營養素加權值,再將同一營養素的營養素加權值加總,範例如後文之表3; (2) 根據至少一個文獻級別對應的營養素加權值(如:最高文獻級別的EBM Level 1 ),再將同一營養素的營養素加權值加總。 According to some implementations, the "screening and summing up the nutrient weighted values of each nutrient associated with each nutrient, and then performing arithmetic averaging based on the number of corresponding literature reports" may include the following: (1) summing up the nutrient weighted values of the same nutrient based on the nutrient weighted values corresponding to each literature level, as shown in Table 3 below; (2) summing up the nutrient weighted values of the same nutrient based on the nutrient weighted values corresponding to at least one literature level (e.g., EBM Level 1, the highest literature level).

根據一些實施態樣,文獻分級表的參考依據例如可為實證醫學( Evidence bas ed medicine,EBM)、影響係數(impact factor)或其任意組合。According to some embodiments, the reference basis of the literature rating table can be, for example, evidence-based medicine (EBM), impact factor, or any combination thereof.

具體來說,所述的文獻級別可根據實證醫學對文獻報告證據力的等級進行判別。由於EBM Level分數越小,表示證據的可靠性越高,因此文獻級別例如可為 = 6 - EBM Level)。本實施例對每一文獻報告設置文獻級別的依據,例如可為表2。Specifically, the literature level can be determined based on the level of evidence in literature reports, as determined by evidence-based medicine. Since a lower EBM Level score indicates greater reliability of the evidence, the literature level can be, for example, [e.g., 6 - EBM Level]. This embodiment assigns a literature level to each literature report, as shown in Table 2.

表2:文獻分級表 Publication Type (出版物類型) EBM Level 文獻級別 Meta-Analysis (統合分析) 1 5 Randomized Controlled Trial (隨機對照試驗) 1 5 Systematic Review (系統回顧) 1 5 Comparative Study (比較研究) 3 3 Controlled Clinical Trial (對照臨床試驗) 3 3 Adaptive Clinical Trial (適應性臨床試驗) 4 2 Case Reports (病例報告) 4 2 Clinical Study (臨床研究) 4 2 Clinical Trial (臨床試驗) 4 2 Clinical Trial, Phase I (一期臨床試驗) 4 2 Clinical Trial, Phase II (二期臨床試驗) 4 2 Clinical Trial, Phase III (三期臨床試驗) 4 2 Clinical Trial, Phase IV (四期臨床試驗) 4 2 Observational Study (觀察性研究) 4 2 Classical Article (經典文獻) 5 1 Comment (評論) 5 1 Guideline (指引) 5 1 Practice Guideline (實踐指南) 5 1 Table 2: Literature Rating Table Publication Type EBM Level Literature Level Meta-Analysis 1 5 Randomized Controlled Trial 1 5 Systematic Review 1 5 Comparative Study 3 3 Controlled Clinical Trial 3 3 Adaptive Clinical Trial 4 2 Case Reports 4 2 Clinical Study 4 2 Clinical Trial 4 2 Clinical Trial, Phase I 4 2 Clinical Trial, Phase II 4 2 Clinical Trial, Phase III 4 2 Clinical Trial, Phase IV 4 2 Observational Study 4 2 Classical Article 5 1 Comment 5 1 Guideline 5 1 Practice Guideline 5 1

進一步地,對所有文獻報告的文獻級別及其營養素的營養素加權值,例如可為下表3。Furthermore, the literature levels and nutrient weighting values of all literature reports can be shown in Table 3 below.

表3:文獻級別與營養素加權值的關係之範例 文獻 報告 文獻級別 負面因子 營養素加權值 維他命D 葉黃素 AAA 1 骨質疏鬆 1 BBB 3 骨質疏鬆 3 3 CCC 4 失眠 4 4 DDD 1 失眠 1 1 EEE 3 黃斑部病變 3 FFF 4 黃斑部病變 4 GGG 5 黃斑部病變 5 Table 3: Example of the relationship between literature level and nutrient weighting Literature Report Literature Level Negative factors Nutrient weighted value calcium Magnesium Vitamin D Lutein AAA 1 osteoporosis 1 BBB 3 osteoporosis 3 3 CCC 4 Insomnia 4 4 DDD 1 Insomnia 1 1 EEE 3 Macular degeneration 3 FFF 4 Macular degeneration 4 GGG 5 Macular degeneration 5

所述營養素平均加權值例如可為,當負面因子為骨質疏鬆,且營養素為鈣時,營養素平均加權值=(1+3)/2=2.5。故藉由營養素平均加權值可平衡所有營養加權值,避免某一營養素被越多文獻討論,使營養素加權值因而增加。而後續步驟為了說明方便,部分數值仍以營養素加權值表示。For example, if the negative factor is osteoporosis and the nutrient is calcium, the average nutrient weighted value is (1 + 3) / 2 = 2.5. Therefore, using the average nutrient weighted value balances all nutrient weights, preventing a particular nutrient from increasing in weight as more literature discusses it. For ease of explanation, some values in subsequent steps will still be expressed using nutrient weighted values.

根據一些實施態樣,由於文獻級別低的文獻報告之證據力可能還不足,因此可預設計算營養素平均加權值的文獻級別範圍,可包括以下態樣: (1)僅採用最高級別的文獻級別(如 EBM Level 1)對應的營養素加權值去計算營養素平均加權值,例如:當負面因子為黃斑部病變,且營養素為葉黃素時,營養素平均加權值=(5)/1=5。 (2) 僅採用最高與次高級別的文獻級別(如 EBM Level 1、EBM Level 2)對應的營養素加權值去計算營養素平均加權值,例如:當負面因子為黃斑部病變,且營養素為葉黃素時,營養素平均加權值=(4+5)/2=4.5。 在此僅示意營養素平均加權值的一些具體計算方法,舉凡與上述實施態樣均等或等效之變化或置換,皆應解讀為涵蓋於本發明之精神或範疇內。 According to some implementations, since the evidence of literature reports with low literature levels may not be sufficient, the literature level range for calculating the average nutrient weighted value can be preset, which may include the following: (1) Only the nutrient weighted values corresponding to the highest literature level (such as EBM Level 1) are used to calculate the average nutrient weighted value. For example: when the negative factor is macular degeneration and the nutrient is lutein, the average nutrient weighted value = (5)/1 = 5. (2) Only the nutrient weights corresponding to the highest and second-highest literature levels (e.g., EBM Level 1, EBM Level 2) are used to calculate the average nutrient weight. For example, when the negative factor is macular degeneration and the nutrient is lutein, the average nutrient weight = (4 + 5) / 2 = 4.5. This is merely an illustration of some specific calculation methods for the average nutrient weight. Any changes or substitutions that are equal or equivalent to the above-mentioned embodiments should be interpreted as being within the spirit or scope of the present invention.

因此,本方法提供彈性的營養素平均加權值計算方式,可依據負面因子與營養素之間的研究現況進行調整。例如:已有大量研究指出骨質疏鬆與鈣的關聯性,則應用高文獻級別的文獻報告對應的營養素加權值有助於提升「營養素平均加權值」所具備的證據力或可信度。又可避免低文獻級別的營養素加權值後續進行算術平均時(因為文獻報告數量增加,分母變大),會拉低營養素平均加權值。反之,屬於新興研究的主題,過去鮮少有文獻指出某營養素對某負面因子的影響,由於文獻報告數量仍不足,則應用較低級別的文獻報告對應的營養素加權值,可多樣化「營養素平均加權值」,提供專業人員更多協助受測者的參考選項。例如:又如表3,當受測者具有失眠的負面因子時,倘若僅應用文獻級別4 (含)以上的營養素加權值,則「營養素平均加權值」分別為鈣=4/1=4、鎂=4/1=4;但應用所有文獻級別的營養素加權值,則「營養素平均加權值」分別為鈣=4+1/2=2.5、鎂=4/1=4、維他命D=1/1=1,如此可增加「營養素平均加權值」的多樣性,讓專業人員考慮建議受測者補充少量的維他命D。Therefore, this method provides a flexible way to calculate average nutrient weights, allowing adjustments based on the current state of research on negative factors and nutrients. For example, if numerous studies have shown a relationship between osteoporosis and calcium, using nutrient weights corresponding to high-quality literature will help enhance the weight of evidence and credibility of the average nutrient weight. It also prevents the use of low-quality nutrient weights in subsequent arithmetic averaging (due to a larger denominator as the number of literature increases), which could lower the average nutrient weight. Conversely, for emerging research topics where there has been limited literature on the impact of a particular nutrient on a particular negative factor, using nutrient weightings corresponding to lower-level literature reports can diversify the "average nutrient weightings" and provide professionals with more reference options to assist participants. For example, as shown in Table 3, when a subject has the negative factor of insomnia, if only nutrient weights from literature level 4 or above are applied, the "average nutrient weights" are calcium = 4/1 = 4, and magnesium = 4/1 = 4. However, if nutrient weights from all literature levels are applied, the "average nutrient weights" are calcium = 4 + 1/2 = 2.5, magnesium = 4/1 = 4, and vitamin D = 1/1 = 1. This increases the diversity of the "average nutrient weights," allowing professionals to consider recommending a small amount of vitamin D supplementation for the subject.

於步驟S3:基於負面因子分級表,取得多個負面因子對應的負面因子加權值。In step S3: based on the negative factor ranking table, negative factor weighted values corresponding to the multiple negative factors are obtained.

根據一些實施態樣,負面因子分級表的依據例如可為德爾菲法、國人十大死因(針對疾病部分)或其任意組合。According to some embodiments, the negative factor rating scale can be based on, for example, the Delphi method, the top ten causes of death in China (for diseases), or any combination thereof.

具體來說,所述的德爾菲法,可事先設計多輪的問卷調查,以向專家根據各自的知識背景或經驗(如,臨床經驗、學識),評估各種負面因子危害健康的風險。舉例來說:第一輪問卷請專家直接對特定的負面因子給予特定的風險值(如,0分的毫無關係;1分的輕度,持續不改長久會影響健康;2分的中度,短期內會有嚴重影響健康;3分的重度,立刻有嚴重影響健康)。第二輪問卷將提供與第一輪問卷相同的內容,但進一步提供其他匿名專家的風險平均值。第三輪問卷~第四輪問卷則可根據專家們意見分歧的部分進行進一步的調查(可透過統計分析的離散度進行客觀判斷),以收斂專家們的意見。最後,將所有專家在多輪問卷中,最終的風險值進行平均,以得到負面因子加權值。負面因子加權值與各負面因子的關聯性,例如可為下表4。Specifically, the Delphi method can involve multiple rounds of questionnaires designed in advance, allowing experts to assess the health risks of various negative factors based on their respective knowledge and experience (e.g., clinical experience and academic knowledge). For example, the first round of questionnaires asks experts to directly assign specific risk values to specific negative factors (e.g., 0 for no effect; 1 for mild, with persistent, long-term health consequences; 2 for moderate, with immediate and severe health consequences; 3 for severe, with immediate and severe health consequences). The second round of questionnaires will provide the same content as the first round, but will also provide the average risk values of other anonymous experts. The third and fourth rounds of questionnaires can be used to further investigate areas of disagreement among experts (this can be objectively determined through statistical analysis of dispersion) to converge their opinions. Finally, the final risk values from all experts across multiple rounds of questionnaires are averaged to obtain the weighted negative factor values. The correlation between the weighted negative factor values and each negative factor can be shown in Table 4 below.

表4:負面因子加權值與各負面因子的關係之範例 負面因子 負面因子加權值 骨質疏鬆 2.1 失眠 2.3 黃斑部病變 1.7 紅斑性狼瘡 2.7 偏頭痛 1.8 焦慮症 2.5 Table 4: Examples of the relationship between negative factor weightings and each negative factor Negative factors Negative factor weighting osteoporosis 2.1 Insomnia 2.3 Macular degeneration 1.7 Lupus erythematosus 2.7 Migraine 1.8 Anxiety disorder 2.5

於步驟S4:將每一個負面因子對應的營養素加權值以及負面因子加權值相乘,獲取營養素複加權值。In step S4: multiply the nutrient weighted value corresponding to each negative factor and the negative factor weighted value to obtain the nutrient composite weighted value.

根據一些實施態樣,對應同一負面因子,將表3的營養素加權值乘以表4的負面因子加權值,最後取得營養素複加權值例如可為下表5。According to some embodiments, corresponding to the same negative factor, the nutrient weighted value in Table 3 is multiplied by the negative factor weighted value in Table 4, and the final nutrient composite weighted value can be obtained, for example, as shown in Table 5 below.

表5:養素複加權值之範例 文獻 報告 文獻級別 負面因子 營養素複加權值 維他命D 葉黃素 AAA 1 骨質疏鬆 1*2.1 BBB 3 骨質疏鬆 3*2.1 3*2.1 CCC 4 失眠 4*2.3 4*2.3 DDD 1 失眠 1*2.3 1*2.3 EEE 3 黃斑部病變 3*1.7 FFF 4 黃斑部病變 4*1.7 GGG 5 黃斑部病變 5*1.7 Table 5: Examples of nutrient complex weights Literature Report Literature Level Negative factors Nutrient complex weight calcium Magnesium Vitamin D Lutein AAA 1 osteoporosis 1*2.1 BBB 3 osteoporosis 3*2.1 3*2.1 CCC 4 Insomnia 4*2.3 4*2.3 DDD 1 Insomnia 1*2.3 1*2.3 EEE 3 Macular degeneration 3*1.7 FFF 4 Macular degeneration 4*1.7 GGG 5 Macular degeneration 5*1.7

具體來說,表5的例如公式為: 營養素加權值=文獻級別。 Specifically, the formula for the example in Table 5 is: Nutrient weighted value = Literature level.

進一步來說,當以營養素平均加權值計算時,公式如下: 營養素平均加權值=(文獻級別1+文獻級別2+….+ 文獻級別N)/N; 營養素複加權值=(文獻級別1+文獻級別2+….+ 文獻級別N)/N * 負面因子加權值。 Furthermore, when calculating the average weighted nutrient value, the formula is as follows: Average weighted nutrient value = (Reference Level 1 + Reference Level 2 + … + Reference Level N) / N; Combined nutrient weight = (Reference Level 1 + Reference Level 2 + … + Reference Level N) / N * Negative factor weight.

於步驟S5:獲取受測者資訊。In step S5: obtain subject information.

於步驟S6:根據受測者資訊中的負面因子,提取對應的營養素複加權值。In step S6: extract the corresponding nutrient complex weights based on the negative factors in the subject's information.

於步驟S7:根據營養素複加權值,提供受測者營養補充建議。In step S7: nutritional supplementation recommendations are provided to the subject based on the nutrient complex weights.

根據步驟S6~S7,根據一些實施態樣,當受測者資訊內記載的負面因子為骨質疏鬆以及失眠。故受測者營養補充建議中的鈣=(1*2.1)+(3*2.1)+ (4*2.3)+(1*2.3)/4=4;鎂=(4*2.3)/1=4.6 ;維他命D=(3*2.1)+(1*2.3)/2=4.3 。故營養師在檢視受測者的各項營養素補充建議值後,應建議受測者補充營養素的順序為:鎂、維他命D、鈣。本實施態樣僅列舉受測者部份的營養素補充建議值,實際上受測者資訊內亦有其他因子可作為本實施例分析的依據。According to steps S6-S7, according to some implementations, if the negative factors recorded in the subject's information are osteoporosis and insomnia, the subject's nutritional supplement recommendations are: calcium = (1*2.1) + (3*2.1) + (4*2.3) + (1*2.3)/4 = 4; magnesium = (4*2.3)/1 = 4.6; and vitamin D = (3*2.1) + (1*2.3)/2 = 4.3. Therefore, after reviewing the subject's nutritional supplement recommendations, the dietitian should recommend the following order of nutritional supplementation: magnesium, vitamin D, then calcium. This embodiment only lists some of the recommended nutrient supplement values for the subjects. In fact, the subject information also contains other factors that can serve as the basis for analysis in this embodiment.

進一步地,當受測者資訊顯示受測者到達現有醫學上認定的老人族群、過瘦體質或過胖體質,均可透過本實施的預設值(例如年齡>65歲,視為身體趨於明顯老化的負面因子),故將其視為負面因子,並作為分析出營養素補充建議值的依據。Furthermore, when the subject's information indicates that the subject falls within the currently medically recognized elderly group, is too thin, or is overweight, the default values of this implementation (for example, age > 65 is considered a negative factor indicating a significant aging trend) are considered as negative factors and used as the basis for analyzing recommended nutrient supplement values.

根據另一些實施態樣,在步驟S2可進一步透過自然語言處理,判斷每一所述複數個文獻報告記載的所述複數個營養素其中至少一於對應的負面因子的營養素效益,以對所述複數個文獻報告各自記載的營養素設置對應文獻級別的正面效益(Positive)的正面營養素加權值(營養素有助於改善負面因子)、負面效益(Negative)的負面營養素加權值(營養素會惡化負面因子)以及無效益(Null)的無效營養素加權值(營養素無助於改善負面因子)。具體來說,透過自然語言處理,可判定文獻報告中記載的營養素所記載的負面因子的效益,自然語言處理的辨識字元例如可為表6。According to other implementations, step S2 may further determine the nutritional benefit of at least one of the plurality of nutrients recorded in each of the plurality of literature reports with respect to the corresponding negative factor through natural language processing, so as to set a positive nutrient weighting value (positive) corresponding to the literature level (nutrient helps improve the negative factor), a negative nutrient weighting value (negative) corresponding to the negative benefit (nutrient will worsen the negative factor), and a null nutrient weighting value (null) corresponding to the literature level for each nutrient recorded in the plurality of literature reports. Specifically, through natural language processing, the benefits of negative factors reported in the literature can be determined. The recognition characters of natural language processing can be, for example, as shown in Table 6.

表6:自然語言處理判定營養素效益的辨識字元 效益 辨識字元 Positive (正面) positive outcome (積極結果)、beneficial (有益)、successful (成功)、favorable (有利)、significant improvement (顯著改善)、positive response (積極反應)、therapeutic success (治療成功)、efficacy (功效)、positive impact (積極影響)、enhances (增強)、 boosts (提高) Negative (負面) detrimental (有害的)、harmful (有害)、adverse effects (不良反應)、failure (失敗)、negative outcome (負面結果) Null (無效益) no significant difference (無顯著差異)、equivalent (等效)、similar outcomes (結果相似)、no advantage (無優勢)、equivalent efficacy (功效相當)、similar effectiveness (效果相似) Table 6: Recognition characters for natural language processing to determine nutritional benefits benefit Character recognition Positive positive outcome, beneficial, successful, favorable, significant improvement, positive response, therapeutic success, efficacy, positive impact, enhances, boosts Negative detrimental, harmful, adverse effects, failure, negative outcome Null (no benefit) no significant difference, equivalent, similar outcomes, no advantage, equivalent efficacy, similar effectiveness

進一步地,透過更可根據現有醫學期刊、論文或臨床試驗報告的文字記載方式,進一步設定對應的辨識細節。例如:上述辨識字元需與至少一營養素在同段或同句,方能作為營養素對負面因子在效益上的依據。Furthermore, corresponding identification details can be further configured based on the textual descriptions used in existing medical journals, papers, or clinical trial reports. For example, the above identification characters must appear in the same paragraph or sentence as at least one nutrient in order to serve as evidence of the nutrient's effect on a negative factor.

因此,基於自然語言處理的應用,前文表3之範例可進一步變化如下表7。Therefore, based on the application of natural language processing, the example in Table 3 above can be further modified as shown in Table 7 below.

表7:文獻級別、營養素效益與營養素加權值的關係之範例 文獻 報告 文獻級別 負面因子 效益 (effect) 營養素加權值 維他命D 葉黃素 AAA 1 骨質疏鬆 Positive 1 BBB 3 骨質疏鬆 Positive 3 3 CCC 4 失眠 Positive 4 CCC 4 失眠 Negative 4 CCC 4 失眠 Null 4 DDD 1 失眠 Positive 1 1 EEE 3 黃斑部病變 Positive 3 FFF 4 黃斑部病變 Positive 4 Table 7: Examples of the relationship between literature level, nutrient benefits, and nutrient weightings Literature Report Literature Level Negative factors effect Nutrient weighted value calcium Magnesium Vitamin D Lutein AAA 1 osteoporosis Positive 1 BBB 3 osteoporosis Positive 3 3 CCC 4 Insomnia Positive 4 CCC 4 Insomnia Negative 4 CCC 4 Insomnia Null 4 DDD 1 Insomnia Positive 1 1 EEE 3 Macular degeneration Positive 3 FFF 4 Macular degeneration Positive 4

由表7可見,應用自然語言處理後,可更精準地分析各文獻報告中記載的各營養素會負面因子的效益。因此,透過單純的檢索指令可能會將鈣、鎂、維他命D都視為對改善失眠有幫助的營養素(如表3),但進一步透過自然語言處理後,可見僅有鈣是對改善失眠有幫助的營養素(如表7)。故應用自然語言處理後所得到的營養素加權值為依據,所產生的營養素補充建議值將更具參考價值。在此應注意的是,表3、7所列負面因子與各營養素的效益,僅為用於本說明書示意之範例。As shown in Table 7, natural language processing allows for a more precise analysis of the negative effects of various nutrients reported in various literature reports. Thus, a simple search might identify calcium, magnesium, and vitamin D as nutrients that are beneficial for improving insomnia (as shown in Table 3). However, further natural language processing reveals that only calcium is a nutrient that is beneficial for improving insomnia (as shown in Table 7). Therefore, using the weighted nutrient values obtained through natural language processing as a basis for generating nutrient supplement recommendations will be more valuable. It should be noted that the negative effects and nutrient benefits listed in Tables 3 and 7 are merely examples for illustrative purposes in this manual.

根據又一些實施態樣,應用自然語言處理後,可得正面營養素加權值、負面營養素加權值以及無效營養素加權值。因此可進一步以圖1的步驟S3~S6,分別產生對應正面營養素複加權值、負面營養素複加權值以及無效營養素複加權值。進一步地,以負面營養素複加權值以及無效營養素複加權值分別除以正面營養素複加權值,可分別產生複營養素負面效益比值以及複營養素無效益比值。抑或是,以負面營養素複加權值以及無效營養素複加權值先相加再除以正面營養素複加權值,產生複營養素效益比值。According to some embodiments, after applying natural language processing, positive nutrient weights, negative nutrient weights, and ineffective nutrient weights can be obtained. Therefore, steps S3-S6 of FIG. 1 can be further performed to generate corresponding positive nutrient composite weights, negative nutrient composite weights, and ineffective nutrient composite weights, respectively. Furthermore, by dividing the negative nutrient composite weights and ineffective nutrient composite weights by the positive nutrient composite weights, respectively, a composite nutrient negative benefit ratio and a composite nutrient ineffective benefit ratio can be generated, respectively. Alternatively, the negative nutrient complex weights and the ineffective nutrient complex weights are added together and then divided by the positive nutrient complex weights to produce a complex nutrient benefit ratio.

根據另一些實施態樣,透過智慧營養素評估方法更可建立大數據資料庫,例如蒐集一些相對健康或具有輕微負面因子的受測者資訊,並建立標準值,當分析實際的受測者資訊後,其營養素平均加權值、正面營養素平均加權值、負面營養素平均加權值、無效營養素平均加權值、營養素效益比值、營養素負面效益比值、營養素無效益比值、營養素複加權值、正面營養素複加權值、負面營養素複加權值、無效營養素複加權值、複營養素效益比值、複營養素負面效益比值以及複營養素無效益比值之中至少一項超過標準值時,則會提供客製化營養素補充建議值,以讓專業人士建議該受測者需補充一些特定的營養素。According to other implementations, a big data database can be established through the intelligent nutrient assessment method. For example, information on relatively healthy subjects or those with slightly negative factors can be collected and standard values can be established. After analyzing the actual subject information, the average weighted value of nutrients, the average weighted value of positive nutrients, the average weighted value of negative nutrients, the average weighted value of ineffective nutrients, the nutrient benefit ratio, the nutrient negative factors, and the average weighted value of the nutrients can be obtained. If at least one of the benefit ratio, nutrient ineffectiveness ratio, nutrient complexity weight, positive nutrient complexity weight, negative nutrient complexity weight, ineffective nutrient complexity weight, complex nutrient benefit ratio, complex nutrient negative benefit ratio, and complex nutrient ineffectiveness ratio exceeds the standard value, customized nutrient supplementation recommendations will be provided, allowing professionals to recommend specific nutrients to the subject.

根據又一些實施態樣,當(複)營養素負面效益比值或(複)營養素無效益比值大於0.3時,將不會將對應的營養素作為優先攝取的建議。例如:根據一位受測者的受測者資訊,分析出維他命D的營養素無效益比值大於0.3,故將不會將維他命D建議給受測者需優先攝取。According to some implementations, when a (multi-)nutrient negative benefit ratio or a (multi-)nutrient no-benefit ratio is greater than 0.3, the corresponding nutrient will not be recommended as a priority intake. For example, based on a subject's information, if the no-benefit ratio of vitamin D is analyzed to be greater than 0.3, vitamin D will not be recommended to the subject as a priority intake.

根據另一些實施態樣,在步驟S7可根據透過預設的複數個食物營養素資訊記載分別特定食物(如,紅蘿蔔)在相同重量(如,100克)的各種營養素含量,並根據客製化營養素補充建議值,提供受測者選擇食物的食物攝取建議資訊。進一步地,當受測者資訊中記載欲執行特殊營養方案時,調整建議攝取資訊。所述特殊營養方案包括:糖尿病飲食、減重飲食、乳糖不耐症飲食、高蛋白質飲食、高纖維飲食、過敏原排除飲食、無麩質飲食、素食飲食、生酮飲食、低鈉飲食以及低脂飲食。According to other embodiments, in step S7, the subject can be provided with food intake recommendations based on a plurality of preset food nutrient information records, including the nutrient content of each specific food (e.g., carrots) per a certain weight (e.g., 100 grams), and customized nutrient supplementation recommendations. Furthermore, if the subject's information indicates a desire to implement a special nutritional plan, the recommended intake information is adjusted. Special nutrition plans include: diabetic diets, weight loss diets, lactose intolerance diets, high-protein diets, high-fiber diets, allergen elimination diets, gluten-free diets, vegetarian diets, ketogenic diets, low-sodium diets, and low-fat diets.

基於第一實施例的智慧營養素評估方法,可根據所需進行對應的調整以設置於硬體、裝置或系統中,但不表示硬體、裝置或系統需要應用全部第一實施例以及實施態樣的內容,詳如下述實施例。The intelligent nutrient assessment method based on the first embodiment can be adjusted accordingly as needed to be set in hardware, devices, or systems. However, this does not mean that the hardware, devices, or systems need to apply all of the first embodiment and its implementation aspects, as detailed in the following embodiments.

第二實施例:生成第一客製化營養素補充建議值Second embodiment: generating a first customized nutrient supplement recommendation value

如圖2,圖2為本發明所提供的實施例的智慧營養素評估系統的第一方塊示意圖。本實施例提供一種智慧營養素評估系統100,訊號連接至少一文獻資料庫200,智慧營養素評估系統100包括:文獻檢索模組110、文獻加權模組120以及處理模組130。文獻檢索模組110,訊號連接至少一文獻資料庫200,文獻檢索模組110透過具有複數個負面因子與複數個營養素的關鍵字組成檢索指令,向至少一文獻資料庫200取得同時記載複數個負面因子其中至少一與複數個營養素其中至少一的內容的複數個文獻報告,其中複數個負面因子包括疾病以及不良生活習慣(如表1)。文獻加權模組120,訊號連接文獻檢索模組110,文獻加權模組120透過文獻分級表對複數個文獻報告進行分級(如表2),並根據複數個文獻報告各自對應的文獻級別,對複數個文獻報告各自記載的營養素設置對應文獻級別的營養素加權值(如表3),其中營養素加權值係對應複數個負面因子其中之一。處理模組130,訊號連接文獻加權模組120,處理模組130篩選出每一複數個負面因子關聯的每一複數個營養素的營養素加權值並加總,再根據對應的複數個文獻報告的數量進行算術平均,以生成每一複數個負面因子對應的營養素平均加權值。As shown in Figure 2, a first block diagram of an intelligent nutrient assessment system according to an embodiment of the present invention is provided. This embodiment provides an intelligent nutrient assessment system 100, which is signal-connected to at least one literature database 200. The intelligent nutrient assessment system 100 includes a literature retrieval module 110, a literature weighting module 120, and a processing module 130. The literature search module 110 is signal-connected to at least one literature database 200. The literature search module 110 uses a search command composed of keywords including a plurality of negative factors and a plurality of nutrients to obtain from the at least one literature database 200 a plurality of literature reports that simultaneously record at least one of the plurality of negative factors and at least one of the plurality of nutrients. The plurality of negative factors include diseases and unhealthy lifestyle habits (as shown in Table 1). The literature weighting module 120 is signal-connected to the literature retrieval module 110. The literature weighting module 120 ranks the plurality of literature reports using a literature rating table (as shown in Table 2). Based on the literature ratings corresponding to the plurality of literature reports, the module sets nutrient weighting values corresponding to the literature ratings for the nutrients recorded in the plurality of literature reports (as shown in Table 3). The nutrient weighting value corresponds to one of the plurality of negative factors. Processing module 130 is signal-connected to literature weighting module 120. Processing module 130 selects and sums the nutrient weights of each nutrient associated with each of the multiple negative factors. It then arithmetic averages these sums based on the number of corresponding literature reports to generate an average nutrient weight for each of the multiple negative factors.

又如圖3,圖3為本發明所提供的實施例的智慧營養素評估系統的第二方塊示意圖。根據一些實施態樣,處理模組130更訊號連接執行模組140,執行模組訊號連接使用者裝置400,用於接收使用者裝置400提供的受測者對應的受測者資訊,受測者資訊記載複數個負面因子其中至少一,處理模組130提取受測者資訊記載的每一負面因子對應的營養素平均加權值,作為第一客製化營養素補充建議值。As shown in Figure 3, a second block diagram of an intelligent nutrient assessment system according to an embodiment of the present invention is provided. According to some embodiments, the processing module 130 is further signally connected to the execution module 140, which is signally connected to the user device 400. The execution module 140 receives subject information corresponding to a subject provided by the user device 400. The subject information records at least one of a plurality of negative factors. The processing module 130 extracts the average weighted nutrient value corresponding to each negative factor recorded in the subject information as a first customized nutrient supplement recommendation.

第三實施例:生成第二客製化營養素補充建議值Third embodiment: generating a second customized nutrient supplement recommendation value

如圖2,基於第二實施例,再根據一些實施態樣,文獻加權模組120更根據自然語言處理,判斷每一複數個文獻報告記載的複數個營養素對於負面因子的營養素效益,以對複數個文獻報告各自記載的營養素設置對應文獻級別的正面營養素加權值的總和、負面營養素加權值的總和以及無效營養素加權值的總和,並根據對應的複數個文獻報告的數量進行算術平均,以生成每一複數個負面因子對應的正面營養素平均加權值、負面營養素平均加權值以及無效營養素平均加權值。As shown in FIG2 , based on the second embodiment and in some implementations, the literature weighting module 120 further determines the nutritional benefits of each of the plurality of nutrients recorded in the plurality of literature reports for the negative factors based on natural language processing, and sets the sum of the positive nutrient weights, the sum of the negative nutrient weights, and the sum of the ineffective nutrient weights corresponding to the literature level for the nutrients recorded in each of the plurality of literature reports. The module then performs an arithmetic average based on the number of corresponding literature reports to generate an average positive nutrient weight, an average negative nutrient weight, and an average ineffective nutrient weight corresponding to each of the plurality of negative factors.

又如圖3,處理模組130更訊號連接執行模組140,執行模組140訊號連接使用者裝置400,用於接收使用者裝置400提供的受測者對應的受測者資訊,受測者資訊記載複數個負面因子其中至少一,處理模組130提取受測者資訊記載的每一負面因子對應的正面營養素平均加權值、負面營養素平均加權值以及無效營養素平均加權值,作為第二客製化營養素補充建議值。As shown in Figure 3, the processing module 130 is further signal-connected to the execution module 140, and the execution module 140 is signal-connected to the user device 400 for receiving subject information corresponding to the subject provided by the user device 400. The subject information records at least one of a plurality of negative factors. The processing module 130 extracts the average weighted value of positive nutrients, the average weighted value of negative nutrients, and the average weighted value of ineffective nutrients corresponding to each negative factor recorded in the subject information as the second customized nutrient supplement recommendation value.

第四實施例:生成第三客製化營養素補充建議值Fourth embodiment: generating a third customized nutrient supplement recommendation value

又如圖3,接續第三實施例,處理模組130還將負面營養素平均加權值以及無效營養素平均加權值分別除以正面營養素平均加權值,分別產生營養素負面效益比值以及營養素無效益比值,作為第三客製化營養素補充建議值。抑或是,以負面營養素平均加權值以及無效營養素平均加權值先相加再除以正面營養素複加權值,產生營養素效益比值,作為第三客製化營養素補充建議值。As shown in FIG3 , continuing with the third embodiment, the processing module 130 further divides the average weighted value of the negative nutrients and the average weighted value of the ineffective nutrients by the average weighted value of the positive nutrients to generate a nutrient negative benefit ratio and a nutrient ineffective benefit ratio, respectively, as the third customized nutrient supplement recommendation. Alternatively, the average weighted value of the negative nutrients and the average weighted value of the ineffective nutrients are first added together and then divided by the composite weighted value of the positive nutrients to generate a nutrient benefit ratio as the third customized nutrient supplement recommendation.

第五實施例:生成第四客製化營養素補充建議值Fifth embodiment: generating a fourth customized nutrient supplement recommendation value

如圖4,圖4為本發明所提供的實施例的智慧營養素評估系統的第三方塊示意圖。基於第二實施例,再根據一些實施態樣,處理模組140更訊號連接負面因子加權模組150,負面因子加權模組150基於負面因子分級表,對每一複數個負面因子提供對應的負面因子加權值(如表4),以讓處理模組140將每一複數個負面因子對應的營養素平均加權值與負面因子加權值相乘,產生每一複數個負面因子對應的營養素複加權值(如表5)。As shown in Figure 4, a third block diagram of the smart nutrient assessment system according to an embodiment of the present invention is provided. Based on the second embodiment, and in some embodiments, processing module 140 is further signal-connected to negative factor weighting module 150. Negative factor weighting module 150 provides a corresponding negative factor weighting value (as shown in Table 4) for each of the multiple negative factors based on a negative factor grading table. Processing module 140 then multiplies the average nutrient weighting value corresponding to each of the multiple negative factors by the negative factor weighting value to generate a composite nutrient weighting value corresponding to each of the multiple negative factors (as shown in Table 5).

又如圖3,處理模組更訊號連接執行模組140,執行模組140訊號連接使用者裝置400,用於接收使用者裝置400提供的受測者對應的受測者資訊,受測者資訊記載複數個負面因子其中至少一,處理模組130提取受測者資訊記載的每一負面因子對應的營養素複加權值,作為第四客製化營養素補充建議值。As shown in Figure 3, the processing module is further signal-connected to the execution module 140, which is signal-connected to the user device 400 for receiving subject information corresponding to the subject provided by the user device 400. The subject information records at least one of a plurality of negative factors. The processing module 130 extracts the nutrient complex weight corresponding to each negative factor recorded in the subject information as the fourth customized nutrient supplement recommendation value.

第六實施例:生成第五客製化營養素補充建議值Sixth embodiment: generating the fifth customized nutrient supplementation recommendation value

如圖4,基於第二實施例,再根據一些實施態樣,處理模組140更訊號連接負面因子加權模組150,負面因子加權模組150基於負面因子分級表,對每一複數個負面因子提供對應的一負面因子加權值(如表4),以讓處理模組140將每一複數個負面因子對應的正面營養素平均加權值、負面營養素平均加權值以及無效營養素平均加權值分別與負面因子加權值相乘,產生每一複數個負面因子對應的正面營養素複加權值、負面營養素複加權值以及無效營養素複加權值。抑或是,僅正面營養素平均加權值與負面因子加權值相乘,產生每一複數個負面因子對應的正面營養素複加權值。As shown in FIG4 , based on the second embodiment, and according to some implementations, the processing module 140 is further connected to the negative factor weighting module 150. The negative factor weighting module 150 provides a corresponding negative factor weighting value (as shown in Table 4) for each of the plurality of negative factors based on the negative factor grading table, so that the processing module 140 multiplies the average weighted value of positive nutrients, the average weighted value of negative nutrients, and the average weighted value of ineffective nutrients corresponding to each of the plurality of negative factors by the negative factor weighting value, respectively, to generate the composite weighted value of positive nutrients, the composite weighted value of negative nutrients, and the composite weighted value of ineffective nutrients corresponding to each of the plurality of negative factors. Alternatively, the average weight of the positive nutrients is multiplied by the weight of the negative factors to produce a composite weight of the positive nutrients for each multiple negative factors.

又如圖3,處理模組更訊號連接執行模組130,執行模組130訊號連接使用者裝置400,用於接收使用者裝置400提供的受測者對應的受測者資訊,受測者資訊記載複數個負面因子其中至少一,處理模組130提取受測者資訊記載的每一負面因子對應的正面營養素複加權值、負面營養素複加權值及/或無效營養素複加權值,作為第五客製化營養素補充建議值。抑或是,處理模組130僅提取受測者資訊記載的每一負面因子對應的正面營養素複加權值,作為第五客製化營養素補充建議值。As shown in Figure 3, the processing module is further signally connected to the execution module 130, which is signally connected to the user device 400. The execution module 130 is configured to receive subject information corresponding to a subject provided by the user device 400. The subject information records at least one of a plurality of negative factors. The processing module 130 extracts the positive nutrient composite weight, negative nutrient composite weight, and/or ineffective nutrient composite weight corresponding to each negative factor recorded in the subject information as the fifth customized nutrient supplementation recommendation. Alternatively, the processing module 130 only extracts the positive nutrient composite weight corresponding to each negative factor recorded in the subject information as the fifth customized nutrient supplementation recommendation.

第七實施例:生成第六客製化營養素補充建議值Seventh embodiment: generating the sixth customized nutrient supplementation recommendation value

又如圖3,接續第六實施例,處理模組130還將負面營養素複加權值以及無效營養素複加權值分別除以正面營養素複加權值,分別產生複營養素負面效益比值以及複營養素無效益比值,作為第六客製化營養素補充建議值。抑或是,以負面營養素複加權值以及無效營養素複加權值先相加再除以正面營養素複加權值,產生複營養素效益比值,作為第六客製化營養素補充建議值。As shown in FIG3 , continuing with the sixth embodiment, the processing module 130 further divides the negative nutrient composite weights and the ineffective nutrient composite weights by the positive nutrient composite weights to generate a composite nutrient negative benefit ratio and a composite nutrient ineffective benefit ratio, respectively, as the sixth customized nutrient supplementation recommendation. Alternatively, the negative nutrient composite weights and the ineffective nutrient composite weights are first added together and then divided by the positive nutrient composite weights to generate a composite nutrient benefit ratio as the sixth customized nutrient supplementation recommendation.

基於第二實施例至第七實施例,更可包括以下實施例態樣。Based on the second to seventh embodiments, the following embodiments may be further included.

根據一些實施態樣,上述使用者裝置400例如可為具有網路通訊以及電信通訊功能之裝置,如:桌上型電腦或可攜式裝置。上述執行模組140例如可為應用程式介面(application programming interface,簡稱API),用於接收受測者資訊。According to some implementations, the user device 400 may be a device with network and telecommunication capabilities, such as a desktop computer or a portable device. The execution module 140 may be an application programming interface (API) for receiving subject information.

根據另一些實施態樣,上述智慧營養素評估系統100例如可為架設於具備運算處理能力的計算機裝置中的系統。上述文獻資料庫200例如可分別為各大科學期刊網站、各國臨床試驗資料庫、學術論文資料庫等。進一步地,例如可為PubMed(用於檢索MEDLINE的資料庫)。According to other embodiments, the intelligent nutrient assessment system 100 can be implemented on a computer device equipped with computational processing capabilities. The literature database 200 can be, for example, websites of major scientific journals, international clinical trial databases, or academic paper databases. Furthermore, it can be, for example, PubMed (a database used to search MEDLINE).

如圖2或圖4,根據另一些實施態樣,負面因子加權模組130更訊號連接複數個專家裝置300,以接收複數個專家提供的每一所述複數個負面因子對應的負面因子加權值。上述專家裝置300例如可為具有網路通訊以及電信通訊功能之裝置,如:桌上型電腦或可攜式裝置。As shown in FIG2 or FIG4 , according to other embodiments, the negative factor weighting module 130 is further signal-connected to a plurality of expert devices 300 to receive negative factor weighting values corresponding to each of the plurality of negative factors provided by a plurality of experts. The expert devices 300 may be, for example, devices with network and telecommunication capabilities, such as desktop computers or portable devices.

根據又一些實施態樣,文獻檢索模組110透過任意的文獻檢索平台之應用程式介面執行檢索指令。所述應用程式例如可為PubMed API。According to some other embodiments, the literature search module 110 executes the search command through an application program interface of any literature search platform, such as the PubMed API.

根據另一些實施態樣,處理模組130還包括複數個食物營養素資訊,所述複數個食物營養素資訊記載食物在相同重量的各種營養素含量,並根據客製化營養素補充建議值,提供受測者選擇食物的食物攝取建議資訊。According to other embodiments, the processing module 130 further includes a plurality of food nutrient information, which records the various nutrient contents of foods of the same weight and provides the subject with food intake recommendation information for selecting food based on customized nutrient supplementation recommendations.

進一步地,處理模組130還包括複數個特殊營養方案,當受測者資訊記載所述複數個特殊營養方案其中之一時,處理模組130根據受測者資訊中欲執行的特殊營養方案,調整建議攝取資訊。Furthermore, the processing module 130 also includes a plurality of special nutritional plans. When the subject information records one of the plurality of special nutritional plans, the processing module 130 adjusts the recommended intake information according to the special nutritional plan to be implemented in the subject information.

綜上,第一~第六客製化營養素補充建議值,可基於受測者資訊(記載至少一個負面因子)以智慧營養素評估方法或智慧營養素評估系統100產生,以提供專業人員(如:醫師或營養師)各營養素的定量建議數值,以下是一些輔助判定受測者是否需要補充特定營養素的依據與範例: (1) 第一客製化營養素補充建議值:基於受測者的負面因子,計算出每一營養素的「營養素平均加權值」,作為「第一製化營養素補充建議值」。例如:當受測者同時患有骨質疏鬆、心律不整、手和臉部的麻刺感或痙攣與夜盲症,根據一些透過文獻報告記載上述疾病可補充的營養素,將會可能提供一些有關鈣質與維他命A的「營養素平均加權值」以作為第一客製化營養素補充建議值。 (2) 第二客製化營養素補充建議值:基於受測者的負面因子與自然語言辨識,計算出每一營養素的「正面營養素平均加權值」、「負面營養素平均加權值」以及「無效營養素平均加權值」,作為「第二客製化營養素補充建議值」。例如:當受測者同時患有骨質疏鬆,根據一些透過文獻報告記載一些營養素對骨質疏鬆的影響,將會可能提供一些有關鈣質的「正面營養素平均加權值」及/或有關鈉的「負面營養素平均加權值」(營養素效果僅為示意,並不代表實際的效果)。 (3) 第三客製化營養素補充建議值:基於受測者的負面因子與自然語言辨識,將每一營養素的「負面營養素平均加權值」以及「無效營養素平均加權值」分別除以「正面營養素加權值」,分別產生「營養素負面效益比值」以及「營養素無效益比值」,作為「第三客製化營養素補充建議值」。例如:根據一位受測者的受測者資訊,分析出維他命D的營養素無效益比值大於0.3,故將不會將維他命D建議給受測者需優先攝取。 (4) 第四客製化營養素補充建議值:基於受測者的負面因子與負面因子加權值,將每一負面因子對應的「營養素平均加權值」與「負面因子加權值」相乘,產生每一負面因子對應的「營養素複加權值」,作為「第四客製化營養素補充建議值」。例如:當受測者同時患有骨質疏鬆、心律不整、手和臉部的麻刺感或痙攣與夜盲症,由於心律不整是較為嚴重的負面因子,故具有較高的負面因子加權值,並可透過補充鈣質改善,故鈣質在「負面因子加權值」加權後,將會產生較高的「營養素複加權值」,作為「第四客製化營養素補充建議值」。 (5) 第五客製化營養素補充建議值:基於受測者的負面因子、自然語言辨識與負面因子加權值,分別以「正面營養素複加權值」、「負面營養素複加權值」、「無效營養素複加權值」,作為「第五客製化營養素補充建議值」。 (6) 第六客製化營養素補充建議值:基於受測者的負面因子、自然語言辨識與負面因子加權值,將每一營養素的「負面營養素複加權值」以及「無效營養素複加權值」分別除以「正面營養素複加權值」,分別產生「複營養素負面效益比值」以及「複營養素無效益比值」,作為「第六客製化營養素補充建議值」。 In summary, the first to sixth customized nutrient supplementation recommendation values can be generated based on the subject's information (recording at least one negative factor) using the smart nutrient assessment method or the smart nutrient assessment system 100 to provide professionals (e.g., doctors or nutritionists) with quantitative recommended values for each nutrient. The following are some bases and examples to assist in determining whether the subject needs to supplement a specific nutrient: (1) First customized nutrient supplementation recommendation value: Based on the subject's negative factors, the "average weighted nutrient value" of each nutrient is calculated as the "first customized nutrient supplementation recommendation value." For example, if a subject suffers from osteoporosis, arrhythmia, tingling or spasms in the hands and face, and night blindness, based on the literature reports that indicate that these diseases can be supplemented with nutrients, the "average weighted values of nutrients" for calcium and vitamin A may be provided as the first customized nutrient supplement recommendation. (2) Second customized nutrient supplement recommendation: Based on the subject's negative factors and natural language recognition, the "average weighted value of positive nutrients", "average weighted value of negative nutrients", and "average weighted value of ineffective nutrients" for each nutrient are calculated as the "second customized nutrient supplement recommendation". For example, if the subject also suffers from osteoporosis, based on literature reports documenting the effects of certain nutrients on osteoporosis, the "positive nutrient average weighted value" for calcium and/or the "negative nutrient average weighted value" for sodium may be provided (nutrient effects are indicative only and do not represent actual effects). (3) Third customized nutrient supplementation recommendation value: Based on the negative factors of the subject and natural language recognition, the "average weighted value of negative nutrients" and "average weighted value of ineffective nutrients" of each nutrient are divided by the "weighted value of positive nutrients" to generate the "nutrient negative benefit ratio" and "nutrient ineffectiveness ratio" respectively, which serve as the "third customized nutrient supplementation recommendation value". For example: Based on the subject information of a subject, the nutrient ineffectiveness ratio of vitamin D is analyzed to be greater than 0.3, so vitamin D will not be recommended to the subject for priority intake. (4) The fourth customized nutrient supplement recommendation value: Based on the negative factors and the negative factor weighted values of the subjects, the "average nutrient weighted value" corresponding to each negative factor is multiplied by the "negative factor weighted value" to generate the "nutrient composite weighted value" corresponding to each negative factor as the "fourth customized nutrient supplement recommendation value". For example, if a subject suffers from osteoporosis, arrhythmia, tingling or cramps in the hands and face, and night blindness, since arrhythmia is a more serious negative factor, it has a higher negative factor weighting value and can be improved by calcium supplementation. Therefore, after adding the "negative factor weighting value", calcium will produce a higher "nutrient complex weighting value" as the "fourth customized nutrient supplement recommendation value." (5) The fifth customized nutritional supplement recommendation value: Based on the negative factors of the subjects, natural language recognition and the weighted value of the negative factors, the "positive nutritional complex weight value", "negative nutritional complex weight value" and "ineffective nutritional complex weight value" are used as the "fifth customized nutritional supplement recommendation value". (6) Sixth customized nutrient supplementation recommendation value: Based on the negative factors of the subjects, natural language recognition and the weighted values of the negative factors, the "negative nutrient composite weight" and "ineffective nutrient composite weight" of each nutrient are divided by the "positive nutrient composite weight" to generate the "complex nutrient negative benefit ratio" and "complex nutrient ineffectiveness ratio" respectively, which serve as the "sixth customized nutrient supplementation recommendation value".

以上所述,僅為舉例說明本發明的較佳實施方式,並非以此限定實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單置換及等效變化,皆屬本發明的專利申請範疇。The above description is merely an example of a preferred embodiment of the present invention and is not intended to limit the scope of implementation. Any simple substitution or equivalent variation based on the scope of the present invention and the contents of the patent specification shall fall within the scope of the present invention.

100:智慧營養素評估系統 110:文獻檢索模組 120:文獻加權模組 130:處理模組 140:執行模組 150:負面因子加權模組 200:文獻資料庫 300:專家裝置 400:使用者裝置 S1~S7:步驟 100: Smart Nutrition Assessment System 110: Literature Search Module 120: Literature Weighting Module 130: Processing Module 140: Execution Module 150: Negative Factor Weighting Module 200: Literature Database 300: Expert Device 400: User Device S1-S7: Steps

圖1為本發明所提供的實施例的智慧營養素評估方法的流程圖。 圖2為本發明所提供的實施例的智慧營養素評估系統的第一方塊示意圖。 圖3為本發明所提供的實施例的智慧營養素評估系統的第二方塊示意圖。 圖4為本發明所提供的實施例的智慧營養素評估系統的第三方塊示意圖。 Figure 1 is a flow chart of the smart nutrient assessment method according to an embodiment of the present invention. Figure 2 is a schematic diagram of the first block of the smart nutrient assessment system according to an embodiment of the present invention. Figure 3 is a schematic diagram of the second block of the smart nutrient assessment system according to an embodiment of the present invention. Figure 4 is a schematic diagram of the third block of the smart nutrient assessment system according to an embodiment of the present invention.

S1~S7:步驟 S1~S7: Steps

Claims (12)

一種智慧營養素評估系統,訊號連接至少一文獻資料庫,該智慧營養素評估系統包括:一文獻檢索模組,訊號連接該至少一文獻資料庫,該文獻檢索模組透過具有複數個負面因子與複數個營養素的關鍵字組成一檢索指令,向該至少一文獻資料庫取得同時記載該些負面因子其中至少一與該些營養素其中至少一的內容的複數個文獻報告,其中,該些負面因子包括疾病以及不良生活習慣;一文獻加權模組,訊號連接該文獻檢索模組,該文獻加權模組透過一文獻分級表對該些文獻報告進行分級,並根據該些文獻報告各自對應的一文獻級別,對該些文獻報告各自記載的該營養素設置對應該文獻級別的一營養素加權值,其中,該營養素加權值係對應該些負面因子其中之一,且該文獻加權模組根據一自然語言處理,判斷每一該些文獻報告記載的該些營養素對於該負面因子的一營養素效益;一處理模組,訊號連接該文獻加權模組,該處理模組篩選出每一該些負面因子關聯的每一該些營養素的該營養素加權值並加總,再根據對應的該些文獻報告的數量進行算術平均,以生成每一該些負面因子對應的該營養素平均加權值,並根據該營養素效益計算出該些文獻報告各自記載的該營養素設置對應該文獻級別的一正面營養素加權值的總和、一負面營養素加權值的總和以及一無效營養素加權值的總和,並根據對應的該些文獻報告的數量進行算術平均,以生成每一該些負面因子對應的一正面營養素平均加權值、一負面營養素平均加權值以及一無效營養素平均加權值;一負面因子加權模組,訊號連接該處理模組,該負面因子加權模組基於一負面因子分級表,對每一該些負面因子提供對應的一負面因子加權值,以讓該處理模組將每一該些負面因子對應的該正面營養素平均加權值、該負面營養素平均加權值以及該無效營養素平均加權值與該負面因子加權值相乘,產生每一該些負面因子對應的一營養素複加權值。A smart nutrient evaluation system is signal-connected to at least one literature database. The smart nutrient evaluation system includes: a literature retrieval module, signal-connected to the at least one literature database, the literature retrieval module forms a retrieval instruction with a keyword having a plurality of negative factors and a plurality of nutrients, and obtains a plurality of literature reports from the at least one literature database that simultaneously record at least one of the negative factors and at least one of the nutrients, wherein the negative factors include diseases and unhealthy living habits; a literature weighting module, signal-connected to the literature retrieval module The document weighting module classifies the document reports using a document rating table, and sets a nutrient weighting value corresponding to the document level for each nutrient recorded in the document reports according to the document level corresponding to each of the document reports, wherein the nutrient weighting value corresponds to one of the negative factors, and the document weighting module determines a nutrient benefit of each of the nutrients recorded in the document reports for the negative factor based on a natural language processing; a processing module, signal-connected to the document weighting module, the processing module screens each of the nutrients recorded in the document reports. The nutrient weighted values of each nutrient associated with the negative factors are summed up, and then arithmetic average is performed based on the number of corresponding literature reports to generate the average nutrient weighted value corresponding to each negative factor. According to the nutrient benefits, the sum of the positive nutrient weighted values, the sum of the negative nutrient weighted values, and the sum of the ineffective nutrient weighted values corresponding to the literature level of the nutrient settings recorded in each of the literature reports are calculated, and arithmetic average is performed based on the number of corresponding literature reports to generate an average nutrient weighted value corresponding to each negative factor. an average weighted value of positive nutrients, an average weighted value of negative nutrients, and an average weighted value of ineffective nutrients; and a negative factor weighting module, signal-connected to the processing module. The negative factor weighting module provides a corresponding negative factor weighting value for each of the negative factors based on a negative factor grading table, so that the processing module multiplies the average weighted value of the positive nutrients, the average weighted value of the negative nutrients, and the average weighted value of the ineffective nutrients corresponding to each of the negative factors by the negative factor weighting value to generate a nutrient composite weighted value corresponding to each of the negative factors. 如請求項1所述的智慧營養素評估系統,其中該處理模組更訊號連接一執行模組,該執行模組訊號連接一使用者裝置,用於接收該使用者裝置提供的一受測者對應的一受測者資訊,該受測者資訊記載該些負面因子其中至少一,該處理模組提取該受測者資訊記載的每一該負面因子對應的該營養素平均加權值,作為一第一客製化營養素補充建議值。As described in claim 1, the intelligent nutrient assessment system, wherein the processing module is further signal-connected to an execution module, and the execution module is signal-connected to a user device for receiving subject information corresponding to a subject provided by the user device, wherein the subject information records at least one of the negative factors, and the processing module extracts the average weighted value of the nutrient corresponding to each negative factor recorded in the subject information as a first customized nutrient supplement recommendation value. 如請求項1所述的智慧營養素評估系統,其中該處理模組更訊號連接一執行模組,該執行模組訊號連接一使用者裝置,用於接收該使用者裝置提供的一受測者對應的一受測者資訊,該受測者資訊記載該些負面因子其中至少一,該處理模組提取該受測者資訊記載的每一該負面因子對應的該正面營養素平均加權值、該負面營養素平均加權值以及該無效營養素平均加權值,作為一第二客製化營養素補充建議值。A smart nutrient assessment system as described in claim 1, wherein the processing module is further signal-connected to an execution module, which is signal-connected to a user device and is used to receive subject information corresponding to a subject provided by the user device, wherein the subject information records at least one of the negative factors, and the processing module extracts the average weighted value of the positive nutrients, the average weighted value of the negative nutrients, and the average weighted value of the ineffective nutrients corresponding to each negative factor recorded in the subject information as a second customized nutrient supplement recommendation value. 如請求項3所述的智慧營養素評估系統,其中該處理模組還將該負面營養素平均加權值以及該無效營養素平均加權值分別除以正面營養素平均加權值,分別產生一營養素負面效益比值以及一營養素無效益比值,作為一第三客製化營養素補充建議值。The intelligent nutrient assessment system as described in claim 3, wherein the processing module further divides the average weighted value of the negative nutrients and the average weighted value of the ineffective nutrients by the average weighted value of the positive nutrients, respectively, to generate a nutrient negative benefit ratio and a nutrient ineffectiveness ratio, respectively, as a third customized nutrient supplement recommendation value. 如請求項1所述的智慧營養素評估系統,其中該處理模組更訊號連接一執行模組,該執行模組訊號連接一使用者裝置,用於接收該使用者裝置提供的一受測者對應的一受測者資訊,該受測者資訊記載該些負面因子其中至少一,該處理模組提取該受測者資訊記載的每一該負面因子對應的該營養素複加權值,作為一第四客製化營養素補充建議值。As described in claim 1, the intelligent nutrient assessment system, wherein the processing module is further signal-connected to an execution module, and the execution module is signal-connected to a user device for receiving subject information corresponding to a subject provided by the user device, wherein the subject information records at least one of the negative factors, and the processing module extracts the nutrient complexity weight corresponding to each negative factor recorded in the subject information as a fourth customized nutrient supplement recommendation value. 如請求項1所述的智慧營養素評估系統,其中該負面因子加權模組還基於該負面因子分級表,對每一該些負面因子提供對應的該負面因子加權值,以讓該處理模組將每一該些負面因子對應的該正面營養素平均加權值、該負面營養素平均加權值以及該無效營養素平均加權值分別與該負面因子加權值相乘,產生每一該些負面因子對應的一正面營養素複加權值、一負面營養素複加權值以及一無效營養素複加權值。The intelligent nutrient assessment system as described in claim 1, wherein the negative factor weighting module further provides a corresponding negative factor weighting value for each of the negative factors based on the negative factor grading table, so that the processing module multiplies the average weighted value of the positive nutrients, the average weighted value of the negative nutrients, and the average weighted value of the ineffective nutrients corresponding to each of the negative factors by the negative factor weighting value, respectively, to generate a positive nutrient composite weighting value, a negative nutrient composite weighting value, and an ineffective nutrient composite weighting value corresponding to each of the negative factors. 如請求項6所述的智慧營養素評估系統,其中該處理模組更訊號連接一執行模組,該執行模組訊號連接一使用者裝置,用於接收該使用者裝置提供的一受測者對應的一受測者資訊,該受測者資訊記載該些負面因子其中至少一,該處理模組提取該受測者資訊記載的每一該負面因子對應的該正面營養素複加權值、該負面營養素複加權值以及該無效營養素複加權值,作為一第五客製化營養素補充建議值。A smart nutrient assessment system as described in claim 6, wherein the processing module is further signal-connected to an execution module, which is signal-connected to a user device and is used to receive subject information corresponding to a subject provided by the user device, wherein the subject information records at least one of the negative factors, and the processing module extracts the positive nutrient composite weight value, the negative nutrient composite weight value, and the ineffective nutrient composite weight value corresponding to each negative factor recorded in the subject information as a fifth customized nutrient supplement recommendation value. 如請求項7所述的智慧營養素評估系統,其中該處理模組還將該負面營養素複加權值以及該無效營養素複加權值分別除以正面營養素複加權值,分別產生一複營養素負面效益比值以及一複營養素無效益比值,作為一第六客製化營養素補充建議值。The intelligent nutrient assessment system as described in claim 7, wherein the processing module further divides the negative nutrient composite weight and the ineffective nutrient composite weight by the positive nutrient composite weight, respectively, to generate a composite nutrient negative benefit ratio and a composite nutrient ineffectiveness ratio, respectively, as a sixth customized nutrient supplement recommendation value. 一種智慧營養素評估方法,包括:透過複數個負面因子與複數個營養素組成的一檢索指令,獲取同時記載該些負面因子其中至少一與該些營養素其中至少一的內容的複數個文獻報告;透過一文獻分級表對該些文獻報告進行分級;根據該些文獻報告各自對應的一文獻級別,對該些文獻報告各自記載的該營養素設置對應該文獻級別的一營養素加權值,其中,該營養素加權值係對應該些負面因子其中之一;判斷每一該些文獻報告記載的該些營養素其中至少一於對應的該負面因子的一營養素效益,並根據該營養素效益對該營養素加權值拆分為一正面營養素加權值、一負面營養素加權值以及一無效營養素加權值;篩選每一該些負面因子關聯的每一該些營養素的一正面營養素加權值、一負面營養素加權值以及一無效營養素加權值各自加總,再根據對應的該些文獻報告的數量進行算術平均,以生成每一該些負面因子對應的一正面營養素平均加權值、一負面營養素平均加權值以及一無效營養素平均加權值;根據一負面因子分級表,對每一該些負面因子提供對應的一負面因子加權值,並將每一該些負面因子對應的該正面營養素平均加權值、該負面營養素平均加權值以及該無效營養素平均加權值與該負面因子加權值相乘,以獲取每一該些負面因子對應的一營養素複加權值。A smart nutrient evaluation method includes: obtaining a plurality of literature reports that simultaneously record at least one of the negative factors and at least one of the nutrients through a search instruction consisting of a plurality of negative factors and a plurality of nutrients; grading the literature reports through a literature grading table; and grading the literature reports according to the literature grades corresponding to the literature reports. The nutrient recorded in the literature reports is set with a nutrient weighted value corresponding to the literature level, wherein the nutrient weighted value corresponds to one of the negative factors; the nutrient benefit of at least one of the nutrients recorded in the literature reports corresponding to the negative factor is determined, and the nutrient weighted value is split into a positive nutrient weighted value, a negative nutrient weighted value and a negative nutrient weighted value according to the nutrient benefit. and an ineffective nutrient weighted value; screen a positive nutrient weighted value, a negative nutrient weighted value, and an ineffective nutrient weighted value of each nutrient associated with each of the negative factors, add them up, and then perform arithmetic averaging based on the number of corresponding literature reports to generate an average positive nutrient weighted value, an average negative nutrient weighted value, and an average negative nutrient weighted value corresponding to each of the negative factors. an average weighted value of ineffective nutrients; providing a corresponding negative factor weighted value for each of the negative factors according to a negative factor grading table, and multiplying the average weighted value of the positive nutrients corresponding to each of the negative factors, the average weighted value of the negative nutrients, and the average weighted value of the ineffective nutrients by the weighted value of the negative factors to obtain a composite weighted value of the nutrients corresponding to each of the negative factors. 如請求項9所述的智慧營養素評估方法,當獲取一受測者資訊時,還包括:提取該受測者資訊記載的每一該負面因子對應的該營養素平均加權值。The smart nutrient assessment method as described in claim 9, when obtaining subject information, further includes: extracting the average weighted value of the nutrient corresponding to each negative factor recorded in the subject information. 如請求項9所述的智慧營養素評估方法,其中每一該些負面因子對應的該正面營養素平均加權值、該負面營養素平均加權值以及該無效營養素平均加權值分別與該負面因子加權值相乘,以取得每一該些負面因子對應的一正面營養素複加權值、一負面營養素複加權值以及一無效營養素複加權值。The smart nutrient assessment method as described in claim 9, wherein the average weighted value of the positive nutrients, the average weighted value of the negative nutrients, and the average weighted value of the ineffective nutrients corresponding to each of the negative factors are respectively multiplied by the weighted value of the negative factor to obtain a positive nutrient composite weighted value, a negative nutrient composite weighted value, and an ineffective nutrient composite weighted value corresponding to each of the negative factors. 如請求項11所述的智慧營養素評估方法,還包括:透過該負面營養素複加權值以及該無效營養素複加權值分別除以該正面營養素複加權值,分別產生一複營養素負面效益比值以及一複營養素無效益比值。The smart nutrient assessment method as described in claim 11 further includes: generating a complex nutrient negative benefit ratio and a complex nutrient ineffective benefit ratio by dividing the negative nutrient complex weight and the ineffective nutrient complex weight by the positive nutrient complex weight, respectively.
TW112133731A 2023-09-05 2023-09-05 Intelligent nutrient assessment system and method TWI893445B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112133731A TWI893445B (en) 2023-09-05 2023-09-05 Intelligent nutrient assessment system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112133731A TWI893445B (en) 2023-09-05 2023-09-05 Intelligent nutrient assessment system and method

Publications (2)

Publication Number Publication Date
TW202512215A TW202512215A (en) 2025-03-16
TWI893445B true TWI893445B (en) 2025-08-11

Family

ID=95828546

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112133731A TWI893445B (en) 2023-09-05 2023-09-05 Intelligent nutrient assessment system and method

Country Status (1)

Country Link
TW (1) TWI893445B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI890654B (en) * 2025-03-18 2025-07-11 全知醫選股份有限公司 Method and computing device for quantifying the degree of chronic inflammation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104951645A (en) * 2014-03-31 2015-09-30 精工爱普生株式会社 Nutrition management system
TW201807654A (en) * 2016-08-22 2018-03-01 芒果社企有限公司 Customized nutrition management system, processing method thereof and application program and storing media using the same
CN111627525A (en) * 2020-06-04 2020-09-04 曹庆恒 Management method, system and equipment for diet related rules
US20210375427A1 (en) * 2020-05-28 2021-12-02 Kpn Innovations, Llc Methods and systems for determining a plurality of nutritional needs to generate a nutrient supplementation plan using artificial intelligence

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104951645A (en) * 2014-03-31 2015-09-30 精工爱普生株式会社 Nutrition management system
TW201807654A (en) * 2016-08-22 2018-03-01 芒果社企有限公司 Customized nutrition management system, processing method thereof and application program and storing media using the same
US20210375427A1 (en) * 2020-05-28 2021-12-02 Kpn Innovations, Llc Methods and systems for determining a plurality of nutritional needs to generate a nutrient supplementation plan using artificial intelligence
CN111627525A (en) * 2020-06-04 2020-09-04 曹庆恒 Management method, system and equipment for diet related rules

Also Published As

Publication number Publication date
TW202512215A (en) 2025-03-16

Similar Documents

Publication Publication Date Title
Dugmore et al. Effects of weight-neutral approaches compared with traditional weight-loss approaches on behavioral, physical, and psychological health outcomes: a systematic review and meta-analysis
Robertson et al. Should weight loss and maintenance programmes be designed differently for men? A systematic review of long-term randomised controlled trials presenting data for men and women: The ROMEO project
Heymsfield et al. Weight management using a meal replacement strategy: meta and pooling analysis from six studies
Seddon et al. Cigarette smoking, fish consumption, omega-3 fatty acid intake, and associations with age-related macular degeneration: the US Twin Study of Age-Related Macular Degeneration
Baldwin et al. Dietary advice for illness‐related malnutrition in adults
Liu et al. Interventions on mealtime difficulties in older adults with dementia: a systematic review
Papastratis et al. Can ChatGPT provide appropriate meal plans for NCD patients?
KR102011249B1 (en) Recommending consumer products using product-ingredient efficacy and/or user-profile data
JP7217103B2 (en) METHOD AND INFORMATION PROCESSING APPARATUS FOR GENERATING ADVICE INFORMATION ON IMPROVEMENT OF LIFESTYLE
US20220188901A1 (en) Systems and methods for determining and presenting purchase recommendations based on personal genetic profiles
Pearsall et al. Dietary advice for people with schizophrenia
TWI893445B (en) Intelligent nutrient assessment system and method
Schueler et al. Group differences in binge eating, impulsivity, and intuitive and mindful eating among intermittent fasters and non-fasters
Khan et al. Can ChatGPT help in the awareness of diabetes?
WO2024176198A1 (en) An ai-based system for recommending a personalized diet
WO2017059190A1 (en) Treatment recommendations based on biomarker values
Alomar et al. Comparison of awareness of diabetes mellitus type II with treatment’s outcome in term of direct cost in a hospital in Saudi Arabia
Rogers et al. Study protocol for the Shifting Weight using Intermittent Fasting in night shift workers (SWIFt) study: a three-arm randomised controlled trial comparing three weight loss strategies in night shift workers with obesity
JP2024539883A (en) Systems and methods for providing personalized nutritional recommendations for intermittent fasting
Nag et al. Pocket dietitian: Automated healthy dish recommendations by location
Arslan et al. Relationship between malnutrition risk, activities of daily living, and adaptation to chronic diseases in older people with chest diseases
WO2025172923A1 (en) System and method for providing personalized condition management for regulating irritable bowel syndrome (ibs)
KR20250157651A (en) Method of recommending nutrient and server performing the same
Yana Association of data-driven indentified dietary patterns with chronic disease prevention
Barranco et al. A preference-based daily meal recommendation framework for patients with diabetes.