[go: up one dir, main page]

TWI886755B - A system of intelligent patent type recommendation and draft generation and the method thereof - Google Patents

A system of intelligent patent type recommendation and draft generation and the method thereof Download PDF

Info

Publication number
TWI886755B
TWI886755B TW113101938A TW113101938A TWI886755B TW I886755 B TWI886755 B TW I886755B TW 113101938 A TW113101938 A TW 113101938A TW 113101938 A TW113101938 A TW 113101938A TW I886755 B TWI886755 B TW I886755B
Authority
TW
Taiwan
Prior art keywords
module
content
user
language
input
Prior art date
Application number
TW113101938A
Other languages
Chinese (zh)
Other versions
TW202531110A (en
Inventor
吳鵬君
盧恩平
張育睿
子裕 陳
Original Assignee
睿加科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 睿加科技股份有限公司 filed Critical 睿加科技股份有限公司
Priority to TW113101938A priority Critical patent/TWI886755B/en
Application granted granted Critical
Publication of TWI886755B publication Critical patent/TWI886755B/en
Publication of TW202531110A publication Critical patent/TW202531110A/en

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present invention provides a system and method for intelligent patent type recommendation and draft generation, which is implemented by providing a user-operated electronic device, wherein the electronic device includes a processor and a network interface controller, a server includes an application, and the processor connects to the server through the network interface controller to execute the application for the purpose of recommending intellectual property application types, patent types, and draft generation.

Description

一種智能專利類型推薦與底稿生成系統及其執行方法An intelligent patent type recommendation and manuscript generation system and its execution method

本發明係關於一種智能推薦與底稿生成的系統及其執行方法,特別是生成推薦申請的專利類型,以及底稿中生成的示意圖、方塊圖和流程圖等圖式的系統及其方法。 The present invention relates to a system for intelligent recommendation and draft generation and its implementation method, in particular, a system and method for generating patent types for recommended applications, as well as schematic diagrams, block diagrams, flow charts and other diagrams generated in the draft.

在傳統的專利申請過程中,無論是國內還是國外,都需要印出紙本文件並填寫大量表格,許多文件都是紙本在管理與分類上造成很大的困擾,不僅不環保浪費大量紙張外,若因此造成管理上的疏失使專利申請過程出錯或專利失效,更是得不償失。除了傳統的文書工作外,如果在申請專利的過程中需要人員間進行溝通,由於他們具有不同的專業背景、不同的語言用法、文化差異和其他不可預測的因素,可能傳達不準確或被誤解的信息,這導致申請人、事務所與代理人和政府機構之間存在認知差異。因此,申請人可能無法獲得最初想要的結果。 In the traditional patent application process, whether domestically or internationally, paper documents need to be printed out and a large number of forms need to be filled out. Many documents are paper-based, which causes great trouble in management and classification. Not only is it not environmentally friendly and wastes a lot of paper, but if management errors are caused, the patent application process will go wrong or the patent will become invalid, which is more than worth it. In addition to traditional paperwork, if communication between people is required during the patent application process, due to their different professional backgrounds, different language usage, cultural differences and other unpredictable factors, inaccurate or misunderstood information may be conveyed, which leads to cognitive differences between applicants, firms and agents, and government agencies. Therefore, applicants may not get the results they originally wanted.

且申請專利的目的絕不僅僅是用作專利侵權訴訟的防禦武器,或者公司形象的象徵。事實上,專利權可以創造價值。除了授權他人實施該專利以獲得授權收入外,排除侵權和損害賠償的權利還可以獲得和解收入。 And the purpose of applying for a patent is by no means just to be used as a defensive weapon in patent infringement lawsuits or as a symbol of the company's image. In fact, patent rights can create value. In addition to authorizing others to implement the patent to obtain licensing income, the right to exclude infringement and damages can also obtain settlement income.

對於企業而言,利用專利申請來保護研發成果早已成為業務流程中必要且重要的一環。有些公司認為專利申請是專利公司的工作,只要邀請承包商討論專利申請的技術內容,專業的專利公司就能夠撰寫一份具有正確技術描述、完整內容披露和廣泛保護範圍的專利文件。 For enterprises, using patent applications to protect research and development results has long become a necessary and important part of the business process. Some companies believe that patent applications are the work of patent companies. As long as they invite contractors to discuss the technical content of the patent application, professional patent companies can write a patent document with correct technical description, complete content disclosure and a wide range of protection.

事實上,專利申請不僅僅是企業與專利公司之間的協作工作,還需要企業不同部門之間的溝通,特別是研發部門和智慧財產權部門之間的反覆溝通。在企業內部的專利提案過程中,研發部門的研發工程師需要提供相關的技術內容揭露,這可能包括技術的基本背景描述、現有技術的不足或需要改進的問題,以及新技術的特點等。此外,還需要在多國的專利資料庫中對所提出技術的內容進行初步檢檢索,以檢索相似的先前技術,以便促進企業內部的專利提案討論。在許多企業中,研發部門的人數遠多於內部的智慧財產權部門,這使得智慧財產權部門的工作量增加。 In fact, patent application is not only a collaborative work between enterprises and patent companies, but also requires communication between different departments of the enterprise, especially repeated communication between the R&D department and the intellectual property department. In the process of patent proposal within the enterprise, R&D engineers in the R&D department need to provide relevant technical content disclosure, which may include basic background description of the technology, deficiencies of existing technologies or problems that need to be improved, and features of new technologies. In addition, it is necessary to conduct preliminary searches of the content of the proposed technology in patent databases in multiple countries to search for similar previous technologies in order to promote patent proposal discussions within the enterprise. In many enterprises, the number of people in the R&D department is far greater than that of the internal intellectual property department, which increases the workload of the intellectual property department.

然而,儘管目前大多數中大型企業都擁有相關的專利提案系統,但在實際實施中,由於研發部門和智慧財產權部門之間的專業差異,將產生巨大的溝通時間成本,少則數天,多則數個月。研發部門對技術非常熟悉,但對於專利提案(專利接露書)所需的內容往往無法滿足智慧財產權部門的要求。相反,當智慧財產權部門根據先前技術檢索報告與研發部門進行討論時,通常無法詳細描述差異,以便研發部門一目了然。因此,企業內部專利提案(專利接露書)的討論進度消耗了大量的勞力和時間成本,若企業內部製作圖文甚至有權利要求項的專利接露書一般至少數日到數周的時間,正由於大多數企業都是採取外包給第三方專利商標事務所或是法律事務所協助撰寫專利說明書以及專利送件的服務,若沒有專利接露書,對於研發人員來說再次的技術溝通,無異是產 生更多的溝通與理解成本,導致專利申請時間延遲,影響了企業技術保護的權益。 However, although most medium and large enterprises currently have relevant patent proposal systems, in actual implementation, due to the professional differences between the R&D department and the intellectual property department, huge communication time costs will be incurred, ranging from several days to several months. The R&D department is very familiar with the technology, but the content required for the patent proposal (patent disclosure) often cannot meet the requirements of the intellectual property department. On the contrary, when the intellectual property department discusses with the R&D department based on the previous technical search report, it is usually unable to describe the differences in detail so that the R&D department can see at a glance. Therefore, the progress of the discussion of patent proposals (patent disclosures) within the enterprise consumes a lot of labor and time costs. If the enterprise produces pictures and texts or even patent disclosures with claims, it usually takes at least several days to several weeks. Because most companies outsource to third-party patent and trademark firms or law firms to assist in writing patent specifications and patent submission services, if there is no patent disclosure, for R&D personnel, the second technical communication will only generate more communication and understanding costs, resulting in a delay in patent application time and affecting the rights and interests of corporate technology protection.

此外對於沒有智慧財產權部門的中小企業、新創公司,進行專利檢索更是完全委由第三方專利商標事務所或是法律事務所協助進行,但由於沒有任何專利提案(專利接露書),多半是透過簡報或是訪談的方式進行,這樣的模式,更常常會讓發明人在技術溝通上花費很大的心力與時間,比起中大企業,其中過程彼此的溝通與理解成本更是耗費驚人。 In addition, for small and medium-sized enterprises and start-ups that do not have intellectual property departments, patent searches are completely entrusted to third-party patent and trademark firms or law firms for assistance. However, since there are no patent proposals (patent prospectuses), most of the searches are conducted through presentations or interviews. This model often requires inventors to spend a lot of effort and time on technical communication. Compared with medium and large enterprises, the cost of communication and understanding between the two parties is even more staggering.

然,現今已存在不少檢索技術與檢索平台,協助減少用戶的作業時間。 However, there are already many retrieval technologies and retrieval platforms that help reduce users' work time.

如中國申請號CN201610297330.0所揭露,專利撰寫輔助系統,包括:交底範本生成模組,用於生成包含多個欄目的撰寫技術交底書用的範本;交底輸入模組,用於在所述範本的多個欄目中相應地輸入撰寫技術交底書的內容,以生成技術交底書;內容識別提取模組,用於識別並提取所述技術交底書(專利接露書)的各欄目中的所述內容;關聯檢索模組,與外界資料庫伺服器連接,用於選擇所述內容識別提取模組提取的所述內容並關聯到所述外界資料庫伺服器,以從外界資料庫中檢索與提取的所述內容相關的資料;複製儲存模組,用於將所述資料從所述外界資料庫複製並儲存;文件生成模組,用於將複製的所述資料生成預設格式的檔。 As disclosed in Chinese application number CN201610297330.0, the patent writing assistance system includes: a briefing template generation module, which is used to generate a template for writing a technical briefing book containing multiple columns; a briefing input module, which is used to input the content of writing a technical briefing book in the multiple columns of the template accordingly to generate a technical briefing book; a content identification and extraction module, which is used to identify and extract the technical briefing book (patent disclosure book) ) in each column; an associated retrieval module connected to an external database server, used to select the content extracted by the content identification extraction module and associate it with the external database server to retrieve data related to the extracted content from the external database; a copy storage module, used to copy and store the data from the external database; a file generation module, used to generate a file in a preset format from the copied data.

但上述中國申請號CN201610297330.0存在幾個待改善問題,其主要特徵在於透過撰寫者在對應欄位中輸入技術相關內容,並將輸入的文字模組化,再根據不同欄位將模組化的文字提取關鍵詞,分別對每個關鍵詞進行檢索,最終產生檢索資料供撰寫者參考,減少人工輸入關鍵字檢索的時間,對於實際上撰寫稿件時間與分析比對或企業端不同部門間的溝通時間的減少效益相當有限,且僅限於文字的部分,無法輔助產生圖式。 However, the above-mentioned Chinese application number CN201610297330.0 has several issues to be improved. Its main feature is that the writer inputs technical related content in the corresponding field, modularizes the input text, extracts keywords from the modularized text according to different fields, searches for each keyword separately, and finally generates search data for the writer's reference, reducing the time of manual keyword input and search. The benefits of reducing the time of actual manuscript writing, analysis and comparison, or communication time between different departments of the enterprise are quite limited, and it is limited to the text part and cannot assist in generating diagrams.

如台灣申請號TW097119308所揭露,專利說明書產生之系統,該系統主要係內建有一專利說明書產生之方法,可以係為一軟體或應用程式。而本發明之系統則係可以產生一專利說明書之書面紙本者。該系統包括有一中央運算處理單元,係用以執行一專利說明書產生方法之運算處理單元;一資料儲存單元,係與該中央運算處理單元連接,該資料儲存單元儲存有該專利說明書產生方法者,提供給該中央運算處理單元執行專利說明書之產生;一輸入單元,係與該中央運算處理單元相連接,用以提供給使用者輸入相關技術揭露資料之界面;一控制單元,係與該中央運算處理單元相連接,用以控制該系統執行產生專利說明書相關資料之處理;一輸出單元,係與該中央運算處理單元相連接,用以作為相關專利說明書之資料輸出之界面,此輸出單元更是可以連接有一列印單元,藉以將專利說明書加以列印;最後,包括有一顯示單元,係與該中央運算處理單元相連接,用以作為顯示出該專利說明書資料之輸出顯示界面者。 As disclosed in Taiwan application number TW097119308, a system for generating a patent specification mainly has a built-in method for generating a patent specification, which can be a software or an application. The system of the present invention can generate a written paper copy of a patent specification. The system includes a central processing unit, which is a processing unit for executing a patent specification generating method; a data storage unit, which is connected to the central processing unit, and the data storage unit stores the patent specification generating method and provides it to the central processing unit for executing the generation of the patent specification; an input unit, which is connected to the central processing unit, and is used to provide an interface for users to input relevant technical disclosure data; a control unit, which is connected to the central processing unit. A central processing unit is connected to the system to control the system to execute the processing of the data related to the patent specification; an output unit is connected to the central processing unit to serve as an interface for outputting the data related to the patent specification. The output unit can be connected to a printing unit to print the patent specification; finally, a display unit is connected to the central processing unit to serve as an output display interface for displaying the data of the patent specification.

但上述台灣申請號TW097119308存在幾個待改善問題,需要在對應的欄位中輸入對應的文字,主要是透過專利說明書中存在一些常用的用語,類似填寫克漏字的方式藉此來生成說明書文字,但是在輸入的文字中必須符合內定的規格,否則生成出的句子會出現文法不通順情形,並無法讓一般使用者輕易地上手,相當於使用者自行生成搞件,仍需花費不少時間,也並非在解決申請前的專利接露書的溝通文件的問題上,且僅限於文字的部分,無法輔助產生圖式。 However, the above Taiwan application number TW097119308 has several issues to be improved. It is necessary to enter the corresponding text in the corresponding fields. The main purpose is to generate the text of the specification by using some common terms in the patent specification, similar to the method of filling in missing words. However, the input text must meet the default specifications, otherwise the generated sentences will be grammatically incoherent, and it is not easy for ordinary users to get started. It is equivalent to users generating documents by themselves, which still takes a lot of time. It does not solve the problem of communication documents of patent disclosure books before application, and it is limited to the text part and cannot assist in generating diagrams.

如美國申請號US17745671所揭露,在具體實施例中,輔助系統可以輔助用戶獲取信息或服務。輔助系統可以使用戶能夠在有狀態和多輪對話中通過各種模態(例如,音頻、語音、文本、圖像、視頻、手勢、運動、位置、方向)的用戶輸入與輔助系統交互以接收幫助來自輔助系統。作為示例而非限制,輔助系統可以支持單模式輸入(例如,僅語音輸入)、多模式輸入(例如, 語音輸入和文本輸入)、混合/多模式輸入,或任何它們的組合。用戶提供的用戶輸入可能與特定的助理相關任務相關聯,並且可能包括,例如,用戶請求(例如,對信息的口頭請求或動作的執行)、用戶與與助理系統相關聯的助理應用程序的交互(例如,通過觸摸或手勢選擇UI元素),或輔助系統可以檢測和理解的任何其他類型的合適的用戶輸入(例如,用戶的客戶端設備檢測到的用戶移動)。助理系統可以創建並存儲用戶配置文件,該用戶配置文件包括與用戶相關聯的個人信息和上下文信息。在特定實施例中,輔助系統可以使用自然語言理解(NLU)來分析用戶輸入。該分析可以基於用戶的用戶簡檔,以獲得更加個性化和情境感知的理解。輔助系統可以基於分析解析與用戶輸入相關聯的實體。在特定實施例中,輔助系統可以與不同的代理交互以獲得與解析的實體相關聯的信息或服務。輔助系統可以通過使用自然語言生成(NLG)為用戶生成關於信息或服務的響應。 As disclosed in U.S. Application No. US17745671, in a specific embodiment, an assistive system can assist a user in obtaining information or services. The assistive system can enable a user to interact with the assistive system through user input in various modes (e.g., audio, voice, text, image, video, gesture, motion, position, direction) in a stateful and multi-turn dialogue to receive help from the assistive system. As an example and not a limitation, the assistive system can support single-mode input (e.g., voice input only), multi-mode input (e.g., voice input and text input), mixed/multi-mode input, or any combination thereof. The user input provided by the user may be associated with a specific assistant-related task and may include, for example, a user request (e.g., a verbal request for information or the performance of an action), a user interaction with an assistant application associated with the assistant system (e.g., selecting a UI element by touch or gesture), or any other type of suitable user input that the assistant system can detect and understand (e.g., user movement detected by the user's client device). The assistant system can create and store a user profile that includes personal information and contextual information associated with the user. In a particular embodiment, the assistant system can use natural language understanding (NLU) to analyze the user input. The analysis can be based on the user's user profile to obtain a more personalized and context-aware understanding. The assistant system can resolve entities associated with the user input based on the analysis. In certain embodiments, the assistant system may interact with different agents to obtain information or services associated with the resolved entity. The assistant system may generate responses for the user regarding the information or services by using natural language generation (NLG).

但上述美國申請號US17745671存在幾個待改善問題,前案利用自然語言理解、自然語言生成來達到分析使用者輸入的文字,產生對應的反應動作或回覆,透過"語音助理"來實現,但是僅是應用在一般日常生活中,其所使用或訓練背景資料語言不論是在用字或文法上皆跟智慧財產權(專利商標)法律用語相差很大,是屬於水平的訓練模型,若套用在智慧財產權垂直性產業精準度會下降很多。 However, the above-mentioned US application number US17745671 has several issues that need to be improved. The previous case uses natural language understanding and natural language generation to analyze the text input by the user and generate corresponding reaction actions or replies. This is achieved through a "voice assistant", but it is only applied in daily life. The language used or trained background data is very different from the legal terms of intellectual property rights (patents and trademarks) in terms of words and grammar. It is a horizontal training model. If it is applied to the vertical industry of intellectual property rights, the accuracy will be greatly reduced.

如台大資工所李界昇博士論文(深度學習在專利領域的應用10.6342/NTU202100999)所揭露,其在語言模型訓練上規模不夠大、資料數量也不夠多,可能造成訓練結果不夠準確,且並沒有垂直深入專利的語言訓練,再者,其是透過輸入的文字產生摘要,再從摘要產生技術內容,非常依靠輸入的文字的精準度,容易產生偏差的技術內容文字,且該篇論文所使用的比對方式為text mapping,儘管text mapping具有許多優點,例如能夠捕捉文本的語義信息 和上下文關聯,但也存在一些缺點,例如:(1)維度災難:當文本資料非常大時,text mapping可能導致高維度的向量表示,這種高維度的表示會對計算和存儲造成挑戰。(2)語義鑑別困難:雖然text mapping可以捕捉一些語義信息,但對於具有多義性或上下文相依性的詞語,可能無法完全體現其語義。同時,不同文本之間的語義相似度也可能存在困難。(3)訓練資料需求:text mapping方法通常需要大量的標註訓練資料來學習詞語和文本的向量表示。獲取大規模且高質量的標註資料可能是一項耗時且昂貴的任務。(4)詞彙養護:text mapping方法將詞語映射到向量空間中,但在實際應用中可能會遇到新詞彙、拼寫錯誤或其他詞語變體的問題。這可能需要進行詞彙養護和更新,以確保模型的正確性和且此篇論文是bert與2.0訓練的,有一定的限制。仍無法解決發明人跟專利從業人士的溝通問題。 As revealed by Dr. Jiesheng Li of the Department of Computer Science and Engineering at National Taiwan University (Application of Deep Learning in Patent Field 10.6342/NTU202100999), the scale of language model training is not large enough and the amount of data is not large enough, which may lead to inaccurate training results. In addition, there is no vertical in-depth patent language training. Moreover, it generates a summary through input text and then generates technical content from the summary. It is very dependent on the accuracy of the input text and is prone to biased technical content text. The comparison method used in the paper is text mapping. Although text mapping has many advantages, such as being able to capture the semantic information and contextual relevance of the text, it also has some disadvantages, such as: (1) Dimensionality curse: When the text data is very large, the text Mapping may result in high-dimensional vector representations, which pose challenges for computation and storage. (2) Difficulty in semantic identification: Although text mapping can capture some semantic information, it may not be able to fully reflect the semantics of words with polysemy or context dependence. At the same time, there may also be difficulties in semantic similarity between different texts. (3) Training data requirements: Text mapping methods usually require a large amount of annotated training data to learn vector representations of words and texts. Obtaining large-scale and high-quality annotated data can be a time-consuming and expensive task. (4) Vocabulary maintenance: Text mapping methods map words into vector space, but in practical applications they may encounter problems with new vocabulary, spelling errors, or other word variants. This may require vocabulary maintenance and updating to ensure the correctness of the model and this paper is trained with Bert and 2.0, which has certain limitations. It still cannot solve the communication problem between inventors and patent practitioners.

此外,目前由OpenAI開發的自然語言處理(NLP)模型的Chat GPT 3.5以及4.0,基於人類反饋強化學習(RLHF)進行訓練的一種自迴歸語言模型,主要在於處理客服對話、故事創作、翻譯、修改文法、寫詩、歌詞、文字整理,甚至是寫軟體程式,若發明人透過與GPT對話式生成專利接露文件,無法直接產出精準的專利行業內容,也無法產出專利流程等相關圖式,對於發明人來說僅能處理諮詢專利法規的聊天機器人,再者透過GPT進行專利相關的檢索,僅會產出正確的專利證書號,但不會有正確的案件名稱與專利圖式,請參照圖1及圖2,對於專利從業人士還需要重複的校對,反而浪費了更多時間,有鑑於此更需要一個深度學習智慧財產權垂直性領域以及針對產業精準度的語言模型,協助處理專利接露書與專利檢索的系統來解決此一問題。 In addition, the natural language processing (NLP) model Chat GPT 3.5 and 4.0 currently developed by OpenAI is a self-regressive language model trained based on human feedback reinforcement learning (RLHF). It is mainly used to process customer service dialogues, story creation, translation, grammar modification, poetry, lyrics, text editing, and even software program writing. If the inventor generates patent disclosure documents through a dialogue with GPT, it cannot directly produce accurate patent industry content, nor can it produce related diagrams such as patent processes. For the inventor, it can only handle consultations on patent law. The chatbot that does not conform to the rules, and the patent-related search through GPT will only generate the correct patent certificate number, but not the correct case name and patent diagram. Please refer to Figures 1 and 2. For patent practitioners, repeated proofreading is required, which wastes more time. In view of this, a language model that deeply learns the vertical field of intellectual property rights and targets industry accuracy is needed to assist in processing patent disclosure books and patent search systems to solve this problem.

如現有的一些專利撰稿工具,例如:Patent theory、PowerPatent、Rowan等,皆可以用以協助專利稿件的撰寫,透過專業的從業人員在撰寫稿件的過程中,提供必要的協助或編修功能,使得完成的專利說明書稿件可以降低錯 誤率,例如:保持名詞的一致性,甚至是提供撰寫建議,或生成內容做為參考,另一方面也增加了撰寫專利說明書的效率。 Some existing patent writing tools, such as Patent theory, PowerPatent, Rowan, etc., can be used to assist in the writing of patent manuscripts. Professional practitioners can provide necessary assistance or editing functions during the writing process, so that the error rate of the completed patent specification manuscript can be reduced, such as maintaining the consistency of terms, and even providing writing suggestions or generating content as a reference, which also increases the efficiency of writing patent specifications.

但上述現有的工具仍存在幾個待改善問題,主要是這些工具使為了智慧財產權產業的專業從業人員所開發的,也就是這些工具主要的目標使用者是已經具有一定經驗的專利說明書撰寫之工程師,這些工具僅是作為輔助的角色,因此,對於相對無經驗的公司企業研發人員來說,使用這些工具並無法實質的幫助他們解決問題,這些工具的操作對他們來說不夠直覺性,而且這些工具同樣也沒有辦法產出圖式,對於個人或中小企業人員等非從業專業人士而言,這些工具無法生成技術揭露書及圖式。 However, the above existing tools still have several problems to be improved. The main reason is that these tools are developed for professionals in the intellectual property industry. That is, the main target users of these tools are engineers who already have certain experience in writing patent specifications. These tools only serve as auxiliary roles. Therefore, for relatively inexperienced corporate R&D personnel, using these tools cannot actually help them solve problems. The operation of these tools is not intuitive enough for them, and these tools also cannot generate diagrams. For non-professionals such as individuals or small and medium-sized enterprise personnel, these tools cannot generate technical disclosures and diagrams.

由上述說明可以得知,實有必要對習知的技術進行改良或調整,藉以降低一般人申請智慧財產權的門檻,提升其在研發人員選擇適合的申請種類、產出專利底稿及圖式。避免對於時間有急迫性的專利申請,錯失先機,有鑑於此,本發明之發明人係極力加以研究創作,而終於研發完成本發明之系統與其方法。 From the above explanation, it can be seen that it is necessary to improve or adjust the known technology to lower the threshold for ordinary people to apply for intellectual property rights, and enhance the selection of appropriate application types, production of patent drafts and drawings by R&D personnel. In order to avoid missing the opportunity for urgent patent applications, the inventor of this invention has made great efforts to research and create, and finally developed and completed the system and method of this invention.

本發明之目的在於提出智能推薦與底稿生成的系統及其執行方法,解決上述現有技術中存在的問題。 The purpose of this invention is to propose an intelligent recommendation and manuscript generation system and its execution method to solve the problems existing in the above-mentioned existing technologies.

因此,為了達成上述本發明之目的,本發明提供了一種智能專利類型推薦與底稿生成系統的執行方法,由使用者操作一電子裝置,經該電子裝置的一處理器透過一網路界面控制器連上一伺服器並執行一應用程式進行專利類型推薦與底稿生成的方法,至少包含以下步驟: (S100)使用者透過該電子裝置的使用者介面使該處理器執行一輸入模組接收輸入的文字內容;(S200)該處理器執行該應用程式中的一語意分析模組對文字內容進行語意分析;(S300)該語意分析模組進一步串接一產業分類模組、一搜尋模組與一資料庫模組,將經過分析之文字內容進行產業技術的分類,並在該資料庫模組中進行比對搜尋,而將比對出之數據資料傳送至一智慧財產權資訊揭露模組;(S400)該智慧財產權資訊揭露模組將該數據資料進行分析統計並透過該電子裝置的使用者介面將資訊呈現給使用者;(S500)經過分析統計的該數據資料同時也傳送至一推薦模組,該推薦模組依據該數據資料內智慧財產權的種類進行分類與統計,並進行排序顯示推薦申請的智慧財產權種類於使用者介面;(S600)使用者透過使用者介面選擇專利類型;(S700)使用者透過使用者介面,使該處理器執行該輸入模組接收輸入的技術描述;以及(S800)透過一登入模組完成登入,使該處理器執行該語意分析模組、一內容生成模組,而生成摘要內容與簡易圖式;其中,在步驟(S800)之後進一步包含:(S8001)該處理器執行該推薦模組依據生成的摘要內容與簡易圖式進行分析,並提供建議申請之專利類型;(S8002)該智慧財產權資訊揭露模組進一步針對各專利類型進行評估,並生成專利風險評估報告,透過使用者介面同時呈現在建議申請之專利類型的資訊中; (S8003)使用者透過使用者介面選擇申請之專利類型,該處理器執行該語意分析模組及該內容生成模組生成專利揭露文件、權利要求內容與專利圖式,並套入格式化套版整合成底稿。 Therefore, in order to achieve the above-mentioned purpose of the present invention, the present invention provides an execution method of an intelligent patent type recommendation and draft generation system, in which a user operates an electronic device, and a processor of the electronic device connects to a server through a network interface controller and executes an application to perform patent type recommendation and draft generation, which at least includes the following steps: (S100) The user uses the user interface of the electronic device to make the processor execute an input module to receive input text content; (S200) The processor executes a semantic analysis module in the application to analyze the text content. Semantic analysis; (S300) the semantic analysis module is further connected to an industry classification module, a search module and a database module, and the analyzed text content is classified into industry technologies, and a comparison search is performed in the database module, and the compared data is transmitted to an intellectual property information disclosure module; (S400) the intellectual property information disclosure module analyzes and statistics the data and presents the information to the user through the user interface of the electronic device; (S500) the analyzed and statistical data is also transmitted to a recommendation module, and the recommendation module The types of intellectual property rights in the data are classified and counted, and the types of intellectual property rights recommended for application are displayed in a user interface in a sorted manner; (S600) the user selects a patent type through the user interface; (S700) the user causes the processor to execute the input module to receive the input technical description through the user interface; and (S800) the login is completed through a login module, causing the processor to execute the semantic analysis module and a content generation module to generate summary content and a simple diagram; wherein, after step (S800), the following further steps are included: (S8001) the processor The processor executes the recommendation module to analyze the generated summary content and simple diagrams and provide recommended patent types; (S8002) The intellectual property information disclosure module further evaluates each patent type and generates a patent risk assessment report, which is simultaneously presented in the information of the recommended patent types through the user interface; (S8003) The user selects the patent type to apply through the user interface, and the processor executes the semantic analysis module and the content generation module to generate patent disclosure documents, claim content and patent diagrams, and integrates them into a formatted template into a draft.

本發明之另一目的在於提出智能推薦與底稿生成的系統,解決上述現有技術中存在的問題。 Another purpose of the present invention is to propose an intelligent recommendation and manuscript generation system to solve the problems existing in the above-mentioned existing technologies.

因此,為了達成上述本發明之另一目的,本發明提供的系統藉由提供使用者操作的一電子裝置來實現,其中,該電子裝置包含一處理器及一網路介面控制器,一伺服器包含一應用程式,該處理器透過網路介面控制器以連上伺服器並執行應用程式,用以進行智慧財產權診斷,該系統至少包含一登入模組、一訂單處理模組、一輸入模組、一語意分析模組、一產業分類模組、一搜尋模組、一內容學習模組、一內容生成模組、資料庫模組、自然語言資料庫、推薦模組、一智慧財產權資訊揭露模組。 Therefore, in order to achieve another purpose of the present invention, the system provided by the present invention is implemented by providing an electronic device for user operation, wherein the electronic device includes a processor and a network interface controller, a server includes an application, the processor connects to the server through the network interface controller and executes the application to perform intellectual property diagnosis, and the system at least includes a login module, an order processing module, an input module, a semantic analysis module, an industry classification module, a search module, a content learning module, a content generation module, a database module, a natural language database, a recommendation module, and an intellectual property information disclosure module.

其中,內容生成模組還包含一揭露文件生成單元與一圖式生成單元。 The content generation module also includes a disclosure document generation unit and a diagram generation unit.

輸入模組,用以接收該使用者所輸入的文字內容及技術描述,並將該文字內容與技術描述轉換為字串進行標籤化處理,並發送一字串資訊且將該字串資訊的輸入語言紀錄於一暫存記憶體中。 The input module is used to receive the text content and technical description input by the user, convert the text content and technical description into strings for labeling, send a string of information and record the input language of the string information in a temporary memory.

語意分析模組,接收該字串資訊,並透過一自然語言資料庫進行分析與斷詞,產生並發送語意分析結果。 The semantic analysis module receives the string information, analyzes and segment the words through a natural language database, and generates and sends the semantic analysis results.

產業分類模組,針對該語意分析結果進行產業類別分類碼分析,連接一資料庫模組判斷並產生至少一組專利分類碼。 The industry classification module performs industry classification code analysis on the semantic analysis results, connects to a database module to judge and generate at least one set of patent classification codes.

搜尋模組依據該至少一組專利分類碼在一資料庫模組中進行比對搜尋,並產生比對搜尋結果之數據資料。 The search module performs a comparison search in a database module based on the at least one set of patent classification codes and generates data of the comparison search results.

智慧財產權資訊揭露模組,接收該數據資料並進一步進行統計分析,產生基本智慧財產權資訊。 The intellectual property information disclosure module receives the data and further performs statistical analysis to generate basic intellectual property information.

推薦模組,也同時接收該數據資料,並依據該數據資料內智慧財產權的種類進行分類與統計,產生推薦申請的智慧財產權種類。 The recommendation module also receives the data and classifies and compiles the data according to the types of intellectual property rights in the data to generate the types of intellectual property rights recommended for application.

登入模組,該使用者操作該電子裝置透過該登入模組進行身分驗證。 Login module, the user operates the electronic device to perform identity verification through the login module.

內容生成模組,進一步包含一揭露文件生成單元與一圖式生成單元,接收並依據該語意分析結果生成摘要內容與簡易圖式。 The content generation module further includes a disclosure document generation unit and a diagram generation unit, which receives and generates summary content and a simple diagram based on the semantic analysis result.

具體地,在使用者選擇推薦申請的智慧財產權種類中的專利時,該輸入模組遂再次接收使用者輸入的技術描述,並藉由該登入模組完成身分驗證,而該語意分析模組遂接收關於技術描述的字串資訊,進行分析與斷詞產生並發送技術描述的分析結果,該揭露文件生成單元依據分析結果生成摘要內容,該圖式生成單元再依據摘要內容生成簡易圖式,該推薦模組依據摘要內容與簡易圖式進行分析,產生建議申請之專利類型,該智慧財產權資訊揭露模組針對建議申請之專利類型進行評估,生成專利風險評估報告,該揭露文件生成單元、該圖式生成單元與一權利要求內容生成單元依據專利類型、摘要內容與簡易圖式生成專利揭露文件、權利要求內容與專利圖式。 Specifically, when the user selects a patent in the recommended intellectual property type, the input module receives the technical description input by the user again and completes the identity verification through the login module. The semantic analysis module receives the string information about the technical description, performs analysis and generates a suffix and sends the analysis result of the technical description. The disclosure document generation unit generates a summary content based on the analysis result, and the diagram generation unit generates a summary content based on the summary content. Generate a simple diagram. The recommendation module analyzes the abstract content and the simple diagram to generate a recommended patent type. The intellectual property information disclosure module evaluates the recommended patent type and generates a patent risk assessment report. The disclosure document generation unit, the diagram generation unit and a claim content generation unit generate patent disclosure documents, claim content and patent diagrams based on the patent type, abstract content and simple diagram.

以下僅藉由具體實施例,且佐以圖式作詳細之說明。 The following is a detailed description using only specific implementation examples and accompanying drawings.

100:電子裝置 100: Electronic devices

101:處理器 101:Processor

102:網路介面控制器 102: Network interface controller

200:伺服器 200: Server

201:應用程式 201: Applications

300:登入模組 300: Login module

301:訂單處理模組 301: Order processing module

302:輸入模組 302: Input module

303:語意分析模組 303:Semantic analysis module

304:產業分類模組 304: Industry classification module

305:內容學習模組 305: Content learning module

306:內容生成模組 306: Content generation module

307:揭露文件生成單元 307: Disclosure document generation unit

308:權利要求內容生成單元 308: Rights claim content generation unit

309:圖式生成單元 309: Schematic generation unit

310:檢索文件生成模組 310: Retrieval file generation module

312:案件處理模組 312:Case processing module

335:關鍵字延伸模組 335:Keyword extension module

320:語言判斷模組 320: Language judgment module

321:翻譯模組 321:Translation module

322:說明書生成單元 322: Instruction manual generation unit

323:申請書生成單元 323: Application form generation unit

324:跨國轉換模組 324: International conversion module

331:關鍵字提取模組 331:Keyword extraction module

400:暫存記憶體 400: Temporary Memory

500:自然語言資料庫 500: Natural Language Database

600:資料庫模組 600: Database module

702:推薦模組 702: Recommended modules

703:智慧財產權資訊揭露模組 703: Intellectual Property Information Disclosure Module

(1)、(2)、(3)、(4):步驟 (1), (2), (3), (4): Steps

(411)、(412)、(413)、(414)、(415):步驟 (411), (412), (413), (414), (415): Steps

(412)、(422)、(423)、(424)、(425)、(426):步驟 (412), (422), (423), (424), (425), (426): Steps

(4151)、(4152):步驟 (4151), (4152): Steps

(4261)、(4262)、(4263):步驟 (4261), (4262), (4263): Steps

(31)、(32)、(33):步驟 (31), (32), (33): Steps

(51)、(52)、(53):步驟 (51), (52), (53): Steps

(6)、(7):步驟 (6), (7): Steps

(71)、(72)、(73):步驟 (71), (72), (73): Steps

S100、S200、S300、S400、S500、S600、S700、S800:步驟 S100, S200, S300, S400, S500, S600, S700, S800: Steps

S8001、S8002、S8003:步驟 S8001, S8002, S8003: Steps

圖1係先前技術的示意圖;圖2係先前技術的另一示意圖;圖3顯示本發明系統之流程圖;圖4顯示本發明系統之示意圖;圖5顯示本發明系統之另一示意圖;圖6顯示本發明系統之另一示意圖;圖7至圖9顯示本發明應用實例示意圖;圖10顯示本發明系統之另一示意圖;圖11顯示本發明系統之另一實施例示意圖;圖12至圖18顯示本發明方法之流程圖;以及圖19至圖22顯示本發明應用實例示意圖。 FIG. 1 is a schematic diagram of the prior art; FIG. 2 is another schematic diagram of the prior art; FIG. 3 shows a flow chart of the system of the present invention; FIG. 4 shows a schematic diagram of the system of the present invention; FIG. 5 shows another schematic diagram of the system of the present invention; FIG. 6 shows another schematic diagram of the system of the present invention; FIG. 7 to FIG. 9 show schematic diagrams of application examples of the present invention; FIG. 10 shows another schematic diagram of the system of the present invention; FIG. 11 shows another schematic diagram of an implementation example of the system of the present invention; FIG. 12 to FIG. 18 show flow charts of the method of the present invention; and FIG. 19 to FIG. 22 show schematic diagrams of application examples of the present invention.

現在將參照其中示出本發明概念的示例性實施例的附圖在下文中更充分地闡述本發明概念。以下藉由參照附圖更詳細地闡述的示例性實施例,本發明概念的優點及特徵以及其達成方法將顯而易見。 The inventive concept will now be more fully described below with reference to the accompanying drawings in which exemplary embodiments of the inventive concept are shown. The advantages and features of the inventive concept and the method of achieving the same will become apparent from the exemplary embodiments described in more detail below with reference to the accompanying drawings.

本文所用術語僅用於闡述特定實施例,而並非旨在限制本發明。除非上下文中清楚地另外指明,否則本文所用的單數形式的用語「一」及「該」旨在亦包括複數形式。應理解,當稱元件「連接」或「耦合」至另一元件時,所述元件可直接連接或耦合至所述另一元件或可存在中間元件。 The terms used herein are used only to describe specific embodiments and are not intended to limit the present invention. Unless the context clearly indicates otherwise, the singular forms of the terms "a", "an" and "the" used herein are intended to include the plural forms as well. It should be understood that when an element is said to be "connected" or "coupled" to another element, the element may be directly connected or coupled to the other element or there may be intermediate elements.

本文中參照圖來闡述示例性實施例,其中所述圖式是理想化示例性說明圖。因此,預期存在由例如製造技術及/或容差所造成的相對於圖式形狀 的偏離。因此,圖中所示的區為示意性的,且其形狀並非旨在說明裝置的實際形狀、亦並非旨在限制示例性實施例的範圍。 Exemplary embodiments are described herein with reference to figures, which are idealized exemplary illustrations. Therefore, deviations from the shapes of the figures due to, for example, manufacturing techniques and/or tolerances are expected. Therefore, the regions shown in the figures are schematic, and their shapes are not intended to illustrate the actual shape of the device nor to limit the scope of the exemplary embodiments.

本發明提供了一種智能專利類型推薦與底稿生成系統的執行方法,請參閱圖3,本發明的方法由使用者操作一電子裝置,經該電子裝置的一處理器透過一網路界面控制器連上一伺服器並執行一應用程式進行專利類型推薦與底稿生成的方法,至少包含以下步驟:(S100)使用者透過該電子裝置的使用者介面使該處理器執行一輸入模組接收輸入的文字內容;(S200)該處理器執行該應用程式中的一語意分析模組對文字內容進行語意分析;(S300)該語意分析模組進一步串接一產業分類模組、一搜尋模組與一資料庫模組,將經過分析之文字內容進行產業技術的分類,並在該資料庫模組中進行比對搜尋,而將比對出之數據資料傳送至一智慧財產權資訊揭露模組;(S400)該智慧財產權資訊揭露模組將該數據資料進行分析統計並透過該電子裝置的使用者介面將資訊呈現給使用者;(S500)經過分析統計的該數據資料同時也傳送至一推薦模組,該推薦模組依據該數據資料內智慧財產權的種類進行分類與統計,並進行排序顯示推薦申請的智慧財產權種類於使用者介面;(S600)使用者透過使用者介面選擇專利類型;(S700)使用者透過使用者介面,使該處理器執行該輸入模組接收輸入的技術描述;以及(S800)透過一登入模組完成登入,使該處理器執行該語意分析模組、一內容生成模組,而生成摘要內容與簡易圖式; 其中,在步驟(S800)之後進一步包含:(S8001)該處理器執行該推薦模組依據生成的摘要內容與簡易圖式進行分析,並提供建議申請之專利類型;(S8002)該智慧財產權資訊揭露模組進一步針對各專利類型進行評估,並生成專利風險評估報告,透過使用者介面同時呈現在建議申請之專利類型的資訊中;(S8003)使用者透過使用者介面選擇申請之專利類型,該處理器執行該語意分析模組及該內容生成模組生成專利揭露文件、權利要求內容與專利圖式,並套入格式化套版整合成底稿。 The present invention provides an execution method of an intelligent patent type recommendation and draft generation system, please refer to FIG3. The method of the present invention is performed by a user operating an electronic device, and a processor of the electronic device is connected to a server through a network interface controller and executes an application to perform patent type recommendation and draft generation. The method includes at least the following steps: (S100) the user uses the user interface of the electronic device to make the processor execute an input module to receive input text content; (S200) the processor executes a semantic analysis module in the application to perform semantic analysis on the text content. ; (S300) The semantic analysis module is further connected to an industry classification module, a search module and a database module, and the analyzed text content is classified into industry technologies, and a comparison search is performed in the database module, and the matched data is transmitted to an intellectual property information disclosure module; (S400) The intellectual property information disclosure module analyzes and statistics the data and presents the information to the user through the user interface of the electronic device; (S500) The analyzed and statistical data is also transmitted to a recommendation module, and the recommendation module recommends the user according to the data. Classify and count the types of intellectual property rights in the data, and sort and display the recommended types of intellectual property rights on the user interface; (S600) the user selects the patent type through the user interface; (S700) the user causes the processor to execute the input module to receive the input technical description through the user interface; and (S800) complete the login through a login module, causing the processor to execute the semantic analysis module and a content generation module to generate summary content and a simple diagram; Wherein, after step (S800), it further includes: (S8001) the processing The processor executes the recommendation module to analyze the generated summary content and simple diagram, and provides the recommended patent type; (S8002) the intellectual property information disclosure module further evaluates each patent type and generates a patent risk assessment report, which is simultaneously presented in the information of the recommended patent type through the user interface; (S8003) the user selects the patent type to apply through the user interface, and the processor executes the semantic analysis module and the content generation module to generate patent disclosure documents, claim content and patent diagrams, and inserts the formatted template to integrate them into the draft.

請參閱圖4及圖5,顯示本發明的系統示意圖。 Please refer to Figures 4 and 5, which show the system schematic diagram of the present invention.

本發明的系統藉由提供使用者操作的一電子裝置100來實現,其中,該電子裝置100包含一處理器101及一網路介面控制器102,一伺服器200包含一應用程式201,該處理器101透過網路介面控制器102以連上伺服器200並執行應用程式201,用以進行智慧財產權診斷,該系統至少包含一登入模組300、一訂單處理模組301、一輸入模組302、一語意分析模組303、一產業分類模組304、一搜尋模組700、一內容學習模組305、一內容生成模組306、資料庫模組600、自然語言資料庫500、推薦模組702、一智慧財產權資訊揭露模組703。 The system of the present invention is implemented by providing an electronic device 100 for user operation, wherein the electronic device 100 includes a processor 101 and a network interface controller 102, a server 200 includes an application 201, the processor 101 is connected to the server 200 through the network interface controller 102 and executes the application 201 to perform intellectual property rights diagnosis. The system at least includes a login module 300, an order processing module 301, an input module 302, a semantic analysis module 303, an industry classification module 304, a search module 700, a content learning module 305, a content generation module 306, a database module 600, a natural language database 500, a recommendation module 702, and an intellectual property information disclosure module 703.

其中,內容生成模組306還包含一揭露文件生成單元307與一圖式生成單元309。 The content generation module 306 also includes a disclosure document generation unit 307 and a diagram generation unit 309.

輸入模組,用以接收該使用者所輸入的文字內容及技術描述,並將該文字內容與技術描述轉換為字串進行標籤化處理,並發送一字串資訊且將該字串資訊的輸入語言紀錄於一暫存記憶體中。 The input module is used to receive the text content and technical description input by the user, convert the text content and technical description into strings for labeling, send a string of information and record the input language of the string information in a temporary memory.

語意分析模組,接收該字串資訊,並透過一自然語言資料庫進行分析與斷詞,產生並發送語意分析結果。 The semantic analysis module receives the string information, analyzes and segment the words through a natural language database, and generates and sends the semantic analysis results.

產業分類模組,針對該語意分析結果進行產業類別分類碼分析,連接一資料庫模組判斷並產生至少一組專利分類碼。 The industry classification module performs industry classification code analysis on the semantic analysis results, connects to a database module to judge and generate at least one set of patent classification codes.

搜尋模組依據該至少一組專利分類碼在一資料庫模組中進行比對搜尋,並產生比對搜尋結果之數據資料。 The search module performs a comparison search in a database module based on the at least one set of patent classification codes and generates data of the comparison search results.

智慧財產權資訊揭露模組,接收該數據資料並進一步進行統計分析,產生基本智慧財產權資訊。 The intellectual property information disclosure module receives the data and further performs statistical analysis to generate basic intellectual property information.

推薦模組,也同時接收該數據資料,並依據該數據資料內智慧財產權的種類進行分類與統計,產生推薦申請的智慧財產權種類。 The recommendation module also receives the data and classifies and compiles the data according to the types of intellectual property rights in the data to generate the types of intellectual property rights recommended for application.

登入模組,該使用者操作該電子裝置透過該登入模組進行身分驗證。 Login module, the user operates the electronic device to perform identity verification through the login module.

內容生成模組,進一步包含一揭露文件生成單元與一圖式生成單元,接收並依據該語意分析結果生成摘要內容與簡易圖式。 The content generation module further includes a disclosure document generation unit and a diagram generation unit, which receives and generates summary content and a simple diagram based on the semantic analysis result.

具體地,在使用者選擇推薦申請的智慧財產權種類中的專利時,該輸入模組遂再次接收使用者輸入的技術描述,並藉由該登入模組完成身分驗證,而該語意分析模組遂接收關於技術描述的字串資訊,進行分析與斷詞產生並發送技術描述的分析結果,該揭露文件生成單元依據分析結果生成摘要內容,該圖式生成單元再依據摘要內容生成簡易圖式,該推薦模組依據摘要內容與簡易圖式進行分析,產生建議申請之專利類型,該智慧財產權資訊揭露模組 針對建議申請之專利類型進行評估,生成專利風險評估報告,該揭露文件生成單元、該圖式生成單元與一權利要求內容生成單元依據專利類型、摘要內容與簡易圖式生成專利揭露文件、權利要求內容與專利圖式。 Specifically, when the user selects a patent in the recommended intellectual property type, the input module receives the technical description input by the user again and completes the identity verification through the login module. The semantic analysis module receives the string information about the technical description, performs analysis and generates a suffix and sends the analysis result of the technical description. The disclosure document generation unit generates a summary content based on the analysis result, and the diagram generation unit generates a summary content based on the summary content. Generate a simple diagram. The recommendation module analyzes the abstract content and the simple diagram to generate a recommended patent type. The intellectual property information disclosure module evaluates the recommended patent type and generates a patent risk assessment report. The disclosure document generation unit, the diagram generation unit and a claim content generation unit generate patent disclosure documents, claim content and patent diagrams based on the patent type, abstract content and simple diagram.

具體地,使用者藉由電子裝置100過網路介面控制器102以連上伺服器200並執行應用程式201,可以輸入文字或網址連結,其輸入的文字可以是對於公司企業品牌的描述或是公司企業品牌的核心產品服務的技術簡介,也可以輸入官方網站的網址連結,輸入模組若接收到網址連結,遂透過網路介面控制器102對網站內容進行擷取與讀取,詳細而言,語意分析模組303,進而可以對網站內容與輸入的文字進行語意分析,並將分析結果傳送至產業分類模組304。 Specifically, the user connects to the server 200 through the network interface controller 102 through the electronic device 100 and executes the application 201, and can input text or a URL link. The input text can be a description of the company's corporate brand or a technical introduction to the core product services of the company's corporate brand, or a URL link of the official website. If the input module receives the URL link, it will capture and read the website content through the network interface controller 102. Specifically, the semantic analysis module 303 can then perform semantic analysis on the website content and the input text, and transmit the analysis results to the industry classification module 304.

產業分類模組304針對該語意分析結果進行產業類別分類碼分析,連接一資料庫模組判斷並產生至少一組專利分類碼。 The industry classification module 304 performs industry classification code analysis on the semantic analysis result, connects to a database module to judge and generate at least one set of patent classification codes.

搜尋模組依據至少一組專利分類碼連接資料庫模組600進行比對分析,透過資料庫模組600中的相同或近似產業的智慧財產權申請數量、類別等資訊進行比對,產生搜尋結果的數據資料。 The search module connects to the database module 600 for comparison and analysis based on at least one set of patent classification codes, and compares the number and category of intellectual property applications in the same or similar industries in the database module 600 to generate data for the search results.

智慧財產權資訊揭露模組,接收該數據資料並進一步進行統計分析,產生基本智慧財產權資訊,揭露智慧財產權基本資訊,例如:技術價值、技術風險、智慧財產權時間成本與花費成本等。 The intellectual property information disclosure module receives the data and further performs statistical analysis to generate basic intellectual property information and disclose basic intellectual property information, such as technology value, technology risk, intellectual property time cost and expenditure cost, etc.

推薦模組,也同時接收該數據資料,並依據該數據資料內智慧財產權的種類進行分類與統計,產生推薦申請的智慧財產權種類,例如推薦申請專利。 The recommendation module also receives the data and classifies and compiles statistics based on the types of intellectual property rights in the data to generate recommended intellectual property types, such as recommended patent applications.

本發明提供了一種智能專利類型推薦與底稿生成系統與方法,底稿中包括生成系統方塊圖、流程圖及/或示意圖。在這個系統中,能夠通過發明者輸入的創意來自動生成底稿;此外,當發明者發表或輸入創意時,本發明的系統能夠透過自然語言處理(NLP)算法進行人工智慧語義閱讀,將輸入的創意轉換為編程語言,以生成系統方塊圖、流程圖或示意圖;同時,系統使用自然語言生成(NLG)算法生成包括先前技術、核心技術描述、技術優勢等部分的底稿。 The present invention provides a system and method for intelligent patent type recommendation and draft generation, wherein the draft includes generating system block diagrams, flow charts and/or schematic diagrams. In this system, the draft can be automatically generated through the ideas input by the inventor; in addition, when the inventor publishes or inputs ideas, the system of the present invention can perform artificial intelligence semantic reading through the natural language processing (NLP) algorithm, convert the input ideas into programming language, and generate system block diagrams, flow charts or schematic diagrams; at the same time, the system uses the natural language generation (NLG) algorithm to generate drafts including previous technologies, core technology descriptions, technical advantages, etc.

在本發明的一實施例中,著重描述在使用者先前已經完成前述的智能推薦,直接進行底稿生成,但是在此實施例中也可以是使用者先進行智能推薦後再接續進行底稿生成,請結合參閱圖4至圖6,圖6為顯示本發明系統之另一示意圖。本發明系統藉由提供使用者操作的一電子裝置100來實現,其中,該電子裝置100包含一處理器101及一網路介面控制器102,一伺服器200包含一應用程式201,該處理器101透過網路介面控制器102以連上伺服器200並執行應用程式201,用以產生專利圖式與底稿,該系統至少包含一登入模組300、一訂單處理模組301、一輸入模組302、一語意分析模組303、一產業分類模組304、一內容學習模組305、一圖式學習單元3051、一內容生成模組306、一圖式生成單元309、一檢索文件生成模組310、一圖形檢索單元311、暫存記憶體400、資料庫模組600及自然語言資料庫500。 In one embodiment of the present invention, the description focuses on the case where the user has previously completed the aforementioned intelligent recommendation and directly generates the draft. However, in this embodiment, the user may first perform the intelligent recommendation and then continue to generate the draft. Please refer to Figures 4 to 6. Figure 6 is another schematic diagram showing the system of the present invention. The system of the present invention is implemented by providing an electronic device 100 for user operation, wherein the electronic device 100 includes a processor 101 and a network interface controller 102, a server 200 includes an application 201, the processor 101 is connected to the server 200 through the network interface controller 102 and executes the application 201 to generate patent drawings and drafts. The system includes at least a login module 3 00, an order processing module 301, an input module 302, a semantic analysis module 303, an industry classification module 304, a content learning module 305, a graph learning unit 3051, a content generation module 306, a graph generation unit 309, a search document generation module 310, a graph search unit 311, a temporary memory 400, a database module 600 and a natural language database 500.

伺服器200可為雲端伺服器或為架設為地端伺服器的架構。 The server 200 may be a cloud server or a local server.

於本實施例當中,創作人係採用以下規格的伺服器進行本技術之商標商品項目轉化模型訓練與推算執行;處理器101(CPU)係採用高效 能多核心處理器101,尤其對於處理大量數據以及進行複雜計算時,至少使用一個具有16核或以上的CPU(例如AMD Ryzen Threadripper或Intel Xeon系列)。且記憶體(RAM)的大小可以為但不限於64GB或更高的RAM規格以便能夠處理的語料庫的大小以及詞向量模型的大小。網路介面控制器102為一個高速穩定的網路連線硬體,特別是使用在雲端計算資源或者下載/上傳大量數據。其中,最重要的圖形處理單元(GPU)係使用高效能的GPU(如NVIDIA的RTX 30系列或Tesla系列)以降低模型訓練的時間;其中,於本案伺服器200的訓練架構中,係採用如上較高規格的訓練用伺服器,而於模型訓練完成並進行推算處理時,係可採用較低規格的伺服器主機,並可同為部屬本系統的雲端或地端伺服器主機。於本案架構中,伺服器主機規格的採用係不影響本案所強調的技術特徵,因而任何伺服器主機規格應仍落入本案技術範圍當中。 In this embodiment, the creator uses a server with the following specifications to perform the trademark product item conversion model training and inference execution of this technology; the processor 101 (CPU) uses a high-performance multi-core processor 101, especially for processing large amounts of data and performing complex calculations, at least one CPU with 16 cores or more (such as AMD Ryzen Threadripper or Intel Xeon series) is used. And the size of the memory (RAM) can be but not limited to 64GB or higher RAM specifications so that the size of the corpus and the size of the word vector model can be processed. The network interface controller 102 is a high-speed and stable network connection hardware, especially used in cloud computing resources or downloading/uploading large amounts of data. Among them, the most important graphics processing unit (GPU) uses a high-performance GPU (such as NVIDIA's RTX 30 series or Tesla series) to reduce the model training time; in the training architecture of the server 200 in this case, a higher-specification training server as above is used, and when the model training is completed and the inference processing is performed, a lower-specification server host can be used, and it can be a cloud or ground server host deployed in this system. In the architecture of this case, the adoption of the server host specification does not affect the technical features emphasized in this case, so any server host specification should still fall within the technical scope of this case.

登入模組300,使用者操作該電子裝置100透過該登入模組300進行身分驗證,確定使用者(登入者)身分且同時確定身分資料。 Login module 300, the user operates the electronic device 100 to perform identity verification through the login module 300, confirming the identity of the user (loginer) and the identity data at the same time.

訂單處理模組301,為使用者提供會員註冊/登入、多國專利案件訂單建立與管理、多國專利案件導入等功能,進一步還可以提供案件訂單查詢、專利商標審查狀態確認及賬務查詢功能。 Order processing module 301 provides users with functions such as member registration/login, multinational patent case order creation and management, and multinational patent case import. It can also provide case order query, patent and trademark review status confirmation, and account query functions.

具體地,使用者可以註冊後登入成為本系統的會員,進行專利申請,並於系統平台上進行案件訂單管理,例如:文件生成、案件接收、案件提交副本、官文通知等。 Specifically, users can register and log in to become members of this system, apply for patents, and manage case orders on the system platform, such as: document generation, case acceptance, case submission copies, official notifications, etc.

使用者在訂單處理模組301中產生/建立新的案件訂單,並在使用者選擇第一目標國後將案件訂單內的資訊定期更新至系統的暫存記憶體400中。 The user generates/creates a new case order in the order processing module 301, and after the user selects the first target country, the information in the case order is regularly updated to the system's temporary memory 400.

輸入模組302,用以接收使用者所輸入的描述文字或圖形,並將描述文字轉換為字串進行標籤化處理,並發送字串資訊且將字串資訊的輸入語言紀錄於暫存記憶體400中。 The input module 302 is used to receive the description text or graphics input by the user, convert the description text into a string for labeling, send the string information and record the input language of the string information in the temporary memory 400.

具體實現方式可以例如以下描述,文字預處理、標籤提取、字串化和標籤化處理,文字預處理進一步分為分詞、去除停用詞、詞性標註以及詞形還原,標籤提取首先使用預先定義的規則或模式來提取標籤,並使用機器學習模型自動提取標籤,字串化是將提取的標籤組合成一個字串,例如“電影#動作#喜劇”,標籤化處理是可以根據需要對標籤進行進一步處理,例如去除重複標籤、排序標籤等,更具體的方式可以利用自然語言處理(NLP)工具包:例如NLTK、Stanford NLP、HanLP等,或是機器學習框架:例如TensorFlow、PyTorch、scikit-learn等。 The specific implementation method can be described as follows: text preprocessing, label extraction, stringification and labeling. Text preprocessing is further divided into word segmentation, stop word removal, part-of-speech tagging and word form restoration. Label extraction first uses predefined rules or patterns to extract labels, and uses machine learning models to automatically extract labels. Stringification is to combine the extracted labels into a string, such as "電影#動作#劇". Labeling can further process the labels as needed, such as removing duplicate labels, sorting labels, etc. More specific methods can use natural language processing (NLP) toolkits: such as NLTK, Stanford NLP, HanLP, etc., or machine learning frameworks: such as TensorFlow, PyTorch, scikit-learn, etc.

語意分析模組303,接收字串資訊,並透過一自然語言資料庫500進行分析與斷詞,產生並發送語意分析結果。 The semantic analysis module 303 receives string information, analyzes and segment the information through a natural language database 500, and generates and sends semantic analysis results.

產業分類模組304,針對語意分析結果進行產業類別分類碼分析,連接資料庫模組600判斷並產生至少一組專利分類碼。其中,該產業類別分析,可以是International Patent Category(國際專利分類),針對A:Human Necessities、B:Performing Operations,Transporting、C:Chemistry,Metallurgy、D:Textiles,Paper、E:Fixed Constructions、F:Mechanical Engineering,Lighting,Heating,Weapons、G:Physics、H:Electricity進行分類,或是其他分類碼例如:USPC、JPC、European Classification、ECLA分類碼等。 The industry classification module 304 performs industry classification code analysis on the semantic analysis results, and connects to the database module 600 to determine and generate at least one set of patent classification codes. The industry classification analysis can be International Patent Category, which classifies A: Human Necessities, B: Performing Operations, Transportation, C: Chemistry, Metallurgy, D: Textiles, Paper, E: Fixed Constructions, F: Mechanical Engineering, Lighting, Heating, Weapons, G: Physics, H: Electricity, or other classification codes such as USPC, JPC, European Classification, ECLA classification codes, etc.

要對一段描述文字進行產業分類分析並生成專利IPC分類號,可以使用以下方法: 文本預處理:首先,對輸入的描述文字進行預處理。這可能包括去除標點符號、停用詞和無意義的字符,並進行詞彙正規化(如詞幹提取或詞形還原)。 To perform industrial classification analysis on a description text and generate a patent IPC classification number, the following methods can be used: Text preprocessing: First, preprocess the input description text. This may include removing punctuation, stop words and meaningless characters, and performing vocabulary normalization (such as stem extraction or word form restoration).

特徵提取:從預處理後的文本中提取有意義的特徵。這可以使用常見的文本特徵表示方法,如詞袋模型(Bag-of-Words)或詞嵌入(Word Embeddings)。詞袋模型將文本表示為詞語的頻率或存在與否,而詞嵌入則將詞語映射到連續向量空間中。 Feature extraction: Extract meaningful features from the pre-processed text. This can use common text feature representation methods such as Bag-of-Words or Word Embeddings. The Bag-of-Words model represents text as the frequency or presence of words, while Word Embeddings maps words into a continuous vector space.

產業分類模型:建立一個產業分類模型,可以是基於機器學習的分類器(如支持向量機、決策樹或深度學習模型),也可以是基於規則的方法。這個模型將訓練用於分類文本到相應的產業類別。 Industry classification model: Build an industry classification model, which can be a machine learning-based classifier (such as support vector machines, decision trees, or deep learning models) or a rule-based approach. This model will be trained to classify text into corresponding industry categories.

IPC分類生成:使用已經訓練好的產業分類模型,將輸入的描述文字進行分類,並生成相應的專利IPC分類號。IPC(International Patent Classification)是一套用於專利文檔分類的國際標準。 IPC classification generation: Use the trained industry classification model to classify the input description text and generate the corresponding patent IPC classification number. IPC (International Patent Classification) is an international standard for patent document classification.

假設我們有一段描述文字如下:"這家公司專門研究和開發用於太陽能發電的新型材料和技術。他們設計了一種高效率的太陽能電池,能夠將太陽能轉化為電能,同時降低能源成本和環境影響。他們的技術在可再生能源領域有很大的潛力,可以廣泛應用於家庭和工業用途。" Suppose we have a description like this: "This company specializes in the research and development of new materials and technologies for solar power generation. They have designed a highly efficient solar cell that can convert solar energy into electricity while reducing energy costs and environmental impact. Their technology has great potential in the field of renewable energy and can be widely used for domestic and industrial purposes."

我們可以按照以下步驟進行產業分類分析並生成專利IPC分類號:文本預處理:將描述文字進行預處理,去除標點符號,轉換為小寫字母,去除停用詞等。例如,可以將上述描述文字預處理為:"公司 專門 研究 開發 太陽能 發電 新型 材料 技術 設計 高效率 太陽能 電池 轉化 電能 降低 能源 成本 環境 影響 技術 可再生能源 潛力 廣泛 應用 家庭 工業 用途"。 We can perform industry classification analysis and generate patent IPC classification numbers according to the following steps: Text preprocessing: preprocess the description text, remove punctuation, convert to lowercase letters, remove stop words, etc. For example, the above description text can be preprocessed as: "Company Specializes in research and development of solar power generation, new materials, technology, design, high-efficiency solar battery conversion, electricity reduction, energy cost, environmental impact, technology, renewable energy, potential, wide application, household, industrial use".

特徵提取:使用詞袋模型將預處理後的文字轉換為特徵向量表示。每個詞語可以被視為一個特徵,詞語在描述文字中出現的頻率可以用來表示詞語的重要性。例如,可以得到以下特徵向量表示:{"公司":1,"專門":1,"研究":1,"開發":1,"太陽能":2,"發電":1,"新型":1,"材料":1,"技術":2,"設計":1,"高效率":1,"電池":1,"轉化":1,"電能":1,"降低":1,"能源":1,"成本":1,"環境":1,"影響":1,"可再生能源":1,"潛力":1,"廣泛":1,"應用":1,"家庭":1,"工業":1,"用途":1}。 Feature extraction: Use the bag-of-words model to convert the preprocessed text into a feature vector representation. Each word can be regarded as a feature, and the frequency of the word in the description text can be used to indicate the importance of the word. For example, the following feature vector representation can be obtained: {"Company": 1,"Specialize": 1,"Research": 1,"Development": 1,"Solar": 2,"Power Generation": 1,"New": 1,"Material": 1,"Technology": 2,"Design": 1,"High Efficiency": 1,"Battery": 1,"Conversion": 1,"Electricity": 1,"Reduction": 1,"Energy": 1,"Cost": 1,"Environment": 1,"Impact": 1,"Renewable Energy": 1,"Potential": 1,"Wide": 1,"Application": 1,"Household": 1,"Industry": 1,"Use": 1}.

產業分類模型:建立一個訓練好的產業分類模型,例如支持向量機(Support Vector Machine)或深度學習模型(如循環神經網絡或卷積神經網絡),使用帶有相應的標籤的訓練數據進行模型訓練。 Industry classification model: Build a trained industry classification model, such as a support vector machine (SVM) or a deep learning model (such as a recurrent neural network or a convolutional neural network), and use training data with corresponding labels to train the model.

IPC分類生成:使用訓練好的產業分類模型,將預處理後的文字特徵向量輸入模型進行預測。根據預測結果,可以生成相應的專利IPC分類號。例如,模型可能預測該描述文字屬於太陽能相關的產業類別,對應的IPC分類號可能是H01L 31/02(太陽能電池)或者C09K 5/04(太陽能材料)等。 IPC classification generation: Use the trained industry classification model to input the pre-processed text feature vector into the model for prediction. Based on the prediction results, the corresponding patent IPC classification number can be generated. For example, the model may predict that the description text belongs to the solar-related industry category, and the corresponding IPC classification number may be H01L 31/02 (solar battery) or C09K 5/04 (solar material), etc.

內容學習模組305,係為一大型語言模型,針對不同的專利分類碼,從資料庫模組600中學習對應的專利說明書中的內容,圖式學習單元3051則進一步針對專利說明書中的圖式進行學習,亦即,內容學習模組305可以針對不 同的專利分類碼學習不同類型的專利說明書的撰寫方式,圖式學習單元3051可以針對不同的專利分類碼學習不同類型的專利圖式與說明書的對應關係,例如:系統專利、資訊軟體專利、機構專利、方法專利等,其學習的說明書內容可以至少包含專利名稱、專利摘要、背景技術、專利目的、專利詳細說明、專利權利要求、專利圖式及專利標號,甚至是專利答辯稿或專利官文。 The content learning module 305 is a large language model. For different patent classification codes, it learns the corresponding content in the patent specification from the database module 600. The schema learning unit 3051 further learns the schema in the patent specification. That is, the content learning module 305 can learn the writing methods of different types of patent specifications for different patent classification codes. The schema learning unit 3051 can also learn the writing methods of different types of patent specifications for different patent classification codes. 3051 can learn the correspondence between different types of patent drawings and specifications for different patent classification codes, such as system patents, information software patents, mechanism patents, method patents, etc. The specification content learned can at least include patent name, patent abstract, background technology, patent purpose, patent detailed description, patent claims, patent drawings and patent numbers, and even patent defense drafts or patent official documents.

內容生成模組306還包含揭露文件生成單元307與權利要求內容生成單元308,依據該語意分析結果結合內容學習模組305與資料庫模組600生成一專利揭露文件與權利要求內容,其生成的專利揭露文件至少包含一技術摘要、一先前技術內容或其組合。 The content generation module 306 also includes a disclosure document generation unit 307 and a claim content generation unit 308. Based on the semantic analysis result, the content learning module 305 and the database module 600 are combined to generate a patent disclosure document and claim content. The generated patent disclosure document at least includes a technical summary, a prior art content or a combination thereof.

進一步而言,權利要求內容生成單元308,係依據該專利揭露文件再次透過語意分析模組303進行語意分析,並結合內容學習後生成轉換為專利用字與用詞的權利要求內容。 Furthermore, the claim content generating unit 308 performs semantic analysis again based on the patent disclosure document through the semantic analysis module 303, and generates the claim content converted into patent words and terms after combining content learning.

內容生成模組306還包含元件符號生成單元3091,語意分析模組對專利揭露文件進行分析,斷詞並拆解出名詞,且進一步在專利揭露文件中的內容完成名詞標號,接著將圖式生成單元生成的專利圖式與完成標號的專利揭露文件做比對,最終在專利圖式上標上標號,同步生成元件符號表。 The content generation module 306 also includes a component symbol generation unit 3091. The semantic analysis module analyzes the patent disclosure document, breaks down and decomposes nouns, and further completes the noun labels in the content of the patent disclosure document. Then, the patent diagram generated by the diagram generation unit is compared with the patent disclosure document with the completed label, and finally the patent diagram is labeled and the component symbol table is generated synchronously.

元件符號生成單元3091主要功能是分析專利揭露文件中的語義內容,識別並標記專利圖式上的元件符號,從而生成一個完整的元件符號表。這一過程包括幾個關鍵步驟:語意分析:語意分析模組首先對專利揭露文件進行深入的語意分析。這包括使用自然語言處理(NLP)技術來斷詞和識別關鍵名詞。 舉例來說,如果文件中提到了“電阻器”、“電容器”等術語,系統會識別這些名詞作為潛在的元件符號。 The main function of the component symbol generation unit 3091 is to analyze the semantic content in the patent disclosure document, identify and mark the component symbols on the patent diagram, and thus generate a complete component symbol table. This process includes several key steps: Semantic analysis: The semantic analysis module first performs an in-depth semantic analysis of the patent disclosure document. This includes using natural language processing (NLP) technology to segment and identify key terms. For example, if the document mentions terms such as "resistor" and "capacitor", the system will identify these terms as potential component symbols.

名詞標號:接下來,元件符號生成單元3091會在專利揭露文件中對這些識別出的名詞進行標號。這一步驟涉及將每個元件與一個唯一的標識符相關聯。例如,電阻器可能被標記為R1,電容器可能被標記為C1等。 Noun Labeling: Next, the component symbol generation unit 3091 labels these identified nouns in the patent disclosure document. This step involves associating each component with a unique identifier. For example, a resistor may be labeled R1, a capacitor may be labeled C1, etc.

圖式生成與比對:此時,圖式生成單元生成的專利圖式還包括了所有提及的元件及其排列。然後,元件符號生成單元3091會將這些專利圖式與已完成標號的專利揭露文件進行比對。 Drawing generation and comparison: At this time, the patent drawings generated by the drawing generation unit also include all the mentioned components and their arrangements. Then, the component symbol generation unit 3091 will compare these patent drawings with the patent disclosure documents that have completed the labeling.

標號映射:在進行了詳細的比對後,元件符號生成單元3091會在專利圖式上標上對應的標號。這個過程是通過映射專利揭露文件中的元件名稱和標號到它們在專利圖式中的對應位置來完成的。例如,如果文件中的“電阻器R1”在圖式上有對應的圖形表示,系統則會在該圖形旁邊標記“R1”。 Label mapping: After a detailed comparison, the component symbol generation unit 3091 will mark the corresponding labels on the patent drawings. This process is done by mapping the component names and labels in the patent disclosure document to their corresponding positions in the patent drawings. For example, if "resistor R1" in the document has a corresponding graphical representation on the drawing, the system will mark "R1" next to the graphic.

同步生成元件符號表:最後一步是生成元件符號表,這是一份將專利揭露文件中的所有元件名稱、標號以及它們在圖式中的位置匯總在一起的清單。這個表格方便閱讀者快速定位每個元件在圖式中的位置,並理解它們的功能和相互關係。 Simultaneous generation of component symbol table: The last step is to generate the component symbol table, which is a list that summarizes all component names, reference numbers, and their locations in the drawings in the patent disclosure document. This table makes it easy for readers to quickly locate the location of each component in the drawing and understand their functions and relationships.

為了實現這些功能,元件符號生成單元3091使用了一系列複雜的演算法和數據結構。其中包括:自然語言處理(NLP)演算法:用於文本分析、斷詞和名詞識別。 To achieve these functions, the component symbol generation unit 3091 uses a series of complex algorithms and data structures. These include: Natural Language Processing (NLP) algorithms: used for text analysis, word segmentation, and noun recognition.

圖像處理技術:用於從專利圖式中識別和映射元件符號。 Image processing technology: used to identify and map component symbols from patent drawings.

數據庫管理系統:用於存儲和檢索文件中的元件名稱、標號以及它們在圖式中的位置。 Database management system: used to store and retrieve component names, designators and their locations in drawings in documents.

此外,元件符號生成單元3091可能還會使用機器學習技術來提高其識別和映射元件的準確性。例如,通過訓練模型識別不同類型的電子元件圖標,系統可以自動地對這些元件進行標號和定位。 In addition, the component symbol generation unit 3091 may also use machine learning technology to improve its accuracy in identifying and mapping components. For example, by training the model to recognize different types of electronic component icons, the system can automatically number and locate these components.

實現這一過程的公式和演算法可能包括但不限於:文本分析公式:例如,TF-IDF(Term Frequency-Inverse Document Frequency)用於評估一個詞語對於一個文件集或一個語料庫中的其中一份文件的重要性。TF-IDF(t,d)=TF(t,d)×IDF(t,D),其中,TF(t,d)是詞語t在文件d中的出現頻率,而IDF(t,D)是逆文檔頻率,計算方式為:IDF(t,D)=log(N/|{d

Figure 113101938-A0305-12-0023-3
D:t
Figure 113101938-A0305-12-0023-4
d}|),N是語料庫中文件的總數,分母是包含詞語t的文件數量。 The formulas and algorithms to implement this process may include but are not limited to: Text analysis formulas: For example, TF-IDF (Term Frequency-Inverse Document Frequency) is used to evaluate the importance of a term to a document set or a document in a corpus. TF-IDF(t,d)=TF(t,d)×IDF(t,D), where TF(t,d) is the frequency of occurrence of term t in document d, and IDF(t,D) is the inverse document frequency, calculated as: IDF(t,D)=log(N/|{d
Figure 113101938-A0305-12-0023-3
D:t
Figure 113101938-A0305-12-0023-4
d}|), N is the total number of documents in the corpus, and the denominator is the number of documents containing word t.

圖像處理算法:例如,使用邊緣檢測技術來識別圖式中的元件邊界。一個常用的方法是Canny邊緣檢測器。 Image processing algorithms: For example, edge detection techniques are used to identify component boundaries in a diagram. A commonly used method is the Canny edge detector.

機器學習模型:例如,使用卷積神經網絡(CNN)來識別和分類圖式中的不同元件符號。 Machine learning models: For example, using convolutional neural networks (CNNs) to recognize and classify different component symbols in diagrams.

資料庫模組600,提供使用者在本系統中進行多國商標/專利在先案件檢索所需的多個資料庫,例如:各國官方專利資料庫或公開專利搜尋資料庫等。 Database module 600 provides users with multiple databases required for searching for multinational trademark/patent prior cases in this system, such as official patent databases of various countries or public patent search databases, etc.

圖式生成單元309,對該專利揭露文件或權利要求內容進行分析並轉譯為圖式生成語言,透過圖式生成語言產生對應於技術內容或權 利要求內容的圖式程式碼,並再經由編譯單元生成對應於技術內容或權利要求內容的專利圖式,專利揭露文件、權利要求內容與專利圖式結合形成底稿。 The diagram generation unit 309 analyzes the patent disclosure document or the content of the claim and translates it into a diagram generation language, generates a diagram code corresponding to the technical content or the content of the claim through the diagram generation language, and then generates a patent diagram corresponding to the technical content or the content of the claim through the compilation unit. The patent disclosure document, the content of the claim and the patent diagram are combined to form a draft.

具體而言,將該專利揭露文件或權利要求內容轉譯為圖式語言,首先,轉譯模組需要對提取出的技術資訊進行分析,理解其意義,然後,轉譯模組需要根據圖式生成語言的語法規則,生成圖式生成語言的描述。詳細而言,可以使用以下步驟來生成圖式生成語言:識別技術概念、識別技術特徵、識別技術關係。 Specifically, to translate the patent disclosure document or claim content into a schematic language, first, the translation module needs to analyze the extracted technical information and understand its meaning. Then, the translation module needs to generate a description of the schematic generation language according to the grammatical rules of the schematic generation language. In detail, the following steps can be used to generate the schematic generation language: identify technical concepts, identify technical features, and identify technical relationships.

識別技術概念:轉譯模組首先識別出技術資訊中的技術概念,技術概念是圖式生成語言中的基本元素。識別技術特徵:轉譯模組然後識別出技術資訊中的技術特徵,技術特徵是用來描述技術概念的。識別技術關係:轉譯模組最後識別出技術資訊中的技術關係,技術關係是用來描述技術概念之間的聯繫。 Identify technical concepts: The translation module first identifies the technical concepts in the technical information. Technical concepts are the basic elements in the schema generation language. Identify technical features: The translation module then identifies the technical features in the technical information. Technical features are used to describe technical concepts. Identify technical relationships: The translation module finally identifies the technical relationships in the technical information. Technical relationships are used to describe the connection between technical concepts.

生成的專利圖式可以為流程圖、方塊圖或示意圖,流程圖即為代表一個方法步驟,方塊圖即代表系統元件的架構,示意圖即代表機構或機械的結構。 The generated patent diagram can be a flow chart, block diagram or schematic diagram. A flow chart represents a method step, a block diagram represents the structure of system components, and a schematic diagram represents the structure of a mechanism or machine.

舉例而言,假設技術資訊中提到“具有一個觸控螢幕”,轉譯模組可以將其識別為“具有”技術特徵和“觸控螢幕”技術概念。假設技術資訊中提到“包含一個攝影鏡頭和一個處理器”,轉譯模組可以將其識別為“包含”技術關係、“攝影鏡頭”技術概念和“處理器”技術概念。 For example, if the technical information mentions "having a touch screen", the translation module can identify it as the "having" technical feature and the "touch screen" technical concept. If the technical information mentions "containing a camera lens and a processor", the translation module can identify it as the "containing" technical relationship, the "camera lens" technical concept, and the "processor" technical concept.

請參閱圖7至圖9,圖7上方是專利揭露文件中的技術摘要,圖7下方即為生成之對應示意圖;圖8上方是專利揭露文件中的技術摘要, 圖8下方即為生成之對應系統方塊圖;圖9上方專利揭露文件中的技術摘要,圖9下方即為生成之對應流程圖。 Please refer to Figures 7 to 9. The top of Figure 7 is the technical summary in the patent disclosure document, and the bottom of Figure 7 is the corresponding schematic diagram generated; the top of Figure 8 is the technical summary in the patent disclosure document, and the bottom of Figure 8 is the corresponding system block diagram generated; the top of Figure 9 is the technical summary in the patent disclosure document, and the bottom of Figure 9 is the corresponding flow chart generated.

具體地,語意分析模組303中可以執行關鍵字擷取,關鍵字擷取是一種自然語言處理技術,旨在從文本中自動提取出重要的關鍵字或詞組,方法可以為但是不限於統計方法,頻率法(Frequency-based methods)、文本統計法(Statistical methods)、文本向量化方法(Text vectorization methods)或機器學習方法(Machine learning methods)。 Specifically, the semantic analysis module 303 can perform keyword extraction, which is a natural language processing technology that aims to automatically extract important keywords or phrases from text. The method can be but not limited to statistical methods, frequency methods, statistical methods, text vectorization methods or machine learning methods.

頻率法基於詞語在文本中的頻率來判斷其重要性。常見的方法有TF-IDF(詞頻-逆文件頻率)和詞頻(Term Frequency)等。TF-IDF考慮了詞語在文本中的出現頻率以及在整個文集中的重要程度,詞頻則僅考慮了詞語在文本中的出現頻率。 The frequency method determines the importance of a word based on its frequency in the text. Common methods include TF-IDF (Term Frequency-Inverse Document Frequency) and Term Frequency. TF-IDF considers the frequency of a word in the text and its importance in the entire collection, while term frequency only considers the frequency of a word in the text.

文本統計法基於統計模型來分析詞語在文本中的分布和關聯性。常見的方法有互信息(Mutual Information)、點互信息(Pointwise Mutual Information)和卡方檢驗(Chi-squared Test)等。這些方法通常需要建立一個詞語和文本之間的統計模型,並根據該模型計算詞語的重要性。 Text statistics is based on statistical models to analyze the distribution and relevance of words in text. Common methods include mutual information, pointwise mutual information, and chi-squared test. These methods usually require the establishment of a statistical model between words and texts, and the calculation of word importance based on the model.

文本向量化方法將文本轉換為向量表示,然後使用向量空間模型(Vector Space Model)來計算詞語的重要性。常見的方法有詞袋模型(Bag-of-Words Model)、詞向量(Word Embeddings)和文本向量化方法(如TF-IDF向量化)等。 The text vectorization method converts the text into a vector representation and then uses the Vector Space Model to calculate the importance of words. Common methods include the Bag-of-Words Model, Word Embeddings, and text vectorization methods (such as TF-IDF vectorization).

機器學習方法使用機器學習算法來訓練模型,從文本中學習詞語的重要性。常見的方法有文本分類、文本聚類和關鍵詞提取模型等。這些方法需要使用標註好的文本數據進行模型的訓練。 Machine learning methods use machine learning algorithms to train models and learn the importance of words from text. Common methods include text classification, text clustering, and keyword extraction models. These methods require the use of labeled text data for model training.

上述也能透過使用腳本語言(例如Python)編寫一個程式來執行。 The above can also be done by writing a program using a scripting language (such as Python).

關鍵字延伸則是關鍵字擷取的進一步功能,接收產生的關鍵字,並對其進行延伸,亦即,尋找近似詞或同義詞,連接到一詞彙表進行比對產生這少一同義詞。 Keyword extension is a further function of keyword extraction, which receives the generated keywords and extends them, that is, it searches for similar words or synonyms, connects to a vocabulary for comparison, and generates at least one synonym.

接著請參閱圖6,本系統還包含一語言判斷模組320,用以判斷使用者所輸入的字串資訊的輸入語言與該第一目標國的官方語言是否相同。若經過該語言判斷模組320判斷該字串資訊與該第一目標國的官方語言不相同,則透過一翻譯模組321對該字串資訊進行翻譯,並在最終生成該專利圖式後再透過該翻譯模組321將該專利圖式的語言翻譯回該字串資訊的輸入語言。 Next, please refer to Figure 6. The system also includes a language determination module 320 for determining whether the input language of the string information input by the user is the same as the official language of the first target country. If the language determination module 320 determines that the string information is not the same as the official language of the first target country, the string information is translated through a translation module 321, and after the patent diagram is finally generated, the translation module 321 translates the language of the patent diagram back to the input language of the string information.

本發明的系統還可以進一步包含檢索文件生成模組310包含一圖形檢索單元311、一轉化單元317及一圖形比對單元318,圖形檢索單元311接收該使用者輸入的圖形並在資料庫模組600中搜尋,產出檢索文件。 The system of the present invention may further include a search document generation module 310 including a graphic search unit 311, a conversion unit 317 and a graphic comparison unit 318. The graphic search unit 311 receives the graphic input by the user and searches in the database module 600 to generate a search document.

在生成專利揭露文件、權利要求內容與專利圖式之後,使用者可以進一步透過檢索文件生成模組310進行前案的搜尋,特別是針對圖形的搜尋。 After generating the patent disclosure document, claim content and patent diagram, the user can further search for previous cases through the search document generation module 310, especially searching for diagrams.

具體而言,該圖形檢索單元311接收輸入之圖形後,先經由該轉化單元317將圖形轉化並帶入維也納分類標籤,同時將圖形轉化為向量,再經由圖形比對單元318依據該資料庫模組600中進行比對,產出檢索文件。 Specifically, after the image retrieval unit 311 receives the input image, the image is first converted by the conversion unit 317 and brought into the Vienna classification label, and the image is converted into a vector at the same time, and then the image comparison unit 318 compares it according to the database module 600 to generate a search document.

將圖形轉化為向量例如:由於基本上圖形是由像素點組成,最亮我們可以當作是1,最暗當作是0,假設不考慮三原色,一張只有3 x 3的像素點的圖,我們從左上、左中、左上、左中、中中、右中...依序排到右下為(1,0,1,0,1,0,1,0,1),這個圖形即是黑白黑白黑白黑白黑,考慮 三原色的情況下就是擴大這個向量長度三倍,變成R(1,0,1,0,1,0,1,0,1)+G(1,0,1,0,1,0,1,0,1)+B(1,0,1,0,1,0,1,0,1)=(1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1)。並且藉由局部向量相似=形狀相似的原理將比對後近似的圖形抓出來。 Convert graphics to vectors. For example, since graphics are basically composed of pixels, the brightest can be regarded as 1 and the darkest as 0. Assuming that the three primary colors are not considered, there are only 3 x 3 pixels, we arrange them from top left, middle left, top left, middle left, middle middle, middle right... to bottom right (1,0,1,0,1,0,1,0,1), this figure is black and white, black and white, black and white, black and white, considering the case of three primary colors, we expand the length of this vector three times, and it becomes R(1,0,1,0,1,0,1,0,1)+G(1,0,1,0,1,0,1,0,1)+B(1,0,1,0,1,0,1,0,1)=(1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1). And through the principle of local vector similarity = shape similarity, we can capture the approximate figure after comparison.

具體地,在比對的過程中可以依不同的方式計算近似程度,例如編輯距離(Edit Distance)、餘弦相似度(Cosine Similarity)或Jaccard相似度(Jaccard Similarity),並將近似程度超過一設定值的圖形篩選出來,該設定值可以自行調整。 Specifically, in the comparison process, the similarity can be calculated in different ways, such as Edit Distance, Cosine Similarity or Jaccard Similarity, and the graphics with similarity exceeding a set value are filtered out. The set value can be adjusted by yourself.

編輯距離(Edit Distance)通常用於字串之間的相似度度量,它可以衡量將一個字串轉換為另一個字串所需的最小操作次數(插入、刪除或替換)。但它也可以用於近似估算向量的近似程度。 Edit distance is usually used to measure the similarity between strings. It measures the minimum number of operations (insertion, deletion or replacement) required to transform one string into another. But it can also be used to approximate the similarity of vectors.

以下是利用編輯距離計算向量近似程度的一般步驟:向量序列化:將每個向量轉換為序列,例如:數位向量可以直接轉換為數位序列。特徵向量可以將每個特徵的名稱和值組合成字串序列。 The following are the general steps to calculate the similarity of vectors using edit distance: Vector serialization: Convert each vector into a sequence, for example: a digital vector can be directly converted into a digital sequence. A feature vector can combine the name and value of each feature into a string sequence.

計算編輯距離:使用編輯距離演算法(例如Levenshtein距離)計算兩個序列之間的編輯距離。 Calculate edit distance: Calculate the edit distance between two sequences using an edit distance algorithm (e.g. Levenshtein distance).

歸一化:將編輯距離歸一化,使其取值範圍在0到1之間,便於比較。常見的歸一化方法是除以序列的最大長度。 Normalization: Normalize the edit distance so that its value range is between 0 and 1 for easy comparison. A common normalization method is to divide by the maximum length of the sequence.

近似程度:(1-歸一化後的編輯距離),表示兩個向量的近似程度。通常,值越接近1,表示向量越相似。 Approximation: (1-normalized edit distance), indicating the approximation between two vectors. Generally, the closer the value is to 1, the more similar the vectors are.

舉例而言,假設有兩個向量:向量1=[1,2,3,4],向量2=[2,3,1,4]。 For example, suppose there are two vectors: vector1=[1,2,3,4], vector2=[2,3,1,4].

序列化:向量1->"1234",向量2->"2314" Serialization: vector 1->"1234", vector 2->"2314"

編輯距離:2(需要兩次操作:交換"1"和"3") Edit distance: 2 (requires two operations: swapping "1" and "3")

歸一化:2/4=0.5 Normalization: 2/4=0.5

近似程度:1-0.5=0.5 Approximation: 1-0.5=0.5

因此,這兩個向量的近似程度為0.5,表示它們有一定程度的相似性。 Therefore, the approximation of these two vectors is 0.5, indicating that they have a certain degree of similarity.

餘弦相似度是一種衡量向量之間方向相似性的方法,可以用來估算向量之間的近似程度。其原理是計算兩個向量夾角的餘弦值,角度越接近0,表示向量越相似,餘弦值也越接近1。 Cosine similarity is a method to measure the directional similarity between vectors, and can be used to estimate the degree of similarity between vectors. The principle is to calculate the cosine value of the angle between two vectors. The closer the angle is to 0, the more similar the vectors are, and the closer the cosine value is to 1.

以下是利用餘弦相似度計算向量近似程度的一般步驟:向量預處理:確保兩個向量具有相同的維度;對向量進行歸一化(例如,使其長度為1),以消除向量長度差異的影響。 The following are the general steps to calculate the degree of vector similarity using cosine similarity: Vector preprocessing: Make sure the two vectors have the same dimension; Normalize the vectors (for example, make their length 1) to eliminate the impact of the difference in vector length.

內積計算:計算兩個向量之間的內積,即對應維度的元素逐對相乘後求和。內積反映了兩個向量在方向上的相關性。 Inner product calculation: Calculate the inner product between two vectors, that is, multiply the elements of corresponding dimensions pair by pair and then sum them up. The inner product reflects the correlation between the two vectors in direction.

向量長度計算:計算每個向量的長度,即對應維度的元素平方後求和再開平方根。向量長度反映了其整體的大小。 Vector length calculation: Calculate the length of each vector, that is, square the elements of the corresponding dimension, sum them up, and then take the square root. The length of a vector reflects its overall size.

餘弦相似度計算:將內積除以兩個向量長度的乘積,即得到兩個向量的餘弦相似度。 Cosine similarity calculation: Divide the inner product by the product of the lengths of the two vectors to get the cosine similarity of the two vectors.

近似程度分析:餘弦相似度取值範圍為-1到1。餘弦相似度接近1,表示兩個向量方向非常相似,近似程度很高。餘弦相似度為0, 表示兩個向量正交,完全不相似。餘弦相似度接近-1,表示兩個向量方向相反,極不相似。 Similarity analysis: The cosine similarity ranges from -1 to 1. When the cosine similarity is close to 1, it means that the directions of the two vectors are very similar and the similarity is very high. When the cosine similarity is 0, it means that the two vectors are orthogonal and completely dissimilar. When the cosine similarity is close to -1, it means that the directions of the two vectors are opposite and they are extremely dissimilar.

假設有兩個向量,向量1=[2,3,4],向量2=[4,6,8]。 Suppose there are two vectors, vector 1 = [2,3,4], vector 2 = [4,6,8].

向量預處理:這兩個向量維度相同,不需要進一步處理。 Vector preprocessing: These two vectors have the same dimensions and require no further processing.

內積計算:2*4+3*6+4*8=62。 Inner product calculation: 2*4+3*6+4*8=62.

向量長度計算:sqrt(2^2+3^2+4^2)=sqrt(29),sqrt(4^2+6^2+8^2)=sqrt(100) Vector length calculation: sqrt(2^2+3^2+4^2)=sqrt(29), sqrt(4^2+6^2+8^2)=sqrt(100)

餘弦相似度計算:62/(sqrt(29) * sqrt(100))

Figure 113101938-A0305-12-0029-1
0.906 Cosine similarity calculation: 62/(sqrt(29) * sqrt(100))
Figure 113101938-A0305-12-0029-1
0.906

因此,這兩個向量的餘弦相似度接近0.9,表示方向非常相似,近似程度很高。 Therefore, the cosine similarity of these two vectors is close to 0.9, indicating that the directions are very similar and the approximation is high.

Jaccard相似度是一種衡量向量之間相似程度的方法,可以用來估算向量之間的近似程度。其原理是計算兩個向量中相同元素的比例,比例越高,表示向量越相似,Jaccard相似度也越高。 Jaccard similarity is a method to measure the similarity between vectors, which can be used to estimate the approximation between vectors. The principle is to calculate the proportion of the same elements in two vectors. The higher the proportion, the more similar the vectors are, and the higher the Jaccard similarity is.

以下是利用Jaccard相似度計算向量近似程度的一般步驟:向量預處理:確保兩個向量具有相同的維度。對向量進行歸一化(例如,使其元素之和為1),以消除向量長度差異的影響。 The following are the general steps to calculate the degree of vector similarity using Jaccard similarity: Vector preprocessing: Make sure the two vectors have the same dimension. Normalize the vectors (for example, make the sum of their elements equal to 1) to eliminate the effect of the difference in vector length.

計算交集:計算兩個向量中相同元素的個數。 Compute intersection: Count the number of identical elements in two vectors.

計算並集:計算兩個向量中所有元素的個數。 Compute the union: Calculate the number of all elements in two vectors.

Jaccard相似度計算:將交集除以並集,即得到兩個向量的Jaccard相似度。 Jaccard similarity calculation: Divide the intersection by the union to get the Jaccard similarity of the two vectors.

近似程度分析:Jaccard相似度取值範圍為0到1。Jaccard相似度接近1,表示兩個向量完全相同,近似程度很高。Jaccard相似度為0,表示兩個向量完全不相同。 Approximation analysis: Jaccard similarity ranges from 0 to 1. If the Jaccard similarity is close to 1, it means that the two vectors are exactly the same and the approximation is very high. If the Jaccard similarity is 0, it means that the two vectors are completely different.

假設有兩個向量,向量1=[1,2,3,4],向量2=[1,3,4,5]。 Suppose there are two vectors, vector 1 = [1,2,3,4], vector 2 = [1,3,4,5].

向量預處理:這兩個向量維度相同,不需要進一步處理。 Vector preprocessing: These two vectors have the same dimensions and require no further processing.

計算交集:1+3+4=8 Calculate the intersection: 1+3+4=8

計算並集:1+2+3+4+5=15 Calculate the union: 1+2+3+4+5=15

Jaccard相似度計算:8/15

Figure 113101938-A0305-12-0030-2
0.533 Jaccard similarity calculation: 8/15
Figure 113101938-A0305-12-0030-2
0.533

因此,這兩個向量的Jaccard相似度接近0.5,表示有一定程度的相似性。 Therefore, the Jaccard similarity of these two vectors is close to 0.5, indicating a certain degree of similarity.

進一步而言,本系統還包含案件處理模組312,執行本系統之案件訂單,生成並轉化為符合規範的專利申請文件,本系統進一步包含跨國轉換模組324可以執行跨國的專利申請文件轉換,甚至是執行系統案件訂單與第三方電子支付串接的功能。 Furthermore, the system also includes a case processing module 312, which executes the case orders of the system, generates and converts them into patent application documents that meet the standards. The system further includes a cross-border conversion module 324 that can execute cross-border patent application document conversion, and even executes the function of connecting the system case orders with third-party electronic payment.

案件處理模組312進一步包含說明書生成單元322與申請書生成單元323,說明書生成單元322接收該專利圖式與專利揭露文件且依據該權利要求內容透過揭露文件生成單元307生成實施方式文字,再依據實施方式文字調整權利要求內容,最終進一步將摘要內容、先前技術內容、實施方式文字、權利要求內容及專利圖式內容套用格式化模板生成底稿。 The case processing module 312 further includes a specification generating unit 322 and an application generating unit 323. The specification generating unit 322 receives the patent drawings and patent disclosure documents and generates implementation texts according to the content of the claims through the disclosure document generating unit 307, and then adjusts the content of the claims according to the implementation texts. Finally, the abstract content, prior art content, implementation texts, claim content and patent drawing content are further formatted using a template to generate a draft.

申請書生成單元323,擷取該使用者登入認證的身分資料帶入成為申請資料,或使用者操作電子裝置100在欄位中直接輸入申請資料由輸入模組302接收,申請資料再經由套用格式化模板而生成申請書。 The application form generation unit 323 captures the user's login authentication identity information and brings it into the application information, or the user operates the electronic device 100 to directly input the application information in the field and the input module 302 receives it. The application information is then applied to the formatting template to generate the application form.

在生成說明書文件與申請書後使用者可以操作電子裝置100,執行案件處理模組312在線上進行送件提交或進行案件管理,其中,送件提交可以是使用者自行向官方遞交申請,或是在選擇送件功能後,由提供系統的事務所進行向官方遞交申請,特別是各國不同的申請書文件與不同的檔案格式。 After generating the instruction document and application form, the user can operate the electronic device 100 and execute the case processing module 312 to submit or manage the case online. The submission can be submitted by the user to the official, or after selecting the submission function, the office providing the system will submit the application to the official, especially the different application documents and different file formats of different countries.

請繼續參閱10,圖10為顯示本發明系統之另一示意圖。本系統還包含一跨國轉換模組324,在使用者生成說明書文件與申請書後藉由跨國轉換模組324選擇一第二目標國,藉此將想法在不同國家申請專利來保護。 Please continue to refer to Figure 10, which is another schematic diagram showing the system of the present invention. The system also includes a transnational conversion module 324. After the user generates the specification document and the application form, the transnational conversion module 324 selects a second target country, thereby applying for patents in different countries to protect the idea.

在使用者選擇第二目標國後,該語言判斷模組320會先判斷該字串資訊的輸入語言是否跟第二目標國的官方語言相同,若不相同,則先透過該翻譯模組321將專利揭露文件與專利圖式翻譯為第二目標國的官方語言,接著,將說明書文件與申請書翻譯為第二目標國的官方語言,再進行格式調整。 After the user selects the second target country, the language determination module 320 will first determine whether the input language of the string information is the same as the official language of the second target country. If not, the translation module 321 will first translate the patent disclosure document and patent drawings into the official language of the second target country, and then translate the specification document and application into the official language of the second target country and perform format adjustment.

或者,語言判斷模組320也可以直接先判斷說明書文件與申請書的語言是否跟第二目標國的官方語言相同,若相同則直接對說明書文件與申請書進行格式調整,套入第二目標國的官方文件格式,若不相同,則先透過翻譯模組321將說明書文件與申請書翻譯為第二目標國的官方語言,再進行格式調整。 Alternatively, the language determination module 320 may directly determine whether the language of the specification document and the application is the same as the official language of the second target country. If they are the same, the specification document and the application are directly formatted to fit the official document format of the second target country. If they are not the same, the specification document and the application are first translated into the official language of the second target country through the translation module 321, and then the format is adjusted.

本發明的另一實施例中之系統請進一步結合參閱圖11,包含:資料接收模組330、語意分析模組303、關鍵字提取模組331、搜尋模組332、IPC分析模組333、文字生成模組334、內容學習模組305、關鍵字 延伸模組335、文件分類模組336、自動撰寫模組337、檢索報告生成模組338以及揭露書生成模組339。 Please refer to FIG. 11 for a system in another embodiment of the present invention, which includes: a data receiving module 330, a semantic analysis module 303, a keyword extraction module 331, a search module 332, an IPC analysis module 333, a text generation module 334, a content learning module 305, a keyword extension module 335, a document classification module 336, an automatic writing module 337, a search report generation module 338, and a disclosure book generation module 339.

資料接收模組330可以包含登入模組300、訂單處理模組301以及輸入模組302,登入模組300,使用者操作該電子裝置100透過該登入模組300進行身分驗證,確定使用者(登入者)身分且同時確定身分資料;訂單處理模組301,為使用者提供會員註冊/登入、多國專利商標案件訂單建立與管理、多國專利案件導入等功能,進一步還可以提供案件訂單查詢、專利審查狀態確認及賬務查詢功能;輸入模組302,用以接收使用者所輸入的描述文字或圖形,並將描述文字轉換為字串進行標籤化處理,並發送字串資訊且將字串資訊的輸入語言紀錄於暫存記憶體400中。 The data receiving module 330 may include a login module 300, an order processing module 301, and an input module 302. The login module 300 is used by the user to operate the electronic device 100 to perform identity verification, thereby confirming the identity of the user (loginer) and the identity data at the same time. The order processing module 301 provides the user with member registration/login, multinational patent and trademark Functions such as case order creation and management, import of multinational patent cases, etc. can also provide case order query, patent review status confirmation and account query functions; input module 302 is used to receive the description text or graphics input by the user, and convert the description text into a string for labeling, and send the string information and record the input language of the string information in the temporary memory 400.

語意分析模組303,接收字串資訊,並透過一自然語言資料庫500進行分析與斷詞,產生並發送語意分析結果。 The semantic analysis module 303 receives string information, analyzes and segmentation the information through a natural language database 500, and generates and sends semantic analysis results.

關鍵字提取模組331,依據該輸入的內容進行斷詞與關鍵字提取,產生多個關鍵字。 The keyword extraction module 331 performs word segmentation and keyword extraction based on the input content to generate multiple keywords.

具體地,關鍵字擷取是一種自然語言處理技術,旨在從文本中自動提取出重要的關鍵字或詞組,方法可以為但是不限於統計方法,頻率法(Frequency-based methods)、文本統計法(Statistical methods)、文本向量化方法(Text vectorization methods)或機器學習方法(Machine learning methods)。 Specifically, keyword extraction is a natural language processing technology that aims to automatically extract important keywords or phrases from text. The method can be but not limited to statistical methods, frequency methods, statistical methods, text vectorization methods or machine learning methods.

頻率法基於詞語在文本中的頻率來判斷其重要性。常見的方法有TF-IDF(詞頻-逆文件頻率)和詞頻(Term Frequency)等。TF-IDF考慮了 詞語在文本中的出現頻率以及在整個文集中的重要程度,詞頻則僅考慮了詞語在文本中的出現頻率。 The frequency method determines the importance of a word based on its frequency in the text. Common methods include TF-IDF (Term Frequency-Inverse Document Frequency) and Term Frequency. TF-IDF considers the frequency of a word in the text and its importance in the entire collection, while term frequency only considers the frequency of a word in the text.

文本統計法基於統計模型來分析詞語在文本中的分布和關聯性。常見的方法有互信息(Mutual Information)、點互信息(Pointwise Mutual Information)和卡方檢驗(Chi-squared Test)等。這些方法通常需要建立一個詞語和文本之間的統計模型,並根據該模型計算詞語的重要性。 Text statistics is based on statistical models to analyze the distribution and relevance of words in text. Common methods include mutual information, pointwise mutual information, and chi-squared test. These methods usually require the establishment of a statistical model between words and texts, and the calculation of word importance based on the model.

文本向量化方法將文本轉換為向量表示,然後使用向量空間模型(Vector Space Model)來計算詞語的重要性。常見的方法有詞袋模型(Bag-of-Words Model)、詞向量(Word Embeddings)和文本向量化方法(如TF-IDF向量化)等。 The text vectorization method converts the text into a vector representation and then uses the Vector Space Model to calculate the importance of words. Common methods include the Bag-of-Words Model, Word Embeddings, and text vectorization methods (such as TF-IDF vectorization).

機器學習方法使用機器學習算法來訓練模型,從文本中學習詞語的重要性。常見的方法有文本分類、文本聚類和關鍵詞提取模型等。這些方法需要使用標註好的文本數據進行模型的訓練。 Machine learning methods use machine learning algorithms to train models and learn the importance of words from text. Common methods include text classification, text clustering, and keyword extraction models. These methods require the use of labeled text data for model training.

上述也能透過使用腳本語言(例如Python)編寫一個程式來執行。 The above can also be done by writing a program using a scripting language (such as Python).

搜尋模組332包含圖形檢索單元311、轉化單元317及圖形比對單元318,圖形檢索單元311接收該使用者輸入的圖形並在資料庫模組600中搜尋,產出檢索文件;該圖形檢索單元311接收輸入之圖形後,先經由該轉化單元317將圖形轉化並帶入維也納分類標籤,同時將圖形轉化為向量,再經由圖形比對單元318依據該資料庫模組600中進行比對,產出檢索文件。 The search module 332 includes a graphic retrieval unit 311, a conversion unit 317 and a graphic comparison unit 318. The graphic retrieval unit 311 receives the graphic input by the user and searches in the database module 600 to generate a search document. After the graphic retrieval unit 311 receives the input graphic, the conversion unit 317 first converts the graphic and brings it into the Vienna classification label, and at the same time converts the graphic into a vector, and then the graphic comparison unit 318 compares it according to the database module 600 to generate a search document.

IPC分析模組333可以為產業分類模組304,針對輸入的文字進行產業類別分類碼分析,連接資料庫模組600判斷並產生至少一組專利分類碼。 The IPC analysis module 333 can be the industry classification module 304, which performs industry classification code analysis on the input text, connects to the database module 600 to judge and generate at least one set of patent classification codes.

文字生成模組334可以包含內容生成模組306、檢索文件生成模組310,甚至是進一步包含說明書生成單元322、申請書生成單元323。其中,內容生成模組306包含圖式生成單元309,檢索文件生成模組310可以為上述的搜尋模組332。 The text generation module 334 may include the content generation module 306, the search file generation module 310, and even further include the specification generation unit 322 and the application generation unit 323. Among them, the content generation module 306 includes the diagram generation unit 309, and the search file generation module 310 may be the above-mentioned search module 332.

內容生成模組306,接收並依據該語意分析結果結合內容學習模組305生成技術內容,其中的圖式生成單元309形成專利圖式。 The content generation module 306 receives and generates technical content based on the semantic analysis result in combination with the content learning module 305, wherein the diagram generation unit 309 forms a patent diagram.

關鍵字延伸模組335接收由關鍵字提取模組331所產生的關鍵字,並對其進行延伸,亦即,尋找近似詞或同義詞,連接到一詞彙表進行比對產生這少一同義詞。 The keyword extension module 335 receives the keywords generated by the keyword extraction module 331 and extends them, that is, it searches for similar words or synonyms, connects to a vocabulary for comparison and generates at least one synonym.

文件分類模組336可以對使用者所建立的所有案件檔案進行分類,例如貼上特定的分類標籤,建立的案件當案是屬於揭露書或檢索文件,是屬於專利或商標等。 The document classification module 336 can classify all case files created by the user, such as attaching specific classification labels to the created case files, such as disclosure documents or search documents, patents or trademarks, etc.

再者,文件分類模組336還可以是針對圖形檢索單元311在資料庫模組600中搜尋出的近似圖形,透過計算近似程度之後將該等近似圖形依據近似程度進行分類,例如:近似程度在第一風險值之上的分類至高風險區,在第一與第二風險值之間的分類至中風險區,在第二風險值之下的分類至低風險區。 Furthermore, the document classification module 336 can also be for the approximate graphics searched by the graphic retrieval unit 311 in the database module 600, and classify the approximate graphics according to the degree of similarity after calculating the degree of similarity, for example: the degree of similarity above the first risk value is classified into a high risk area, the degree of similarity between the first and second risk values is classified into a medium risk area, and the degree of similarity below the second risk value is classified into a low risk area.

自動撰寫模組337可以與內容生成模組306、內容學習模組305整合在一起,結合內容學習模組305以及內容生成模組306自動撰寫並產生相對應的報告所需的文字。 The automatic writing module 337 can be integrated with the content generation module 306 and the content learning module 305, and can automatically write and generate the text required for the corresponding report in combination with the content learning module 305 and the content generation module 306.

檢索報告生成模組338以及揭露書生成模組339則是進一步將生成的文字透過帶入模組化的表格格式中,產生符合使用者需求的檢索文件或專利揭露文件,也可以分別由上述的檢索文件生成模組310以及揭露文件生成單元307、權利要求內容生成單元308、圖式生成單元309代替。 The search report generation module 338 and the disclosure book generation module 339 further bring the generated text into a modular table format to generate a search document or patent disclosure document that meets the user's needs. They can also be replaced by the above-mentioned search document generation module 310 and disclosure document generation unit 307, claim content generation unit 308, and diagram generation unit 309.

上述本系統的執行方法實施例請參閱圖12至圖18,顯示本發明方法之流程圖。由使用者操作一電子裝置100,經該電子裝置100的一處理器101透過一網路界面控制器連上一伺服器200並執行一應用程式201,用以生成專利類型推薦與底稿生成,至少包含:(1)使用者透過電子裝置100登入後進行身分驗證,並確認使用者身分與身分資料;(2)使用者透過電子裝置100新增案件訂單,並選擇第一目標國,該案件訂單內的資訊會定期更新至暫存記憶體400中;(3)使用者透過電子裝置100輸入描述文字或圖形後將其描述文字轉換為字串,並進行標籤化處理形成字串資訊,且將該字串資訊的輸入語言紀錄於該暫存記憶體400中;以及(4)語意分析模組將該字串資訊進行語意分析、產業分類模組將字串資訊進行產業分類、內容學習模組進行內容學習、內容生成模組生成專利圖式。 For an implementation example of the execution method of the above-mentioned system, please refer to Figures 12 to 18, which show the flow chart of the method of the present invention. A user operates an electronic device 100, and a processor 101 of the electronic device 100 connects to a server 200 through a network interface controller and executes an application 201 to generate patent type recommendations and draft generation, which at least includes: (1) the user logs in through the electronic device 100 to perform identity verification and confirm the user's identity and identity information; (2) the user adds a case order through the electronic device 100 and selects the first target country. The information in the case order is The information is updated to the temporary memory 400 regularly; (3) after the user inputs the description text or graphic through the electronic device 100, the description text is converted into a string, and the string information is labeled, and the input language of the string information is recorded in the temporary memory 400; and (4) the semantic analysis module performs semantic analysis on the string information, the industry classification module performs industry classification on the string information, the content learning module performs content learning, and the content generation module generates a patent diagram.

其中,在步驟(4)中進一步包含:(411)透過語意分析模組將該字串資訊進行分析與斷詞,產生語意分析結果; (412)透過產業分類模組依據語意分析結果進行產業類別分類產生至少一組專利分類碼;(413)內容學習模組依據該至少一組專利分類碼從資料庫模組中學習專利說明書中的內容與圖式;(414)透過該內容生成模組將該語意分析結果結合學習的內容,生成專利揭露文件;以及(415)依據該專利揭露文件產生專利圖式。 Among them, step (4) further includes: (411) analyzing and segmenting the string information through a semantic analysis module to generate a semantic analysis result; (412) classifying the industry category through an industry classification module based on the semantic analysis result to generate at least one set of patent classification codes; (413) the content learning module learns the content and diagram in the patent specification from the database module based on the at least one set of patent classification codes; (414) combining the semantic analysis result with the learned content through the content generation module to generate a patent disclosure document; and (415) generating a patent diagram based on the patent disclosure document.

其中,在步驟(414)中進一步包含:(4141)將該專利揭露文件進行語意理解,並轉換為專利用字與用詞,透過一權利要求內容生成單元生成權利要求內容;其中,在步驟(415)中進一步包含:(4151)對該專利揭露文件或該權利要求內容進行分析並轉譯為圖式生成語言,透過圖式生成語言產生對應於專利揭露文件或權利要求內容的圖式程式碼,並再經由一編譯單元生成對應於專利揭露文件或權利要求內容的專利圖式。 Wherein, step (414) further includes: (4141) understanding the semantics of the patent disclosure document and converting it into patent words and terms, and generating the content of the claim through a claim content generation unit; wherein, step (415) further includes: (4151) analyzing the patent disclosure document or the content of the claim and translating it into a diagram generation language, generating a diagram code corresponding to the patent disclosure document or the content of the claim through the diagram generation language, and then generating a patent diagram corresponding to the patent disclosure document or the content of the claim through a compilation unit.

其中,於步驟(3)中進一步包含:(31)語言判斷模組判斷字串資訊的輸入語言與第一目標國的官方語言是否相同;(32)若是,直接進行語意分析;(33)若否,則先將字串資訊透過翻譯模組翻譯為該第一目標國的官方語言,再進行語意分析,且於步驟(4)後再將生成之專利圖式翻譯回字串資訊的輸入語言。 Among them, step (3) further includes: (31) the language determination module determines whether the input language of the string information is the same as the official language of the first target country; (32) if so, directly perform semantic analysis; (33) if not, first translate the string information into the official language of the first target country through the translation module, then perform semantic analysis, and after step (4), translate the generated patent diagram back to the input language of the string information.

其中,於步驟(4141)後進一步包含: (51)揭露文件生成單元307依據該權利要求內容產生實施方式文字;(53)說明書生成單元將該專利揭露文件、該權利要求內容、該實施方式文字及該專利圖式套入格式後產生底稿;以及(6)申請書生成單元擷取該使用者登入認證的身分資料帶入成為申請資料,或該使用者在欄位中直接輸入申請資料,而生成申請書。 Among them, after step (4141), it further includes: (51) the disclosure document generation unit 307 generates the implementation method text according to the content of the claim; (53) the specification generation unit generates the draft after formatting the patent disclosure document, the content of the claim, the implementation method text and the patent diagram; and (6) the application form generation unit captures the identity information of the user login authentication and brings it into the application data, or the user directly enters the application data in the field to generate the application form.

生成之後遂可以完成案件訂單,並將專利提交申請。 Once generated, the case order can be completed and the patent application can be submitted.

進一步而言,其中,於步驟(6)後進一步包含:(7)使用者選擇一第二目標國;(71)語言判斷模組判斷說明書文件與申請書的語言與第二目標國的官方語言是否相同;(72)若否,先透過翻譯模組將說明書文件與申請書進行翻譯,該說明書生成單元以及該申請書生成單元再將翻譯後的說明書文件與申請書進行格式調整;(73)若是,則直接進行格式調整。 Furthermore, after step (6), the method further includes: (7) the user selects a second target country; (71) the language determination module determines whether the language of the specification document and the application is the same as the official language of the second target country; (72) if not, the specification document and the application are first translated by the translation module, and the specification generation unit and the application generation unit then adjust the format of the translated specification document and the application; (73) if yes, the format adjustment is performed directly.

格式調整完成後即完成跨國專利申請轉換,並在系統中提交申請,交由事務所進行向第二目標國官方遞交送件。 Once the format adjustment is completed, the multinational patent application conversion is completed, and the application is submitted in the system and handed over to the law firm for official delivery to the second target country.

進一步而言,於步驟(4151)還包含藉由語意分析模組對專利揭露文件或權利要求內進行分析判斷,判斷專利揭露文件或權利要求內容的描述為流程方法、系統架構或機械機構,使圖形生成單元生成對應的流程圖、方塊圖或示意圖。 Furthermore, step (4151) also includes analyzing and judging the patent disclosure document or claim by a semantic analysis module, judging that the description of the content of the patent disclosure document or claim is a process method, system architecture or mechanical mechanism, so that the graphic generation unit generates a corresponding flow chart, block diagram or schematic diagram.

具體地,生成流程圖、系統方塊圖與示意圖是分別使用不同的編譯單元,因編譯單元的訓練資料不同。 Specifically, different compilation units are used to generate flow charts, system block diagrams, and schematic diagrams, because the training data of the compilation units are different.

本發明的方法中在步驟(4)中進一步包含: (421)一檢索文件生成模組中的一圖形檢索單元,接收該使用者輸入的圖形並在該資料庫模組600中搜尋,產出檢索文件。 The method of the present invention further comprises in step (4): (421) a graphic retrieval unit in a retrieval document generation module, receiving the graphic input by the user and searching in the database module 600 to generate a retrieval document.

在步驟(421)中進一步包含:(422)該圖形檢索單元接收輸入之圖形後,先經由該轉化單元將圖形轉化並帶入維也納分類標籤,同時將圖形轉化為向量;以及(423)再經由圖形比對單元在該資料庫模組中進行比對,將近似程度超過一設定值的圖形篩選出來。 Step (421) further includes: (422) after the image retrieval unit receives the input image, the image is first converted by the conversion unit and brought into the Vienna classification label, and the image is converted into a vector; and (423) the image comparison unit then compares the image in the database module to filter out the images whose similarity exceeds a set value.

請參閱圖19至22,顯示本發明的應用實例,實際操作系統(https://aiplux.com/)輸入文字或選擇產業後進行推薦與底稿生成的結果。 Please refer to Figures 19 to 22, which show the application examples of the present invention, the actual operating system (https://aiplux.com/) inputs text or selects an industry to make recommendations and generate drafts.

如圖19所顯示,選擇產業類別為AI。 As shown in Figure 19, select the industry category as AI.

如圖20所顯示,本發明經過分析與在資料庫模組600搜尋後的所生成的推薦申請智慧財產權類型,包含商標與專利,且說明什麼適合商標什麼適合專利,提供舉例。 As shown in FIG. 20 , the invention generates recommended intellectual property types for application after analysis and search in the database module 600 , including trademarks and patents, and explains what is suitable for trademarks and what is suitable for patents, providing examples.

如圖21所顯示,本發明選擇專利之後輸入較詳細的技術描述並選擇國家(第一目標國家)。 As shown in Figure 21, after selecting the patent for the invention, enter a more detailed technical description and select the country (the first target country).

如圖22所顯示,本發明生成之底稿中的摘要內容與先前技術內容。 As shown in Figure 22, the abstract content and prior art content in the manuscript generated by the present invention.

最後,再將本發明的技術特徵及其可達成之技術功效彙整如下: Finally, the technical features of the present invention and the technical effects it can achieve are summarized as follows:

其一,藉由本發明之一種智能專利類型推薦與底稿生成系統與方法,解決一般人對於智慧財產權專業領域的理解困難,特別是對於自身的技術可以申請哪一種智慧財產權進行保護也無概念的人,提供智能推薦的功能。 First, the invention provides an intelligent patent type recommendation and draft generation system and method to solve the difficulty of ordinary people in understanding the professional field of intellectual property rights, especially for those who have no idea which intellectual property rights can be applied for protection of their own technology, and provide an intelligent recommendation function.

其二,藉由本發明之一種智能專利類型推薦與底稿生成系統與方法,解決即使已經決定申請的智慧財產權類型,但仍對於產出申請文件(揭露書、底稿)有困難的人,提供快速生成的系統與方法,是節省更多的時間與金錢成本。 Secondly, the intelligent patent type recommendation and draft generation system and method of the present invention can solve the problem that even if the type of intellectual property rights to be applied for has been determined, people still have difficulty in producing application documents (disclosure documents, drafts), and provide a system and method for rapid generation, which saves more time and money.

其三,藉由本發明之一種智能專利類型推薦與底稿生成系統與方法,解決沒有智慧財產權部門的中小企業、新創公司,化解沒有任何專利提案(專利接露書)的訪談這樣的模式,減少讓發明人在技術溝通上花費很大的心力與時間,以及過程彼此的溝通與理解成本。 Thirdly, the invention provides an intelligent patent type recommendation and draft generation system and method to solve the problem of small and medium-sized enterprises and start-ups without intellectual property departments, and resolve the interview model without any patent proposal (patent disclosure book), thereby reducing the inventors' great efforts and time spent on technical communication, as well as the communication and understanding costs of each other in the process.

其四,藉由本發明之一種智能專利類型推薦與底稿生成系統與方法,一條龍從技術內容發想初期,到推薦智慧財產權保護類型,最終到生成底稿與提交申請,提供完整的系統與執行方法,大幅降低一般人跨入申請智慧財產權保護自身專業技術的專業門檻。 Fourthly, through the intelligent patent type recommendation and draft generation system and method of the present invention, a complete system and execution method is provided from the initial stage of technical content ideation to the recommendation of intellectual property protection type, and finally to the generation of draft and submission of application, which greatly reduces the professional threshold for ordinary people to enter the application of intellectual property rights to protect their own professional technology.

必須加以強調的是,上述之詳細說明係針對本發明可行實施例之具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。 It must be emphasized that the above detailed description is a specific description of the feasible embodiments of the present invention, but the embodiments are not intended to limit the patent scope of the present invention. Any equivalent implementation or modification that does not deviate from the technical spirit of the present invention should be included in the patent scope of this case.

S100、S200、S300、S400、S500、S600、S700、S800:步驟 S100, S200, S300, S400, S500, S600, S700, S800: Steps

S8001、S8002、S8003:步驟 S8001, S8002, S8003: Steps

Claims (17)

一種智能專利類型推薦與底稿生成的方法,由使用者操作一電子裝置,經該電子裝置的一處理器透過一網路界面控制器連上一伺服器並執行一應用程式進行專利類型推薦與底稿生成的方法,至少包含以下步驟: (S100) 使用者透過該電子裝置的使用者介面使該處理器執行一輸入模組接收輸入的文字內容; (S200) 該處理器執行該應用程式中的一語意分析模組對文字內容進行語意分析; (S300) 該語意分析模組進一步串接一產業分類模組、一搜尋模組與一資料庫模組,將經過分析之文字內容進行產業技術的分類,並在該資料庫模組中進行比對搜尋,而將比對出之數據資料傳送至一智慧財產權資訊揭露模組; (S400) 該智慧財產權資訊揭露模組將該數據資料進行分析統計並透過該電子裝置的該使用者介面將資訊呈現給使用者; (S500) 經過分析統計的該數據資料同時也傳送至一推薦模組,該推薦模組依據該數據資料內智慧財產權的種類進行分類與統計,並進行排序顯示推薦申請的智慧財產權種類於該使用者介面; (S600) 使用者透過該使用者介面選擇一專利類型; (S700) 使用者透過該使用者介面,使該處理器執行該輸入模組接收輸入的技術描述;以及 (S800) 透過一登入模組完成登入,使該處理器執行該語意分析模組、一內容生成模組,而生成摘要內容與簡易圖式; 其中,在步驟(S800)之後進一步包含: (S8001) 該處理器執行該推薦模組依據生成的該摘要內容與簡易圖式進行分析,並提供建議申請之該等專利類型; (S8002) 該智慧財產權資訊揭露模組進一步針對該等專利類型進行評估,並生成專利風險評估報告,透過該使用者介面同時呈現在建議申請之該等專利類型的資訊中; (S8003) 使用者透過該使用者介面選擇申請之該等專利類型,該處理器執行該語意分析模組及該內容生成模組生成專利揭露文件、權利要求內容與專利圖式,並套入格式化套版整合成底稿。A method for intelligent patent type recommendation and draft generation is provided. A user operates an electronic device, and a processor of the electronic device is connected to a server through a network interface controller and executes an application to perform patent type recommendation and draft generation. The method comprises at least the following steps: (S100) the user causes the processor to execute an input module to receive input text content through the user interface of the electronic device; (S200) the processor executes a semantic analysis module in the application to perform semantic analysis on the text content; (S300) The semantic analysis module is further connected to an industry classification module, a search module and a database module, and the analyzed text content is classified into industry technologies, and a comparison search is performed in the database module, and the matched data is transmitted to an intellectual property information disclosure module; (S400) The intellectual property information disclosure module analyzes and statistics the data and presents the information to the user through the user interface of the electronic device; (S500) The analyzed and statistical data is also transmitted to a recommendation module at the same time, and the recommendation module classifies and counts the types of intellectual property rights in the data, and sorts and displays the types of intellectual property rights recommended for application on the user interface; (S600) The user selects a patent type through the user interface; (S700) the user causes the processor to execute the input module to receive the input technical description through the user interface; and (S800) the user completes the login through a login module, causing the processor to execute the semantic analysis module and a content generation module to generate summary content and a simple diagram; wherein, after step (S800), the method further includes: (S8001) the processor executes the recommendation module to analyze the generated summary content and simple diagram, and provide the patent types recommended for application; (S8002) The intellectual property information disclosure module further evaluates the patent types and generates a patent risk assessment report, which is simultaneously presented in the information of the patent types recommended for application through the user interface; (S8003) The user selects the patent types to apply for through the user interface, and the processor executes the semantic analysis module and the content generation module to generate patent disclosure documents, claim contents and patent drawings, and integrates them into a formatted template into a draft. 一種智能專利類型推薦與底稿生成的系統,用以接收一使用者端藉由操作一電子裝置,經該電子裝置的一處理器透過一網路介面控制器連上一伺服器並執行一應用程式,用以進行專利類型推薦與底稿生成,該系統至少包括: 一輸入模組,用以接收該使用者所輸入的文字內容及技術描述,並將該文字內容與該技術描述轉換為字串進行標籤化處理,並發送一字串資訊且將該字串資訊的輸入語言紀錄於一暫存記憶體中; 一語意分析模組,接收該字串資訊,並透過一自然語言資料庫進行分析與斷詞,產生並發送語意分析結果; 一產業分類模組,針對該語意分析結果進行產業類別分類碼分析,連接一資料庫模組判斷並產生至少一組專利分類碼; 一搜尋模組依據該至少一組專利分類碼在一資料庫模組中進行比對搜尋,並產生比對搜尋結果之數據資料; 一智慧財產權資訊揭露模組,接收該數據資料並進一步進行統計分析,產生基本智慧財產權資訊; 一推薦模組,也同時接收該數據資料,並依據該數據資料內智慧財產權的種類進行分類與統計,產生推薦申請的智慧財產權種類; 一登入模組,該使用者操作該電子裝置透過該登入模組進行身分驗證;以及 一內容生成模組,進一步包含一揭露文件生成單元與一圖式生成單元,接收並依據該語意分析結果生成摘要內容與簡易圖式; 其中,在使用者選擇該推薦申請的智慧財產權種類中的專利時,該輸入模組遂再次接收使用者輸入的該技術描述,並藉由該登入模組完成身分驗證,而該語意分析模組遂接收關於該技術描述的字串資訊,進行分析與斷詞產生並發送該技術描述的分析結果,該揭露文件生成單元依據該分析結果生成摘要內容,該圖式生成單元再依據摘要內容生成簡易圖式,該推薦模組依據該摘要內容與簡易圖式進行分析,產生建議申請之專利類型,該智慧財產權資訊揭露模組針對建議申請之該專利類型進行評估,生成專利風險評估報告,該揭露文件生成單元、該圖式生成單元與一權利要求內容生成單元依據該專利類型、該摘要內容與簡易圖式生成專利揭露文件、權利要求內容與專利圖式。A system for intelligent patent type recommendation and draft generation is used to receive a user end operating an electronic device, and a processor of the electronic device is connected to a server through a network interface controller and executes an application program to perform patent type recommendation and draft generation. The system at least includes: an input module, which is used to receive text content and technical description input by the user, and convert the text content and the technical description into strings for labeling, and send a string information and record the input language of the string information in a temporary memory; a semantic analysis module, which receives the string information, analyzes and delimits the string through a natural language database, and generates and sends the semantic analysis result; an industry classification module, which performs industry classification code analysis on the semantic analysis result, connects to a database module to determine and generate at least one set of patent classification codes; a search module performs a comparison search in a database module based on the at least one set of patent classification codes, and generates data of the comparison search result; an intellectual property information disclosure module, which receives the data and further performs statistical analysis to generate basic intellectual property information; a recommendation module, which also receives the data and performs classification and statistics based on the types of intellectual property in the data to generate the types of intellectual property recommended for application; a login module, through which the user operates the electronic device to perform identity verification; and a content generation module, further comprising a disclosure document generation unit and a diagram generation unit, receiving and generating summary content and simple diagrams according to the semantic analysis result; wherein, when the user selects a patent in the recommended intellectual property right category, the input module then receives the technical description input by the user again, and completes identity verification through the login module, and the semantic analysis module then receives string information about the technical description, performs analysis and generates word divisions, and sends the analysis result of the technical description, the disclosure document generation unit generates summary content according to the analysis result, and the diagram generation unit generates summary content according to the summary content Generate a simple diagram, the recommendation module analyzes the summary content and the simple diagram to generate a recommended patent type, the intellectual property information disclosure module evaluates the recommended patent type and generates a patent risk assessment report, the disclosure document generation unit, the diagram generation unit and a claim content generation unit generate a patent disclosure document, claim content and patent diagram according to the patent type, the summary content and the simple diagram. 一種智能專利類型推薦與底稿生成系統,用以接收一使用者端藉由操作一電子裝置,經該電子裝置的一處理器透過一網路介面控制器連上一伺服器並執行一應用程式,用以生成專利類型推薦與底稿生成,該系統至少包括: 一登入模組,該使用者操作該電子裝置透過該登入模組進行身分驗證; 一訂單處理模組,產生新的案件訂單,並在該使用者選擇第一目標國後將該案件訂單內的資訊定期更新至該系統的一暫存記憶體中; 一輸入模組,用以接收該使用者所輸入的描述文字或圖形,並將該描述文字轉換為字串進行標籤化處理,並發送一字串資訊且將該字串資訊的輸入語言紀錄於該暫存記憶體中; 一語意分析模組,接收該字串資訊,並透過一自然語言資料庫進行分析與斷詞,產生並發送語意分析結果; 一產業分類模組,針對該語意分析結果進行產業類別分類碼分析,連接一資料庫模組判斷並產生至少一組專利分類碼; 一內容學習模組,係為一大型語言模型,進一步包含一圖式學習單元,針對不同的該至少一組專利分類碼,從該資料庫模組中學習對應的專利說明書中的內容與圖式; 一內容生成模組,進一步包含一圖式生成單元,接收並依據該語意分析結果結合該內容學習模組生成專利圖式; 其中,該內容生成模組更包含一揭露文件生成單元及一權利要求內容生成單元,該揭露文件生成單元依據該語意分析結果結合該內容學習模組生成一專利揭露文件,其生成的該專利揭露文件至少包含一技術摘要、一先前技術內容或其組合,該權利要求內容生成單元依據該專利揭露文件結合該內容學習模組生成一權利要求內容, 其中,該專利圖式係由該圖式生成單元對該專利揭露文件或該權利要求內容進行分析並轉譯為圖式生成語言,透過圖式生成語言產生對應於該專利揭露文件或該權利要求內容的圖式程式碼,並再經由一編譯單元生成對應於該專利揭露文件或該權利要求內容的圖式內容。An intelligent patent type recommendation and draft generation system is used to receive a user terminal operating an electronic device, and a processor of the electronic device is connected to a server through a network interface controller and executes an application program to generate patent type recommendation and draft generation. The system at least includes: a login module, and the user operates the electronic device to perform identity verification through the login module; an order processing module generates a new case order, and after the user selects the first target country, the information in the case order is regularly updated to a temporary memory of the system; An input module, for receiving the description text or graphic input by the user, and converting the description text into a string for labeling, and sending a string information and recording the input language of the string information in the temporary memory; a semantic analysis module, receiving the string information, and analyzing and delimiting the string information through a natural language database, generating and sending the semantic analysis result; an industry classification module, performing industry category classification code analysis on the semantic analysis result, connecting to a database module to determine and generate at least one set of patent classification codes; a content learning module, which is a large language model, further comprising a schema learning unit, for different at least one set of patent classification codes, learning the content and schema in the corresponding patent specification from the database module; a content generation module, further comprising a diagram generation unit, receiving and generating a patent diagram according to the semantic analysis result in combination with the content learning module; wherein the content generation module further comprises a disclosure document generation unit and a claim content generation unit, the disclosure document generation unit generates a patent disclosure document according to the semantic analysis result in combination with the content learning module, the generated patent disclosure document at least comprises a technical summary, a prior art content or a combination thereof, the claim content generation unit generates a claim content according to the patent disclosure document in combination with the content learning module, The patent diagram is generated by the diagram generation unit by analyzing the patent disclosure document or the content of the claim and translating it into a diagram generation language, generating a diagram code corresponding to the patent disclosure document or the content of the claim through the diagram generation language, and then generating a diagram content corresponding to the patent disclosure document or the content of the claim through a compilation unit. 如請求項3所述之系統,還包含一檢索文件生成模組,該檢索文件生成模組包含一圖形檢索單元、一轉化單元及一圖形比對單元,該圖形檢索單元接收輸入之圖形後,先經由該轉化單元將圖形轉化並帶入維也納分類標籤,同時將圖形轉化為向量,再經由圖形比對單元在該資料庫模組中進行比對,產出檢索文件。The system as described in claim 3 also includes a retrieval document generation module, which includes a graphic retrieval unit, a transformation unit and a graphic comparison unit. After the graphic retrieval unit receives the input graphic, it first transforms the graphic through the transformation unit and brings it into the Vienna classification label, and at the same time converts the graphic into a vector, which is then compared in the database module by the graphic comparison unit to produce a retrieval document. 如請求項3所述之系統,其中,該系統進一步包含一語言判斷模組,判斷該字串資訊的輸入語言與該第一目標國的官方語言是否相同。The system as described in claim 3, wherein the system further comprises a language determination module for determining whether the input language of the string information is the same as the official language of the first target country. 如請求項5所述之系統,其中,若經過該語言判斷模組判斷該字串資訊與該第一目標國的官方語言不相同,則透過一翻譯模組對該字串資訊進行翻譯,並在最終生成該專利圖式後再透過該翻譯模組將該專利圖式中的語言翻譯回該字串資訊的輸入語言。A system as described in claim 5, wherein if the language determination module determines that the string information is different from the official language of the first target country, the string information is translated through a translation module, and after the patent diagram is finally generated, the translation module is used to translate the language in the patent diagram back into the input language of the string information. 如請求項3所述之系統,其中,該系統進一步包含一案件處理模組,該案件處理模組進一步包含: 一說明書生成單元,接收該專利揭露文件與專利圖式且依據該權利要求內容透過該揭露文件生成單元生成實施方式文字,並進一步將該摘要內容、先前技術內容、實施方式文字、該權利要求內容及專利圖式套用格式化模板生成底稿;以及 一申請書生成單元,擷取該使用者登入認證的身分資料帶入成為申請資料,或該使用者操作該電子裝置在欄位中直接輸入申請資料由該輸入模組接收,該申請資料再經由套用格式化模板而生成申請書; 其中,經該案件處理模組生成該說明書文件及該申請書後該使用者的該案件訂單即完成。A system as described in claim 3, wherein the system further comprises a case processing module, which further comprises: a specification generating unit, which receives the patent disclosure document and patent drawings and generates implementation method text according to the content of the claims through the disclosure document generating unit, and further applies a formatting template to the summary content, the prior art content, the implementation method text, the content of the claims and the patent drawings to generate a draft; and an application generating unit, which captures the identity information of the user's login authentication and brings it in as application data, or the user operates the electronic device to directly input the application data in the field and the application data is received by the input module, and the application data is then generated into an application by applying a formatting template; wherein, after the specification document and the application are generated by the case processing module, the case order of the user is completed. 如請求項4所述之系統,其中,該轉化單元將圖形由像素轉化為向量。A system as described in claim 4, wherein the conversion unit converts graphics from pixels to vectors. 如請求項4所述之系統,其中,該圖形比對單元在比對的過程中利用編輯距離(Edit Distance)、餘弦相似度(Cosine Similarity)或Jaccard相似度(Jaccard Similarity) 計算近似程度,並將近似程度超過一設定值的圖形篩選出來。The system as described in claim 4, wherein the graphic comparison unit calculates the similarity using edit distance, cosine similarity or Jaccard similarity during the comparison process, and filters out graphics whose similarity exceeds a set value. 如請求項3所述之系統,其中,進一步包含一關鍵字提取模組,依據該輸入的內容進行斷詞與關鍵字提取,產生多個關鍵字,並將該等關鍵字透過該內容學習模組使用機器學習算法來訓練模型。The system as described in claim 3 further comprises a keyword extraction module, which performs word segmentation and keyword extraction based on the input content to generate a plurality of keywords, and uses the machine learning algorithm to train the model through the content learning module. 如請求項6所述之系統,其中,進一步包含一跨國轉換模組,在使用者選擇第二目標國後,該語言判斷模組會先判斷該字串資訊的輸入語言是否跟第二目標國的官方語言相同,若不相同,則先透過該翻譯模組將專利揭露文件與專利圖式翻譯為第二目標國的官方語言,再進行格式調整。The system as described in claim 6 further comprises a cross-country conversion module. After the user selects a second target country, the language determination module first determines whether the input language of the string information is the same as the official language of the second target country. If not, the translation module will first translate the patent disclosure document and patent diagram into the official language of the second target country and then perform format adjustment. 一種智能專利類型推薦與底稿生成方法,由使用者操作一電子裝置,經該電子裝置的一處理器透過一網路界面控制器連上一伺服器並執行一應用程式產生專利圖式的方法,至少包含以下步驟: (1) 使用者透過該電子裝置登入後進行身分驗證,並確認使用者身分與身分資料; (2) 使用者透過該電子裝置新增案件訂單,並選擇第一目標國,該案件訂單內的資訊會定期更新至一暫存記憶體中; (3) 使用者透過該電子裝置的一輸入模組輸入描述文字或圖形後,將其描述文字轉換為字串,並進行標籤化處理形成字串資訊,且將該字串資訊的輸入語言紀錄於該暫存記憶體中;以及 (4) 一語意分析模組將該字串資訊進行語意分析、一產業分類模組將該字串資訊進行產業分類、一內容學習模組進行內容學習與一內容生成模組生成專利圖式; 其中,在步驟(4)中進一步包含: (411)透過該語意分析模組將該字串資訊進行分析與斷詞,產生語意分析結果; (412)透過該產業分類模組依據該語意分析結果進行產業類別分類產生至少一組專利分類碼; (413)該內容學習模組依據該至少一組專利分類碼從資料庫模組中學習專利說明書中的內容與圖式; (414)透過該內容生成模組將該語意分析結果結合該內容學習模組生成的該內容,生成專利揭露文件;以及 (415)依據該專利揭露文件產生專利圖式; 其中,在步驟(414)中進一步包含: (4141)將該專利揭露文件進行語意理解,並轉換為專利用字與用詞,透過一權利要求內容生成單元生成權利要求內容, 其中,在步驟(415)中進一步包含: (4151)對該專利揭露文件或該權利要求內容進行分析並轉譯為圖式生成語言,透過該圖式生成語言產生對應於該專利揭露文件或該權利要求內容的圖式程式碼,並再經由一編譯單元生成對應於該專利揭露文件或該權利要求內容的專利圖式。A method for intelligent patent type recommendation and draft generation is provided, wherein a user operates an electronic device, a processor of the electronic device is connected to a server through a network interface controller, and an application is executed to generate a patent diagram, the method comprising at least the following steps: (1) the user logs in through the electronic device and performs identity verification, and confirms the user identity and identity information; (2) the user adds a case order through the electronic device and selects the first target country, and the information in the case order is regularly updated to a temporary memory; (3) the user inputs a descriptive text or graphic through an input module of the electronic device, and the descriptive text is converted into a string, and the string information is formed by labeling, and the input language of the string information is recorded in the temporary memory; and (4) A semantic analysis module performs semantic analysis on the string information, an industry classification module performs industry classification on the string information, a content learning module performs content learning, and a content generation module generates patent schemas; wherein, step (4) further includes: (411) analyzing and segmenting the string information through the semantic analysis module to generate a semantic analysis result; (412) performing industry classification based on the semantic analysis result through the industry classification module to generate at least one set of patent classification codes; (413) the content learning module learns the content and schema in the patent specification from the database module based on the at least one set of patent classification codes; (414) combining the semantic analysis result with the content generated by the content learning module through the content generation module to generate a patent disclosure document; and (415) generating a patent diagram based on the patent disclosure document; wherein, step (414) further includes: (4141) semantically understanding the patent disclosure document and converting it into patent words and terms, and generating claim content through a claim content generation unit; wherein, step (415) further includes: (4151) analyzing the patent disclosure document or the claim content and translating it into a diagram generation language, generating a diagram code corresponding to the patent disclosure document or the claim content through the diagram generation language, and then generating a patent diagram corresponding to the patent disclosure document or the claim content through a compilation unit. 如請求項12所述之方法,其中,於步驟(3)中進一步包含: (31)語言判斷模組判斷該字串資訊的輸入語言與該第一目標國的官方語言是否相同; (32)若是,直接進行語意分析; (33)若否,則先將該字串資訊透過一翻譯模組翻譯為該第一目標國的官方語言,再進行語意分析,且於步驟(4)後再將生成之專利圖式翻譯回該字串資訊的輸入語言。The method as described in claim 12, wherein step (3) further includes: (31) a language determination module determines whether the input language of the string information is the same as the official language of the first target country; (32) if so, directly performing semantic analysis; (33) if not, first translating the string information into the official language of the first target country through a translation module, then performing semantic analysis, and after step (4), translating the generated patent diagram back into the input language of the string information. 如請求項12所述之方法,其中,於步驟(4141)後進一步包含: (51) 一揭露文件生成單元依據該權利要求內容產生實施方式文字;  (53)一說明書生成單元將該專利揭露文件、該權利要求內容、該實施方式文字及該專利圖式套入格式後產生底稿;以及 (6)一申請書生成單元擷取該使用者登入認證的身分資料帶入成為申請資料,或該使用者在欄位中直接輸入申請資料,而生成申請書。The method as described in claim 12, wherein after step (4141), it further includes: (51) a disclosure document generation unit generates implementation method text according to the content of the claim; (53) a specification generation unit generates a draft after formatting the patent disclosure document, the content of the claim, the implementation method text and the patent drawing; and (6) an application form generation unit captures the identity information of the user's login authentication and brings it into the application data, or the user directly enters the application information in the field to generate the application form. 如請求項14所述之方法,其中,於步驟(6)後進一步包含: (7)該使用者選擇一第二目標國; (71)一語言判斷模組判斷該說明書文件與該申請書的語言與該第二目標國的官方語言是否相同; (72)若否,先透過翻譯模組將該說明書文件與該申請書進行翻譯,該說明書生成單元以及該申請書生成單元再將翻譯後的該說明書文件與該申請書進行格式調整; (73)若是,則直接進行格式調整。The method as described in claim 14, wherein after step (6), the following further comprises: (7) the user selects a second target country; (71) a language determination module determines whether the language of the specification document and the application is the same as the official language of the second target country; (72) if not, first translate the specification document and the application through a translation module, and then the specification generation unit and the application generation unit perform format adjustment on the translated specification document and the application; (73) if so, perform format adjustment directly. 如請求項12所述之方法,其中,在步驟(4)中進一步包含: (421) 一檢索文件生成模組中的一圖形檢索單元,接收該使用者輸入的圖形並在該資料庫模組中搜尋,產出檢索文件。The method as described in claim 12, wherein step (4) further includes: (421) a graphic retrieval unit in a retrieval document generation module, receiving the graphic input by the user and searching in the database module to generate a retrieval document. 如請求項16所述之方法,其中,在步驟(421)中進一步包含: (422) 該圖形檢索單元接收輸入之圖形後,先經由該轉化單元將該圖形轉化並帶入維也納分類標籤,同時將該圖形轉化為向量;以及 (423) 再經由圖形比對單元在該資料庫模組中進行比對,將近似程度超過一設定值的該圖形篩選出來。The method as described in claim 16, wherein step (421) further includes: (422) after the graphic retrieval unit receives the input graphic, the graphic is first transformed by the transformation unit and brought into the Vienna classification label, and the graphic is converted into a vector at the same time; and (423) the graphic comparison unit then compares the graphic in the database module to filter out the graphic whose similarity exceeds a set value.
TW113101938A 2024-01-17 2024-01-17 A system of intelligent patent type recommendation and draft generation and the method thereof TWI886755B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW113101938A TWI886755B (en) 2024-01-17 2024-01-17 A system of intelligent patent type recommendation and draft generation and the method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW113101938A TWI886755B (en) 2024-01-17 2024-01-17 A system of intelligent patent type recommendation and draft generation and the method thereof

Publications (2)

Publication Number Publication Date
TWI886755B true TWI886755B (en) 2025-06-11
TW202531110A TW202531110A (en) 2025-08-01

Family

ID=97227352

Family Applications (1)

Application Number Title Priority Date Filing Date
TW113101938A TWI886755B (en) 2024-01-17 2024-01-17 A system of intelligent patent type recommendation and draft generation and the method thereof

Country Status (1)

Country Link
TW (1) TWI886755B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200701015A (en) * 2005-06-24 2007-01-01 Univ Nat Taiwan Science Tech Patent document content construction method
US20130317994A1 (en) * 2011-11-11 2013-11-28 Bao Tran Intellectual property generation system
US9990351B2 (en) * 2000-02-29 2018-06-05 Bao Tran Patent drafting system
CN108491384A (en) * 2018-03-15 2018-09-04 周慧祥 A kind of auxiliary writing system of patent application document
CN112017078A (en) * 2020-08-26 2020-12-01 深圳市唯德科创信息有限公司 Auxiliary writing method, processing device and storage medium of patent document

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9990351B2 (en) * 2000-02-29 2018-06-05 Bao Tran Patent drafting system
TW200701015A (en) * 2005-06-24 2007-01-01 Univ Nat Taiwan Science Tech Patent document content construction method
US20130317994A1 (en) * 2011-11-11 2013-11-28 Bao Tran Intellectual property generation system
CN108491384A (en) * 2018-03-15 2018-09-04 周慧祥 A kind of auxiliary writing system of patent application document
CN112017078A (en) * 2020-08-26 2020-12-01 深圳市唯德科创信息有限公司 Auxiliary writing method, processing device and storage medium of patent document

Also Published As

Publication number Publication date
TW202531110A (en) 2025-08-01

Similar Documents

Publication Publication Date Title
CN112926345B (en) Multi-feature fusion neural machine translation error detection method based on data augmentation training
CN113312461A (en) Intelligent question-answering method, device, equipment and medium based on natural language processing
US20110099052A1 (en) Automatic checking of expectation-fulfillment schemes
CN116843175A (en) Contract term risk checking method, system, equipment and storage medium
CN113190689B (en) Construction method, device, equipment and medium of electric power safety knowledge graph
CN111274829A (en) Sequence labeling method using cross-language information
US11868313B1 (en) Apparatus and method for generating an article
CN118170933A (en) A method and device for constructing multimodal corpus data in scientific fields
CN119047484A (en) Intelligent document auditing method and device, computer equipment and storage medium
CN120299640A (en) A hospital internal contract and project intelligent audit method and system
CN117892135A (en) Iterative data labeling method based on large language model
CN119739907A (en) A system and method for extracting project information based on multimodal large model
CN119988564A (en) AI question-answering method and system for industrial integration and regulation based on large model and structured knowledge base
CN112036330A (en) A text recognition method, text recognition device and readable storage medium
WO2024155738A1 (en) A system of intelligent patent type recommendation and draft generation and the method thereof
US20250182226A1 (en) A system of trademark risk management and method thereof
CN120278649A (en) Purchasing demand generation method and system based on multi-source data and AI
TWI886755B (en) A system of intelligent patent type recommendation and draft generation and the method thereof
US20250371255A1 (en) Context aware document augmentation and synthesis
TWI880593B (en) A system of intelligent patent type recommendation and draft generation and the method thereof
TWI877993B (en) A system of trademark risk management and the method thereof
CN119648136A (en) A method and system for intelligent office process processing based on large language model
Denisiuk et al. Feature Extraction for Polish Language Named Entities Recognition in Intelligent Office Assistant.
TWI861940B (en) A system of automatically generating patent files by semantic analysis and the execution method thereof
Bloodgood et al. Data cleaning for XML electronic dictionaries via statistical anomaly detection