[go: up one dir, main page]

TWI883920B - Method for monitoring energy storage system and energy storage monitoring system - Google Patents

Method for monitoring energy storage system and energy storage monitoring system Download PDF

Info

Publication number
TWI883920B
TWI883920B TW113114050A TW113114050A TWI883920B TW I883920 B TWI883920 B TW I883920B TW 113114050 A TW113114050 A TW 113114050A TW 113114050 A TW113114050 A TW 113114050A TW I883920 B TWI883920 B TW I883920B
Authority
TW
Taiwan
Prior art keywords
energy storage
data
learning model
machine learning
vectors
Prior art date
Application number
TW113114050A
Other languages
Chinese (zh)
Other versions
TW202542537A (en
Inventor
李銘偉
陳丁碩
張鈞程
Original Assignee
中國鋼鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國鋼鐵股份有限公司 filed Critical 中國鋼鐵股份有限公司
Priority to TW113114050A priority Critical patent/TWI883920B/en
Application granted granted Critical
Publication of TWI883920B publication Critical patent/TWI883920B/en
Publication of TW202542537A publication Critical patent/TW202542537A/en

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

This disclosure relates to a method for monitoring an energy storage system. The system includes: acquiring multiple parameters of the energy storage system at various time points to form a training dataset, dividing the training data into independent variable vectors and dependent variable vectors; training a machine learning model based on the independent variable vectors and dependent variable vectors, and calculating corresponding similarities, setting a performance index control value based on these similarities; acquiring new operational data, inputting the new operational data into the machine learning model to obtain predicted data, calculating a similarity between the predicted data and a ground truth; and if the similarity is less than the performance index control value, then determining that the energy storage system is abnormal.

Description

儲能系統的監測方法與儲能監測系統Energy storage system monitoring method and energy storage monitoring system

本揭露是有關於一種儲能系統的監測方法,可以綜合儲能系統的多個參數來計算儲能系統的性能指標,藉此判斷是否有異常。The present disclosure relates to a monitoring method for an energy storage system, which can integrate multiple parameters of the energy storage system to calculate the performance index of the energy storage system, thereby determining whether there is an abnormality.

世界各國為了提升再生能源減碳,均設立儲能系統進行搭配。目前儲能系統鋰電池組均設有電池管理系統做為監控與保護,當電池組運作發生異常可即時停止電池組運作。雖然如此,近年來仍發生多起電池儲能系統異常,部分原因是電池管理系統是某個電池參數超出運作範圍時才停止電池組運作,以高活性的鋰電池而言已經為時已晚。以溫度參數為例,鋰電池發生異常時溫度上升極快,停止電池組運作也無法阻止鋰電池發生燃燒。因此,如何綜合性的考慮儲能系統的各項參數以及早發現異常,為此領域技術人員所關心的議題。In order to increase renewable energy and reduce carbon emissions, countries around the world have established energy storage systems. Currently, lithium battery packs in energy storage systems are equipped with battery management systems for monitoring and protection. When an abnormality occurs in the battery pack operation, the battery pack operation can be stopped immediately. Despite this, there have been many battery energy storage system anomalies in recent years, partly because the battery management system only stops the battery pack operation when a battery parameter exceeds the operating range, which is too late for highly active lithium batteries. Take temperature parameters as an example. When an abnormality occurs in a lithium battery, the temperature rises very quickly, and stopping the battery pack operation cannot prevent the lithium battery from burning. Therefore, how to comprehensively consider various parameters of the energy storage system and detect anomalies early has become a topic of concern to technicians in this field.

本揭露的實施例提出一種儲能系統的監測方法,適用於一電腦系統。此監測方法包括:取得關於儲能系統在m個時間點的多個參數以作為訓練數據集,其中m為正整數;取得d個時間點所對應的參數作為d個自變數向量,並取得其餘(m-d)個時間點所對應的參數作為(m-d)個應變數向量,其中d為正整數,正整數d小於正整數m;根據d個自變數向量與(m-d)個應變數向量訓練一機器學習模型,並計算對應的(m-d)個相似度,根據(m-d)個相似度設定一性能指標管制值;取得一新操作數據,將新操作數據輸入至機器學習模型以得到一預測數據,計算預測數據與一真實數據之間的一目前相似值;以及如果目前相似值小於性能指標管制值,則判斷儲能系統已經異常。The embodiment of the present disclosure provides a monitoring method for an energy storage system, which is applicable to a computer system. The monitoring method includes: obtaining a plurality of parameters of the energy storage system at m time points as a training data set, wherein m is a positive integer; obtaining the parameters corresponding to d time points as d independent variable vectors, and obtaining the parameters corresponding to the remaining (m-d) time points as (m-d) dependent variable vectors, wherein d is a positive integer, and the positive integer d is less than the positive integer m; according to the d independent variable vectors and the (m-d) dependent variable vectors, A machine learning model is trained using a variable vector, and corresponding (m-d) similarities are calculated, and a performance indicator control value is set according to the (m-d) similarities; a new operation data is obtained, and the new operation data is input into the machine learning model to obtain a predicted data, and a current similarity value between the predicted data and a real data is calculated; and if the current similarity value is less than the performance indicator control value, it is determined that the energy storage system has been abnormal.

在一些實施例中,上述的訓練數據集表示為以下矩陣。 In some embodiments, the above training dataset is represented as the following matrix.

其中 表示第j個時間點的第i個參數,i、j、n、m為正整數且, 。在訓練機器學習模型時機器學習模型輸出(m-d)個預測應變數向量,(m-d)個相似度是根據以下數學式所計算。 in represents the i-th parameter at the j-th time point, i, j, n, m are positive integers and, , When training the machine learning model, the model outputs (md) predicted strain vectors, and the (md) similarities are calculated according to the following mathematical formula.

其中i=1,2,…,n,k=1,2,…,(m-d), 表示(m-d)個相似度中的第k個相似度, 為(m-d)個應變數向量中的第k個應變數向量的第i個元素, 為(m-d)個預測應變數向量中的第k個預測應變數向量的第i個元素。 where i=1,2,…,n, k=1,2,…,(md), represents the kth similarity among (md) similarities, is the i-th element of the k-th strain vector among the (md) strain vectors, is the i-th element of the k-th predicted strain variable vector among the (md) predicted strain variable vectors.

在一些實施例中,上述的參數包含電流、用電量、發電量、頻率、功率或電壓。In some embodiments, the above parameters include current, power consumption, power generation, frequency, power or voltage.

在一些實施例中,上述的監測方法還包括:將真實數據輸入至一逆函數以得到一期望操作數據;以及計算期望操作數據與新操作數據之間的差,以判斷其中一個參數發生異常。In some embodiments, the monitoring method further includes: inputting the real data into an inverse function to obtain an expected operation data; and calculating the difference between the expected operation data and the new operation data to determine whether one of the parameters is abnormal.

在一些實施例中,上述的機器學習模型為一極限梯度提升模型、一隨機森林模型或一深度學習模型。In some embodiments, the machine learning model is an extreme gradient boosting model, a random forest model or a deep learning model.

本揭露的實施例提出一種儲能監測系統,包括:一儲能系統;以及一電腦系統,通訊連接至儲能系統,用以執行上述的監測方法。The embodiment of the present disclosure provides an energy storage monitoring system, including: an energy storage system; and a computer system, communicatively connected to the energy storage system, for executing the above-mentioned monitoring method.

關於本文中所使用之「第一」、「第二」等,並非特別指次序或順位的意思,其僅為了區別以相同技術用語描述的元件或操作。The terms “first,” “second,” etc. used herein do not particularly refer to order or sequence, but are only used to distinguish elements or operations described with the same technical term.

圖1是根據一實施例繪示監控系統的示意圖。請參照圖1,儲能監測系統100包含了電腦系統110與儲能系統120,兩者彼此通訊連接。電腦系統110例如為桌上型電腦、伺服器、工業電腦、嵌入式系統、或任何具有計算能力的電子裝置。儲能系統120中可包含電池組與相關電路,例如可包括逆變器、變壓器、保護電路、斷電設備,而電池組可為鎳鎘(NiCd)電池、鎳氫(NiMH)電池、鋰離子(Li-ion)電池、鋰聚合物(LiPo)電池等,本揭露並不在此限。在一些實施例中,儲能系統120中也可以包括再生能源模組,例如太陽能模組,風力發電模組等等。FIG1 is a schematic diagram of a monitoring system according to an embodiment. Referring to FIG1 , the energy storage monitoring system 100 includes a computer system 110 and an energy storage system 120, which are communicatively connected to each other. The computer system 110 is, for example, a desktop computer, a server, an industrial computer, an embedded system, or any electronic device with computing capabilities. The energy storage system 120 may include a battery pack and related circuits, such as an inverter, a transformer, a protection circuit, and a power-off device, and the battery pack may be a nickel-cadmium (NiCd) battery, a nickel-metal hydride (NiMH) battery, a lithium-ion (Li-ion) battery, a lithium-polymer (LiPo) battery, etc., but the present disclosure is not limited thereto. In some embodiments, the energy storage system 120 may also include a renewable energy module, such as a solar module, a wind power module, etc.

儲能系統120中具有多個感測器,這些感測器例如為電流計、電壓計、溫度計、功率計等等,用以量測多個參數,這些參數可包含電流、用電量、發電量、頻率、功率或電壓等。舉例來說,如果儲能系統120中具有三相電路,則上述的參數可包括每相上的電流、電壓、功率等。在一些實施例中,上述的參數也可包含一段時間(例如15分鐘)累計的用電量、發電量等。上述的參數也可包括瞬時系統頻率、瞬時總功率因數、輸出(輸出)虛功、輸出(輸入)實功。在一些實施例中,上述的參數也可以包括電池最高(低)電芯電壓、電池最高(低)電芯溫度等。這些參數可以透過有線或無線的通訊手段傳輸至電腦系統110。The energy storage system 120 has a plurality of sensors, such as ammeters, voltmeters, thermometers, power meters, etc., for measuring a plurality of parameters, which may include current, power consumption, power generation, frequency, power or voltage, etc. For example, if the energy storage system 120 has a three-phase circuit, the above parameters may include current, voltage, power, etc. on each phase. In some embodiments, the above parameters may also include power consumption and power generation accumulated over a period of time (e.g., 15 minutes). The above parameters may also include instantaneous system frequency, instantaneous total power factor, output (output) virtual work, and output (input) real work. In some embodiments, the above parameters may also include the highest (lowest) battery cell voltage, the highest (lowest) battery cell temperature, etc. These parameters can be transmitted to the computer system 110 via wired or wireless communication means.

電腦系統110會根據這些參數執行一個監測方法,以判斷儲能系統120是否有異常。在此採用機器學習的方式來判斷異常,因此可以分為訓練階段與測試階段,以下將分不同階段詳細說明。The computer system 110 will execute a monitoring method based on these parameters to determine whether there is an abnormality in the energy storage system 120. Here, a machine learning method is used to determine the abnormality, so it can be divided into a training phase and a testing phase. The following will be divided into different phases for detailed description.

圖2是根據一實施例繪示訓練階段的流程圖。請參照圖2,首先在步驟201,取得關於儲能系統在多個時間點所產生的多個參數,這些參數已說明如上。這些參數作為訓練數據集,表示為以下矩陣 X FIG2 is a flowchart illustrating a training phase according to an embodiment. Referring to FIG2, first in step 201, multiple parameters generated by the energy storage system at multiple time points are obtained, and these parameters have been described above. These parameters are used as a training data set and are represented as the following matrix X.

其中 表示第j個時間點的第i個參數。在此共有m個時間點,每個時間點有n個參數,i、j、n、m為正整數且 。矩陣 X的大小為 ,也就是說矩陣 X包含了m個向量。 in represents the i-th parameter at the j-th time point. There are m time points in total, each with n parameters, i, j, n, m are positive integers and , . The size of the matrix X is , which means that the matrix X contains m vectors.

在步驟202,從訓練數據集中取出d個時間點所對應的參數作為d個自變數向量,其中d為正整數且d<m,這些自變數向量組成一個大小為 矩陣 D。在步驟203,取得其餘(m-d)個時間點所對應的參數作為(m-d)個應變數向量,這些應變數向量組成一個大小為 矩陣 L。在一些實施例中是每隔一段時間取得多個自變數向量搭配一個應變數向量。舉例來說,對於每10個時間點來說,前9個時間點所對應的參數可設定為9個自變數向量,而最後一個時間點所對應的參數設定為1個應變數向量。如果m=1000,則總共有d=900個自變數向量組成矩陣 D,而且有(m-d)=100個應變數向量組成矩陣 L。然而,本揭露並不限制要取得那些時間點作為自變數向量(或應變數向量)。 In step 202, the parameters corresponding to d time points are taken from the training data set as d independent variable vectors, where d is a positive integer and d < m. These independent variable vectors form a Matrix D. In step 203, the parameters corresponding to the remaining (md) time points are obtained as (md) strain vectors. These strain vectors form a matrix of size Matrix L. In some embodiments, multiple independent variable vectors are obtained at intervals and matched with a strain vector. For example, for every 10 time points, the parameters corresponding to the first 9 time points can be set as 9 independent variable vectors, and the parameters corresponding to the last time point are set as 1 strain vector. If m=1000, there are a total of d=900 independent variable vectors forming the matrix D , and (md)=100 strain vectors forming the matrix L. However, the present disclosure does not limit which time points are to be obtained as independent variable vectors (or strain vectors).

在步驟204,根據d個自變數向量與(m-d)個應變數向量訓練一機器學習模型,此機器學習模型可為線性矩陣、極限梯度提升(Xtreme Gradient Boosting。XGBooste)模型、隨機森林模型、深度學習模型、神經網路等任意合適的機器學習模型,本揭露並不在此限。在此,是要將矩陣 D當作機器學習模型的輸入,而矩陣 L則做為機器學習模型的輸出,但機器學習模型每次只預測一個向量。舉例來說,延續上述例子,每9個自變數向量可用來預測1個應變數向量,這視為一個訓練樣本,在上述例子中共有(m-d)=100個訓練樣本。因此,機器學習模型的輸入與輸出之間具有時序上的關係,在此實施例中是用較早發生的參數來預測尚未發生的參數。 In step 204, a machine learning model is trained based on d independent variable vectors and (md) strain variable vectors. The machine learning model can be any suitable machine learning model such as a linear matrix, an extreme gradient boosting (XGBooste) model, a random forest model, a deep learning model, a neural network, etc., and the present disclosure is not limited thereto. Here, the matrix D is used as the input of the machine learning model, and the matrix L is used as the output of the machine learning model, but the machine learning model only predicts one vector at a time. For example, continuing the above example, every 9 independent variable vectors can be used to predict 1 strain variable vector, which is regarded as a training sample. In the above example, there are a total of (md) = 100 training samples. Therefore, there is a temporal relationship between the input and output of the machine learning model. In this embodiment, parameters that occurred earlier are used to predict parameters that have not yet occurred.

上述的矩陣 L可作為真實輸出(ground truth),而機器學習模型則輸出預測應變數向量。接下來在步驟205,對於每一個訓練樣本都可以計算真實輸出與預測應變數向量之間的相似度,如以下數學式1所示。 [數學式1] The above matrix L can be used as the ground truth, and the machine learning model outputs the predicted strain vector. Next, in step 205, the similarity between the ground truth and the predicted strain vector can be calculated for each training sample, as shown in the following mathematical formula 1. [Mathematical formula 1]

其中i=1,2,…,n,k=1,2,…,(m-d)。 表示第k個相似度, 為矩陣 L中的第k個應變數向量的第i個元素, 為第k個預測應變數向量的第i個元素。換言之,在此是將應變數向量與預測應變數向量之間差異的L2範數的倒數作為相似度,相似度越大表示預測的越準確。由於每個訓練樣本都可以計算出對應的相似度,在此共會計算出(m-d)個相似度 Where i=1,2,…,n, k=1,2,…,(md). represents the kth similarity, is the i-th element of the k-th strain variable vector in the matrix L , is the i-th element of the k-th predicted strain vector. In other words, the inverse of the L2 norm of the difference between the strain vector and the predicted strain vector is used as the similarity. The greater the similarity, the more accurate the prediction. Since each training sample can calculate the corresponding similarity, a total of (md) similarities are calculated here. .

接下來在步驟206中,根據上述計算出的(m-d)個相似度來設定一性能指標管制值,舉例來說,可以設定(m-d)個相似度中的最小值、或是最小十分位、或是最小1%的數值等作為性能指標管制值。這個性能指標管制值可以當作是判斷儲能系統120是否異常的指標。Next, in step 206, a performance index control value is set according to the (m-d) similarities calculated above. For example, the minimum value, the minimum tenth value, or the minimum 1% value among the (m-d) similarities can be set as the performance index control value. This performance index control value can be used as an indicator for determining whether the energy storage system 120 is abnormal.

圖3是根據一實施例繪示測試階段的流程圖。請參照圖3,在步驟301,取得新操作數據,在此表示為向量 ,此向量中同樣包含了上述n個參數。在步驟302中,將新操作數據輸入至上述訓練好的機器學習模型以得到預測數據,表示為向量 (包含n個預測數值)。由於機器學習模型是預測下一個時間點的參數,在經過一段時間以後可以收集到對應的真實數據(同樣有n個參數)。在步驟303,根據上述數學式1計算預測數據 與對應真實數據之間的相似度(稱為目前相似度)。在步驟304,判斷目前相似度是否小於上述計算的性能指標管制值。如果目前相似度大於等於性能指標管制值,則回到步驟301取得下一筆新操作數據。如果目前相似度小於性能指標管制值,在步驟305判斷儲能系統120已經異常。 FIG3 is a flow chart illustrating the test phase according to an embodiment. Referring to FIG3, in step 301, new operation data is obtained, which is represented as a vector , which also contains the n parameters mentioned above. In step 302, the new operation data is input into the trained machine learning model to obtain the prediction data, which is represented by the vector (including n predicted values). Since the machine learning model predicts the parameters of the next time point, the corresponding real data (also with n parameters) can be collected after a period of time. In step 303, the predicted data is calculated according to the above mathematical formula 1 The similarity between the current data and the corresponding real data (referred to as the current similarity). In step 304, it is determined whether the current similarity is less than the performance indicator control value calculated above. If the current similarity is greater than or equal to the performance indicator control value, then return to step 301 to obtain the next new operation data. If the current similarity is less than the performance indicator control value, in step 305, it is determined that the energy storage system 120 is abnormal.

圖4是根據一實施例繪示實驗數據的示意圖。圖4的橫軸代表時間,縱軸代表預測數據 與對應真實數據之間的相似度,當相似度小於性能指標管制值410表示儲能系統120有異常。這麼做的理由是當儲能系統120正常(或稱健康)時容易預測下一個時間點的參數,當系統異常時預測的準確度會下降,所計算出的相似度會下降。 FIG4 is a schematic diagram showing experimental data according to an embodiment. The horizontal axis of FIG4 represents time, and the vertical axis represents predicted data. When the similarity is less than the performance index control value 410, it indicates that the energy storage system 120 is abnormal. The reason for this is that when the energy storage system 120 is normal (or healthy), it is easy to predict the parameters at the next time point. When the system is abnormal, the accuracy of the prediction will decrease, and the calculated similarity will decrease.

接下來可判斷出現異常的是哪個設備。在步驟306中,將預測數據對應的真實數據輸入至逆函數以得到期望操作數據。具體來說,在訓練階段時的運作可以表示為 ,其中 為上述的機器學習模型,而逆函數表示為 。舉例來說,如果機器學習模型是一個線性矩陣,則逆函數可以是線性矩陣的逆矩陣,或者機器學習模型可以是循環生成對抗網路(cycle Generative Adversarial Network,cycle GAN),則網路中有兩個生成器可以分別作為 。假設預測數據 對應的真實數據表示為y,則上述操作可以表示為 ,其中 為期望操作數據。 Next, it can be determined which device has the abnormality. In step 306, the real data corresponding to the predicted data is input into the inverse function to obtain the expected operation data. Specifically, the operation during the training phase can be expressed as ,in is the machine learning model mentioned above, and the inverse function is expressed as For example, if the machine learning model is a linear matrix, the inverse function can be the inverse matrix of the linear matrix, or the machine learning model can be a cycle generative adversarial network (cycle GAN), then there are two generators in the network that can serve as and . Assume that the forecast data The corresponding real data is represented as y, then the above operation can be expressed as ,in The expected operation data.

在步驟307,計算期望操作數據 與新操作數據 之間的差,以判斷哪個參數發生異常。具體來說,期望操作數據 與新操作數據 都包含了多個時間點的參數,在此可以計算對應參數之間的差,例如計算兩個數據中第t個時間點中第i個參數之間的差,如果這個差大於一個臨界值,則表示對應的設備異常,其中t為正整數。實驗數據請參照以下表1。 新操作數據 期望操作數據 參數1 2328 1904 參數2 2377 1951 參數3 2304 1847 表1 In step 307, the expected operation data is calculated With new operation data To determine which parameter is abnormal. Specifically, the expected operation data With new operation data Both contain parameters at multiple time points, where the difference between corresponding parameters can be calculated, for example, the difference between the i-th parameter at the t-th time point in two data is calculated. If this difference is greater than a critical value, it means that the corresponding device is abnormal, where t is a positive integer. Please refer to the following Table 1 for experimental data. New operation data Expected operation data Parameter 1 2328 1904 Parameter 2 2377 1951 Parameter 3 2304 1847 Table 1

上述的參數1至參數3例如為三相電路中每一相的電流,實際量測到的數值(新操作數據)分別是2328、2377、2304毫安培,但經過逆函數所計算出的期望值(期望操作數據)則分別是1904、1951、1847毫安培。當實際量測的值與期望值之間的差大於一臨界值,則表示對應的三相電路發生了異常。For example, the above parameters 1 to 3 are the current of each phase in the three-phase circuit. The actual measured values (new operation data) are 2328, 2377, and 2304 mA, respectively, but the expected values (expected operation data) calculated by the inverse function are 1904, 1951, and 1847 mA, respectively. When the difference between the actual measured value and the expected value is greater than a critical value, it means that the corresponding three-phase circuit has an abnormality.

透過上述的作法,可以綜合性的考慮儲能系統120的參數,而且透過逆函數可以找到發生異常的可能參數。Through the above-mentioned method, the parameters of the energy storage system 120 can be comprehensively considered, and the possible parameters where abnormalities may occur can be found through the inverse function.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above by the embodiments, they are not intended to limit the present invention. Any person with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be defined by the scope of the attached patent application.

100:儲能監測系統 110:電腦系統 120:儲能系統 201~206、301~307:步驟 410:性能指標管制值 100: Energy storage monitoring system 110: Computer system 120: Energy storage system 201-206, 301-307: Steps 410: Performance index control value

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 圖1是根據一實施例繪示監控系統的示意圖。 圖2是根據一實施例繪示訓練階段的流程圖。 圖3是根據一實施例繪示測試階段的流程圖。 圖4是根據一實施例繪示實驗數據的示意圖。 In order to make the above features and advantages of the present invention more clearly understandable, the following examples are specifically cited and detailed descriptions are given in conjunction with the attached figures. FIG. 1 is a schematic diagram of a monitoring system according to an embodiment. FIG. 2 is a flow chart of a training phase according to an embodiment. FIG. 3 is a flow chart of a test phase according to an embodiment. FIG. 4 is a schematic diagram of experimental data according to an embodiment.

301~307:步驟 301~307: Steps

Claims (10)

一種儲能系統的監測方法,適用於一電腦系統,該監測方法包括: 取得關於該儲能系統在m個時間點的多個參數以作為訓練數據集,其中m為正整數; 取得該些時間點中的d個時間點所對應的該些參數作為d個自變數向量,並取得其餘(m-d)個時間點所對應的該些參數作為(m-d)個應變數向量,其中d為正整數,且d小於m; 根據該d個自變數向量與該(m-d)個應變數向量訓練一機器學習模型,並計算對應的(m-d)個相似度,根據該(m-d)個相似度設定一性能指標管制值; 取得一新操作數據,將該新操作數據輸入至該機器學習模型以得到一預測數據,計算該預測數據與一真實數據之間的一目前相似值;以及 如果該目前相似值小於該性能指標管制值,則判斷該儲能系統已經異常。 A monitoring method for an energy storage system is applicable to a computer system, and the monitoring method includes: Obtaining multiple parameters of the energy storage system at m time points as a training data set, where m is a positive integer; Obtaining the parameters corresponding to d time points among the time points as d independent variable vectors, and obtaining the parameters corresponding to the remaining (m-d) time points as (m-d) strain variable vectors, where d is a positive integer and d is less than m; Training a machine learning model based on the d independent variable vectors and the (m-d) strain variable vectors, and calculating the corresponding (m-d) similarities, and setting a performance indicator control value based on the (m-d) similarities; Obtain a new operating data, input the new operating data into the machine learning model to obtain a predicted data, calculate a current similarity value between the predicted data and a real data; and If the current similarity value is less than the performance indicator control value, it is determined that the energy storage system has been abnormal. 如請求項1所述之監測方法,其中該訓練數據集表示為以下矩陣 其中 表示第j個時間點的第i個參數,i、j、n、m為正整數且 , 其中在訓練該機器學習模型時該機器學習模型輸出(m-d)個預測應變數向量,該(m-d)個相似度是根據以下數學式所計算, 其中i=1,2,…,n,k=1,2,…,(m-d), 表示該(m-d)個相似度中的第k個相似度, 為該(m-d)個應變數向量中的第k個應變數向量的第i個元素, 為該(m-d)個預測應變數向量中的第k個預測應變數向量的第i個元素。 The monitoring method as claimed in claim 1, wherein the training data set is represented by the following matrix , in represents the i-th parameter at the j-th time point, i, j, n, m are positive integers and , , wherein when training the machine learning model, the machine learning model outputs (md) predicted strain vectors, and the (md) similarities are calculated according to the following mathematical formula, where i=1,2,…,n, k=1,2,…,(md), represents the kth similarity among the (md) similarities, is the i-th element of the k-th strain vector in the (md) strain vectors, is the i-th element of the k-th predicted strain variable vector among the (md) predicted strain variable vectors. 如請求項1所述之監測方法,其中該些參數包含電流、用電量、發電量、頻率、功率或電壓。A monitoring method as described in claim 1, wherein the parameters include current, power consumption, power generation, frequency, power or voltage. 如請求項3所述之監測方法,還包括: 將該真實數據輸入至一逆函數以得到一期望操作數據;以及 計算該期望操作數據與該新操作數據之間的差,以判斷該些參數的其中之一發生異常。 The monitoring method as described in claim 3 further includes: Inputting the real data into an inverse function to obtain an expected operation data; and Calculating the difference between the expected operation data and the new operation data to determine whether one of the parameters is abnormal. 如請求項1所述之監測方法,其中該機器學習模型為一極限梯度提升模型、一隨機森林模型或一深度學習模型。The monitoring method as described in claim 1, wherein the machine learning model is an extreme gradient boosting model, a random forest model or a deep learning model. 一種儲能監測系統,包括: 一儲能系統;以及 一電腦系統,通訊連接至該儲能系統,用以執行多個步驟: 取得關於該儲能系統在m個時間點的多個參數以作為訓練數據集,其中m為正整數; 取得該些時間點中的d個時間點所對應的該些參數作為d個自變數向量,並取得其餘(m-d)個時間點所對應的該些參數作為(m-d)個應變數向量,其中d為正整數,且d小於m; 根據該d個自變數向量與該(m-d)個應變數向量訓練一機器學習模型,並計算對應的(m-d)個相似度,根據該(m-d)個相似度設定一性能指標管制值; 取得一新操作數據,將該新操作數據輸入至該機器學習模型以得到一預測數據,計算該預測數據與一真實數據之間的一目前相似值;以及 如果該目前相似值小於該性能指標管制值,則判斷該儲能系統已經異常。 An energy storage monitoring system comprises: an energy storage system; and a computer system, communicatively connected to the energy storage system, for executing a plurality of steps: obtaining a plurality of parameters of the energy storage system at m time points as a training data set, wherein m is a positive integer; obtaining the parameters corresponding to d time points among the time points as d independent variable vectors, and obtaining the parameters corresponding to the remaining (m-d) time points as (m-d) dependent variable vectors, wherein d is a positive integer and d is less than m; A machine learning model is trained based on the d independent variable vectors and the (m-d) dependent variable vectors, and the corresponding (m-d) similarities are calculated, and a performance indicator control value is set based on the (m-d) similarities; A new operation data is obtained, and the new operation data is input into the machine learning model to obtain a predicted data, and a current similarity value between the predicted data and a real data is calculated; and If the current similarity value is less than the performance indicator control value, it is determined that the energy storage system has been abnormal. 如請求項6所述之儲能監測系統,其中該訓練數據集表示為以下矩陣 其中 表示第j個時間點的第i個參數,i、j、n、m為正整數且 , 其中在訓練該機器學習模型時該機器學習模型輸出(m-d)個預測應變數向量,該(m-d)個相似度是根據以下數學式所計算, 其中i=1,2,…,n,k=1,2,…,(m-d), 表示該(m-d)個相似度中的第k個相似度, 為該(m-d)個應變數向量中的第k個應變數向量的第i個元素, 為該(m-d)個預測應變數向量中的第k個預測應變數向量的第i個元素。 The energy storage monitoring system as described in claim 6, wherein the training data set is represented by the following matrix , in represents the i-th parameter at the j-th time point, i, j, n, m are positive integers and , , wherein when training the machine learning model, the machine learning model outputs (md) predicted strain vectors, and the (md) similarities are calculated according to the following mathematical formula, where i=1,2,…,n, k=1,2,…,(md), represents the kth similarity among the (md) similarities, is the i-th element of the k-th strain vector in the (md) strain vectors, is the i-th element of the k-th predicted strain variable vector among the (md) predicted strain variable vectors. 如請求項6所述之儲能監測系統,其中該些參數包含電流、用電量、發電量、頻率、功率或電壓。An energy storage monitoring system as described in claim 6, wherein the parameters include current, power consumption, power generation, frequency, power or voltage. 如請求項8所述之儲能監測系統,其中該些步驟還包括: 將該真實數據輸入至一逆函數以得到一期望操作數據;以及 計算該期望操作數據與該新操作數據之間的差,以判斷該些參數的其中之一發生異常。 The energy storage monitoring system as described in claim 8, wherein the steps further include: Inputting the real data into an inverse function to obtain an expected operating data; and Calculating the difference between the expected operating data and the new operating data to determine whether one of the parameters is abnormal. 如請求項6所述之儲能監測系統,其中該機器學習模型為一極限梯度提升模型、一隨機森林模型或一深度學習模型。An energy storage monitoring system as described in claim 6, wherein the machine learning model is an extreme gradient boosting model, a random forest model or a deep learning model.
TW113114050A 2024-04-16 2024-04-16 Method for monitoring energy storage system and energy storage monitoring system TWI883920B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW113114050A TWI883920B (en) 2024-04-16 2024-04-16 Method for monitoring energy storage system and energy storage monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW113114050A TWI883920B (en) 2024-04-16 2024-04-16 Method for monitoring energy storage system and energy storage monitoring system

Publications (2)

Publication Number Publication Date
TWI883920B true TWI883920B (en) 2025-05-11
TW202542537A TW202542537A (en) 2025-11-01

Family

ID=96582069

Family Applications (1)

Application Number Title Priority Date Filing Date
TW113114050A TWI883920B (en) 2024-04-16 2024-04-16 Method for monitoring energy storage system and energy storage monitoring system

Country Status (1)

Country Link
TW (1) TWI883920B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201812646A (en) * 2016-07-18 2018-04-01 美商南坦奧美克公司 Decentralized machine learning system, decentralized machine learning method, and method of generating substitute data
CN115598459A (en) * 2021-06-28 2023-01-13 国网重庆市电力公司市南供电分公司(Cn) A 10kV feeder fault prediction method for power outage in distribution network
US20230019900A1 (en) * 2019-12-06 2023-01-19 Henry M. Jackson Foundation For The Advancement Of Military Medicine Prediction of venous thromboembolism utilizing machine learning models
US20230316075A1 (en) * 2021-11-23 2023-10-05 Strong Force TX Portfolio 2018, LLC Training models for prediction and monitoring using internet of things data collection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201812646A (en) * 2016-07-18 2018-04-01 美商南坦奧美克公司 Decentralized machine learning system, decentralized machine learning method, and method of generating substitute data
US20230019900A1 (en) * 2019-12-06 2023-01-19 Henry M. Jackson Foundation For The Advancement Of Military Medicine Prediction of venous thromboembolism utilizing machine learning models
CN115598459A (en) * 2021-06-28 2023-01-13 国网重庆市电力公司市南供电分公司(Cn) A 10kV feeder fault prediction method for power outage in distribution network
US20230316075A1 (en) * 2021-11-23 2023-10-05 Strong Force TX Portfolio 2018, LLC Training models for prediction and monitoring using internet of things data collection

Similar Documents

Publication Publication Date Title
Chen et al. Remaining useful life prediction of battery using a novel indicator and framework with fractional grey model and unscented particle filter
WO2024146353A1 (en) Active safety three-level prevention and control system and method for battery energy storage power station
US11099240B2 (en) Device and method for evaluating energy storage device and evaluation system
CN114636948B (en) Energy storage system service life assessment method and device, electronic equipment and storage medium
CN116401585B (en) A method for energy storage battery failure risk assessment based on big data
CN113112114A (en) Energy storage power station online evaluation method and device
Wang et al. A novel endurance prediction method of series connected lithium-ion batteries based on the voltage change rate and iterative calculation
CN118889593A (en) A lithium battery and a charging control method thereof
CN109521315A (en) Method and device for detecting internal short circuit of battery and automobile
CN115800433A (en) Battery pack consistency evaluation and grade evaluation method and device
Xia et al. Technologies for energy storage power stations safety operation: Battery state evaluation survey and a critical analysis
Zhang et al. A rapid-accurate fault diagnosis method based on cumulative probability distribution for lithium-ion battery packs
TWI883920B (en) Method for monitoring energy storage system and energy storage monitoring system
CN119395562B (en) Battery state prediction method, system, computer equipment and storage medium
CN115318683A (en) Screening method and device for whole-package batteries
Farakhor et al. Leveraging structures in fault diagnosis for lithium-ion battery packs
Negri et al. Analyzing the performance of AI-based battery SoC estimation: a metrological point of view
Ma et al. Review of State of Power Estimation for Li-Ion Batteries: Methods, Issues, and Prospects
Xu Remote SOC and SOH Estimation of High Energy Lithium Batteries Based on Dual-Mode Extended Kalman Filter Algorithm
TW202542537A (en) Method for monitoring energy storage system and energy storage monitoring system
Degla et al. An enhanced neural network application for a lithium-ion battery pack state-of-health estimator
CN117517977A (en) A joint estimation method of SOC and SOH for soft-pack lithium-ion batteries
Ding et al. State-of-health estimation of lithium-ion batteries based on CNN-LSTM-attention
Yan et al. SOC prediction method of wireless sensor nodes batteries based on attention-LSTM
CN117477555A (en) A method for predicting the transient power imbalance index of power grids containing electrochemical energy storage