TWI882619B - Failure detection method and system for battery racks - Google Patents
Failure detection method and system for battery racks Download PDFInfo
- Publication number
- TWI882619B TWI882619B TW112151518A TW112151518A TWI882619B TW I882619 B TWI882619 B TW I882619B TW 112151518 A TW112151518 A TW 112151518A TW 112151518 A TW112151518 A TW 112151518A TW I882619 B TWI882619 B TW I882619B
- Authority
- TW
- Taiwan
- Prior art keywords
- temperature
- slope
- voltage
- data
- microcontroller
- Prior art date
Links
Images
Landscapes
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Tests Of Electric Status Of Batteries (AREA)
- Measurement Of Current Or Voltage (AREA)
Abstract
Description
本案涉及一種用於電池機櫃的偵測方法及偵測系統,且特別是有關於一種用於偵測電池機櫃的異常狀態的故障偵測方法及故障偵測系統。 This case involves a detection method and a detection system for a battery cabinet, and in particular, a fault detection method and a fault detection system for detecting abnormal conditions of a battery cabinet.
電池在充電或放電的運作過程中,可能會因為過電壓或過熱的狀況,使得電池的性能下降,甚至因過電壓或過熱發生電池故障而導致設備運作失能。 During the charging or discharging process, the battery may suffer from overvoltage or overheating, which may cause the battery performance to degrade, or even cause battery failure due to overvoltage or overheating, resulting in device malfunction.
現行對於電池的運作提供的監控機制,大多在於監控電壓、電流或溫度等狀態特徵來評估電池是否有發生異常狀況。然而,現有的方法存在一些缺陷:當僅使用單一個狀態特徵來作為是否有異常的評斷時,會因為無法考慮到電池的其他狀態特徵而導致誤判的問題。 Most of the current monitoring mechanisms for battery operation are based on monitoring state characteristics such as voltage, current or temperature to evaluate whether the battery has an abnormal condition. However, the existing methods have some defects: when only a single state characteristic is used to judge whether there is an abnormality, it will lead to misjudgment because other state characteristics of the battery cannot be considered.
另一方面,電池的溫度特徵也被用於評估狀態的因素之一,例如溫度的最大值或最小值。實際上,電池會隨著裝置的運作或閒置等狀態而呈現對應的狀態,例如當裝置處於閒置狀態,電池的溫度會隨著下降。因此,若單純考慮溫度的上升或下降來評估電池的健康狀態,可能會因為缺乏考慮裝置的運作而導致檢測結果錯誤。 On the other hand, the temperature characteristics of the battery are also used as one of the factors for evaluating the status, such as the maximum or minimum temperature. In fact, the battery will present a corresponding state as the device is operating or idle. For example, when the device is idle, the battery temperature will drop. Therefore, if the health status of the battery is evaluated by simply considering the rise or fall of temperature, the detection result may be wrong due to lack of consideration of the operation of the device.
本案的一實施例提供一種用於電池機櫃的故障偵測方法,執行於包括電壓資料採集模組及微控制器的電池機櫃故障偵測系統。電池機櫃包括多個電池模組。故障偵測方法包括以下步驟:(a)藉由電壓資料採集模組感測各電池模組的電池芯的電壓資料並藉由微控制器持續地以計算頻率來計算電壓資料的電壓差資料;(b)藉由微控制器使用電池機櫃到目前為止的電壓差資料來計算標準差;(c)當判斷標準差大於初篩門檻值時,藉由微控制器分別依據於第一週期內的電壓差資料來獲得第一電壓趨勢並依據於第二週期內的電壓差資料來獲得第二電壓趨勢,其中第二週期的長度大於第一週期的長度;(d)藉由微控制器計算第一電壓趨勢及第二電壓趨勢的交集來獲得電壓趨勢狀態;(e)藉由微控制器根據第二週期的電壓差資料來計算電壓斜率;以及(f)當電壓趨勢狀態為在異常狀態且該電壓斜率大於斜率門檻值時,藉由微控制器產生警示訊息,其中警示訊息指示標準差大於初篩門檻值時的電壓差資料對應的電池芯的位置發生過電壓狀態。 An embodiment of the present invention provides a fault detection method for a battery cabinet, which is implemented in a battery cabinet fault detection system including a voltage data acquisition module and a microcontroller. The battery cabinet includes a plurality of battery modules. The fault detection method includes the following steps: (a) sensing the voltage data of the battery cells of each battery module by a voltage data acquisition module and continuously calculating the voltage difference data of the voltage data at a calculation frequency by a microcontroller; (b) using the voltage difference data of the battery cabinet to date to calculate the standard deviation by the microcontroller; (c) when it is determined that the standard deviation is greater than a preliminary screening threshold value, obtaining a first voltage trend by the microcontroller based on the voltage difference data in the first cycle and obtaining a second voltage trend by the microcontroller based on the voltage difference data in the second cycle. (d) the microcontroller calculates the intersection of the first voltage trend and the second voltage trend to obtain the voltage trend state; (e) the microcontroller calculates the voltage slope according to the voltage difference data of the second cycle; and (f) when the voltage trend state is in an abnormal state and the voltage slope is greater than the slope threshold value, the microcontroller generates a warning message, wherein the warning message indicates that the position of the battery cell corresponding to the voltage difference data when the standard deviation is greater than the initial screening threshold value has an overvoltage state.
本案的另一實施例提供一種用於電池機櫃的故障偵測方法,執行於包括溫度資料採集模組及微控制器的電池機櫃故障偵測系統。電池機櫃包括多個電池模組。故障偵測方法包括以下步驟:(a)藉由溫度資料採集模組感測電池機櫃的溫度資料並藉由微控制器使用溫度資料來計算溫度斜率及多個溫度特徵資訊中的最大溫度值及最小溫度值;(b)藉由微控制器持續地以一算頻率來計算溫度資料的溫度差資料並使用溫度差資料來計算Z分數;(c)藉由微控制器對溫度斜率設定第一離散分數、對最大溫度值設定第二離散分數、對最小溫度值設定第三離散分數及對Z分數設定第四離散分數;(d)藉由微控制器加總第一離散分數、第二離散分數、第三離散分數及第四離散分數來得到評分值;以及(e)藉由微控制器根據評分值來評估電池機櫃是否處於異常狀態,並於評估電池機櫃 中處於異常狀態時產生警示訊息,其中警示訊息指示最大溫度值或最小溫度值的位置為發生異常的電池機櫃。 Another embodiment of the present case provides a fault detection method for a battery cabinet, which is executed in a battery cabinet fault detection system including a temperature data acquisition module and a microcontroller. The battery cabinet includes a plurality of battery modules. The fault detection method includes the following steps: (a) sensing the temperature data of the battery cabinet by the temperature data acquisition module and using the temperature data by the microcontroller to calculate the temperature slope and the maximum temperature value and the minimum temperature value in a plurality of temperature characteristic information; (b) continuously calculating the temperature difference data of the temperature data at a computing frequency by the microcontroller and using the temperature difference data to calculate the Z score; (c) setting a first discrete score for the temperature slope and a second discrete score for the maximum temperature value by the microcontroller , setting a third discrete score for the minimum temperature value and a fourth discrete score for the Z score; (d) obtaining a score value by summing up the first discrete score, the second discrete score, the third discrete score and the fourth discrete score by the microcontroller; and (e) evaluating whether the battery cabinet is in an abnormal state according to the score value by the microcontroller, and generating a warning message when the battery cabinet is in an abnormal state during evaluation, wherein the warning message indicates that the location of the maximum temperature value or the minimum temperature value is the battery cabinet where the abnormality occurs.
10、20、30、40:電池機櫃故障偵測系統 10, 20, 30, 40: Battery cabinet fault detection system
100、400:電池機櫃 100, 400: Battery cabinet
110、410:電池模組 110, 410: Battery module
120、420:電池芯 120, 420: battery cell
210、510、610:電壓資料採集模組 210, 510, 610: Voltage data acquisition module
220、320、520、620:微控制器 220, 320, 520, 620: microcontrollers
330、630:溫度資料採集模組 330, 630: Temperature data collection module
S205~S250、S405~S445:步驟 S205~S250, S405~S445: Steps
圖1為本案根據一實施例所繪示的偵測電壓來實現機櫃異常狀態的監視的電池機櫃故障偵測系統的方塊圖。 FIG1 is a block diagram of a battery cabinet fault detection system for monitoring abnormal cabinet conditions by detecting voltage according to an embodiment of the present invention.
圖2為本案根據一實施例所繪示的偵測電壓來實現用於電池機櫃的故障偵測方法的流程圖。 FIG2 is a flow chart of a fault detection method for a battery cabinet implemented by detecting voltage according to an embodiment of the present invention.
圖3為本案根據一實施例所繪示的偵測溫度來實現機櫃異常狀態的監視的電池機櫃故障偵測系統的方塊圖。 FIG3 is a block diagram of a battery cabinet fault detection system for monitoring abnormal cabinet conditions by detecting temperature according to an embodiment of the present invention.
圖4為本案根據一實施例所繪示的偵測溫度來實現用於電池機櫃的故障偵測方法的流程圖。 FIG4 is a flow chart of a method for detecting a fault in a battery cabinet by detecting temperature according to an embodiment of the present invention.
圖5為本案根據另一實施例所繪示的偵測電壓來實現機櫃異常狀態的監視的電池機櫃故障偵測系統的方塊圖。 FIG5 is a block diagram of a battery cabinet fault detection system for monitoring the abnormal state of the cabinet by detecting voltage according to another embodiment of the present invention.
圖6為本案根據另一實施例所繪示的同時偵測電壓及溫度來實現機櫃異常狀態的監視的電池機櫃故障偵測系統的方塊圖。 FIG6 is a block diagram of a battery cabinet fault detection system for simultaneously detecting voltage and temperature to monitor abnormal cabinet conditions according to another embodiment of the present invention.
以下結合圖式和實施例對本案作進一步說明,以使本發明所屬技術領域的相關人員可以更好的理解本發明並能據以實施,但所舉實施例不作為對本發明的限定。 The following further describes the case with the help of diagrams and examples, so that relevant personnel in the technical field to which the present invention belongs can better understand the present invention and implement it accordingly, but the examples are not intended to limit the present invention.
本案的運用於電池機櫃的故障偵測系統及方法在於監視電池機櫃在短期的電壓變化趨勢及長期的電壓變化趨勢,參考兩個不同週期時間長度的電壓變化趨勢,並以這些趨勢的交集來雙重確認電壓變化的消長狀態。此外, 本案將偵測取得的電壓資料執行回歸運算,並進一步得到對應的時間區段的電壓變化的斜率。如此,本案結合電壓變化趨勢及電壓變化的斜率來綜合判斷電池機櫃是否有產生過電壓的前兆,可以提前得知電池機櫃即將發生過電壓的問題。 The fault detection system and method used in the battery cabinet of this case is to monitor the short-term voltage change trend and long-term voltage change trend of the battery cabinet, refer to the voltage change trend of two different cycle time lengths, and use the intersection of these trends to double confirm the increase and decrease state of the voltage change. In addition, this case will perform regression operation on the voltage data obtained by detection, and further obtain the slope of the voltage change in the corresponding time period. In this way, this case combines the voltage change trend and the voltage change slope to comprehensively judge whether the battery cabinet has a precursor to overvoltage, and can know in advance that the battery cabinet is about to have an overvoltage problem.
本案的運用於電池機櫃的故障偵測系統及方法也會監視電池機櫃的溫度差值的變化。本案具體上係採用時間視窗作為一個資料群組來計算電池機櫃的高溫變化趨勢及低溫變化趨勢,並結合單位時間(每分鐘)的最大溫度值及最小溫度值,綜合上述分析資料來診斷是否有發生工作機能發生異常的前兆,以提前得知電池機櫃的工作異常現象。 The fault detection system and method used in the battery cabinet of this case will also monitor the changes in the temperature difference of the battery cabinet. Specifically, this case uses the time window as a data group to calculate the high temperature change trend and low temperature change trend of the battery cabinet, and combines the maximum temperature value and the minimum temperature value per unit time (per minute). The above analysis data is combined to diagnose whether there is a precursor to abnormal working function, so as to know the abnormal working phenomenon of the battery cabinet in advance.
圖1為本案根據一實施例所繪示的偵測電壓來實現機櫃異常狀態的監視的電池機櫃故障偵測系統的方塊圖。 FIG1 is a block diagram of a battery cabinet fault detection system for monitoring abnormal cabinet conditions by detecting voltage according to an embodiment of the present invention.
於圖1的實施例中,電池機櫃100包括多個電池模組110,每一個電池模組110包括多個電池芯120。
In the embodiment of FIG. 1 , the
電池機櫃故障偵測系統10包括電壓資料採集模組210及微控制器220。電壓資料採集模組210耦接於微控制器220。
The battery cabinet
電壓資料採集模組210經配置以感測各電池模組110的每個電池芯120的電壓資料。電池機櫃故障偵測系統10包括儲存媒體(圖未繪示),用以儲存從每一個電池芯120偵測得到的電壓資料。電壓資料例如是時間電壓曲線。由於電壓資料採集模組210可識別每一個電池芯120,於後續微控制器220檢測到電壓有異常時,可以追溯至發生異常的電池芯120的位置。
The voltage
圖2為本案根據一實施例所繪示的偵測電壓來實現用於電池機櫃的故障偵測方法的流程圖。以下說明請一併參照圖1及圖2。 FIG2 is a flow chart of a fault detection method for a battery cabinet implemented by detecting voltage according to an embodiment of the present invention. Please refer to FIG1 and FIG2 for the following description.
於步驟S205,電壓資料採集模組210持續地感測每一個電池模組的電池芯120的電壓資料。
In step S205, the voltage
於步驟S210,微控制器220持續地以一計算頻率來依據各個電池芯120的電壓資料分別計算各個電池芯120的電壓差資料。為便於說明,下面以單一個電池芯120的電壓差資料來進行說明,並且微控制器220會對電池機櫃100內的每一個電池芯120皆執行相同的偵測手段。
In step S210, the
於步驟S215,微控制器220使用電池機櫃100到目前為止的電壓差資料來計算標準差σ。
In step S215, the
於步驟S220,微控制器220判斷標準差是否大於一初篩門檻值(preliminary threshold)。若標準差大於初篩門檻值,代表到目前為止的電壓差資料異動過大,故微控制器220初步判定電池機櫃100有發生電壓異常的可能性並執行步驟S225。若標準差等於或小於初篩門檻值,則微控制器220進入步驟S250,判斷電池機櫃100目前無異常狀態。
In step S220, the
於步驟S225,微控制器220依據每個第一週期內的電壓差資料來獲得第一電壓差趨勢,並依據每個第二週期內的電壓差資料來獲得第二電壓差趨勢。
In step S225, the
於步驟S230,微控制器220計算第一電壓趨勢及第二電壓趨勢的交集來得到電壓趨勢狀態。
In step S230, the
於步驟S235,微控制器220使用第二週期的電壓差資料來計算電壓斜率。
In step S235, the
於步驟S240,微控制器220判斷電壓趨勢狀態是否符合潛在異常狀態並且電壓斜率是否大於斜率門檻值。若判斷結果為是,則微控制器220執行步驟S245。若判斷結果為否,則微控制器220進入步驟S250,判斷目前無異常狀態。
In step S240, the
於步驟S245,微控制器220產生一警示訊息。由於警示資料攜帶有標準差大於初篩門檻值時的電壓差資料對應的電池芯的位置的資訊,因此使用者可透過警示訊息得知哪一個電池芯發生過電壓。
In step S245, the
以下詳細說明各步驟的細節。 The following is a detailed description of each step.
於步驟S205,電壓資料採集模組210持續取得電池機櫃100中每個電池芯120的電壓資料,並且微控制器220對電壓資料進行資料前處理,例如進行缺失值的差補程序。
In step S205, the voltage
於步驟S210,微控制器220持續以一計算頻率來計算在時間上相鄰的兩筆電壓資料的電壓差資料。於一實施例中,因為電壓資料採集模組210持續取得電池機櫃100中每個電池芯120的電壓資料,微控制器220以每分鐘為間隔計算兩個電壓資料之間的電壓差資料△V。由於電壓資料採集模組210會持續採集電壓資料,於步驟S210的電壓差資料△V也為持續地被計算。
In step S210, the
於步驟S215,微控制器220計算步驟S210計算的所有的電壓差資料△V的標準差σ。於此實施例中,標準差σ可以為每分鐘更新的數值。
In step S215, the
於一實施例中,電壓資料採集模組210持續取得電池機櫃100中每個電池芯120的電壓資料。微控制器220會針對每個電池芯120的電壓資料,以一計算頻率(例如每分鐘)來計算時間上相鄰的兩筆電壓資料的電壓差資料,並基於時間上連續性將所有即時產生的電壓差資料作為樣本來計算標準差σ。
In one embodiment, the voltage
於步驟S220,微控制器220比對標準差σ的數值與初篩門檻值,以初步評估電池機櫃100的異常狀況。舉例而言,當標準差σ大於初篩門檻值時,微控制器220初步判定電池機櫃100存在潛在的異常狀況,但不會立刻發出任何警示訊息,而是再進一步透過長期電壓趨勢及短期電壓趨勢來評估異常狀況的真偽。
In step S220, the
於步驟S225,微控制器220依據每個第一週期內的電壓差資料△V計算第一電壓趨勢(亦稱為短期趨勢)。以第一週期為2個小時為例。微控制器220會以每分鐘的計算頻率來計算當下時間與距離當下時間的前2個小時兩者之間的電壓差資料△V的差值(第一趨勢資料)。舉例而言,微控制器220計算上午10點0分的電壓差資料△V減去上午8點0分的電壓差資料△V所得到的差值、計算上午10點1分的電壓差資料△V減去上午8點1分的電壓差資料△V所得到的差值,以此類推。依據上述規則,微控制器220計算出第一週期內所有的差值來作為多個第一趨勢資料,並且多個第一趨勢資料構成所述第一電壓趨勢。
In step S225, the
第一趨勢資料可表示如下:△V Last round difference =△V current -△V Last round 。其中△V current 為當下週期的時間的電壓差資料,△V Last round 為上一個週期的時間的電壓差資料,△V Last round difference 為電壓差資料的差值。 The first trend data can be expressed as follows: △ V Last round difference =△ V current -△ V Last round . △ V current is the voltage difference data of the current cycle, △ V Last round is the voltage difference data of the previous cycle, and △ V Last round difference is the difference of the voltage difference data.
相似地,微控制器220依據每個第二週期內的電壓差資料△V計算第二電壓趨勢(亦稱為長期趨勢)。以第二週期為24個小時(1日)為例。微控制器220會以每分鐘的計算頻率來計算當下時間與距離當下時間的前24個小時兩者之間的電壓差資料△V的差值(第二趨勢資料)。舉例而言,微控制器220計算2月2日上午8點0分的電壓差資料△V減去2月1日上午8點0分的電壓差資料△V所得到的差值、計算2月2日上午8點1分的電壓差資料△V減去2月1日上午8點1分的電壓差資料△V所得到的差值,以此類推。依據上述規則,微控制器220計算出第二週期內所有的差值來作為多個第二趨勢資料,並且多個第二趨勢資料構成所述第二電壓趨勢。
Similarly, the
第二趨勢資料可表示如下:△V Last day difference =△V current -△V Last day 。其中△V current 為當下週期的時間的電壓差資料,△V Last day 為上一個週期的時間的電壓差資料,△V Last day difference 為電壓差資料的差值。 The second trend data can be expressed as follows: △ V Last day difference =△ V current -△ V Last day . △ V current is the voltage difference data of the current cycle, △ V Last day is the voltage difference data of the previous cycle, and △ V Last day difference is the difference of the voltage difference data.
於一實施例中,第二週期的長度大於第一週期的長度。 In one embodiment, the length of the second cycle is greater than the length of the first cycle.
於一實施例中,第一週期的長度與第二週期的長度的比例為1:X,其中變數X為等於或大於12的正整數。 In one embodiment, the ratio of the length of the first cycle to the length of the second cycle is 1:X, where the variable X is a positive integer equal to or greater than 12.
於步驟S230,微控制器220計算在每一預設區間中的第一電壓趨勢及第二電壓趨勢的交集來得到電壓趨勢狀態。於一實施例中,微控制器220會計算在預設區間中大於標準差的倍數Y的多個第一趨勢資料的第一個數以及小於或等於標準差的倍數Y的多個第一趨勢資料的第二個數,並根據第一個數及第二個數來判斷第一電壓趨勢。其中倍數Y可以為等於或大於1的正整數(例如倍數Y可以為3)。為便於說明,以下取標準差作為與第一趨勢資料的比對基礎。
In step S230, the
以預設區間為2個小時且計算頻率為1分鐘為例。在每兩個小時中,每分鐘有1個第一趨勢資料,故2個小時有120個第一趨勢資料。微控制器220將此預設區間中的120個第一趨勢資料分別與標準差進行比較,統計大於標準差的第一趨勢資料為第一個數(例如為58個)及小於或等於標準差的第一趨勢資料為第二個數(例如62個)。接著,微控制器220比較第一個數及第二個數的大小。當第一個數大於第二個數時,代表以第一週期為基準的電壓變化趨勢呈現分散的狀態,微控制器220可進一步確定存在電壓異常狀態而判定第一電壓趨勢為一正趨勢(positive trend)。當第一個數小於或等於第二個數時,代表以第一週期為基準的電壓變化趨勢呈現集中且穩定的狀態,微控制器220進一步確定不存在電壓異常狀態而判定第一電壓趨勢為一穩定趨勢(stable trend)。
For example, the preset interval is 2 hours and the calculation frequency is 1 minute. In every two hours, there is 1 first trend data per minute, so there are 120 first trend data in 2 hours. The
相似地,微控制器220會計算每個預設區間中大於標準差的倍數Y的多個第二趨勢資料的第三個數以及小於或等於標準差的倍數Y的多個第二趨勢資料的第四個數,並根據第三個數及第四個數來判斷第二電壓趨勢。其中倍數Y可以為等於或大於1的正整數(例如倍數Y可以為3)。為便於說明,以下取標準差作為與第二趨勢資料的比對基礎。
Similarly, the
同樣以預設區間為2個小時且計算頻率為1分鐘為例。在每兩個小時中,每分鐘有1個第二趨勢資料,故2個小時有120個第二趨勢資料。微控制器220將此120個第二趨勢資料分別與標準差進行比較,統計大於標準差的第二趨勢資料為第三個數(例如為21個)及小於或等於標準差的第二趨勢資料為第四個數(例如99個)。接著,微控制器220比較第三個數及第四個數的大小。當第三個數大於第四個數時,代表以第二週期為基準的電壓變化趨勢呈現分散的狀態,微控制器220可進一步確定存在電壓異常狀態而判定第二電壓趨勢為一正趨勢(positive trend)。當第三個數小於或等於第四個數時,代表以第二週期為基準的電壓變化趨勢呈現集中且穩定的狀態,微控制器220進一步確定不存在電壓異常狀態而判定第二電壓趨勢為一穩定趨勢(stable trend)。
Similarly, the default interval is 2 hours and the calculation frequency is 1 minute. In every two hours, there is 1 second trend data per minute, so there are 120 second trend data in 2 hours. The
於一實施例中,上述的標準差可以為基於所有的電池芯的所有的電壓差資料來計算(每個電池芯的趨勢資料比對同一個標準差),或者是基於每一個電池芯的所有電壓差資料來分別計算(每個電池芯有各自的標準差並分別比對每一個電池芯各自的趨勢資料與各自的標準差)。 In one embodiment, the standard deviation can be calculated based on all the voltage difference data of all the battery cells (the trend data of each battery cell is compared with the same standard deviation), or calculated based on all the voltage difference data of each battery cell (each battery cell has its own standard deviation and the trend data of each battery cell is compared with its own standard deviation).
請復參照於步驟S230,微控制器220分別計算在每一個預設區間的第一電壓趨勢及第二電壓趨勢的交集來得到電壓趨勢狀態。於一實施例中,微控制器220將前述第一電壓趨勢(屬於短期趨勢)及第二電壓趨勢(屬於長期趨勢)的判定結果進行交集,而可得到綜合不同週期長度的電壓趨勢變化在每一個預設區間的評估資料。於一實施例中,當第一電壓趨勢為正趨勢且第二電壓趨勢為正趨勢時,兩者的交集為正趨勢。因此,微控制器220會得到在一預設區間中的最終趨勢為正趨勢(存在潛在異常狀態)的評估結果。於另一實施例中,當第一電壓趨勢和第二電壓趨勢中存在一個為穩定趨勢時,微控制器220會得到在一預設區間中的最終趨勢為穩定趨勢的評估結果。微控制器220會計算每一個預設區間的第一電壓趨勢及第二電壓趨勢的交集。據此,微控制器220會得到每個預設區
間(例如每兩個小時)的電壓趨勢狀態(例如正趨勢或穩定趨勢的狀態)。舉例而言,微控制器220可以在每兩個小時就作出電壓趨勢狀態為正趨勢或穩定趨勢的評估結果。
Please refer to step S230 again, the
微控制器220在步驟S210獲得各個電池芯120的多個時間及電壓差資料的分布資料。於一實施例中,微控制器220從這些時間及電壓差資料的實際分布資料找到最擬合的多項式回歸方程式,並使用此多項式回歸方程式來計算每個第二週期的電壓差資料的電壓斜率。舉例而言,微控制器220找到最擬合的二項式方程式Y=ax 2+bx+c,其中a、b及c為常數,x為時間,Y為電壓差資料,接著以每2個小時的電壓差資料的差值及時間差值來計算電壓斜率。
The
電壓斜率可表示如下:Slope rate=(△V Last -△V First )/(△T End -△T Start ),其中△V First 及△T Start 為第二週期的起點電壓差資料及起點時間,△V Last 及△T End 為第二週期的終點電壓差資料及終點時間。 The voltage slope can be expressed as follows: Slope rate =(△ V Last -△ V First )/(△ T End -△ T Start ), where △ V First and △ T Start are the starting voltage difference data and starting time of the second cycle, and △ V Last and △ T End are the ending voltage difference data and ending time of the second cycle.
於步驟S240,當微控制器220同時判斷電壓趨勢狀態為正趨勢而符合潛在異常狀態並且電壓斜率大於斜率門檻值時,判定確實為異常狀態而產生一警示訊息(步驟S245)。否則,微控制器220判定為無異常狀態(步驟S250)。
In step S240, when the
於一實施例中,警示訊息用以指示標準差大於初篩門檻值時的電壓差資料對應的電池芯的位置發生過電壓狀態。 In one embodiment, the warning message is used to indicate that an overvoltage condition occurs at the location of the battery cell corresponding to the voltage difference data when the standard deviation is greater than the initial screening threshold value.
圖3為本案根據一實施例所繪示的偵測溫度來實現機櫃異常狀態的監視的電池機櫃故障偵測系統的方塊圖。 FIG3 is a block diagram of a battery cabinet fault detection system for monitoring abnormal cabinet conditions by detecting temperature according to an embodiment of the present invention.
於圖3的實施例中,電池機櫃400包括多個電池模組410,每一個電池模組410包括多個電池芯420。此實施例中,電池機櫃故障偵測系統20用以偵測電池機櫃400的溫度來判斷電池機櫃400是否為異常狀態。
In the embodiment of FIG. 3 , the
電池機櫃故障偵測系統20包括溫度資料採集模組330及微控制器320。溫度資料採集模組330耦接於微控制器320。
The battery cabinet
於一實施例中,溫度資料採集模組330設置於一個電池機櫃400,經配置以感測所在的電池機櫃400的溫度資料。
In one embodiment, the temperature
電池機櫃故障偵測系統20包括儲存媒體(圖未繪示),用以儲存從電池機櫃400偵測得到的溫度資料。溫度資料例如是時間溫度曲線。由於溫度資料採集模組330可識別電池機櫃400的位置,於後續微控制器320檢測到溫度有異常時,可以追溯至發生異常的電池機櫃400的位置。
The battery cabinet
圖4為本案根據一實施例所繪示的偵測溫度來實現用於電池機櫃的故障偵測方法的流程圖。以下說明請一併參照圖3及圖4。 FIG4 is a flow chart of a method for detecting temperature to implement a fault detection method for a battery cabinet according to an embodiment of the present invention. Please refer to FIG3 and FIG4 for the following description.
於步驟S405,溫度資料採集模組330持續地感測電池機櫃400的溫度資料。
In step S405, the temperature
於步驟S410,微控制器320使用溫度資料來計算溫度斜率及多個溫度特徵資訊中的最大溫度值及最小溫度值。
In step S410, the
於步驟S415,微控制器320持續地以一計算頻率使用溫度資料來計算電池機櫃400的溫度差資料。
In step S415, the
於步驟S420,微控制器320使用溫度差資料來計算電池機櫃400的Z分數(Z-score)。
In step S420, the
於步驟S425,微控制器320分別對溫度斜率設定第一離散分數(level)、對最大溫度值設定第二離散分數、對最小溫度值設定第三離散分數及對Z分數設定第四離散分數。
In step S425, the
於步驟S430,微控制器320加總第一離散分數、第二離散分數、第三離散分數及第四離散分數,以得到電池機櫃400的評分值。
In step S430, the
於步驟S435,微控制器320判斷評分值是否大於一異常門檻值。若評分值大於異常門檻值,則微控制器320執行步驟S440。若評分值小於或等於異常門檻值,則微控制器320進入步驟S445,判斷目前無異常狀態而持續進行監測。
In step S435, the
於步驟S440,微控制器320產生一警示訊息。由於警示訊息指示出溫度特徵資訊中的最大溫度值或最小溫度值的位置,代表發生異常的電池機櫃400,因此使用者可透過警示訊息得知哪一個電池機櫃400發生異常。
In step S440, the
以下詳細說明各步驟的細節。 The following is a detailed description of each step.
於一實施例中,微控制器320以電池機櫃400的所有溫度資料作為一個計算群組來計算溫度資料的溫度斜率、取出最大溫度值及最小溫度值、計算溫度差資料並使用溫度差資料來計算各電池機櫃400的Z分數,詳細說明如下。
In one embodiment, the
於步驟S405,溫度資料採集模組330持續地感測溫度資料,此些溫度資料代表溫度資料採集模組330所在的電池機櫃400的溫度。微控制器320對溫度資料進行資料前處理,例如進行缺失值的差補程序。
In step S405, the temperature
於步驟S410,微控制器320使用溫度資料來計算電池機櫃400的溫度資料的溫度斜率。於一實施例中,溫度資料為時間溫度曲線。
In step S410, the
於一實施例中,溫度斜率包括最大溫度斜率及最小溫度斜率。微控制器320會以一時間視窗(time window)取出一段溫度資料,並獲得此段溫度資料中的最大溫度值及最小溫度值。微控制器320滑動此時間視窗,而取得多個時間視窗各自的最大視窗溫度值T max 及最小視窗溫度值T min 。為利於說明,第i個時間視窗的最大視窗溫度值表示為T max(i)及最小視窗溫度值表示為T min(i)。微控制器320使用兩相鄰視窗的最大視窗溫度值T max(i+1)及T max(i)來計算出最大溫度斜率,及使用兩相鄰視窗的最小視窗溫度值T min(i+1)及T min(i)來計算出最小溫度斜率。
In one embodiment, the temperature slope includes a maximum temperature slope and a minimum temperature slope. The
於一實施例中,相鄰的時間視窗彼此在時間上為部份地重疊。舉例而言,時間視窗的長度為8分鐘,且兩相鄰的時間視窗彼此重疊4分鐘。若8點0分為起點,則第一時間視窗的範圍為8點0分至8點7分,第二時間視窗的範圍為8點4分至8點11分。微控制器320會分別取得8點0分至8點7分(第一時間視窗)的最
大視窗溫度值T max(1)及最小視窗溫度值T min(1),及8點4分至8點11分(第二時間視窗)的最大視窗溫度值T max(2)及最小視窗溫度值T min(2)。值得一提的是,本案不限制時間視窗彼此重疊的程度,於本實施例中以重疊時間視窗的一半長度為例進行說明。
In one embodiment, adjacent time windows partially overlap each other in time. For example, the length of the time window is 8 minutes, and two adjacent time windows overlap each other for 4 minutes. If 8:00 is the starting point, the range of the first time window is 8:00 to 8:7, and the range of the second time window is 8:04 to 8:11. The
於一實施例中,微控制器320依據兩相鄰的時間視窗中的最大視窗溫度值計算最大溫度斜率。最大溫度斜率可以表示如下:S max(i)=,其中k為一個時間視窗的長度(分鐘)。舉例而言,微控制器320取得8點0分至8點7分的最大視窗溫度值T max(1)及8點4分至8點11分的最大視窗溫度值T max(2),計算兩相鄰時間視窗的最大視窗溫度值的差值T max(2)-T max(1),並將差值除以時間視窗長度(以8分鐘為例)而得到的值,作為每個時間視窗的最大溫度斜率,表示如下:。
In one embodiment, the
相似地,微控制器320依據兩相鄰的時間視窗中的最小視窗溫度值計算最小溫度斜率。最小溫度斜率可以表示如下:,其中k為一個時間視窗的長度(分鐘)。舉例而言,微控制器320取得8點0分至8點7分的最小視窗溫度值T min(1)及8點4分至8點11分的最小視窗溫度值T min(2),計算兩相鄰時間視窗中的最小視窗溫度值的差值T min(2)-T min(1),並將差值除以時間視窗長度(以8分鐘為例)而得到的值,作為每個視窗的最小溫度斜率,表示如下:。
Similarly, the
於步驟S410,微控制器320從多個溫度特徵資訊中獲得每分鐘的最大溫度值及最小溫度值。舉例而言,微控制器320記錄8點0分0秒至8點0分59秒此一分鐘內的最大溫度值maxT及最小溫度值minT。以此類推,在持續的監控下,微控制器320會獲得多個最大溫度值maxT及最小溫度值minT。
In step S410, the
於步驟S415,微控制器320持續地以一計算頻率來計算相鄰兩時間的溫度差資料。於一實施例中,微控制器320以每分鐘為間隔計算兩個溫度資
料之間的溫度差資料△T。舉例而言,微控制器320將8點1分的溫度資料減去8點0分的溫度資料,而可得到代表8點1分的溫度差資料△T。由於溫度資料採集模組330會持續採集溫度資料,於步驟S415的溫度差資料△T也為持續地產生。
In step S415, the
於步驟S420,微控制器320使用溫度差資料△T來計算Z分數。於一實施例中,Z分數可表示為:,其中x為當前的溫度差資料△T,u為到目前為止所有溫度差資料△T的平均值,σ為到目前為止所有溫度差資料△T的標準差。
In step S420, the
於步驟S425,微控制器320會在步驟S410獲得的溫度斜率設定第一離散分數。考慮多個相鄰的時間視窗,微控制器320於多個時間視窗中以兩個為一組連續地計算最大溫度斜率及最小溫度斜率。為利於說明,第i個最大溫度斜率表示為S max(i)(從第i+1個視窗及第i個時間視窗的最大視窗溫度值所得到的斜率)及第i個最小溫度斜率表示為S min(i)(從第i+1個視窗及第i個時間視窗的最小視窗溫度值所得到的斜率)。
In step S425, the
於一實施例中,多個連續的時間視窗包括第一視窗、第二視窗及第三視窗。微控制器320以第一視窗及第二視窗的最大視窗溫度值及最小視窗溫度值分別計算出第一最大溫度斜率S max(1)及第一最小溫度斜率S min(1),並以第二視窗及第三視窗的最大視窗溫度值及最小視窗溫度值分別計算出第二最大溫度斜率S max(2)及第二最小溫度斜率S min(2)。
In one embodiment, the plurality of continuous time windows include a first window, a second window, and a third window. The
於一實施例中,微控制器320根據第一最大溫度斜率S max(1)、第一最小溫度斜率S min(1)、第二最大溫度斜率S max(2)及第二最小溫度斜率S min(2)的大小關係來決定溫度斜率屬於哪一個斜率條件。斜率條件可表示如表一。
In one embodiment, the
如表一所示,若第一最大溫度斜率S max(1)小於第二最大溫度斜率S max(2)並且第一最小溫度斜率S min(1)小於第二最小溫度斜率S min(2),則代表溫度變化為:高溫部分呈上升趨勢且低溫部分也呈上升趨勢(整體溫度呈現上升趨勢)。此時,斜率條件屬於第一條件;若第一最大溫度斜率S max(1)大於第二最大溫度斜率S max(2)並且第一最小溫度斜率S min(1)小於第二最小溫度斜率S min(2),則代表溫度變化為:低溫部分呈上升趨勢。此時,斜率條件屬於第二條件;若第一最大溫度斜率S max(1)小於第二最大溫度斜率S max(2)並且第一最小溫度斜率S min(1)大於第二最小溫度斜率S min(2),則代表溫度變化為:高溫部分呈上升趨勢。此時,斜率條件屬於第三條件;若第一最大溫度斜率S max(1)大於第二最大溫度斜率S max(2)並且第一最小溫度斜率S min(1)大於第二最小溫度斜率S min(2),則代表溫度變化為:高溫及低溫部分都呈下降趨勢(整體溫度呈現下降趨勢)。此時,斜率條件屬於第四條件。 As shown in Table 1, if the first maximum temperature slope S max(1) is less than the second maximum temperature slope S max(2) and the first minimum temperature slope S min(1) is less than the second minimum temperature slope S min(2) , it means that the temperature changes as follows: the high temperature part shows an upward trend and the low temperature part also shows an upward trend (the overall temperature shows an upward trend). At this time, the slope condition belongs to the first condition; if the first maximum temperature slope S max(1) is greater than the second maximum temperature slope S max(2) and the first minimum temperature slope S min(1) is less than the second minimum temperature slope S min(2) , it means that the temperature changes as follows: the low temperature part shows an upward trend. At this time, the slope condition belongs to the second condition; if the first maximum temperature slope S max(1) is less than the second maximum temperature slope S max(2) and the first minimum temperature slope S min(1) is greater than the second minimum temperature slope S min(2) , it means that the temperature change is: the high temperature part shows an upward trend. At this time, the slope condition belongs to the third condition; if the first maximum temperature slope S max(1) is greater than the second maximum temperature slope S max(2) and the first minimum temperature slope S min(1) is greater than the second minimum temperature slope S min(2) , it means that the temperature change is: both the high temperature and the low temperature parts show a downward trend (the overall temperature shows a downward trend). At this time, the slope condition belongs to the fourth condition.
於一實施例中,微控制器320根據決定得到的斜率條件配合斜率差S diff 來給定溫度斜率的第一離散分數,如表二所示。
In one embodiment, the
於一實施例中,微控制器320計算出兩相鄰的時間視窗的最大溫度斜率及最小溫度斜率(步驟S410)之後,會進一步計算最大溫度斜率及最小溫度斜率的差值,以得到兩個時間視窗之間的斜率差。斜率差表示如下:S diff =S max(i)-S min(i)。舉例而言,微控制器320將最大溫度斜率S max(1)減去最小溫度斜率S min(1)得到的差值作為斜率差S diff(1)。
In one embodiment, after the
針對每一個斜率條件,微控制器320根據斜率差S diff 與浮動門檻值Thr來設定對應的第一離散分數的數值。如表二所示,若第一條件下,斜率差S diff 大於浮動門檻值Thr,則代表高溫部分的上升趨勢為異常狀態,故設定第一離散分數為3;反之,若斜率差S diff 小於浮動門檻值Thr,則代表高溫部分的上升趨勢為正常狀態,故設定第一離散分數為0。若第二條件下,斜率差S diff 的絕對值大於浮動門檻值Thr,則代表低溫上升的幅度過大,故設定第一離散分數為3;反之,代表低溫上升的幅度在可接受範圍內,故設定第一離散分數為0。若第三條件下,斜率差S diff 大於浮動門檻值的數倍(例如1.5倍),則代表高溫部分的上升趨勢超過可容忍的幅度,故設定第一離散分數為3;反之,代表高溫上升的幅度在可接受範圍內,故設定第一離散分數為0。第四條件代表高溫及低溫部分均呈下降趨勢,代表沒有溫度上升的情況,故設定第一離散分數為0。
For each slope condition, the
於一實施例中,浮動門檻值為1.25,惟本案不以此數值為限。 In one embodiment, the floating threshold value is 1.25, but this case is not limited to this value.
於步驟S425,微控制器320會對在步驟S410中獲得的最大溫度值設定第二離散分數。設定條件如表三所示。
In step S425, the
於一實施例中,微控制器320判斷每分鐘的最大溫度值maxT的狀況,並設定對應的第二離散分數。於一實施例中,微控制器320判斷最大溫度值maxT是否有異常的臨界點為40℃,惟本案不以此數值為限。
In one embodiment, the
如表三所示,若最大溫度值maxT小於或等於40℃,則微控制器320判定電池機櫃400為正常工作狀態,故設定第二離散分數為0。若最大溫度值maxT大於40℃並且電流(絕對值)為大於1,代表電池機櫃400目前處於工作中的狀態,則微控制器320判定高溫的情況可能有風險但風險不高,故設定第二離散分數為1。若最大溫度值maxT大於40℃並且電流(絕對值)為小於或等於1,代表電池機櫃400目前處於閒置狀態。由於正常的閒置狀態下的電池機櫃400的溫度值偏低(例如低於40℃),因此微控制器320判定電池機櫃400目前的高溫的情況有風險,故設定第二離散分數為2。
As shown in Table 3, if the maximum temperature value maxT is less than or equal to 40°C, the
於步驟S425,微控制器320會對在步驟S410中獲得的最小溫度值設定第三離散分數。設定條件如表四所示。
In step S425, the
於一實施例中,微控制器320判斷每分鐘的最小溫度值minT的狀況,並設定對應的第三離散分數。於一實施例中,微控制器320判斷最小溫度值minT是否有異常的臨界點為10℃,惟本案不以此數值為限。
In one embodiment, the
如表四所示,若最小溫度值minT大於10℃,則微控制器320判定電池機櫃400為正常工作狀態,故設定第三離散分數為0。若最小溫度值minT小於10℃並且電流(絕對值)為小於1,代表電池機櫃400目前處於閒置狀態,則微控制器320判定低溫的情況可能有風險但風險不高,故設定第三離散分數為1。若最小溫度值minT小於10℃並且電流(絕對值)為大於或等於1,代表電池機櫃400目前處於工作狀態,因為工作狀態下的電池機櫃400處於低溫的情況(正常的工作狀態下的電池機櫃400的溫度值偏高(例如大於10℃)),則微控制器320判定電池機櫃400有異常狀態,故設定第三離散分數為2。
As shown in Table 4, if the minimum temperature minT is greater than 10°C, the
於步驟S425,微控制器320會對在步驟S420獲得的Z分數設定第四離散分數。設定條件如表五所示。
In step S425, the
於一實施例中,Z分數的兩個臨界點分為5及10,惟本案不以此些數值為限。 In one embodiment, the two critical points of the Z score are 5 and 10, but this case is not limited to these values.
如表五所示,若Z分數小於5,代表電池機櫃400的溫度差距在可接受的範圍內,故微控制器320設定第四離散分數為0。若Z分數介於5及10之間,代表電池機櫃400的溫度差距浮動程度較大,可能存在風險,故微控制器320設定第四離散分數為1。若Z分數大於10,則代表電池機櫃400的溫度差距大,而存在高風險,故微控制器320設定第四離散分數為2。
As shown in Table 5, if the Z score is less than 5, it means that the temperature difference of the
於步驟S430,微控制器320將設定好的第一離散分數、第二離散分數、第三離散分數及第四離散分數進行加總,得到四個參數數值的總和來作為評分值。
In step S430, the
於步驟S435,當評分值大於或等於異常門檻值時,微控制器320會產生警示訊息。
In step S435, when the score value is greater than or equal to the abnormal threshold value, the
於一實施例中,異常門檻值為數值6。舉例而言,若第一離散分數為3(第一條件的高溫上升異常)、第二離散分數為0(每分鐘的最大溫度值未超過40℃)、第三離散分數為0(每分鐘的最小溫度值大於10℃)及第四離散分數為1(溫度動盪的情況可能有風險的情況),則加總上述離散分數後得到總和為4,即評分值為4。由於數值4未超過異常門檻值6,故微控制器320判定無異常狀態。
In one embodiment, the abnormal threshold is a value of 6. For example, if the first discrete score is 3 (the high temperature rise of the first condition is abnormal), the second discrete score is 0 (the maximum temperature value per minute does not exceed 40°C), the third discrete score is 0 (the minimum temperature value per minute is greater than 10°C), and the fourth discrete score is 1 (the temperature fluctuation may be risky), then the sum of the above discrete scores is 4, that is, the score is 4. Since the value 4 does not exceed the abnormal threshold of 6, the
若第一離散分數為3(第三條件的高溫上升趨勢超過可容忍幅度)、第二離散分數為2(每分鐘的最大溫度值超過40℃並且電池機櫃400為閒置狀態)、第三離散分數為1(每分鐘的最小溫度值小於10℃並且電池機櫃400為閒置狀態)及第四離散分數為0(溫度動盪的情況在可接受的範圍內),則加總上述離散分數後得到總和為6,即評分值為6。由於數值6等於異常門檻值6,故微控制器320判定為異常狀態。
If the first discrete score is 3 (the high temperature rising trend of the third condition exceeds the tolerable range), the second discrete score is 2 (the maximum temperature value per minute exceeds 40°C and the
由於警示訊息會指示出溫度特徵資訊中的最大溫度值或最小溫度值的位置,而此位置即代表發生異常的電池機櫃400,因此使用者可透過警示訊息得知哪一個電池機櫃400發生異常。呈上述實施例,使用者可基於有異常的
最大溫度值maxT找到對應的電池機櫃400,而可提早採取對應措施,以防止災害的發生。
Since the warning message indicates the location of the maximum temperature value or the minimum temperature value in the temperature characteristic information, and this location represents the
於一實施例中,本案提出的透過偵測溫度來實現用於電池機櫃的故障偵測方法適用於一個或多個電池機櫃的應用場景,而不限制圖3的電池機櫃400的個數。舉例而言,當圖3的應用場景為多個電池機櫃400,則電池機櫃故障偵測系統20包括多個溫度資料採集模組330。每一個溫度資料採集模組330設置於一個電池機櫃400,經配置以感測所在的電池機櫃400的溫度資料。微控制器320耦接所有的溫度資料採集模組330,執行上述偵測溫度的電池機櫃故障偵測的步驟。
In one embodiment, the fault detection method for a battery cabinet by detecting temperature proposed in the present case is applicable to the application scenario of one or more battery cabinets, without limiting the number of
圖5為本案根據另一實施例所繪示的偵測電壓來實現機櫃異常狀態的監視的電池機櫃故障偵測系統的方塊圖。 FIG5 is a block diagram of a battery cabinet fault detection system for monitoring the abnormal state of the cabinet by detecting voltage according to another embodiment of the present invention.
於圖5的實施例中,應用場景考慮多個電池機櫃400,各電池機櫃400包括多個電池模組410,每一個電池模組410包括多個電池芯420。
In the embodiment of FIG. 5 , the application scenario considers
電池機櫃故障偵測系統30包括多個電壓資料採集模組510及微控制器520。每個電壓資料採集模組510耦接於微控制器520。於此實施例中,每個電壓資料採集模組510設置於對應的電池機櫃400並經配置以感測各電池模組410的每個電池芯420的電壓資料。
The battery cabinet
於一實施例中,電池機櫃故障偵測系統30經配置以執行偵測電壓來實現用於電池機櫃的故障偵測方法。舉例而言,每個電壓資料採集模組510將感測到的電壓資料傳送至微控制器520,微控制器520執行如上述圖2所述的故障偵測方法。
In one embodiment, the battery cabinet
圖6為本案根據另一實施例所繪示的同時偵測電壓及溫度來實現機櫃異常狀態的監視的電池機櫃故障偵測系統的方塊圖。 FIG6 is a block diagram of a battery cabinet fault detection system for simultaneously detecting voltage and temperature to monitor abnormal cabinet conditions according to another embodiment of the present invention.
於圖6的實施例中,應用場景考慮多個電池機櫃400,各電池機櫃400包括多個電池模組410,每一個電池模組410包括多個電池芯420。
In the embodiment of FIG. 6 , the application scenario considers
電池機櫃故障偵測系統40包括多個電壓資料採集模組610、微控制器620及多個溫度資料採集模組630。每個電壓資料採集模組610及每個溫度資料採集模組630分別耦接於微控制器620。
The battery cabinet
於此實施例中,每個電壓資料採集模組610設置於對應的電池機櫃400並經配置以感測各電池模組610的每個電池芯620的電壓資料。
In this embodiment, each voltage
於此實施例中,每個溫度資料採集模組630設置於對應的電池機櫃400並經配置以感測各電池機櫃400的溫度資料。
In this embodiment, each temperature
於一實施例中,電池機櫃故障偵測系統40經配置以同時執行偵測電壓及溫度來實現用於電池機櫃的故障偵測方法。舉例而言,每個電壓資料採集模組610將感測到的電壓資料傳送至微控制器620,並且每個溫度資料採集模組630將感測到的溫度資料傳送至微控制器620,微控制器620執行如上述圖2及圖4所述的故障偵測方法。
In one embodiment, the battery cabinet
於一實施例中,微控制器例如是但不限於數位訊號處理器(Digital Signal Processor,DSP)、特定用途積體電路(Application Specific Integrated Circuit,ASIC)、中央處理器(Central Processing Unit,CPU)、系統單晶片(System on Chip,SoC)、現場可程式設計閘陣列(Field Programmable Gate Array,FPGA)、網路處理器(Network Processor)晶片或上述元件的組合。 In one embodiment, the microcontroller is, for example, but not limited to, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Central Processing Unit (CPU), a System on Chip (SoC), a Field Programmable Gate Array (FPGA), a Network Processor chip, or a combination of the above components.
於一實施例中,電池機櫃可以為儲能系統,例如車載設備的電池站或綠色能源的能源儲存系統等。電池機櫃故障偵測系統及方法可用於檢測上述電池機櫃或儲能系統。 In one embodiment, the battery cabinet can be an energy storage system, such as a battery station for vehicle-mounted equipment or an energy storage system for green energy. The battery cabinet fault detection system and method can be used to detect the above-mentioned battery cabinet or energy storage system.
綜上所述,本案提出一種透過偵測電壓及溫度來實現用於電池機櫃的故障偵測方法及電池機櫃故障偵測系統結合電壓及溫度的偵測,除了可提 早發現電池機櫃的異常狀態,並提升判定有異常的精準度,還可藉由電壓及/或溫度異常的位置,向對應的電池機櫃採取因應措施,以避免災害的發生。 In summary, this case proposes a method for fault detection of battery cabinets by detecting voltage and temperature and a battery cabinet fault detection system that combines voltage and temperature detection. In addition to being able to detect abnormal conditions of battery cabinets early and improve the accuracy of abnormality determination, it is also possible to take countermeasures to the corresponding battery cabinets based on the location of abnormal voltage and/or temperature to avoid disasters.
以上所述僅為本案的具體實例,非因此即侷限本案的申請專利範圍,故舉凡運用本案內容所為的等效變化,均同理皆包含於本案的範圍內,合予陳明。 The above is only a specific example of this case, and does not limit the scope of the patent application of this case. Therefore, all equivalent changes made by applying the content of this case are also included in the scope of this case and should be stated.
S205~S250:步驟 S205~S250: Steps
Claims (18)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW112151518A TWI882619B (en) | 2023-12-29 | 2023-12-29 | Failure detection method and system for battery racks |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW112151518A TWI882619B (en) | 2023-12-29 | 2023-12-29 | Failure detection method and system for battery racks |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI882619B true TWI882619B (en) | 2025-05-01 |
| TW202526346A TW202526346A (en) | 2025-07-01 |
Family
ID=96581778
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW112151518A TWI882619B (en) | 2023-12-29 | 2023-12-29 | Failure detection method and system for battery racks |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI882619B (en) |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6138216B2 (en) * | 2014-11-20 | 2017-05-31 | 寧徳時代新能源科技股▲分▼有限公司 | Battery cabinet management method, apparatus, and battery management system |
| US20190036178A1 (en) * | 2017-07-28 | 2019-01-31 | Northstar Battery Company, Llc | Systems and methods for detecting thermal runaway of a battery |
| TW201925813A (en) * | 2017-11-23 | 2019-07-01 | 台達電子工業股份有限公司 | Battery module with abnormality detection function and power storage apparatus and method of controlling the same |
| CN111551858A (en) * | 2020-04-30 | 2020-08-18 | 四川享锂来科技有限公司 | Battery parameter remote acquisition system |
| CN112924875A (en) * | 2021-01-28 | 2021-06-08 | 维沃移动通信有限公司 | Battery detection method and device and electronic equipment |
| CN115356642A (en) * | 2022-08-18 | 2022-11-18 | 三门核电有限公司 | Method for monitoring and evaluating state of storage battery |
| CN115407216A (en) * | 2022-08-19 | 2022-11-29 | 国网山东省电力公司莱芜供电公司 | Ring main unit storage battery health state online monitoring system |
| CN116106756A (en) * | 2023-02-10 | 2023-05-12 | 国网安徽省电力有限公司 | A real-time monitoring device for abnormal state of equipment in a DC power station |
| CN116879788A (en) * | 2023-07-04 | 2023-10-13 | 广东鸿昊升能源科技有限公司 | Energy storage electric cabinet safety detection method, device, equipment and storage medium |
-
2023
- 2023-12-29 TW TW112151518A patent/TWI882619B/en active
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6138216B2 (en) * | 2014-11-20 | 2017-05-31 | 寧徳時代新能源科技股▲分▼有限公司 | Battery cabinet management method, apparatus, and battery management system |
| US20190036178A1 (en) * | 2017-07-28 | 2019-01-31 | Northstar Battery Company, Llc | Systems and methods for detecting thermal runaway of a battery |
| TW201925813A (en) * | 2017-11-23 | 2019-07-01 | 台達電子工業股份有限公司 | Battery module with abnormality detection function and power storage apparatus and method of controlling the same |
| CN111551858A (en) * | 2020-04-30 | 2020-08-18 | 四川享锂来科技有限公司 | Battery parameter remote acquisition system |
| CN112924875A (en) * | 2021-01-28 | 2021-06-08 | 维沃移动通信有限公司 | Battery detection method and device and electronic equipment |
| CN115356642A (en) * | 2022-08-18 | 2022-11-18 | 三门核电有限公司 | Method for monitoring and evaluating state of storage battery |
| CN115407216A (en) * | 2022-08-19 | 2022-11-29 | 国网山东省电力公司莱芜供电公司 | Ring main unit storage battery health state online monitoring system |
| CN116106756A (en) * | 2023-02-10 | 2023-05-12 | 国网安徽省电力有限公司 | A real-time monitoring device for abnormal state of equipment in a DC power station |
| CN116879788A (en) * | 2023-07-04 | 2023-10-13 | 广东鸿昊升能源科技有限公司 | Energy storage electric cabinet safety detection method, device, equipment and storage medium |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202526346A (en) | 2025-07-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN119024189B (en) | Low-speed electric vehicle battery life assessment prediction method and system based on big data | |
| WO2020215721A1 (en) | Method for predicting service life of laser radar | |
| CN114936675B (en) | Fault early warning method and device, storage medium and electronic equipment | |
| KR101733708B1 (en) | Method and system for rating measured values taken from a system | |
| CN112465237B (en) | Fault prediction method, device, equipment and storage medium based on big data analysis | |
| CN111856299A (en) | Method, device and device for determining power status | |
| CN116973788A (en) | Internal short circuit fault detection method, device, computer equipment and storage medium | |
| CN114879054A (en) | Battery safety monitoring method and device, electronic equipment and storage medium | |
| CN116203490A (en) | Sensor fault diagnosis method, device, equipment and storage medium | |
| CN118849789A (en) | A new energy vehicle power battery fault diagnosis method and system | |
| TWI882619B (en) | Failure detection method and system for battery racks | |
| CN116840702A (en) | Method and device for detecting abnormality of storage battery in running state | |
| EP4579260A1 (en) | Failure detection method and failure detection system for battery racks | |
| CN119622529B (en) | Automatic conversion analysis method and system based on implicit co-factor fault model | |
| CN114841382A (en) | Equipment failure detection method, device and storage medium | |
| CN120142954A (en) | A battery pack fault warning method and system based on data analysis | |
| CN120085225A (en) | Battery abnormal connection detection method, electronic device, storage medium and program product | |
| CN118641986A (en) | Thermal runaway warning method and device for power battery | |
| CN118169578A (en) | New energy automobile power battery fault diagnosis method and fault battery positioning method | |
| CN119246963A (en) | A ground resistance detection method and system for an electrostatic management tester | |
| CN118294040A (en) | Temperature sensor state detection method and device, electronic equipment and storage medium | |
| CN117783872A (en) | Data anomaly detection method, device, server and storage medium for power battery | |
| CN117031294A (en) | Battery multi-fault detection method, device and storage medium | |
| CN115270982A (en) | Switch cabinet fault prediction method based on multi-data neural network | |
| CN119535080B (en) | Method, device, equipment and storage medium for diagnosing faults of power adapter |