[go: up one dir, main page]

TWI874727B - Method, machine-readable storage medium, and system for optimization-based image processing for metrology - Google Patents

Method, machine-readable storage medium, and system for optimization-based image processing for metrology Download PDF

Info

Publication number
TWI874727B
TWI874727B TW110143749A TW110143749A TWI874727B TW I874727 B TWI874727 B TW I874727B TW 110143749 A TW110143749 A TW 110143749A TW 110143749 A TW110143749 A TW 110143749A TW I874727 B TWI874727 B TW I874727B
Authority
TW
Taiwan
Prior art keywords
ellipse
parameters
cost function
images
image
Prior art date
Application number
TW110143749A
Other languages
Chinese (zh)
Other versions
TW202230203A (en
Inventor
瓦希布 畢夏拉
史蒂芬妮W 陳
林斌
肖鑫火
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2020/131045 external-priority patent/WO2022109767A1/en
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202230203A publication Critical patent/TW202230203A/en
Application granted granted Critical
Publication of TWI874727B publication Critical patent/TWI874727B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Image Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

One or more images of a device feature are acquired using an imaging tool. A geometrical shape is defined encompassing the relevant pixels of each image, where the geometrical shape is represented in terms of one or more parameters. A cost function is defined whose variables comprise the one or more parameters of the geometrical shape. For each image, numerical optimization is applied to obtain optimal values of the one or more parameters for which the cost function is minimized. The optimal values of the one or more parameters are reported as metrology data pertaining to the device feature.

Description

用於計量的基於最佳化的圖像處理的方法、機器可讀儲存媒 體及系統 Method, machine-readable storage medium and system for measurement based on optimization of image processing

本揭示案的實施例大體而言係關於測量半導體晶圓上的裝置中的精細特徵,並且特定言之係關於藉由使用數學最佳化的圖像處理來獲得精確的計量資料。 Embodiments of the present disclosure generally relate to measuring fine features in devices on semiconductor wafers, and more particularly to obtaining accurate metrology data by using mathematically optimized image processing.

半導體積體電路的製程需要對精細特徵進行高解析度測量,以實現精確計量。計量資料通常用於調諧製程參數以提高製造產量及均勻性。直接從圖像中獲取高解析度圖像及測量尺寸(包括臨界尺寸,(critical dimension;CD))是產生計量資料的一種方式。然而,直接測量會受到雜訊的負面影響,該雜訊可為原始圖像固有的圖像雜訊、測量雜訊(例如,原始成像對象中不存在但由成像設備的限制引入的圖像假影),及/或其他局部假影(例如,局部殘留物或碎片)。 The manufacturing process of semiconductor integrated circuits requires high-resolution measurement of fine features for accurate metrology. Metrology data is often used to tune process parameters to improve manufacturing yield and uniformity. Acquiring high-resolution images and measuring dimensions (including critical dimensions, CD) directly from images is one way to generate metrology data. However, direct measurement is negatively affected by noise, which can be image noise inherent in the original image, measurement noise (e.g., image artifacts that are not present in the original imaged object but introduced by limitations of the imaging equipment), and/or other local artifacts (e.g., local residues or debris).

圖像處理技術用於提高測量精度。一種此圖像處理技術為邊緣偵測。在邊緣偵測技術中,原始圖像中較小的像素區域被偵測到的邊緣周圍的輪廓所包含。但是,邊緣偵測技術特別容易受到圖像雜訊及假影的影響。本揭示案提出了一種用於獲得作為數值最佳化問題的結果並且對雜訊更加穩健的測量值的方法。Image processing techniques are used to improve measurement accuracy. One such image processing technique is edge detection. In edge detection techniques, a smaller area of pixels in the original image is contained by the outline around the detected edge. However, edge detection techniques are particularly susceptible to image noise and artifacts. The present disclosure proposes a method for obtaining a measurement value that is a result of a numerical optimization problem and is more robust to noise.

下文為本揭示案之簡化說明以提供本揭示案某些態樣的基本理解。此說明並非對本揭示案之廣泛概述。此說明既不意欲識別本揭示案之關鍵或臨界元素,亦不意欲描繪本揭示案的特定實施的任何範圍或申請專利範圍的任何範圍。其唯一目的係以簡化形式呈現本揭示案之某些概念,作為稍後呈現的更詳細描述的序言。The following is a simplified description of the disclosure to provide a basic understanding of certain aspects of the disclosure. This description is not an extensive overview of the disclosure. This description is neither intended to identify key or critical elements of the disclosure, nor to describe any scope of a specific implementation of the disclosure or any scope of the scope of the patent application. Its sole purpose is to present some concepts of the disclosure in a simplified form as a prelude to the more detailed description that is presented later.

在本揭示案的一態樣中,使用成像工具獲取裝置特徵的一或多個圖像。成像工具可為基於光學、電子束或X射線的成像工具,或用於獲取圖像的任何其他成像技術。幾何形狀經定義為涵蓋每一圖像的相關像素,其中幾何形狀根據一或多個參數來表示。定義了成本函數,其變數包含幾何形狀的一或多個參數。對於每一圖像,應用數值最佳化以獲得其中成本函數最小化的一或多個參數的最佳值。一或多個參數的最佳值經報告為與裝置特徵有關的計量資料。In one aspect of the disclosure, an imaging tool is used to obtain one or more images of a device characteristic. The imaging tool may be an optical, electron beam, or X-ray based imaging tool, or any other imaging technique for obtaining images. A geometric shape is defined to encompass the relevant pixels of each image, wherein the geometric shape is represented according to one or more parameters. A cost function is defined whose variables include one or more parameters of the geometric shape. For each image, numerical optimization is applied to obtain an optimal value of the one or more parameters in which the cost function is minimized. The optimal value of the one or more parameters is reported as metrology data related to the device characteristic.

幾何形狀可為橢圓形,其中表示橢圓的一或多個參數包含橢圓的長軸直徑、橢圓的短軸直徑、橢圓中心的坐標及橢圓的角度方向。當中心有暗像素的較亮背景代表特徵圖像時,單個橢圓可能就足夠了。暗像素可由橢圓輪廓所涵蓋。The geometric shape may be an ellipse, wherein the one or more parameters representing the ellipse include the diameter of the major axis of the ellipse, the diameter of the minor axis of the ellipse, the coordinates of the center of the ellipse, and the angular orientation of the ellipse. When a brighter background with dark pixels in the center represents a feature image, a single ellipse may be sufficient. The dark pixels may be encompassed by the ellipse outline.

在另一態樣中,可以調整成本函數,以使得數值最佳化產生橢圓環的一或多個參數,該橢圓環在具有低訊雜比的圖像中包含在相對暗背景中的相對較亮像素的環孔。In another aspect, the cost function can be adjusted so that numerical optimization of one or more parameters produces an elliptical ring that includes a ring of relatively bright pixels in a relatively dark background in an image with a low signal-to-noise ratio.

在又一態樣中,裝置特徵可包括具有頂部開口及底部表面的三維(three-dimensional; 3D)孔,該底部表面由於連接孔的頂部開口與底部表面的傾斜側壁被遮擋而無法由成像工具直接成像。頂部橢圓及底部橢圓經定義為分別包含表示孔頂部開口的第一組像素及表示孔底表面的第二組像素。結合已知的(即先驗測量的)尺寸來定義底部橢圓補償了由於傾斜側壁被遮擋而無法直接成像的底部表面。成本函數經過定製,以使得數值最佳化產生頂部橢圓與底部橢圓之間的偏移值。In yet another aspect, a device feature may include a three-dimensional (3D) hole having a top opening and a bottom surface that is not directly imageable by an imaging tool due to obstruction of a sloping sidewall connecting the top opening and the bottom surface of the hole. A top ellipse and a bottom ellipse are defined to include a first set of pixels representing the top opening of the hole and a second set of pixels representing the bottom surface of the hole, respectively. Defining the bottom ellipse in conjunction with known (i.e., a priori measured) dimensions compensates for the bottom surface not being directly imageable due to obstruction of the sloping sidewall. A cost function is tailored so that a numerical optimization produces an offset value between the top ellipse and the bottom ellipse.

本揭示案的實施例係針對一種用於基於數值最佳化的幾何圖像測量的新穎方法,該方法對原始圖像中存在的高雜訊位準或其他類型的圖像假影具有穩健性。圖像假影可能由成像設備的限制、局部碎片或殘留物或經成像裝置的其他固有特性(例如模糊特徵)引入。Embodiments of the present disclosure are directed to a novel method for geometric image measurement based on numerical optimization that is robust to high noise levels or other types of image artifacts present in the original image. Image artifacts may be introduced by limitations of the imaging equipment, local debris or residues, or other inherent characteristics of the imaged device (e.g., blurring features).

本揭示案達成的一個目標係使用從各種成像工具獲得的圖像以非破壞性方式為精細特徵的電子裝置產生計量資料,該等成像工具包括但不限於電子束(e-beam)檢查工具(例如,掃描電子顯微鏡(scanning electron microscope; SEM))、光學成像工具、基於X射線的成像工具等。電子裝置可為形成在晶圓上的先進半導體裝置。3D特徵可具有從幾奈米至幾十或幾百奈米變化範圍內的橫向尺寸。一些半導體裝置可具有精細特徵,不僅具有緊密的橫向尺寸,而且具有高深寬比(high aspect ratio; HAR)。然而,本揭示案不限於任何特定橫向尺寸或任何特定深寬比。經成像的裝置特徵的說明性實例包括但不限於通道孔、狹縫、溝槽等。高深寬比特徵的特定實例包括3D NAND記憶體裝置中的圓形記憶體孔。熟習該項技術者可將所揭示技術的應用外推到任何其他幾何形狀。其他幾何形狀的實例包括溝槽,諸如用於電晶體的淺溝槽隔離的溝槽。3D特徵可為隔離結構或類似特徵陣列的一部分。One objective achieved by the present disclosure is to generate metrology data for fine features of electronic devices in a non-destructive manner using images obtained from various imaging tools, including but not limited to electron beam (e-beam) inspection tools (e.g., scanning electron microscope (SEM)), optical imaging tools, X-ray based imaging tools, etc. The electronic devices can be advanced semiconductor devices formed on a wafer. The 3D features can have lateral dimensions ranging from a few nanometers to tens or hundreds of nanometers. Some semiconductor devices can have fine features that have not only tight lateral dimensions but also high aspect ratios (HAR). However, the present disclosure is not limited to any particular lateral dimensions or any particular aspect ratio. Illustrative examples of imaged device features include, but are not limited to, channel holes, slits, trenches, etc. Specific examples of high depth-width features include circular memory holes in 3D NAND memory devices. One skilled in the art can extrapolate the application of the disclosed technology to any other geometric shapes. Examples of other geometric shapes include trenches, such as trenches used for shallow trench isolation of transistors. The 3D feature can be part of an isolation structure or an array of similar features.

裝置特徵應使用詳細計量來很好地特徵化以能夠調整製程參數。例如,隨著製程(例如蝕刻製程或沉積製程)的進行,特徵的深寬比發生變化。作為特定的說明,在蝕刻製程中,蝕刻速率隨著特徵的深寬比隨時間變化而變化。裝置特徵的準確特性化能夠有效調諧蝕刻製程參數。當前的裝置特徵特性化方法使用沿垂直(或縱向)截面的電子束/光學/X射線圖像,及/或透射電子顯微鏡(transmission electron microscopy; TEM)圖像。此類破壞性成像技術通常僅提供單個平面截面(縱向截面)的圖像,從該平面截面中可獲得有限數目的裝置特性化度量,此舉不適合大批量製造(high-volume manufacturing; HVM)。本揭示案藉由使用數學最佳化從自上而下的成像測量裝置特徵,而不必破壞晶圓以暴露縱向橫截面來解決當前方法的該等及其他缺點。Device features should be well characterized using detailed metrology to enable tuning of process parameters. For example, as a process (e.g., an etching process or a deposition process) progresses, the aspect ratio of a feature changes. As a specific illustration, in an etching process, the etch rate varies as the aspect ratio of the feature changes over time. Accurate characterization of device features enables effective tuning of etching process parameters. Current device characterization methods use electron beam/optical/X-ray images along vertical (or longitudinal) cross sections, and/or transmission electron microscopy (TEM) images. Such destructive imaging techniques typically provide only an image of a single planar cross-section (longitudinal cross-section) from which a limited number of device characterization metrics can be obtained, which is not suitable for high-volume manufacturing (HVM). The present disclosure addresses these and other shortcomings of current methods by using mathematical optimization to measure device features from top-down imaging without having to destroy the wafer to expose the longitudinal cross-section.

本方法的優點包括但不限於對雜訊及圖像假影的穩健性、選擇測量參數的靈活性以及定義與所需測量度量的最佳值相關聯的成本函數的靈活性。 Advantages of the method include, but are not limited to, robustness to noise and image artifacts, flexibility in choosing measurement parameters, and flexibility in defining a cost function associated with the optimal value of a desired measurement metric.

如背景部分中所述,以非破壞性方式提供計量資料的一種現有方法是獲取自上而下的圖像並使用基於邊緣偵測的圖像處理技術。第1A圖圖示具有圓形幾何形狀的裝置特徵的頂視圖的圖像100。第1B圖圖示經由圖像處理識別的圖像100的三個區域(標記為A、B和C),並且單獨的輪廓(虛線輪廓)沿著彼等較小區域中的每一者的偵測邊緣疊加在原始圖像上。第1B圖表示最先進的基於圖像處理的計量。與當前使用的基於邊緣偵測的方法形成鮮明對比,本揭示案揭示了用單個幾何輪廓110(如第1C圖中所示)包含圖像100的相關像素的整個區域D,並在數值上發現幾何輪廓110的最佳參數。當背景120相對亮並且特徵由區域D內相對較暗的像素表示時,此方法運行良好。 As described in the Background section, one existing method of providing metrology data in a non-destructive manner is to obtain a top-down image and use image processing techniques based on edge detection. FIG. 1A illustrates an image 100 of a top view of a device feature having a circular geometry. FIG. 1B illustrates three regions of the image 100 identified via image processing (labeled A, B, and C), and individual outlines (dashed outlines) are superimposed on the original image along the detected edges of each of those smaller regions. FIG. 1B represents state-of-the-art image processing-based metrology. In stark contrast to currently used edge detection-based methods, the present disclosure discloses using a single geometric outline 110 (as shown in FIG. 1C ) to encompass the entire region D of relevant pixels of the image 100 and numerically finding the optimal parameters of the geometric outline 110. This method works well when the background 120 is relatively bright and the features are represented by relatively dark pixels within the region D.

幾何輪廓110可為橢圓200的形狀,如第2圖中所示。定義橢圓200的參數包括長軸210的長度「a」、短軸220的長度「b」、中心坐標(x,y)及橢圓的方向,例如長軸210與水平軸230之間的角度θ。成本函數可根據橢圓的上述參數定義。例如,成本函數經定義為:cast(x,y,a,b,θ)=Values(x,y,a,b,θ)-λ Area(a,b)...(等式1)其中,a=橢圓的長軸直徑,b=橢圓的短軸直徑,(x,y)為橢圓中心的坐標,θ為水平軸與橢圓長軸的夾角,表示橢圓的角度方向, 面積=橢圓的面積;並且 λ為用於最佳化成本函數的調諧參數。 The geometric outline 110 may be in the shape of an ellipse 200, as shown in FIG. 2. The parameters defining the ellipse 200 include the length "a" of the major axis 210, the length "b" of the minor axis 220, the center coordinates (x, y), and the direction of the ellipse, such as the angle θ between the major axis 210 and the horizontal axis 230. The cost function may be defined based on the above parameters of the ellipse. For example, the cost function is defined as: cast ( x,y,a,b,θ )= Values ( x,y,a,b,θ )- λ Area ( a,b )...(Equation 1) where a=the diameter of the major axis of the ellipse, b=the diameter of the minor axis of the ellipse, (x,y) are the coordinates of the center of the ellipse, θ is the angle between the horizontal axis and the major axis of the ellipse, indicating the angular direction of the ellipse, area=the area of the ellipse; and λ is a tuning parameter used to optimize the cost function.

成本函數有兩項:與像素的灰度值相關聯的第一項 ,及與橢圓的面積相關聯的第二項 。調諧參數λ是控制第一項與第二項之間的折衷,以便使最終的成本函數最小化的係數。例如,當第一項變小,且第二項變大時,成本函數的值減小。隨著橢圓的面積變大,第二項變大。當像素的灰度值降低時,即所包含的像素比相關像素周圍的較亮背景暗得多時,第一項變得更小。該類型的成本函數最適合具有相對較高訊雜比的圖像的第一情況。 The cost function has two terms: the first term is associated with the gray value of the pixel , and the second term related to the area of the ellipse . The tuning parameter λ is a coefficient that controls the trade-off between the first and second terms in order to minimize the final cost function. For example, when the first term becomes smaller and the second term becomes larger, the value of the cost function decreases. As the area of the ellipse becomes larger, the second term becomes larger. The first term becomes smaller when the gray value of the pixel decreases, that is, when the included pixels are much darker than the brighter background surrounding the relevant pixel. This type of cost function is best suited for the first case of images with a relatively high signal-to-noise ratio.

在第二情況下,原始圖像可能非常具雜訊,即整個橢圓區域內的訊雜比可能不是最理想的成本函數。例如,如第3A圖中所示,原始圖像300具有較暗的背景,但是圖像內存在具有較亮像素的近似環形區域310。對於此類型的情況,定義兩個橢圓,一個外橢圓320及一個內橢圓330,而非一個橢圓是更好的方法,如第3B圖中所示。兩個橢圓320和330共同定義了一個橢圓環,該環圍繞具有較亮像素的環形區域310。成本函數經定製,以使得數值最佳化產生橢圓環的一或多個參數。隨後,將橢圓環的參數用作計量資料來調諧現有製程。橢圓環的參數可包括環的位置(兩個橢圓的中心)、寬度(即外橢圓的半徑與內橢圓的半徑之差)及方向性(定向,即長軸相對於水平軸的角度)。In the second case, the original image may be very noisy, that is, the signal-to-noise ratio within the entire elliptical area may not be the most ideal cost function. For example, as shown in Figure 3A, the original image 300 has a darker background, but there is an approximately annular area 310 with brighter pixels within the image. For this type of situation, it is a better approach to define two ellipses, an outer ellipse 320 and an inner ellipse 330, rather than one ellipse, as shown in Figure 3B. The two ellipses 320 and 330 together define an elliptical ring that surrounds the annular area 310 with brighter pixels. The cost function is customized so that the value optimizes one or more parameters that produce the elliptical ring. The parameters of the elliptical rings are then used as metrology data to tune the existing process. The parameters of the elliptical rings may include the ring's position (center of the two ellipses), width (i.e., the difference between the radius of the outer ellipse and the radius of the inner ellipse), and directivity (orientation, i.e., the angle of the major axis relative to the horizontal axis).

在第三情況下,可非常有效地使用此揭示的數值最佳化技術以及併入到成本函數中的先驗測量資料。此舉對於具有傾斜側壁440A及440B的蝕刻孔(該孔可為高深寬比的3D結構)的示例性圖像特別有用,如第4A圖中所示的縱向視圖400所示。該孔係在基板主體420之內蝕刻。該孔具有由側壁440A及440B連接的頂部開口450及底表面460,該側壁可能偏離理想的平行側壁430A及430B。若蝕刻製程是理想的,並且隨著蝕刻製程的進行,孔的深度增加沒有影響,則將會產生平行側壁。In the third case, the disclosed numerical optimization techniques and a priori measurement data incorporated into the cost function can be used very effectively. This is particularly useful for exemplary images of an etched hole (which may be a high aspect ratio 3D structure) having slanted sidewalls 440A and 440B, as shown in the longitudinal view 400 shown in FIG. 4A. The hole is etched within a substrate body 420. The hole has a top opening 450 and a bottom surface 460 connected by sidewalls 440A and 440B, which may deviate from ideal parallel sidewalls 430A and 430B. If the etching process is ideal and the depth of the hole increases without effect as the etching process proceeds, parallel sidewalls will result.

第4B圖圖示其側視圖在第4A圖中示出的經成像孔的俯視圖410。頂部橢圓480涵蓋表示頂部開口450的像素,而底部橢圓490涵蓋表示底表面460的像素。注意,此處的背景470亦比表示孔的較暗像素的中心區域相對亮(類似於第1C圖)。歸因於傾斜的側壁440B,底表面460的一部分從獲取自上而下圖像的成像工具的視線中被遮擋。然而,根據先前的測量(可能為破壞性或非破壞性測量),底表面的尺寸是已知的。因此,底部橢圓490的參數可部分取決於被遮擋的特徵部分的先前尺寸知識。成本函數經過定製,以使得數值最佳化產生頂部橢圓480與底部橢圓490的中心之間的偏移值495。偏移值495可為製程參數基於其而調諧的重要計量資料。因此,儘管底部表面被部分遮擋,但可以藉由將先前知識結合到本文所述的數值最佳化技術中來產生可靠的偏移值。 FIG. 4B illustrates a top view 410 of the imaged aperture shown in FIG. 4A in side view. Top ellipse 480 encompasses pixels representing top opening 450, while bottom ellipse 490 encompasses pixels representing bottom surface 460. Note that here too, background 470 is relatively brighter than the center region of darker pixels representing the aperture (similar to FIG. 1C ). Due to the tilted sidewall 440B, a portion of bottom surface 460 is obscured from the line of sight of the imaging tool acquiring the top-down image. However, the dimensions of the bottom surface are known based on prior measurements (which may be destructive or non-destructive). Thus, the parameters of bottom ellipse 490 may depend in part on prior knowledge of the dimensions of the obscured feature. The cost function is tailored so that the numerical optimization produces an offset value 495 between the center of the top ellipse 480 and the bottom ellipse 490. The offset value 495 can be an important metrology data based on which the process parameters are tuned. Therefore, despite the partial obstruction of the bottom surface, a reliable offset value can be produced by incorporating prior knowledge into the numerical optimization technique described herein.

第5圖為根據本揭示案的一些實施例,基於數值最佳化的計量資料產生的示例性方法500的流程圖。方法500可由處理邏輯執行,該處理邏輯可包括硬體(例如,處理裝置、電路系統、專用邏輯、可程式邏輯、微代碼、裝置的硬體、積體電路等)、軟體(例如,在處理裝置上運行或執行的指令),或其組合。儘管以特定的順序或次序示出,除非另有說明,否則可修改方法500或本文用說明性流程圖描述的其他方法中的製程的次序。因此,所說明的實施例應理解為僅作為實例,並且所說明的製程可以不同的次序執行,並且一些製程可以並列執行。另外,在各個實施例中可省略一或多個製程。因此,並非在每個實施例中皆需要所有製程。其他製程流程係可能的。 FIG. 5 is a flow chart of an exemplary method 500 for generating metrology data based on numerical optimization according to some embodiments of the present disclosure. The method 500 may be performed by processing logic that may include hardware (e.g., a processing device, a circuit system, dedicated logic, programmable logic, microcode, hardware of a device, integrated circuits, etc.), software (e.g., instructions running or executed on a processing device), or a combination thereof. Although shown in a particular sequence or order, the order of processes in the method 500 or other methods described herein with illustrative flow charts may be modified unless otherwise stated. Therefore, the illustrated embodiments should be understood as examples only, and the illustrated processes may be performed in a different order, and some processes may be performed in parallel. Additionally, one or more processes may be omitted in various embodiments. Therefore, not all processes are required in every embodiment. Other process flows are possible.

在方法500中,在方塊510處,視情況,成像工具參數可在獲取圖像之前調整以最大化訊雜比。如上所述,成像工具可為基於電子束的、基於光學的或基於X射線的。本揭示案的範疇完全不受使用何類型的成像工具的限制。 In method 500, at block 510, imaging tool parameters may be adjusted prior to acquiring an image to maximize signal-to-noise ratio, as appropriate. As described above, the imaging tool may be electron beam based, optical based, or X-ray based. The scope of the present disclosure is in no way limited by the type of imaging tool used.

在方塊520處,圖像由要測量的裝置特徵的成像工具獲取。例如,孔的直徑可為要測量以產生計量資料的臨界尺寸(CD)。通常,獲取裝置特徵的多於一個圖像。 At block 520, an image is acquired by an imaging tool of the device feature to be measured. For example, the diameter of a hole may be a critical dimension (CD) to be measured to generate metrology data. Typically, more than one image of the device feature is acquired.

在方塊530處,測量區域的幾何輪廓及輪廓的參數由處理裝置定義。例如,若橢圓將涵蓋成像裝置特徵的像素,則定義橢圓的參數,例如橢圓的長軸、短軸、中心坐標及方向性,如第2圖中所述。At block 530, the geometric outline of the measurement area and parameters of the outline are defined by the processing device. For example, if an ellipse is to encompass the pixels of the imaging device feature, the parameters of the ellipse are defined, such as the major axis, minor axis, center coordinates, and directionality of the ellipse, as described in FIG.

在方塊540處,成本函數係根據所選幾何輪廓的參數定義。成本函數的一實例之前在等式1中給出。等式的第一項可為相關像素的所有灰度值的總和。調諧參數可與預定的閾值灰度值相關聯,例如原始圖像中所有像素的平均灰度值,該等像素包括表示裝置特徵的相關像素及表示周圍基板的背景像素。成本函數可經定製以表示橢圓內部的平均像素值(例如,第1C圖)、橢圓環內部的像素值(例如,第3B圖)、兩個橢圓輪廓之間的位移或偏移(例如,第4B圖),或為一種用於製程控制的方便計量度量的任何其他成本函數。At block 540, a cost function is defined based on the parameters of the selected geometric profile. An example of a cost function is previously given in Equation 1. The first term of the equation may be the sum of all grayscale values of the associated pixels. The tuning parameter may be associated with a predetermined threshold grayscale value, such as the average grayscale value of all pixels in the original image, including the associated pixels representing device features and background pixels representing the surrounding substrate. The cost function may be customized to represent the average pixel value inside an ellipse (e.g., FIG. 1C ), the pixel value inside an elliptical ring (e.g., FIG. 3B ), the displacement or offset between two elliptical profiles (e.g., FIG. 4B ), or any other cost function that is a convenient metrology metric for process control.

在方塊550處,處理裝置應用數值最佳化技術來發現所得成本函數為其最小化的參數值。數值最佳化的一個示例係基於Nelder-Mead方法,但是熟習該項技術者將理解,本揭示案的範疇不受使用何特定最佳化技術的限制。At block 550, the processing device applies a numerical optimization technique to find the parameter values that minimize the resulting cost function. One example of numerical optimization is based on the Nelder-Mead method, but those skilled in the art will understand that the scope of the present disclosure is not limited to the use of any particular optimization technique.

在方塊560處,提供最小化成本函數的參數的最佳值作為輸出。該輸出可經報告為基於計量的製程控制工具的輸入資料。At block 560, the optimal values of the parameters that minimize the cost function are provided as outputs. The outputs may be reported as input data to a metrology-based process control tool.

第6圖圖示電腦系統600的機器,在該電腦系統中可執行用於使機器執行本文論述的任何一或多個方法的一組指令。在替代實施中,機器可連接至(例如,網路連接至)區域網路(Local Area Network; LAN)、企業內部網路、企業間網路,或網際網路中的其他機器。機器可在客戶端伺服器網路環境中作為伺服器或客戶端機器操作,或在同級間(分佈式)網路環境中作為同級機器操作,或在雲端計算基礎設施或環境中作為伺服器或客戶端機器操作。FIG. 6 illustrates a machine of a computer system 600 in which a set of instructions for causing the machine to perform any one or more of the methods discussed herein may be executed. In alternative implementations, the machine may be connected (e.g., networked) to other machines in a local area network (LAN), an intranet, an inter-enterprise network, or the Internet. The machine may operate as a server or client machine in a client-server network environment, or as a peer machine in a peer-to-peer (distributed) network environment, or as a server or client machine in a cloud computing infrastructure or environment.

該機器可為個人電腦(personal computer; PC)、平板電腦、機上盒(STB)、網絡設備、伺服器、網路路由器、交換機或橋接器,或者能夠執行(順序地或以其他方式)指定待由該機器採取的動作的一組指令的任何機器。此外,雖然圖示了單個機器,但應亦採用術語「機器」以包括個別地或共同地執行一組(或多組)指令以進行本文所論述的方法中之任何一或多者的機器的任何集合。The machine may be a personal computer (PC), a tablet, a set-top box (STB), a network device, a server, a network router, a switch or a bridge, or any machine capable of executing (sequentially or otherwise) a set of instructions that specify actions to be taken by the machine. Furthermore, although a single machine is illustrated, the term "machine" should also be taken to include any collection of machines that individually or collectively execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.

示例性電腦系統600包括處理裝置602、主記憶體604(例如,唯讀記憶體(read-only memory; ROM)、快閃記憶體、動態隨機存取記憶體(dynamic random access memory; DRAM)(諸如同步DRAM(SDRAM)等))、靜態記憶體606(例如,快閃記憶體、靜態隨機存取記憶體(static random access memory; SRAM)等),及資料儲存裝置616,上述各者經由匯流排608與彼此通訊。The exemplary computer system 600 includes a processing device 602, a main memory 604 (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) (such as synchronous DRAM (SDRAM)), etc.), a static memory 606 (e.g., flash memory, static random access memory (SRAM), etc.), and a data storage device 616, all of which communicate with each other via a bus 608.

處理裝置602表示一或多個通用處理裝置,諸如微處理器、中央處理單元等。更特定言之,處理裝置可為複雜指令集計算(complex instruction set computing; CISC)微處理器、精簡指令集計算(reduced instruction set computing; RISC)微處理器、極長指令字(very long instruction word; VLIW)微處理器、實施其他指令集的處理器,或實施指令集組合的處理器。處理裝置602亦可為一或多個專用處理裝置,諸如特殊應用積體電路(application specific integrated circuit; ASIC)、現場可程式閘陣列(field programmable gate array; FPGA)、數位信號處理器(digital signal processor; DSP)、網路處理器等等。處理裝置602經配置以執行用於進行本文論述的操作及步驟的指令。Processing device 602 represents one or more general-purpose processing devices, such as a microprocessor, a central processing unit, etc. More specifically, the processing device can be a complex instruction set computing (CISC) microprocessor, a reduced instruction set computing (RISC) microprocessor, a very long instruction word (VLIW) microprocessor, a processor implementing other instruction sets, or a processor implementing a combination of instruction sets. Processing device 602 can also be one or more special-purpose processing devices, such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), a network processor, etc. The processing device 602 is configured to execute instructions for performing the operations and steps discussed herein.

電腦系統600可進一步包括網路介面裝置622以在網路618上通信。電腦系統600亦可包括視訊顯示單元610(例如,液晶顯示器(liquid crystal display; LCD)或陰極射線管(cathode ray tube; CRT))、文數字輸入裝置612(例如,鍵盤)、游標控制裝置614(例如,滑鼠或觸摸板))、信號產生裝置620(例如,揚聲器)、圖形處理單元(未示出)、視訊處理單元(未示出)及音訊處理單元(未示出)。The computer system 600 may further include a network interface device 622 for communicating on the network 618. The computer system 600 may also include a video display unit 610 (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)), an alphanumeric input device 612 (e.g., a keyboard), a cursor control device 614 (e.g., a mouse or a touch pad), a signal generating device 620 (e.g., a speaker), a graphics processing unit (not shown), a video processing unit (not shown), and an audio processing unit (not shown).

資料儲存裝置616可包括機器可讀儲存媒體624(亦稱為電腦可讀媒體),在該儲存媒體上儲存實施本文所述的方法或功能中之任何一或多者的一或多組指令或軟體。指令亦可在其由電腦系統600執行期間完全地或至少部分地駐存在主記憶體604內及/或在處理裝置602內,主記憶體604及處理裝置602亦構成機器可讀儲存媒體。The data storage device 616 may include a machine-readable storage medium 624 (also referred to as a computer-readable medium) on which one or more sets of instructions or software implementing any one or more of the methods or functions described herein are stored. The instructions may also reside completely or at least partially in the main memory 604 and/or in the processing device 602 during their execution by the computer system 600, the main memory 604 and the processing device 602 also constituting machine-readable storage media.

在一個實施中,指令包括用於實現與高度差確定相對應的功能的指令。雖然機器可讀儲存媒體624在示例性實施中經圖示為單個媒體,但術語「機器可讀儲存媒體」應視為包括儲存一或多組指令的單個媒體或多個媒體(例如,集中式或分佈式資料庫,及/或相關聯的快取記憶體及伺服器)。術語「機器可讀儲存媒體」亦應視為包括能夠儲存或編碼由機器執行的指令集並且使得機器執行本揭示案的一或多個方法中之任一者的任何媒體。術語「機器可讀儲存媒體」應相應地視為包括但不限於,固態記憶體及光學及磁性媒體。In one implementation, the instructions include instructions for implementing functions corresponding to the height difference determination. Although the machine-readable storage medium 624 is illustrated as a single medium in the exemplary implementation, the term "machine-readable storage medium" should be construed to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated cache memory and server) storing one or more sets of instructions. The term "machine-readable storage medium" should also be construed to include any medium capable of storing or encoding a set of instructions executed by a machine and causing the machine to perform any of the one or more methods of the present disclosure. The term "machine-readable storage medium" should accordingly be construed to include, but not be limited to, solid-state memory and optical and magnetic media.

已經根據對電腦記憶體內的資料位元的操作的演算法及符號表示來呈現前述詳細描述的某些部分。該等演算法描述及表示是熟習本資料處理領域者用來最有效地向熟習此項技術者者傳達其工作的實質的方式。演算法在本文中並且通常被認為是導致所需結果的自洽操作序列。該等操作是彼等需要對物理量進行實體操作的操作。通常,儘管並非必須,該等量採用能夠儲存、組合、比較及以其他方式處理的電信號或磁信號的形式。有時,主要是出於常用的原因,將該等信號稱為位元、值、元素、符號、字符、術語、數字等已被證明是方便的。Some portions of the foregoing detailed description have been presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. Such algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to those skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of operations leading to a desired result. The operations are those requiring physical manipulation of physical quantities. Usually, though not necessarily, such quantities take the form of electrical or magnetic signals capable of being stored, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.

然而,應考慮到,所有該等及類似術語皆與適當的物理量相關聯,並且僅為應用於該等量的方便標籤。除非從上述討論中清楚地另有說明,否則應理解,在整個描述中,使用諸如「獲得」或「關聯」或「執行」或「產生」等術語的論述代表一個電腦系統或類似的電子計算裝置的動作或製程,該電腦系統或類似的電子計算裝置操作且轉換在電腦系統的暫存器及記憶體中表示為物理(電子)量的資料,並將其轉換為在電腦系統記憶體或暫存器或其他此類資訊儲存裝置中類似地表示為物理量的其他資料。However, it should be considered that all such and similar terms are associated with the appropriate physical quantities and are merely convenient labels applied to such quantities. Unless otherwise clear from the above discussion, it should be understood that throughout the description, discussions using terms such as "obtain" or "associated" or "perform" or "produce" represent actions or processes of a computer system or similar electronic computing device that operates and converts data represented as physical (electronic) quantities in the computer system's registers and memories and converts it into other data similarly represented as physical quantities in the computer system's memories or registers or other such information storage devices.

本揭示案亦涉及用於執行本文所述的操作的裝置。該裝置可以經專門建構用於預期目的,或者其可包含由儲存在電腦中的電腦程式選擇性啟動或重新配置的通用電腦。此電腦程式可儲存在電腦可讀儲存媒體中,諸如但不限於任何類型的磁碟,包括軟碟、光碟、CD-ROM及磁光碟、唯讀記憶體(ROM)、隨機存取記憶體(random access memory; RAM)、可抹除可程式化唯讀記憶體(EPROM)、電可抹除可程式化唯讀記憶體(EEPROM)、磁卡或光卡,或適合儲存電子指令的任何類型的媒體,每一媒體皆耦接至電腦系統匯流排。The present disclosure also relates to an apparatus for performing the operations described herein. The apparatus may be specially constructed for the intended purpose, or it may comprise a general purpose computer selectively activated or reconfigured by a computer program stored in the computer. The computer program may be stored in a computer readable storage medium such as, but not limited to, any type of disk, including floppy disks, optical disks, CD-ROMs and magneto-optical disks, read-only memory (ROM), random access memory (RAM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), magnetic or optical cards, or any type of medium suitable for storing electronic instructions, each of which is coupled to a computer system bus.

本文呈現的演算法及顯示器與任何特定的電腦或其他裝置無本質的關係。各種通用系統可與根據本文的教示的程式一起使用,或者構造更專門的裝置來執行該方法可證明是方便的。用於各種該等系統的結構將出現在以下描述中。此外,本揭示案沒有參照任何特定的程式設計語言進行描述。應當理解,可使用多種程式設計語言來實施所描述的本揭示案的教示。The algorithms and displays presented herein are not intrinsically related to any particular computer or other device. Various general purpose systems may be used with programs according to the teachings herein, or it may prove convenient to construct more specialized devices to perform the methods. Structures for various such systems will appear in the following description. In addition, the present disclosure is not described with reference to any particular programming language. It should be understood that a variety of programming languages may be used to implement the teachings of the present disclosure as described.

本揭示案可作為電腦程式產品或軟體提供,其可包括其上儲存有指令的機器可讀媒體,該等指令可用於對電腦系統(或其他電子設備)進行程式化以執行根據本揭示案的製程。機器可讀媒體包括用於以機器(例如,電腦)可讀的形式儲存資訊的任何機制。例如,機器可讀(例如,電腦可讀)媒體包括機器(例如,電腦)可讀儲存媒體,諸如唯讀記憶體(「ROM」)、隨機存取記憶體(「RAM」)、磁碟儲存媒體、光學儲存媒體、快閃記憶體裝置等。The present disclosure may be provided as a computer program product or software, which may include a machine-readable medium having stored thereon instructions that may be used to program a computer system (or other electronic device) to perform a process according to the present disclosure. Machine-readable media include any mechanism for storing information in a form readable by a machine (e.g., a computer). For example, machine-readable (e.g., computer-readable) media include machine (e.g., computer) readable storage media such as read-only memory ("ROM"), random access memory ("RAM"), disk storage media, optical storage media, flash memory devices, etc.

在上述說明書中,已參考本揭示案的特定示例性實施描述了本揭示案的實施方式。將顯而易見地,在不背離如以下申請專利範圍中闡述的本揭示案的實施的更廣泛精神及範圍的情況下,可對本揭示案進行各種修改。因此,說明書及附圖被認為是說明性的而非限制性的。In the foregoing specification, the embodiments of the present disclosure have been described with reference to specific exemplary implementations of the present disclosure. It will be apparent that various modifications may be made to the present disclosure without departing from the broader spirit and scope of the embodiments of the present disclosure as set forth in the claims below. Accordingly, the specification and drawings are to be regarded as illustrative rather than restrictive.

100:圖像 120:背景 200:橢圓 210:長軸 220:短軸 230:水平軸 300:原始圖像 310:環形區域 320:外橢圓 330:內橢圓 400:縱向視圖100: Image 120: Background 200: Ellipse 210: Long axis 220: Short axis 230: Horizontal axis 300: Original image 310: Annular area 320: Outer ellipse 330: Inner ellipse 400: Vertical view

410:經成像孔的俯視圖 410: Top view of the imaging hole

420:基板主體 420: Substrate body

430A:平行側壁 430A: Parallel side walls

430B:平行側壁 430B: Parallel side walls

440A:側壁 440A: Side wall

440B:側壁 440B: Side wall

450:頂部開口 450: Top opening

460:底表面 460: Bottom surface

470:背景 470: Background

480:頂部橢圓 480: Top oval

490:底部橢圓 490: Bottom ellipse

495:偏移值 495:Offset value

500:方法 500:Methods

520:操作 520: Operation

530:操作 530: Operation

540:操作 540: Operation

550:操作 550: Operation

560:操作 560: Operation

600:電腦系統 600: Computer system

602:處理裝置 602: Processing device

604:主記憶體 604: Main memory

606:靜態記憶體 606: Static Memory

608:匯流排 608:Bus

610:視訊顯示單元 610: Video display unit

612:文數字輸入裝置 614:游標控制裝置 616:資料儲存裝置 618:網路 620:信號產生裝置 622:網路介面裝置 624:機器可讀儲存媒體 (x,y):中心坐標 θ:角度 612: Alphanumeric input device 614: Cursor control device 616: Data storage device 618: Network 620: Signal generating device 622: Network interface device 624: Machine readable storage medium (x, y): Center coordinates θ: Angle

本揭示案將從下文給出的詳細描述及從本揭示案的各個實施例的附圖更加全面地理解。The present disclosure will be more fully understood from the detailed description given below and from the accompanying drawings of various embodiments of the present disclosure.

第1A圖圖示裝置特徵(記憶體孔)的原始圖像的俯視圖。FIG. 1A shows a top view of an original image of a device feature (memory hole).

第1B圖示對於傳統的基於邊緣的偵測技術,疊加在第1A圖的原始圖像上的橢圓形輪廓。FIG. 1B shows an elliptical outline superimposed on the original image of FIG. 1A for a conventional edge-based detection technique.

第1C圖圖示根據本揭示案之實施例,疊加在第1A圖的原始圖像上的最佳橢圓形。FIG. 1C illustrates a preferred ellipse superimposed on the original image of FIG. 1A according to an embodiment of the present disclosure.

第2圖圖示根據本揭示案之實施例,用以建構成本函數的最佳橢圓形的參數。FIG. 2 illustrates parameters for constructing an optimal ellipse of a cost function according to an embodiment of the present disclosure.

第3A圖圖示特徵的原始圖像,其示出了在相對暗背景中具有一定寬度的近似明亮的橢圓環。FIG. 3A illustrates the original image of the feature, which shows a nearly bright elliptical ring of a certain width against a relatively dark background.

第3B圖圖示根據本揭示案之實施例,針對具有暗背景的明亮橢圓環定製的成本函數的構造。FIG. 3B illustrates the construction of a cost function customized for bright elliptical rings with a dark background according to an embodiment of the present disclosure.

第4A圖圖示具有非均勻側壁傾斜的3D記憶體孔的示意性縱向橫截面側視圖。FIG. 4A illustrates a schematic longitudinal cross-sectional side view of a 3D memory hole with non-uniform sidewall tilt.

第4B圖圖示根據本揭示案之實施例,疊加在第4A圖中示意性完整示出的記憶體孔的俯視圖圖像上的最佳橢圓形。FIG. 4B illustrates a preferred ellipse superimposed on the top view image of the memory hole schematically shown in its entirety in FIG. 4A according to an embodiment of the present disclosure.

第5圖圖示根據本揭示案之實施例,描述用於計量的基於最佳化的圖像處理的示例性方法的流程圖。FIG. 5 illustrates a flow chart describing an exemplary method for metrology-based optimization-based image processing according to an embodiment of the present disclosure.

第6圖圖示示例性電腦系統,在該電腦系統中可執行用於執行本文論述的任何一或多個方法的一組指令。FIG. 6 illustrates an exemplary computer system in which a set of instructions for performing any one or more of the methodologies discussed herein may be executed.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in the order of storage institution, date, and number) None Foreign storage information (please note in the order of storage country, institution, date, and number) None

320:外橢圓 320: Outer ellipse

330:內橢圓 330: Inner ellipse

Claims (20)

一種藉由一處理裝置執行的用於基於最佳化的圖像處理以提供計量資料的方法,該方法包含以下步驟:使用一成像工具獲取一裝置特徵的一或多個圖像,其中該一或多個圖像是自上而下的圖像;定義涵蓋該一或多個圖像的每一圖像的相關像素的一幾何形狀,其中該幾何形狀係根據一或多個參數來表示;定義一成本函數,其變數包含該幾何形狀的該一或多個參數;對於每一圖像,應用數值最佳化以獲得其中該成本函數的一值最小的該一或多個參數的最佳值;以及將該一或多個參數的該等最佳值作為關於該裝置特徵的計量資料提供。 A method for providing metrological data by optimization-based image processing performed by a processing device, the method comprising the following steps: using an imaging tool to obtain one or more images of a device feature, wherein the one or more images are top-down images; defining a geometric shape covering relevant pixels of each image of the one or more images, wherein the geometric shape is represented according to one or more parameters; defining a cost function whose variables include the one or more parameters of the geometric shape; for each image, applying numerical optimization to obtain optimal values of the one or more parameters in which a value of the cost function is minimized; and providing the optimal values of the one or more parameters as metrological data about the device feature. 如請求項1所述之方法,進一步包含以下步驟:在獲取該一或多個圖像之前,調諧成像工具參數以最大化該一或多個圖像的訊雜比。 The method as described in claim 1 further comprises the following steps: before acquiring the one or more images, tuning imaging tool parameters to maximize the signal-to-noise ratio of the one or more images. 如請求項1所述之方法,其中該幾何形狀包含一橢圓,其中表示該橢圓的該一或多個參數包含該橢圓的一長軸直徑、該橢圓的一短軸直徑、該橢圓的一中心的坐標及該橢圓的角度方向。 A method as described in claim 1, wherein the geometric shape comprises an ellipse, wherein the one or more parameters representing the ellipse comprise a major axis diameter of the ellipse, a minor axis diameter of the ellipse, the coordinates of a center of the ellipse, and the angular direction of the ellipse. 如請求項3所述之方法,其中該成本函數經 定義為:cost(x,y,a,b,θ)=Values(x,y,a,b,θ)-λ Area(a,b)其中,a=橢圓的長軸直徑,b=橢圓的短軸直徑,(x,y)為橢圓中心的坐標,θ為一水平軸與該橢圓的該長軸之間的一夾角,表示該橢圓的一角度方向,面積=橢圓的面積;並且λ為用於最佳化該成本函數的一調諧參數。 A method as described in claim 3, wherein the cost function is defined as: cost ( x,y,a,b,θ ) = Values ( x,y,a,b,θ ) - λ Area ( a,b ) wherein a = the diameter of the major axis of the ellipse, b = the diameter of the minor axis of the ellipse, (x,y) are the coordinates of the center of the ellipse, θ is an angle between a horizontal axis and the major axis of the ellipse, representing an angular direction of the ellipse, area = the area of the ellipse; and λ is a tuning parameter used to optimize the cost function. 如請求項4所述之方法,其中該調諧參數λ控制該成本函數(Values(x,y,a,b,θ))的第一項與該成本函數(λ Area(a,b))的第二項之間的折衷。 A method as described in claim 4, wherein the tuning parameter λ controls the tradeoff between a first term of the cost function ( Values ( x,y,a,b,θ )) and a second term of the cost function ( λ Area ( a,b )). 如請求項4所述之方法,其中該成本函數經最小化的該橢圓的該等參數的該最佳值代表最大且最暗的橢圓,其在一相對較亮的背景中涵蓋該等相關像素。 The method of claim 4, wherein the optimal values of the parameters of the ellipse for which the cost function is minimized represent the largest and darkest ellipse that encompasses the relevant pixels in a relatively bright background. 如請求項3所述之方法,進一步包含以下步驟:在具有低訊雜比的一圖像中偵測在一相對暗背景中具有相對較亮像素的一環孔;定義共同構成一橢圓環的一內橢圓及一外橢圓,該橢圓環涵蓋該等相對較亮的像素的該環;以及調整該成本函數,以使得該數值最佳化產生該橢圓環的一或多個參數。 The method as described in claim 3 further comprises the following steps: detecting an annulus having relatively bright pixels in a relatively dark background in an image having a low signal-to-noise ratio; defining an inner ellipse and an outer ellipse that together form an elliptical ring, the elliptical ring covering the ring of relatively bright pixels; and adjusting the cost function so that the value optimizes one or more parameters that generate the elliptical ring. 如請求項3所述之方法,其中該裝置特徵包 含具有一頂部開口及一底表面的一孔,該底部表面由於無法由該成像工具直接成像而被部分遮擋,其中該頂部開口與該底部表面由傾斜側壁連接。 The method as described in claim 3, wherein the device features a hole having a top opening and a bottom surface, the bottom surface being partially obscured because it cannot be directly imaged by the imaging tool, wherein the top opening and the bottom surface are connected by an inclined side wall. 如請求項8所述之方法,進一步包含以下步驟:從先前測量獲得該孔的該底部表面的已知尺寸;定義分別包含表示該頂部開口的一第一組像素及表示該底表面的一第二組像素的一頂部橢圓及一底部橢圓,其中該底部橢圓結合從先前測量獲得的該底表面的該等已知尺寸;以及定製該成本函數,以使得該數值最佳化產生該頂部橢圓與該底部橢圓之間的一偏移值。 The method as described in claim 8 further comprises the steps of: obtaining known dimensions of the bottom surface of the hole from previous measurements; defining a top ellipse and a bottom ellipse respectively including a first set of pixels representing the top opening and a second set of pixels representing the bottom surface, wherein the bottom ellipse combines the known dimensions of the bottom surface obtained from previous measurements; and customizing the cost function so that the value optimizes an offset value between the top ellipse and the bottom ellipse. 如請求項9所述之方法,其中結合該等已知的尺寸來定義該底部橢圓補償了由於該等傾斜側壁被遮擋而無法直接成像的該底部表面。 The method of claim 9, wherein defining the bottom ellipse in conjunction with the known dimensions compensates for the bottom surface that cannot be directly imaged due to being obscured by the inclined side walls. 一種儲存指令的非暫態機器可讀儲存媒體,該等指令當被執行時,使得一處理裝置執行包含以下各項的操作:定義包含使用一成像工具獲取的一裝置特徵的一或多個圖像的每一圖像的相關像素的一幾何形狀,其中該一或多個圖像是自上而下的圖像,且其中該幾何形狀根據一或多個參數來表示;定義一成本函數,其變數包含該幾何形狀的該一或多個參數; 對於每一圖像,應用數值最佳化以獲得其中該成本函數的一值最小的該一或多個參數的最佳值;以及將該一或多個參數的該等最佳值作為關於該裝置特徵的計量資料提供。 A non-transient machine-readable storage medium storing instructions that, when executed, cause a processing device to perform operations comprising: defining a geometric shape for pixels associated with each of one or more images comprising a device feature obtained using an imaging tool, wherein the one or more images are top-down images, and wherein the geometric shape is represented according to one or more parameters; defining a cost function whose variables include the one or more parameters of the geometric shape; For each image, applying numerical optimization to obtain optimal values of the one or more parameters where a value of the cost function is minimized; and providing the optimal values of the one or more parameters as metric data regarding the device feature. 如請求項11所述之非暫態機器可讀儲存媒體,其中該幾何形狀包含一橢圓,其中表示該橢圓的該一或多個參數包含該橢圓的一長軸直徑、該橢圓的一短軸直徑、該橢圓的一中心的坐標及該橢圓的角度方向。 A non-transitory machine-readable storage medium as described in claim 11, wherein the geometric shape comprises an ellipse, wherein the one or more parameters representing the ellipse comprise a major axis diameter of the ellipse, a minor axis diameter of the ellipse, coordinates of a center of the ellipse, and an angular orientation of the ellipse. 如請求項12所述之非暫態機器可讀儲存媒體,其中該成本函數經定義為:cost(x,y,a,b,θ)=Values(x,y,a,b,θ)-λ Area(a,b)其中,a=橢圓的長軸直徑,b=橢圓的短軸直徑,(x,y)為橢圓中心的坐標,θ為一水平軸與該橢圓的該長軸之間的一夾角,表示該橢圓的該角度方向,面積=橢圓的面積;並且λ為用於最佳化該成本函數的一調諧參數。 A non-transient machine-readable storage medium as described in claim 12, wherein the cost function is defined as: cost ( x,y,a,b,θ ) = Values ( x,y,a,b,θ ) - λ Area ( a,b ) wherein a = the diameter of the major axis of the ellipse, b = the diameter of the minor axis of the ellipse, (x,y) are the coordinates of the center of the ellipse, θ is the angle between a horizontal axis and the major axis of the ellipse, indicating the angular direction of the ellipse, area = the area of the ellipse; and λ is a tuning parameter used to optimize the cost function. 如請求項12所述之非暫態機器可讀儲存媒體,其中該成本函數經最小化的該橢圓的該等參數的該最佳值代表最大且最暗的橢圓,其在一相對較亮的背景中涵蓋相關像素。 The non-transient machine-readable storage medium of claim 12, wherein the optimal values of the parameters of the ellipse for which the cost function is minimized represent the largest and darkest ellipse that encompasses the associated pixel against a relatively bright background. 如請求項12所述之非暫態機器可讀儲存媒體,其中該處理裝置進一步執行: 在具有低訊雜比的一圖像中偵測在一相對暗背景中具有相對較亮像素的一環孔;定義共同構成一橢圓環的一內橢圓及一外橢圓,該橢圓環涵蓋該等相對較亮的像素的該環;以及定製該成本函數,以使得該數值最佳化產生該橢圓環的一或多個參數。 The non-transient machine-readable storage medium of claim 12, wherein the processing device further performs: Detecting an annular hole having relatively bright pixels in a relatively dark background in an image having a low signal-to-noise ratio; defining an inner ellipse and an outer ellipse that together form an elliptical ring, the elliptical ring encompassing the ring of relatively bright pixels; and customizing the cost function so that the value optimizes one or more parameters that generate the elliptical ring. 如請求項12所述之非暫態機器可讀儲存媒體,其中該處理裝置進一步執行:從先前測量獲得一裝置特徵的一底表面的已知尺寸,其中該裝置特徵包含具有一頂部開口及該底表面的一孔,該底表面由於無法由該成像工具直接成像而被部分遮擋,其中該頂部開口與該底部表面由傾斜側壁連接;定義分別包含表示該頂部開口的一第一組像素及表示該底表面的一第二組像素的一頂部橢圓及一底部橢圓,其中該底部橢圓結合從先前測量獲得的該底表面的該等已知尺寸;以及定製該成本函數,以使得該數值最佳化產生該頂部橢圓與該底部橢圓之間的一偏移值。 The non-transient machine-readable storage medium of claim 12, wherein the processing device further performs: obtaining known dimensions of a bottom surface of a device feature from previous measurements, wherein the device feature comprises a hole having a top opening and the bottom surface, the bottom surface being partially obscured because it cannot be directly imaged by the imaging tool, wherein the top opening and the bottom surface are connected by an inclined side wall; defining a top ellipse and a bottom ellipse respectively comprising a first set of pixels representing the top opening and a second set of pixels representing the bottom surface, wherein the bottom ellipse combines the known dimensions of the bottom surface obtained from previous measurements; and customizing the cost function so that the value optimizes an offset value between the top ellipse and the bottom ellipse. 一種用於計量的基於最佳化的圖像處理的系統,包含一記憶體及耦合到該記憶體的一處理裝置,其中該處理裝置執行以下操作:獲取一裝置特徵的一或多個圖像,其中該一或多個圖像是自上而下的圖像;定義包含該一或多個圖像的每一圖像的相關像素的一 幾何形狀,其中該幾何形狀根據一或多個參數來表示;定義一成本函數,其變數包含該幾何形狀的該一或多個參數;對於每一圖像,應用數值最佳化以獲得其中該成本函數的一值最小的該一或多個參數的最佳值;以及將該一或多個參數的該等最佳值作為關於該裝置特徵的計量資料提供。 A system for measurement-based optimization image processing includes a memory and a processing device coupled to the memory, wherein the processing device performs the following operations: obtaining one or more images of a device feature, wherein the one or more images are top-down images; defining a geometric shape including relevant pixels of each image of the one or more images, wherein the geometric shape is represented according to one or more parameters; defining a cost function whose variables include the one or more parameters of the geometric shape; for each image, applying numerical optimization to obtain optimal values of the one or more parameters in which a value of the cost function is minimized; and providing the optimal values of the one or more parameters as measurement data about the device feature. 如請求項17所述之系統,進一步包含:一成像工具,其獲取該一或多個圖像並且將該一或多個圖像發送至該處理裝置,其中在獲取該一或多個圖像之前,成像工具參數經調諧以將該一或多個參數的訊雜比最大化。 The system as described in claim 17 further comprises: an imaging tool that acquires the one or more images and sends the one or more images to the processing device, wherein before acquiring the one or more images, imaging tool parameters are tuned to maximize the signal-to-noise ratio of the one or more parameters. 如請求項17所述之系統,其中該幾何形狀包含一橢圓,其中表示該橢圓的該一或多個參數包含該橢圓的一長軸直徑、該橢圓的一短軸直徑、該橢圓的一中心的坐標及該橢圓的角度方向。 A system as described in claim 17, wherein the geometric shape comprises an ellipse, wherein the one or more parameters representing the ellipse comprise a major axis diameter of the ellipse, a minor axis diameter of the ellipse, the coordinates of a center of the ellipse, and the angular orientation of the ellipse. 如請求項17所述之系統,其該成本函數可經調整以使得該數值最佳化產生一橢圓環的一或多個參數,該橢圓環在具有低訊雜比的一圖像中包含在一相對暗背景中的較亮像素的一環孔。 The system of claim 17, wherein the cost function can be adjusted so that the numerical optimization produces one or more parameters of an elliptical ring that includes a ring of bright pixels in a relatively dark background in an image with a low signal-to-noise ratio.
TW110143749A 2020-11-24 2021-11-24 Method, machine-readable storage medium, and system for optimization-based image processing for metrology TWI874727B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
WOPCT/CN2020/131045 2020-11-24
PCT/CN2020/131045 WO2022109767A1 (en) 2020-11-24 2020-11-24 Optimization-based image processing for metrology
US202117416329A 2021-06-18 2021-06-18
US17/416,329 2021-06-18

Publications (2)

Publication Number Publication Date
TW202230203A TW202230203A (en) 2022-08-01
TWI874727B true TWI874727B (en) 2025-03-01

Family

ID=83782397

Family Applications (2)

Application Number Title Priority Date Filing Date
TW114103782A TW202524428A (en) 2020-11-24 2021-11-24 Method, machine-readable storage medium, and system for optimization-based image processing for metrology
TW110143749A TWI874727B (en) 2020-11-24 2021-11-24 Method, machine-readable storage medium, and system for optimization-based image processing for metrology

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW114103782A TW202524428A (en) 2020-11-24 2021-11-24 Method, machine-readable storage medium, and system for optimization-based image processing for metrology

Country Status (2)

Country Link
US (1) US20240385532A1 (en)
TW (2) TW202524428A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7092110B2 (en) * 2002-07-25 2006-08-15 Timbre Technologies, Inc. Optimized model and parameter selection for optical metrology
US20160300338A1 (en) * 2015-04-13 2016-10-13 Anchor Semiconductor Inc. Pattern weakness and strength detection and tracking during a semiconductor device fabrication process
US20190213426A1 (en) * 2018-01-05 2019-07-11 Uber Technologies, Inc. Systems and Methods For Image-Based Free Space Detection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7092110B2 (en) * 2002-07-25 2006-08-15 Timbre Technologies, Inc. Optimized model and parameter selection for optical metrology
US20160300338A1 (en) * 2015-04-13 2016-10-13 Anchor Semiconductor Inc. Pattern weakness and strength detection and tracking during a semiconductor device fabrication process
US20190213426A1 (en) * 2018-01-05 2019-07-11 Uber Technologies, Inc. Systems and Methods For Image-Based Free Space Detection

Also Published As

Publication number Publication date
TW202230203A (en) 2022-08-01
TW202524428A (en) 2025-06-16
US20240385532A1 (en) 2024-11-21

Similar Documents

Publication Publication Date Title
JP5559957B2 (en) Pattern measuring method and pattern measuring device
JP5793155B2 (en) Three-dimensional mapping using scanning electron microscope images
KR102341667B1 (en) Measurement of height difference of patterns on semiconductor wafers
TWI879571B (en) Enhanced cross sectional features measurement methodology and system
US11756188B2 (en) Determining a critical dimension variation of a pattern
JP4129439B2 (en) Image processing method and image processing apparatus
TWI874727B (en) Method, machine-readable storage medium, and system for optimization-based image processing for metrology
JP2003178314A (en) Pattern evaluation apparatus, pattern evaluation method, and program
US12050408B2 (en) Optimization-based image processing for metrology
US10943763B1 (en) Use of electron beam scanning electron microscopy for characterization of a sidewall occluded from line-of-sight of the electron beam
US12511862B2 (en) Template-based image processing for target segmentation and metrology
WO2023130432A1 (en) Template-based image processing for target segmentation and metrology
JP5287135B2 (en) Image forming method and charged particle beam apparatus
JP6059893B2 (en) Electron beam automatic length measuring device, parameter automatic setting system for electron beam automatic length measuring device, and parameter automatic setting program