[go: up one dir, main page]

TWI874052B - Life support system, life support device, and life support method - Google Patents

Life support system, life support device, and life support method Download PDF

Info

Publication number
TWI874052B
TWI874052B TW112149328A TW112149328A TWI874052B TW I874052 B TWI874052 B TW I874052B TW 112149328 A TW112149328 A TW 112149328A TW 112149328 A TW112149328 A TW 112149328A TW I874052 B TWI874052 B TW I874052B
Authority
TW
Taiwan
Prior art keywords
word
word graph
text
unit
words
Prior art date
Application number
TW112149328A
Other languages
Chinese (zh)
Other versions
TW202429370A (en
Inventor
久保陽
中津欣也
Original Assignee
日商日立製作所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日立製作所股份有限公司 filed Critical 日商日立製作所股份有限公司
Publication of TW202429370A publication Critical patent/TW202429370A/en
Application granted granted Critical
Publication of TWI874052B publication Critical patent/TWI874052B/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services

Landscapes

  • Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Medical Treatment And Welfare Office Work (AREA)
  • Document Processing Apparatus (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

[課題]以低成本實現根據對象者的個別的生活型態的行為改變的支援。 [解決手段]生活支援裝置(10)係具備:文本化處理部(130),其係根據由記憶部(12)所讀入的文本化規則(120),將感測器群(40)所取得的感測器資訊轉換為文本;單詞圖生成部(131),其係將文本化處理部(130)轉換後的文本的各單詞配置在作為2維以上的向量空間的單詞圖(122)內;及單詞圖變遷特徵抽出部(132),其係輸出可比較由將由感測器群(40)所取得的第1感測器資訊作轉換後的文本的單詞所生成的第1單詞圖、及由將由感測器群(40)所取得的第2感測器資訊作轉換後的文本的單詞所生成的第2單詞圖的提案畫面。 [Topic] To support behavioral changes based on the individual lifestyle of the target person at a low cost. [Solution] A life support device (10) comprises: a text processing unit (130) that converts sensor information obtained by a sensor group (40) into text according to a text conversion rule (120) read from a memory unit (12); a word graph generating unit (131) that arranges each word of the text converted by the text processing unit (130) in a word graph (122) that is a vector space of two dimensions or more; and a word graph transition feature extracting unit (132) that outputs a proposal screen that can compare a first word graph generated from words of the text converted from the first sensor information obtained by the sensor group (40) and a second word graph generated from words of the text converted from the second sensor information obtained by the sensor group (40).

Description

生活支援系統、生活支援裝置、及生活支援方法Life support system, life support device, and life support method

本發明係關於生活支援系統、生活支援裝置、及生活支援方法。 The present invention relates to a life support system, a life support device, and a life support method.

已提案出一種由電腦支援育兒中使孩子的不當行為改變的教養等使行為改變的行為改變支援系統。在專利文獻1中係記載由表示按行為與該行為的契機與該行為的結果的每個組合對該行為的對應方法的對應方法資訊,來決定提示給對應者的對應方法的要旨。 A behavior change support system has been proposed that uses a computer to support parenting to change a child's inappropriate behavior. Patent document 1 describes the essence of determining the response method to be presented to the responder by response method information indicating the response method to the behavior for each combination of the behavior, the opportunity for the behavior, and the result of the behavior.

[先前技術文獻] [Prior Art Literature] [專利文獻] [Patent Literature]

[專利文獻1]日本特開2019-133638號公報 [Patent Document 1] Japanese Patent Publication No. 2019-133638

以行為改變的支援而言,為了建立重視環保或Well-being(健康或幸福)的生活基礎設施,檢討一種對需照護者等對象者進行供生活型態改善用的資訊提供的系 統。為了提案如上所示之生活型態,以掌握現狀的對象者的生活習慣等生活型態,使哪個行為繼續,改善哪個行為較好等詳細且大範圍的提案較為有效。此外,對象者係具有個別的生活型態,因此相較於對眾人具統一性的健康手冊,符合自己的生活型態的個人化的建議較具有說服力。 In terms of support for behavior change, in order to establish a living infrastructure that values environmental protection or Well-being, a system that provides information for improving lifestyles to subjects such as caregivers is being examined. In order to propose the lifestyles shown above, detailed and wide-ranging proposals such as which behaviors should be continued and which behaviors should be improved based on the current living habits of the subjects are more effective. In addition, since the subjects have individual lifestyles, personalized suggestions that match their own lifestyles are more convincing than health manuals that are uniform for everyone.

但是,在專利文獻1等習知之行為改變支援系統中,係止於僅改善「搶弟弟玩具」等1個不當行為的支援,並不適於提案個別的生活型態的用途。此外,在專利文獻1的方法中,必須事前手工輸入對不當行為的對應方法的對應方法資訊等規則資料庫,在行為改變的準備上耗費成本。 However, the behavior change support system disclosed in Patent Document 1 is limited to supporting the improvement of one inappropriate behavior such as "stealing younger brother's toys", and is not suitable for proposing individual lifestyles. In addition, in the method of Patent Document 1, the rule database such as the response method information for the response method to the inappropriate behavior must be manually input in advance, which costs money in the preparation of behavior change.

因此,本發明之主要課題為以低成本實現根據對象者的個別的生活型態的行為改變的支援。 Therefore, the main topic of the present invention is to support behavioral changes based on the individual lifestyle of the subject at a low cost.

為解決前述課題,本發明之生活支援系統係具有以下特徵。 In order to solve the above-mentioned problems, the life support system of the present invention has the following characteristics.

本發明係一種生活支援系統,其係具有:取得關於計測生活型態的對象者的感測器資訊的感測器群;及根據所取得的感測器資訊,對對象者提示提案生活型態的提案畫面的生活支援裝置,該生活支援系統之特徵為:前述生活支援裝置係具備:文本化處理部,其係根據由記憶部所讀入的文本化規則,將前述感測器群所取得的感測器資訊轉換為文本; 單詞圖生成部,其係將前述文本化處理部轉換後的文本的各單詞配置在作為2維以上的向量空間的單詞圖內;及單詞圖比較部,其係輸出可比較由將由前述感測器群所取得的第1感測器資訊作轉換後的文本的單詞所生成的第1單詞圖、及由將由前述感測器群所取得的第2感測器資訊作轉換後的文本的單詞所生成的第2單詞圖的前述提案畫面。 The present invention is a life support system, which comprises: a sensor group for acquiring sensor information about a subject whose lifestyle is measured; and a life support device for presenting a proposal screen for a proposed lifestyle to the subject based on the acquired sensor information. The life support system is characterized in that the aforementioned life support device comprises: a text processing unit for converting the sensor information acquired by the aforementioned sensor group into text based on a text rule read from a memory unit. ; A word graph generating unit, which arranges each word of the text converted by the text processing unit in a word graph which is a vector space of two dimensions or more; and a word graph comparing unit, which outputs the above-mentioned proposal screen which can compare the first word graph generated by the words of the text converted by the first sensor information obtained by the above-mentioned sensor group and the second word graph generated by the words of the text converted by the second sensor information obtained by the above-mentioned sensor group.

其他手段容後敘述。 Other methods will be described later.

藉由本發明,可以低成本實現根據對象者的個別的生活型態的行為改變的支援。 The present invention can provide support for behavioral changes based on the individual lifestyle of the subject at a low cost.

10:生活支援裝置 10: Life support devices

11:輸出入部 11: Input and output department

12:記憶部 12: Memory Department

13:運算部 13: Operation Department

20:網路 20: Internet

30:終端機裝置 30: Terminal device

31:提示部 31: Prompt Department

32:輸入部 32: Input section

40:感測器群 40:Sensor group

41A:攝影機 41A: Camera

41B:溫濕度感測器 41B: Temperature and humidity sensor

42A:麥克風 42A: Microphone

42B:毫米波感測器 42B:Millimeter wave sensor

43A:生命徵象感測器 43A: Vital Signs Sensor

43B:電波感測器 43B: Radio wave sensor

44A:人感感測器 44A: Human presence sensor

44B:深度感測器 44B: Depth sensor

45A:門感測器 45A: Door sensor

45B:氣壓感測器 45B: Air pressure sensor

46A:加速度感測器 46A: Accelerometer

46B:噪音感測器 46B: Noise sensor

47A:陀螺儀感測器 47A: Gyroscope sensor

47B:振動感測器 47B: Vibration sensor

48A:照度感測器 48A: Illuminance sensor

48B:味道感測器 48B: Taste sensor

49B:家電感測器 49B: Home appliance sensor

100:生活支援系統 100: Life support system

110:資訊輸入部 110: Information Input Department

111:資訊輸出部 111: Information output department

112:建議輸入部 112: Recommended input department

120:文本化規則 120: Textual rules

121:行為語料庫 121: Behavior Corpus

122:單詞圖 122: Word map

123:屬性資訊 123: Attribute information

124:單詞範數 124: Word category

125:單詞分散表現 125: Word dispersion

130:文本化處理部 130: Text Processing Department

131:單詞圖生成部 131: Word graph generation unit

132:單詞圖變遷特徵抽出部(單詞圖比較部) 132: Word-graph transition feature extraction section (word-graph comparison section)

133:特定資訊過濾部 133: Specific information filtering section

134:單詞範數分析抽出部 134: Word pattern analysis and extraction unit

135:關連語抽出部 135: Related word extraction section

136:建議編輯部 136: Suggestions to the editorial department

200:畫面顯示 200: Screen display

201,202,211,212,222:單詞圖 201,202,211,212,222:Word chart

201R,202R:行為路徑 201R,202R: Behavior Path

210:畫面 210: Screenshot

213:轉換函數 213: Conversion function

214:逆轉換函數 214: Inverse transformation function

220:輸出畫面 220: Output screen

900:電腦 900: Computer

901:CPU 901:CPU

902:RAM 902: RAM

903:ROM 903:ROM

904:HDD 904:HDD

905:通訊I/F 905: Communication I/F

906:輸出入I/F 906: Input/output I/F

907:媒體I/F 907:Media I/F

915:通訊裝置 915: Communication device

916:輸出入裝置 916: Input/output device

917:記錄媒體 917: Recording media

1300:類別分類部 1300: Category Classification Department

1301:時間序列分析部 1301: Time Series Analysis Department

1302:算術運算部 1302: Arithmetic Operation Department

1303:比較/邏輯運算部 1303: Comparison/Logical Operation Department

1304:聲音辨識部 1304: Sound recognition unit

1305:畫像辨識部 1305: Image Recognition Department

T1,T2:表格 T1,T2:Table

[圖1]係關於本實施形態的生活支援系統的構成圖。 [Figure 1] is a diagram showing the structure of the life support system of this implementation form.

[圖2]係關於本實施形態的生活支援裝置的構成圖。 [Figure 2] is a diagram showing the structure of the life support device of this embodiment.

[圖3]係說明關於本實施形態的生活支援裝置的文本(text)化處理的流程圖。 [Figure 3] is a flowchart for explaining the text processing of the life support device of this embodiment.

[圖4]係說明關於本實施形態的圖3之後所執行的生活支援裝置的單詞圖生成處理的流程圖。 [Figure 4] is a flowchart for explaining the word graph generation process of the life support device executed after Figure 3 of this embodiment.

[圖5]係關於實施例1的生活支援裝置的構成圖。 [Figure 5] is a diagram showing the structure of the life support device of Example 1.

[圖6]係顯示關於實施例1之藉由感測器群所取得的感 測器資訊之例的表格。 [Figure 6] is a table showing an example of sensor information obtained by the sensor group in Example 1.

[圖7]係顯示關於實施例1的文本化規則之例的表格。 [Figure 7] is a table showing an example of textual rules for Example 1.

[圖8]係顯示關於實施例1的文本化規則之例的流程圖。 [Figure 8] is a flowchart showing an example of textual rules for implementation example 1.

[圖9]係顯示關於實施例1的文本化規則之例的流程圖。 [Figure 9] is a flowchart showing an example of textual rules for implementation example 1.

[圖10]係顯示關於實施例1的文本化規則之例的流程圖。 [Figure 10] is a flowchart showing an example of textual rules for implementation example 1.

[圖11]係顯示關於實施例1的行為語料庫(Corpus)之例的說明圖。 [Figure 11] is an explanatory diagram showing an example of the behavior corpus (Corpus) of Example 1.

[圖12]係顯示關於實施例1的單詞圖之例的畫面圖。 [Figure 12] is a screen shot showing an example of a word graph in Example 1.

[圖13]係對關於實施例1的圖12的畫面圖的單詞圖,追加行為路徑資訊的畫面圖。 [Figure 13] is a screen image in which behavior path information is added to the word image of the screen image of Figure 12 of Example 1.

[圖14]係關於實施例2的生活支援裝置的構成圖。 [Figure 14] is a diagram showing the structure of the life support device of Example 2.

[圖15]係顯示關於實施例2的單詞圖間的轉換函數及逆轉換函數的畫面圖。 [Figure 15] is a screen diagram showing the conversion function and inverse conversion function between word graphs in Example 2.

[圖16]係關於實施例3的生活支援裝置的構成圖。 [Figure 16] is a diagram showing the structure of the life support device of Example 3.

[圖17]係關於實施例3中收集了過去的意見的單詞圖的畫面圖。 [Figure 17] is a screen shot of a word graph that collects past opinions in Example 3.

[圖18]係關於實施例3中收集了現在的意見的單詞圖的畫面圖。 [Figure 18] is a screen shot of a word graph that collects current opinions in Example 3.

[圖19]係關於實施例4的生活支援裝置的構成圖。 [Figure 19] is a diagram showing the structure of the life support device of Example 4.

[圖20]係顯示關於實施例4的行為語料庫之一例的說明圖。 [Figure 20] is an explanatory diagram showing an example of a behavior corpus of Example 4.

[圖21]係顯示關於實施例4的目標語的建議作成處理的詳細的流程圖。 [Figure 21] is a detailed flowchart showing the target language suggestion creation process of Example 4.

[圖22]係關於實施例4的單詞圖之一例。 [Figure 22] is an example of a word diagram related to Example 4.

[圖23]係顯示關於實施例4的建議編輯部的輸出畫面之一例的畫面圖。 [Figure 23] is a screen shot showing an example of an output screen of the suggestion editing section of Example 4.

[圖24]係關於本實施形態的生活支援系統的各裝置的硬體構成圖。 [Figure 24] is a diagram showing the hardware configuration of each device in the life support system of this embodiment.

圖1係生活支援系統100的構成圖。生活支援系統100係透過網路20來連接生活支援裝置10、資訊輸出入用的終端機裝置30、及感測器群40的構成。生活支援裝置10係具備:輸出入部11、記憶部12、及運算部13。 FIG1 is a configuration diagram of a life support system 100. The life support system 100 is composed of a life support device 10, a terminal device 30 for information input and output, and a sensor group 40 connected via a network 20. The life support device 10 is equipped with an input and output unit 11, a memory unit 12, and a calculation unit 13.

輸出入部11係交換與終端機裝置30或感測器群40的輸出入資料。在記憶部12係記憶預先保持的資料庫及藉由運算部13所抽出的資料供運算用。運算部13係執行生活支援裝置10的功能。 The input/output unit 11 exchanges input/output data with the terminal device 30 or the sensor group 40. The memory unit 12 stores the pre-stored database and the data extracted by the calculation unit 13 for calculation. The calculation unit 13 executes the functions of the life support device 10.

終端機裝置30亦可為PC或智慧型手機或智慧型手錶、智慧喇叭等形態,惟終端機裝置30的種類並非為限定於該等。 The terminal device 30 may also be in the form of a PC, a smart phone, a smart watch, a smart speaker, etc., but the type of the terminal device 30 is not limited to these.

終端機裝置30係具備:提示部31、及輸入部32。 The terminal device 30 includes: a prompting unit 31 and an input unit 32.

提示部31係對服務提供者或服務利用者提示生活支援裝置10所輸出的資訊。輸入部32係服務提供者或服務利用者自己針對服務利用者的行為、狀態、或周圍環境進行輸 入。 The prompting unit 31 prompts the service provider or service user the information output by the life support device 10. The input unit 32 inputs the behavior, status, or surrounding environment of the service user by the service provider or service user himself.

感測器群40係收集有關計測生活型態的對象者(生活支援裝置10的服務利用者及其關係者)的行為或狀態的資訊、或有關對象者的周圍環境(住宅等)的資訊。在感測器群40係包含:攝影機41A、麥克風42A、生命徵象感測器43A、人感感測器44A、門感測器45A、加速度感測器46A、陀螺儀感測器47A、照度感測器48A、溫濕度感測器41B、毫米波感測器42B、電波感測器43B、深度感測器44B、氣壓感測器45B、噪音感測器46B、振動感測器47B、味道感測器48B、及家電感測器49B之中至少1個。 The sensor group 40 collects information about the behavior or status of the target person (the service user of the life support device 10 and its related persons) whose lifestyle is measured, or information about the surrounding environment (house, etc.) of the target person. The sensor group 40 includes at least one of the following: camera 41A, microphone 42A, vital sign sensor 43A, human sensor 44A, door sensor 45A, acceleration sensor 46A, gyro sensor 47A, illumination sensor 48A, temperature and humidity sensor 41B, millimeter wave sensor 42B, radio wave sensor 43B, depth sensor 44B, air pressure sensor 45B, noise sensor 46B, vibration sensor 47B, smell sensor 48B, and home appliance sensor 49B.

生命徵象感測器43A係例如由住在服高住(如後述「附服務高齡者專用住宅」之簡稱)的高齡者所裝設。人感感測器44A、門感測器45A、照度感測器48A、及家電感測器49B係例如設置在服高住。 The vital sign sensor 43A is installed, for example, by an elderly person living in a service-oriented residence (hereinafter referred to as a "residence for the elderly with service-oriented residence"). The human sensor 44A, the door sensor 45A, the illumination sensor 48A, and the home appliance sensor 49B are installed, for example, in the service-oriented residence.

此外,感測器群40亦可其一部分或全部包含在終端機裝置30。例如,若終端機裝置30為智慧型手機,可將加速度感測器46A或陀螺儀感測器47A、GPS等資訊輸出至生活支援裝置10。 In addition, the sensor group 40 may be partially or entirely included in the terminal device 30. For example, if the terminal device 30 is a smart phone, the information of the acceleration sensor 46A or the gyroscope sensor 47A, GPS, etc. may be output to the life support device 10.

圖2係生活支援裝置10的構成圖。 FIG2 is a diagram showing the structure of the life support device 10.

輸出入部11係具備:資訊輸入部110、資訊輸出部111、及建議輸入部112。 The input/output unit 11 includes: an information input unit 110, an information output unit 111, and a suggestion input unit 112.

資訊輸入部110係接受藉由感測器群40所取得的感測器資訊、或裝載在終端機裝置30的感測器資訊、或服務提供者或服務利用者透過終端機裝置30所輸入的文本資訊的 輸入。 The information input unit 110 receives sensor information obtained by the sensor group 40, sensor information loaded in the terminal device 30, or text information input by the service provider or service user through the terminal device 30.

資訊輸出部111係將藉由運算部13所生成的單詞圖122、或所被抽出的單詞圖變遷特徵(詳細在圖4中後述)、或經編輯的建議等資訊輸出至終端機裝置30。 The information output unit 111 outputs information such as the word graph 122 generated by the calculation unit 13, or the extracted word graph transition characteristics (described in detail later in FIG. 4), or the edited suggestions to the terminal device 30.

建議輸入部112係接受作為編輯的對象的建議文句的輸入。 The suggestion input unit 112 receives input of a suggestion sentence to be edited.

在記憶部12係記憶:文本化規則120、行為語料庫121、單詞圖122、屬性資訊123、單詞範數(norm)124、及單詞分散表現125。 The memory unit 12 stores: textual rules 120, behavior corpus 121, word graph 122, attribute information 123, word norm 124, and word distribution representation 125.

在文本化規則120係儲存有用以由從感測器群40所輸入的感測器資訊,將服務利用者的行為或狀況及周圍環境作為文本資訊的規則。例如,為對感測器資訊的類別分類、時間序列分析、算術運算、比較運算、邏輯運算、聲音辨識、畫像辨識等結果所對應的文本的列表(list)。 The textual rules 120 store rules for using the sensor information input from the sensor group 40 to treat the behavior or status of the service user and the surrounding environment as text information. For example, it is a list of texts corresponding to the results of sensor information classification, time series analysis, arithmetic operation, comparison operation, logical operation, voice recognition, image recognition, etc.

在行為語料庫121係儲存表示服務利用者(亦可為其關係者)的行為或狀態的文本資訊、或表示周圍環境的文本資訊,作為資料庫。在文本的各文句係包含:「行為的內容(Do)」或「狀態的內容(Be)」的資訊、及與其建立連結的「何時(When)」、「在何處(Where)」、「誰(Who)」、「做什麼(What)」、「和誰(With Whom)」之中至少一個資訊。 The behavior corpus 121 stores text information representing the behavior or status of the service user (or its related parties) or text information representing the surrounding environment as a database. Each sentence in the text contains information on "content of behavior (Do)" or "content of status (Be)", and at least one of the information of "when (When)", "where (Where)", "who (Who)", "what to do (What)", and "with whom (With Whom)" that is linked to it.

單詞圖122係根據使用行為語料庫121內的單詞的涵義的類似度經映射的資料。各單詞的涵義係藉由詞頻統計法(count-based method)(將單詞的共生矩陣(Co- occurrence Matrix)進行維度縮減的手法)、或獲得單詞分散表現125的推論基礎的手法予以向量化。 The word graph 122 is data mapped based on the similarity of the meanings of the words in the usage behavior corpus 121. The meaning of each word is vectorized by a count-based method (a method of reducing the dimension of the co-occurrence matrix of words) or an inference-based method of obtaining the word distribution representation 125.

單詞圖122中的單詞彼此的近或遠的配置係依各單詞所具有的單位向量表現的內積的大小來決定。藉此,所使用的涵義的類似度大的單詞配置為較近、所使用的涵義的類似度小的單詞配置為較遠。 The arrangement of words in the word graph 122 close to or far from each other is determined by the size of the inner product of the unit vector representation of each word. Thus, words with a large similarity in the meaning used are arranged closer, and words with a small similarity in the meaning used are arranged farther away.

單詞圖122亦可不僅服務利用者的行為或狀態,亦可包含家庭或辦公室內的場所或房間的名稱、家具或家電與其運轉狀態、服務利用者或其關係者的人物名或暱稱、早或晚等時段、星期等。此外,單詞圖122內的單詞亦可依其類似度的大小予以叢集。 The word graph 122 may include not only the behavior or status of the service user, but also the names of places or rooms in the home or office, furniture or home appliances and their operating status, names or nicknames of the service user or his/her related persons, time periods such as morning or evening, days of the week, etc. In addition, the words in the word graph 122 may also be clustered according to the degree of their similarity.

例如,亦可屬於包含「用餐」或「飯廳」等單詞的叢集的場所或行為、家具或家電、人物、時段等彙總分類為「用餐叢集」,包含「睡覺」或「臥室」等單詞的叢集內的場所或行為、家具或家電、人物名、時段等彙總分類為「睡覺叢集」。叢集數係考慮依Elbow法或Silhouette法等來決定。 For example, the places or behaviors, furniture or home appliances, people, time periods, etc. that belong to the clusters containing words such as "dining" or "dining room" can be classified as "dining clusters", and the places or behaviors, furniture or home appliances, people, time periods, etc. that belong to the clusters containing words such as "sleep" or "bedroom" can be classified as "sleep clusters". The number of clusters is determined by considering the Elbow method or the Silhouette method, etc.

屬性資訊123係成為感測對象的個人或集團的屬性經標籤化的資料,例如高齡者的需照護度。 Attribute information 123 is labeled data of the attributes of individuals or groups that are the sensing objects, such as the degree of care required by the elderly.

單詞範數124係指將行為語料庫121所包含的單詞向量化時所導出的單詞向量的長度。在單詞的向量化表現中,愈為特定的文脈、且頻繁出現的單詞,與其他單詞比較愈具有相對較大範數。因此,具有較大向量範數的單詞係可將服務利用者的行為傾向、思考的傾向、習慣等,抽出作 為更明顯表現的單詞。 The word norm 124 refers to the length of the word vector derived when the words included in the behavior corpus 121 are vectorized. In the vectorized representation of words, the more specific the context and the more frequently appearing the words, the larger the norm is compared with other words. Therefore, the words with a larger vector norm can be extracted as words that more clearly express the behavior tendency, thinking tendency, habits, etc. of the service user.

單詞分散表現125係藉由將行為語料庫121內的單詞轉換為數值向量來掌握其意義的Word2Vec等推論基礎的手法予以生成。 The word dispersion representation 125 is generated by converting the words in the behavior corpus 121 into numerical vectors to grasp their meanings using an inference-based method such as Word2Vec.

運算部13係具備:文本化處理部130、單詞圖生成部131、單詞圖變遷特徵抽出部(單詞圖比較部)132、特定資訊過濾部133、單詞範數分析抽出部134、關連語抽出部135、及建議編輯部136。 The calculation unit 13 includes: a text processing unit 130, a word graph generation unit 131, a word graph transition feature extraction unit (word graph comparison unit) 132, a specific information filtering unit 133, a word pattern analysis extraction unit 134, a related word extraction unit 135, and a suggestion editing unit 136.

文本化處理部130係對感測器資訊適用以下例示的演算法,藉此將感測器資訊文本化。 The text processing unit 130 applies the following example algorithm to the sensor information to convert the sensor information into text.

‧藉由類別(class)分類部1300所為之類別分類演算法。 ‧Through the classification algorithm of the class classification unit 1300.

‧藉由時間序列分析部1301所為之時間序列分析演算法。 ‧The time series analysis algorithm performed by the time series analysis unit 1301.

‧藉由算術運算部1302所為之算術運算演算法。 ‧The arithmetic operation algorithm performed by the arithmetic operation unit 1302.

‧藉由比較/邏輯運算部1303所為之比較運算演算法及邏輯運算演算法。 ‧Comparison operation algorithm and logic operation algorithm performed by the comparison/logic operation unit 1303.

‧藉由聲音辨識部1304所為之聲音辨識演算法。 ‧The voice recognition algorithm of the voice recognition unit 1304 is used.

‧藉由畫像辨識部1305所為之畫像辨識演算法。 ‧The image recognition algorithm provided by the image recognition unit 1305.

在藉由文本化處理部130所為之文本化,亦可使用單一種類的感測器資訊的處理結果,亦可使用2種類以上的感測器資訊。例如,考慮藉由將玄關的門感測器與具指向性的人感感測器加以組合,將生成「外出」或「回家」的文本何者進行分類/判斷。此外,亦可進行根 據與感測器資訊或其分類結果建立連結的文本化的規則亦即文本化規則120的文本化。 In the texting by the texting processing unit 130, the processing result of a single type of sensor information can be used, or two or more types of sensor information can be used. For example, by combining the door sensor of the entrance with the directional human sensor, it is considered to classify/determine whether the text "going out" or "returning home" is generated. In addition, texting can also be performed based on the texting rule 120 that establishes a link with the sensor information or its classification result.

單詞圖生成部131係藉由前述Word2Vec等自然語言處理運算,將行為語料庫121內的單詞向量化,且生成將該經向量化的單詞配置在2維以上的向量空間的單詞圖122。單詞圖生成部131亦可使用行為語料庫121內的全部文本來生成單詞圖,亦可使用最近1個月期間的行為語料庫等在一定期間生成的文本來生成單詞圖。 The word graph generation unit 131 vectorizes the words in the behavior corpus 121 by using natural language processing operations such as the aforementioned Word2Vec, and generates a word graph 122 that arranges the vectorized words in a vector space of two dimensions or more. The word graph generation unit 131 can also use all the texts in the behavior corpus 121 to generate the word graph, or can use texts generated in a certain period of time such as the behavior corpus during the last month to generate the word graph.

單詞圖生成部131亦可以對人而言為可讀性高的2維或3維來生成單詞圖122,亦可生成具有4維以上的向量表現的單詞圖122。單詞圖122的維數較宜為適當進行配置在單詞圖122的單詞間的類似度的計算處理、或所配置的單詞間的叢集處理的維數。此外,單詞圖生成部131亦可在將4維以上的單詞的向量表現配置在單詞圖122且可視化時,使用t-SNE(t-distributed Stochastic Neighbor Embedding)或PCA(Principal Component Analysis),將向量的維數削減至2或3,而形成為對人而言為可讀性高的表現。 The word graph generation unit 131 can also generate the word graph 122 in 2-dimension or 3-dimension that is highly readable to humans, or can generate the word graph 122 with a vector representation of 4 or more dimensions. The dimension of the word graph 122 is preferably a dimension that is suitable for calculating the similarity between words arranged in the word graph 122 or for clustering between arranged words. In addition, when the vector representation of words of 4 or more dimensions is arranged in the word graph 122 and visualized, the word graph generation unit 131 can also use t-SNE (t-distributed Stochastic Neighbor Embedding) or PCA (Principal Component Analysis) to reduce the dimension of the vector to 2 or 3, thereby forming a representation that is highly readable to humans.

單詞圖變遷特徵抽出部132係抽出用以將由特定的個人或集團所生成之依時間序列發生變化的單詞圖122、或由不同的個人或集團所生成的不同的單詞圖122相互轉換的轉換函數、或進行調整的特徵量。 The word graph change feature extraction unit 132 extracts a conversion function or an adjusted feature quantity for converting a word graph 122 generated by a specific individual or group that changes in time series, or different word graphs 122 generated by different individuals or groups.

特定資訊過濾部133係過濾行為語料庫所包含的個人資訊等特定資訊,且生成具匿名性的行為語料庫。 The specific information filtering unit 133 filters specific information such as personal information contained in the behavior corpus and generates an anonymous behavior corpus.

單詞範數分析抽出部134係分析行為語料庫 所包含的單詞的範數,作為單詞範數124。 The word category analysis and extraction unit 134 analyzes the categories of words included in the behavior corpus as word categories 124.

關連語抽出部135係對所輸入的建議進行形態分析,且抽出構成建議的單詞。接著,由構成建議文句的單詞的圖上的位置,抽出對服務利用者的建議的關連語。建議編輯部136係使用關連語抽出部135所抽出的關連語,編輯建議文句。 The related word extraction unit 135 performs morphological analysis on the inputted suggestion and extracts the words constituting the suggestion. Then, the related words of the suggestion to the service user are extracted from the positions on the graph of the words constituting the suggestion sentence. The suggestion editing unit 136 uses the related words extracted by the related word extraction unit 135 to edit the suggestion sentence.

圖3係說明生活支援裝置10的文本化處理的流程圖。 FIG3 is a flowchart illustrating the text processing of the life support device 10.

在S11中,資訊輸入部110係判斷由感測器群40取得感測器資訊、或由終端機裝置30受理文本資訊的輸入(S12),作為關於針對服務利用者或服務關連者的行為或狀態的資訊、及關於周圍環境的資訊。 In S11, the information input unit 110 determines whether the sensor information obtained by the sensor group 40 or the text information input accepted by the terminal device 30 (S12) is information about the behavior or status of the service user or service related person, and information about the surrounding environment.

若由終端機裝置30輸入文本資訊(S11,文本),文本化處理部130係將該文本資訊的輸入(S12)的結果,轉換為如圖11所示之行為語料庫121而儲存在記憶部12(S13)。 If text information (S11, text) is input from the terminal device 30, the text processing unit 130 converts the result of the input of the text information (S12) into a behavior corpus 121 as shown in FIG. 11 and stores it in the memory unit 12 (S13).

若由感測器群40取得感測器資訊(S11,感測器),在S20中,資訊輸入部110係依所取得的感測器資訊的種別,分歧成如以下所示。文本化處理部130係藉由分歧目的端的各處理,將所取得的感測器資訊進行文本化。 If sensor information is obtained from the sensor group 40 (S11, sensor), in S20, the information input unit 110 is divided into the following according to the type of the obtained sensor information. The text processing unit 130 converts the obtained sensor information into text by processing each of the divided destinations.

‧若感測器資訊為時間序列資料(S20,時間序列),類別分類部1300係將與感測器建立連結的時戳的值根據文本化規則120進行類別分類,藉此進行感測器資訊的文本化(S21)。 ‧If the sensor information is time series data (S20, time series), the classification unit 1300 will classify the value of the timestamp linked to the sensor according to the textualization rule 120, thereby textualizing the sensor information (S21).

‧若感測器資訊為生命徵象感測器值等(S20,生命徵 象等),對該生命徵象感測器值,藉由時間序列分析部1301所執行的時間序列分析處理、算術運算部1302所執行的算術運算處理、或比較/邏輯運算部1303所執行的邏輯運算處理,進行感測器資訊的文本化(S22、詳如圖8)。 ‧If the sensor information is a vital sign sensor value, etc. (S20, vital sign, etc.), the vital sign sensor value is converted into text by the time series analysis processing performed by the time series analysis unit 1301, the arithmetic operation processing performed by the arithmetic operation unit 1302, or the logical operation processing performed by the comparison/logical operation unit 1303 (S22, as shown in Figure 8).

‧若感測器資訊為人感感測器值等(S20,人感等),比較/邏輯運算部1303係將該人感感測器值、及各種感測器(門感測器45A、生命徵象感測器43A、照度感測器48A、家電感測器49B)的值進行邏輯運算,藉此將人的行為進行文本化(S23、詳如圖9、圖10)。 ‧If the sensor information is a human sensor value, etc. (S20, human sensor, etc.), the comparison/logic operation unit 1303 performs a logical operation on the human sensor value and the values of various sensors (door sensor 45A, life sign sensor 43A, illumination sensor 48A, home appliance sensor 49B), thereby texting the human behavior (S23, as shown in Figures 9 and 10).

‧若感測器資訊為聲音資料等(S20,聲音),聲音辨識部1304係將由麥克風42A所取得的發話者的發言的內容轉換為文本(S24)。 ‧If the sensor information is sound data (S20, sound), the sound recognition unit 1304 converts the content of the speaker's speech obtained by the microphone 42A into text (S24).

‧若感測器資訊為畫像資料等(S20,畫像),畫像辨識部1305係將由攝影機41A的畫像所取得的發話者的非言語性資訊(情緒、手勢等)進行文本化(S25)。 ‧If the sensor information is image data (S20, image), the image recognition unit 1305 converts the speaker's non-verbal information (emotions, gestures, etc.) obtained from the image of the camera 41A into text (S25).

文本化處理部130係針對在S21~S25經文本化的文本,亦轉換為行為語料庫121而儲存在記憶部12(S13)。 The text processing unit 130 converts the text that has been texted in S21 to S25 into a behavior corpus 121 and stores it in the memory unit 12 (S13).

圖4係說明圖3之後所執行的生活支援裝置10的單詞圖生成處理的流程圖。 FIG4 is a flowchart illustrating the word graph generation process of the life support device 10 executed after FIG3.

在S31中,若藉由事前輸入的設定來進行後述實施例2的處理(生成集團圖的處理)時(S31,Yes),特定資訊過濾部133係由行為語料庫121過濾個人資訊等特定的資訊(S32),藉此進行隱私保護。集團圖係指由不特定多數的集團資料所生成的單詞圖122。集團資料係各個人的資 料、或同一家庭的家庭成員的資料。 In S31, if the processing of the later-described embodiment 2 (processing of generating a cluster graph) is performed by the settings input in advance (S31, Yes), the specific information filtering unit 133 filters specific information such as personal information from the behavior corpus 121 (S32) to protect privacy. The cluster graph refers to a word graph 122 generated from an unspecified plurality of cluster data. The cluster data is the data of each individual or the data of family members of the same family.

藉由實施例2,可由具有屬性資訊123所示之相同屬性(例如相同的需照護度)的不特定多數集團的資料,抽出共通的單詞圖122。另一方面,在後述的實施例1l,係由個人的資料生成單詞圖122。 By means of Example 2, a common word graph 122 can be extracted from the data of an unspecified plurality of groups having the same attribute (e.g., the same degree of care required) indicated by the attribute information 123. On the other hand, in Example 11 described later, a word graph 122 is generated from the data of an individual.

在S41中,單詞圖生成部131係由S13或S31的行為語料庫121生成單詞圖122。單詞圖生成部131係一週一次或幾個月一次等每逢在行為語料庫121追加較新文本一定數以上時,即定期執行其功能。 In S41, the word graph generation unit 131 generates a word graph 122 from the behavior corpus 121 of S13 or S31. The word graph generation unit 131 performs its function regularly, such as once a week or once every few months, whenever a certain number of new texts are added to the behavior corpus 121.

在S42中,單詞圖變遷特徵抽出部132係進行說明在S41中所生成的單詞圖122的時間序列式變遷的「單詞圖變遷特徵」的抽出。單詞圖變遷特徵係指表示在複數單詞圖122間如何作配置的單詞、或將該等單詞作群組化的叢集是否發生了變遷(變化)的特徵。其中,複數單詞圖122間的變遷亦可指因同一人物所致之時間上的變遷,亦可指因不同人物所致之變遷。 In S42, the word graph transition feature extraction unit 132 extracts "word graph transition features" that describe the time series transition of the word graph 122 generated in S41. The word graph transition feature refers to a feature that indicates how the words are arranged between the multiple word graphs 122, or whether the clusters that group the words have changed. The transition between the multiple word graphs 122 may refer to the transition over time caused by the same person, or may refer to the transition caused by different people.

在S51中,若藉由事前輸入的設定來進行後述實施例3的處理(收集討論的意見的處理)時(S51,Yes),單詞範數分析抽出部134係針對行為語料庫121所包含的單詞分析單詞向量的範數,且將單詞以範數的大小進行排序(sort),藉此抽出關鍵字(S52)。 In S51, if the processing of the later-described embodiment 3 (processing of collecting discussion opinions) is performed by the settings input in advance (S51, Yes), the word norm analysis and extraction unit 134 analyzes the norm of the word vector for the words included in the behavior corpus 121, and sorts the words according to the size of the norm, thereby extracting keywords (S52).

接著,單詞圖生成部131係根據在S52所抽出的關鍵字,生成表示收集了意見的結果的單詞圖122(意見圖)。在該意見圖係由不特定多數集團的自由記述,共通辨識或 多數意見以容易觀看的形式予以反映。 Next, the word graph generation unit 131 generates a word graph 122 (opinion graph) representing the result of collecting opinions based on the keywords extracted in S52. In this opinion graph, the common identification or majority opinions are reflected in an easy-to-view format by free descriptions of unspecified majority groups.

在S61中,若藉由事前輸入的設定,進行後述實施例4的處理(補足根據目標語的建議的內容的處理)時(S61,Yes),建議編輯部136係根據單詞圖122內的單詞與目標語的類似度,作成建議(S62、詳如圖21)。 In S61, if the processing of the later-described embodiment 4 (processing of supplementing the content of the suggestion based on the target word) is performed by the settings input in advance (S61, Yes), the suggestion editing unit 136 creates suggestions based on the similarity between the words in the word graph 122 and the target word (S62, as shown in FIG. 21).

在S43中,單詞圖變遷特徵抽出部132係將變遷前的單詞圖122、與變遷後的單詞圖122作排列顯示。使用者係可藉由比較雙方的單詞圖122,來掌握單詞圖變遷特徵。或者,亦可單詞圖變遷特徵抽出部132比較雙方的單詞圖122,藉此機械式抽出單詞圖變遷特徵。 In S43, the word graph transition feature extraction unit 132 arranges and displays the word graph 122 before the transition and the word graph 122 after the transition. The user can grasp the word graph transition feature by comparing the word graphs 122 of both sides. Alternatively, the word graph transition feature extraction unit 132 can compare the word graphs 122 of both sides to mechanically extract the word graph transition feature.

在S44中,終端機裝置30係由在S42中所抽出的單詞圖變遷特徵,生成照護服務等提供服務的提案。提供服務的提案係指選擇新利用什麼樣的服務的提案、或如何調整已為利用中的服務的提案等。S44的處理亦可由服務利用者或服務提供者將提案內容輸入至終端機裝置30,亦可由提供服務的機器人或家電等機械式生成。 In S44, the terminal device 30 generates a proposal for providing services such as nursing services based on the word graph transition features extracted in S42. The proposal for providing services refers to a proposal for selecting a new service to use or a proposal for adjusting a service that is already in use. The processing of S44 can also be performed by the service user or service provider inputting the proposal content to the terminal device 30, or it can be mechanically generated by a robot or home appliance that provides the service.

[實施例1] [Implementation Example 1]

在實施例1中係例示對在附服務高齡者專用住宅(以下稱為服高住)生活的高齡者個人的生活習慣,適用生活支援系統100的情形。 In Example 1, a case where the life support system 100 is applied to the life habits of an elderly person living in a housing for the elderly with service (hereinafter referred to as a service-oriented housing) is illustrated.

生活支援系統100係具有:取得關於計測生活型態的對象者的感測器資訊的感測器群40;及根據所取得的感測器資訊,對對象者提示提案生活型態的提案畫面的生活支 援裝置10。 The life support system 100 comprises: a sensor group 40 for acquiring sensor information about a subject whose lifestyle is measured; and a life support device 10 for presenting a screen for proposing a lifestyle to the subject based on the acquired sensor information.

圖5係實施例1的生活支援裝置10的構成圖。圖5的生活支援裝置10係抽出圖2的生活支援裝置10的一部分者,具體而言具有以下構成要素。 FIG5 is a configuration diagram of the life support device 10 of Example 1. The life support device 10 of FIG5 is a part of the life support device 10 of FIG2 extracted, and specifically has the following components.

‧輸出入部11係具備:資訊輸入部110、及資訊輸出部111。 ‧The input/output unit 11 includes: an information input unit 110 and an information output unit 111.

‧記憶部12係具備:文本化規則120、行為語料庫121、及單詞圖122。 ‧The memory unit 12 includes: textual rules 120, behavior corpus 121, and word graph 122.

‧運算部13係具備:文本化處理部130、單詞圖生成部131、及單詞圖變遷特徵抽出部132。 ‧The calculation unit 13 includes: a text processing unit 130, a word graph generation unit 131, and a word graph transition feature extraction unit 132.

‧文本化處理部130係具備:類別分類部1300、時間序列分析部1301、算術運算部1302、及比較/邏輯運算部1303。 ‧The text processing unit 130 includes: a category classification unit 1300, a time series analysis unit 1301, an arithmetic operation unit 1302, and a comparison/logic operation unit 1303.

圖5的生活支援裝置10主要具有以下構成要素。 The life support device 10 in FIG5 mainly has the following components.

‧將感測器群40所取得的感測器資訊,根據由記憶部12所讀入的文本化規則120而轉換為文本的文本化處理部130。 ‧The text processing unit 130 converts the sensor information obtained by the sensor group 40 into text according to the text rules 120 read from the memory unit 12.

‧將文本化處理部130所轉換的文本的各單詞,配置在作為2維以上的向量空間的單詞圖122內的單詞圖生成部131。 ‧The word graph generation unit 131 arranges each word of the text converted by the text processing unit 130 in the word graph 122 which is a vector space of two dimensions or more.

‧輸出可比較由將由感測器群40所取得的第1感測器資訊作轉換後的文本的單詞所生成的第1單詞圖;及由將由感測器群40所取得的第2感測器資訊作轉換後的文本的 單詞所生成的第2單詞圖的提案畫面的單詞圖變遷特徵抽出部132。 ‧The word graph transition feature extraction unit 132 outputs a proposal screen that can compare the first word graph generated by the words of the text after the first sensor information obtained by the sensor group 40 is converted; and the second word graph generated by the words of the text after the second sensor information obtained by the sensor group 40 is converted.

圖6係顯示藉由實施例1的感測器群40所取得的感測器資訊之例的表格T1。 FIG6 is a table T1 showing an example of sensor information obtained by the sensor group 40 of Embodiment 1.

該表格T1係按每個時戳(Time),儲存由加速度感測器46A所取得的加速度資料等由感測器群40所取得的各種感測器資訊。其中,「人感@玄關=OFF」係指表示感測位於玄關的人的人感感測器44A未感測到人的要旨。此外,「人感@客廳=ON」係指表示感測位於客廳的人的人感感測器44A感測到人的要旨。 The table T1 stores various sensor information obtained by the sensor group 40, such as acceleration data obtained by the acceleration sensor 46A, at each time stamp. Among them, "Human sensing @ porch = OFF" means that the human sensing sensor 44A that senses people in the porch does not sense a person. In addition, "Human sensing @ living room = ON" means that the human sensing sensor 44A that senses people in the living room senses a person.

其中,圖6的表格T1的感測器資訊係每隔1分鐘予以儲存,惟取樣率並非為該限制。 Among them, the sensor information in Table T1 of Figure 6 is stored every 1 minute, but the sampling rate is not limited to that.

圖7係顯示在S21中所使用的文本化規則120之例的表格T2。 FIG. 7 is a table T2 showing an example of textual rules 120 used in S21.

該表格T2係如「時間」文本分類所示,將時戳值分類成根據氣象局的定義的每隔3小時的8種類的時段的結果。 Table T2 is the result of classifying the timestamp values into 8 types of time periods every 3 hours as defined by the Weather Bureau, as shown in the "Time" text classification.

在S21中,文本化處理部130的類別分類部1300係將與感測器建立連結的時戳的值根據文本化規則120進行類別分類。 In S21, the classification unit 1300 of the text processing unit 130 classifies the value of the timestamp linked to the sensor according to the text rule 120.

圖8係顯示在S22中所使用的文本化規則120之例的流程圖。該流程圖係在心率上升時被執行。該文本化規則120係由「多數人步行速度為時速2.5km以上」等經驗法則所生成。 FIG8 is a flowchart showing an example of the textual rule 120 used in S22. The flowchart is executed when the heart rate rises. The textual rule 120 is generated by empirical rules such as "most people walk at a speed of more than 2.5 km per hour".

文本化處理部130係當步行速度為時速2.5km以上時 (S101,Yes),作文本分類為「運動」(S102)。另一方面,文本化處理部130若為(S101,No),則作文本分類為「異常心率」(S103)。 When the walking speed is above 2.5 km/h (S101, Yes), the text processing unit 130 classifies the text as "exercise" (S102). On the other hand, if the text processing unit 130 is (S101, No), the text processing unit 130 classifies the text as "abnormal heart rate" (S103).

藉由該圖8的文本化規則120,文本化處理部130係可藉由心率與加速度的邏輯運算,導出「運動」或「異常心率」等文本。 By using the textual rule 120 of FIG. 8 , the textual processing unit 130 can derive texts such as "exercise" or "abnormal heart rate" through logical operations of heart rate and acceleration.

或者,文本化處理部130亦可例如藉由心率的時間序列分析,生成「心率上升」或「心率降低」等文本。或者,文本化處理部130亦可藉由加速度感測器或陀螺儀感測器的算術運算,來導出「步行」等文本。 Alternatively, the text processing unit 130 may also generate text such as "heart rate rises" or "heart rate decreases" by, for example, analyzing the time series of the heart rate. Alternatively, the text processing unit 130 may also derive text such as "walking" by performing arithmetic operations using an accelerometer or a gyroscope sensor.

圖9係顯示在S23中所使用的文本化規則120之例的流程圖。該流程圖係在門開閉感測器值成為ON時被執行。 FIG9 is a flowchart showing an example of textual rule 120 used in S23. The flowchart is executed when the door open/close sensor value becomes ON.

比較/邏輯運算部1303係按照圖9的流程圖,對門感測器值與人感感測器值進行邏輯運算,藉此進行文本化(S23)。 The comparison/logic operation unit 1303 performs logical operations on the door sensor value and the human sensor value according to the flow chart of Figure 9, thereby converting them into text (S23).

文本化處理部130係當配置在家的內側方向的玄關的人感感測器44A為ON時(S111,Yes),作文本分類為「外出」(S112)。另一方面,文本化處理部130係當(S111,No)且在最近的行為語料庫121有「外出」時(S113,Yes),作文本分類為「回家」(S114)。另一方面,文本化處理部130若為(S113,No),作文本分類為「訪問」(S115)。 When the human sensor 44A arranged at the entrance of the inner side of the home is on (S111, Yes), the text processing unit 130 classifies the composition as "going out" (S112). On the other hand, when (S111, No) and there is "going out" in the recent behavior corpus 121 (S113, Yes), the text processing unit 130 classifies the composition as "returning home" (S114). On the other hand, if (S113, No) the text processing unit 130 classifies the composition as "visiting" (S115).

圖10係顯示在S23中所使用的文本化規則120之例的流程圖。該流程圖係在人感感測器值成為ON之時 被執行。 FIG. 10 is a flowchart showing an example of textual rule 120 used in S23. The flowchart is executed when the human sensor value becomes ON.

比較/邏輯運算部1303係按照圖10的流程圖,將人感感測器值、及各種感測器(加速度感測器46A、照度感測器48A、家電感測器49B等)的值進行邏輯運算,藉此將人的行為文本化(S23)。 The comparison/logic operation unit 1303 performs logical operations on the human sensor value and the values of various sensors (acceleration sensor 46A, illuminance sensor 48A, home appliance sensor 49B, etc.) according to the flowchart of Figure 10, thereby texting the human behavior (S23).

其中,文本化處理部130亦可僅由具有最為最近的時戳的感測器資訊進行文本化,亦可由與由最為最近的感測器資訊追溯到過去的複數時戳建立連結的感測器資訊進行文本化。 The text processing unit 130 may also text only the sensor information with the most recent timestamp, or may text the sensor information that is linked to multiple timestamps traced back from the most recent sensor information.

文本化處理部130係按照人感感測器值成為ON的人的所在地,使處理作分歧(S201)。 The text processing unit 130 divides the processing according to the location of the person whose human sensor value is ON (S201).

‧位於客廳時,作文本分類為「放鬆」(S202)。 ‧When in the living room, the composition book is classified as "relaxation" (S202).

‧位於飯廳時,若在餐桌附近移動(加速度@餐桌為臨限值以上)(S211,Yes),作文本分類為「用餐」(S212)。 ‧When in the dining room, if the person moves near the dining table (acceleration @ dining table is above the critical value) (S211, Yes), the composition is classified as "dining" (S212).

‧位於臥室時,若臥室暗(照度@臥室為未達臨限值)(S221,Yes),作文本分類為「睡覺」(S222)。 ‧When in the bedroom, if the bedroom is dark (illuminance @ bedroom does not reach the critical value) (S221, Yes), the composition is classified as "sleeping" (S222).

‧位於廚房時,若廚房家電進行運轉(有冰箱或微波爐的門作了開閉等家電感測器49B的感測)(S231,Yes),作文本分類為「料理」(S232)。 ‧When in the kitchen, if the kitchen appliances are running (the door of the refrigerator or microwave oven is opened or closed, etc., as detected by the appliance sensor 49B) (S231, Yes), the composition is classified as "cooking" (S232).

圖11係顯示在S13中所生成的行為語料庫121之例的說明圖。 FIG11 is an explanatory diagram showing an example of the behavior corpus 121 generated in S13.

文本化處理部130係由藉由圖7~圖10等文本化規則120所生成之表示「用餐」或「睡覺」等行為的文本的集積,藉由以下例示的順序,生成「在凌晨睡覺」等表示人的行 為的文句的圖11的行為語料庫121(S13)。 The text processing unit 130 generates the behavior corpus 121 of FIG. 11 (S13) of sentences representing human behaviors such as "sleeping in the early morning" by accumulating texts representing behaviors such as "eating" or "sleeping" generated by the text rules 120 of FIG. 7 to FIG. 10 in the following example sequence.

(順序1)由時戳決定時間標籤(When)。 (Sequence 1) Determine the time label (When) by the timestamp.

(順序2)由人感感測器值決定場所標籤(Where)。 (Sequence 2) The location label (Where) is determined by the human sensor value.

(順序3)由其他感測器(加速度、心率、門、照度、家電)決定行為的內容(Do)。 (Sequence 3) The content of the behavior (Do) is determined by other sensors (acceleration, heart rate, door, illumination, home appliances).

(順序4)藉由時戳將行為標籤細分化(例如將「用餐」細分化為「早餐」)。 (Sequence 4) Use timestamps to subdivide behavior labels (e.g. subdivide "meal" into "breakfast").

(順序5)由(順序1)~(順序4)作成表示藉由同一人物的同一時戳所為之行為的文句。 (Sequence 5) Create a sentence from (Sequence 1) to (Sequence 4) that expresses the actions performed by the same person at the same timestamp.

圖12係顯示在S41中被抽出的單詞圖122(圖2)之例的畫面圖。 FIG12 is a screen shot showing an example of the word graph 122 (FIG2) extracted in S41.

單詞圖生成部131係將針對文本化處理部130轉換後的文本的各單詞的涵義形成為向量表現而向量化,且根據該向量表現,計算各單詞彼此的類似度,以愈為類似度大的單詞間,在單詞圖122內愈為接近的方式進行配置。 The word graph generation unit 131 vectorizes the meaning of each word in the text converted by the text processing unit 130 into a vector expression, and calculates the similarity between each word based on the vector expression, so that the words with greater similarity are arranged closer in the word graph 122.

單詞圖生成部131係由圖11等行為語料庫121,藉由以下例示的順序,生成圖12等的單詞圖122(S41)。 The word graph generation unit 131 generates the word graph 122 shown in FIG. 12 etc. from the behavior corpus 121 shown in FIG. 11 etc. by the following exemplified sequence (S41).

(順序1)單詞圖生成部131係藉由依機械所為之形態分析,將經文本化的文章細分化為詞類。例如,圖11第1行「在凌晨睡覺」係被細分化為詞類「凌晨」、及詞類「在」、及詞類「睡覺」。 (Sequence 1) The word graph generation unit 131 subdivides the text-based article into word classes by mechanical morphological analysis. For example, the first line of Figure 11 "在早早床妺" is subdivided into the word class "早早", the word class "在", and the word class "睡妺".

(順序2)藉由將經細分化的詞類的單詞進行向量化的機械學習演算法(Word2Vec),獲得單詞的分散表現,且按 照該分散表現,將單詞標繪在單詞圖122上。接著,單詞圖生成部131係根據經標繪的1個以上的單詞的配置,根據單詞圖122上的單詞間的距離等進行群組化(叢集化)。其中,單詞的分散表現係例如以下所示。 (Sequence 2) A machine learning algorithm (Word2Vec) is used to vectorize words of finely differentiated word classes to obtain a distributed representation of words, and the words are plotted on the word graph 122 according to the distributed representation. Next, the word graph generation unit 131 groups (clusters) words according to the arrangement of one or more plotted words and the distance between words on the word graph 122. The distributed representation of words is shown as follows, for example.

‧單詞「凌晨」=[0,0.3,0.4] ‧Word "early morning" = [0,0.3,0.4]

‧單詞「睡覺」=[0.5,0,0.2] ‧Word "sleep" = [0.5, 0, 0.2]

(順序3)對所生成的叢集的命名係由人按照經驗法則來進行。例如,人在家庭內的行為分類係以分類成「就寢關連」、「放鬆關連」、「外出關連」、「家務、用餐關連」的方式來決定。其中,在圖12的單詞圖122中,根據單詞彼此的類似度,生成有就寢C(Cluster的簡寫)、放鬆C、外出C、家務用餐C等合計4個叢集,惟並不一定需要製作叢集,叢集數或種類亦非侷限於該等。 (Sequence 3) The naming of the generated clusters is done by people according to empirical rules. For example, the classification of people's behaviors in the family is determined by classifying them into "bedtime-related", "relaxation-related", "outing-related", and "housework and dining-related". Among them, in the word graph 122 of Figure 12, according to the similarity between words, a total of 4 clusters are generated, including bedtime C (abbreviation of Cluster), relaxation C, outing C, and housework and dining C. However, it is not necessary to create clusters, and the number or types of clusters are not limited to them.

藉由以上順序,即使為相同順序,亦生成因所被輸入的行為語料庫121不同,所被輸出的單詞圖122亦不同者。例如,在圖12中,即使為相同高齡者的行為語料庫121,亦在以下2個單詞圖,在所被配置的各個單詞、或將該等進行叢集化的叢集發生不同。 By following the above sequence, even if the sequence is the same, different word graphs 122 are generated because different behavior corpora 121 are input. For example, in FIG. 12 , even if the behavior corpora 121 of the same senior citizen are used, the words arranged or the clusters in which they are clustered are different in the following two word graphs.

‧由一週前的感測器資訊(第1感測器資訊)所生成的單詞圖201(第1單詞圖)。在第1感測器資訊中,健康狀態為「良」且活動度高。 ‧Word graph 201 (first word graph) generated from sensor information (first sensor information) one week ago. In the first sensor information, the health status is "good" and the activity level is high.

‧由現在的感測器資訊(第2感測器資訊)所生成的單詞圖202(第2單詞圖)。在第2感測器資訊中,健康狀態為「不良」且活動度低。 ‧Word graph 202 (second word graph) generated from current sensor information (second sensor information). In the second sensor information, the health status is "poor" and the activity level is low.

單詞圖變遷特徵抽出部132係生成將單詞圖201與單詞圖202排列作對比的畫面顯示200,且使畫面顯示200顯示在終端機裝置30(服高住的事業者的終端機)等(S43)。 The word graph transition feature extraction unit 132 generates a screen display 200 in which the word graph 201 and the word graph 202 are arranged for comparison, and displays the screen display 200 on the terminal device 30 (the terminal of the service provider) etc. (S43).

在單詞圖201係包含就寢C、放鬆C、外出C、家務用餐C等合計4個叢集,在單詞圖202係包含就寢C、放鬆C、家務用餐C等合計3個叢集。亦即,使用者係藉由將畫面顯示200內的單詞圖201與單詞圖202作對比,可掌握由於健康狀態變差而不外出的情形。 The word graph 201 includes four clusters, namely, bedtime C, relaxation C, going out C, and housework and dining C, and the word graph 202 includes three clusters, namely, bedtime C, relaxation C, and housework and dining C. That is, the user can understand the situation of not going out due to deteriorating health status by comparing the word graph 201 in the screen display 200 with the word graph 202.

單詞圖變遷特徵抽出部132係抽出前次生成的單詞圖201與本次生成的單詞圖202的單詞圖變遷特徵。單詞圖變遷特徵亦可指由以前的單詞圖122所附加或消失的單詞,亦可指由以前的單詞圖122所附加或消失的叢集。或者,亦可指由以前的單詞圖122,離特定的單詞的位置或所屬的叢集已改變的單詞。 The word graph change feature extraction unit 132 extracts the word graph change features of the word graph 201 generated last time and the word graph 202 generated this time. The word graph change feature may also refer to a word added or disappeared from the previous word graph 122, or a cluster added or disappeared from the previous word graph 122. Alternatively, it may refer to a word whose position or cluster to which it belongs has changed from a specific word in the previous word graph 122.

其中,在圖12中,以四角包圍成為單詞圖201與單詞圖202的相異處的單詞,作為單詞圖變遷特徵抽出部132所抽出的單詞圖變遷特徵。例如,在健康狀態佳時的單詞圖201的就寢C並未包含「異常心率」或「早晨」的單詞。另一方面,在健康狀態為不良時的單詞圖202的就寢C係包含有「異常心率」或「早晨」的單詞。 Among them, in FIG12, the words that are surrounded by four corners to form the difference between the word graph 201 and the word graph 202 are used as the word graph transition feature extracted by the word graph transition feature extraction unit 132. For example, the word "bed C" in the word graph 201 when the health status is good does not include the words "abnormal heart rate" or "morning". On the other hand, the word "bed C" in the word graph 202 when the health status is bad includes the words "abnormal heart rate" or "morning".

實施例1中的單詞圖變遷特徵抽出部132係抽出以下例示的單詞圖變遷特徵。該所抽出的單詞圖變遷特徵亦可包含在S43的畫面顯示200。 The word graph transition feature extraction unit 132 in Embodiment 1 extracts the word graph transition features exemplified below. The extracted word graph transition features may also be included in the screen display 200 of S43.

(特徵A)「外出關連叢集」已消失 (Feature A) "Out-of-town related cluster" has disappeared

(特徵B)在「就寢關連叢集」附加了「異常心率」或「早晨」等單詞 (Feature B) Adding words such as "abnormal heart rate" or "morning" to the "bedtime-related cluster"

(特徵C)「中午前」或「過午」等單詞由「外出關連叢集」移動至「放鬆關連叢集」 (Feature C) Words such as "before noon" or "after noon" are moved from the "going out related cluster" to the "relaxation related cluster"

藉此,服高住的事業者係藉由S43的畫面顯示200,推察相符的高齡者的健康狀態或活動度已降低。結果,服高住的事業者係由所掌握到的單詞圖變遷特徵,透過終端機裝置30來提案以下例示的提供服務(S44)。 Thus, the operator of the high-income housing service infers that the health status or activity level of the corresponding elderly person has decreased through the screen display 200 of S43. As a result, the operator of the high-income housing service proposes the following exemplary service provision through the terminal device 30 based on the acquired word graph transition characteristics (S44).

‧對於(特徵A),促進在屋外散步、或在日間照護服務參與娛樂的提案。此外,亦可由位於外出C的近旁的單詞進行提案。 ‧For (Feature A), the proposal is to promote walking outside or participating in entertainment in day care services. In addition, the proposal can also be made by words located near going out C.

‧對於(特徵B)、(特徵C),對服高住的工作人員提高「健康狀態惡化」、「生活型態改變」警報,提案上尸升巡視頻度。 ‧For (Characteristic B) and (Characteristic C), raise the alert level of "health deterioration" and "lifestyle change" for service and housing staff, and propose to increase the frequency of video patrols.

圖13係對圖12的畫面圖的單詞圖追加了行為路徑資訊的畫面圖。 FIG13 is a screen image in which behavior path information is added to the word graph of the screen image of FIG12.

單詞圖變遷特徵抽出部132係針對第1單詞圖201、與第2單詞圖202,將分別表示單詞圖201內的時段的單詞彼此,藉由單詞圖122內的位置近、且依該時段的經過順序相連接而生成行為路徑201R、202R,且將該生成的行為路徑201R、202R顯示在各自的單詞圖內。 The word graph transition feature extraction unit 132 generates behavior paths 201R and 202R for the first word graph 201 and the second word graph 202 by connecting the words that represent the time periods in the word graph 201 by being close to each other in the word graph 122 and in the order of the passing of the time periods, and displays the generated behavior paths 201R and 202R in the respective word graphs.

對比行為路徑201R、202R的高齡者係可掌握現在的自己的生活習慣(現狀的行為)為白天不外出而至深夜不睡 的夜間型者,一週前的生活習慣(目標的行為)為白天外出的日間型者。因此,高齡者係可由圖13的畫面圖取得欲將生活習慣由夜間型改變為日間型的發現。 The elderly with the behavior paths 201R and 202R can understand that their current living habits (current behavior) are night-time people who stay up late at night and do not go out during the day, and their living habits a week ago (target behavior) were day-time people who went out during the day. Therefore, the elderly can obtain the discovery that they want to change their living habits from night-time people to day-time people from the screen diagram of FIG. 13.

因此,單詞圖變遷特徵抽出部132係生成例如依外出C的「中午前」→家務用餐C的「傍晚」→放鬆C的「晚上」→就寢C的「深夜」的順序相連接的行為路徑201R。同樣地,單詞圖變遷特徵抽出部132係生成依放鬆C的「中午前」→家務用餐C的「傍晚」→就寢C的「深夜」的順序相連接的行為路徑202R。 Therefore, the word graph transition feature extraction unit 132 generates a behavior path 201R that is connected in the order of, for example, "before noon" of going out C → "evening" of housework and dining C → "evening" of relaxing C → "late night" of going to bed C. Similarly, the word graph transition feature extraction unit 132 generates a behavior path 202R that is connected in the order of "before noon" of relaxing C → "evening" of housework and dining C → "late night" of going to bed C.

結果,對單詞圖201,追加依「外出C→家務用餐C→放鬆C→就寢C」的順序相連接的行為路徑201R。對單詞圖202,追加依「放鬆C→家務用餐C→就寢C」的順序相連接的行為路徑202R。 As a result, a behavior path 201R connected in the order of "going out C→ housework dining C→ relaxing C→ going to bed C" is added to the word graph 201. A behavior path 202R connected in the order of "relaxing C→ housework dining C→ going to bed C" is added to the word graph 202.

[實施例2] [Example 2]

在實施例2中,並非為如實施例1般關於特定的個人的單詞圖122,而是生成具有特定屬性(在此為需照護度)的集團的單詞圖122,且抽出在不同的需照護度的單詞圖122間的單詞圖變遷特徵之例。以下係例示對服高住內的高齡者的集團適用生活支援系統100的情形。 In Example 2, instead of generating a word graph 122 for a specific individual as in Example 1, a word graph 122 for a group with a specific attribute (here, the degree of care required) is generated, and the word graph transition characteristics between word graphs 122 with different degrees of care required are extracted. The following is an example of applying the life support system 100 to a group of elderly people living in a high-income housing facility.

圖14係實施例2中的生活支援裝置10的構成圖。圖14的生活支援裝置10係對圖5的生活支援裝置10,追加屬性資訊123及特定資訊過濾部133。 FIG14 is a diagram showing the structure of the life support device 10 in Embodiment 2. The life support device 10 in FIG14 is obtained by adding attribute information 123 and a specific information filter 133 to the life support device 10 in FIG5 .

在記憶部12係另外儲存有用以將複數位對象者作分類 的屬性資訊123。單詞圖生成部131係由關於屬性資訊123相同的複數位對象者的感測器資訊,生成1個單詞圖122。 The memory unit 12 additionally stores attribute information 123 for classifying multiple subjects. The word graph generation unit 131 generates a word graph 122 from sensor information about multiple subjects with the same attribute information 123.

亦即,屬性資訊123係在文本化處理部130在行為語料庫儲存文本的處理(圖3的S13)中,被參照在用以分配為依屬性而異的行為語料庫121。屬性資訊123係例如按每個個人的需照護度的資訊,具有相同需照護度的個人的資料係被池化為相同的行為語料庫121。 That is, the attribute information 123 is referred to in the process of storing the text in the behavior corpus by the text processing unit 130 (S13 in FIG. 3) to allocate the behavior corpus 121 according to the attribute. The attribute information 123 is, for example, information on the care need level of each individual, and the data of individuals with the same care need level are pooled into the same behavior corpus 121.

特定資訊過濾部133係由行為語料庫121,過濾相當於個人資訊(姓名、契約者編號、ID等)的資訊而進行削除,藉此作成具匿名性的行為語料庫121(S32)。亦即,特定資訊過濾部133係若由關於複數位對象者的感測器資訊,生成1個單詞圖122時,將相當於可特定對象者的個人的資訊的單詞由單詞圖122除外。 The specific information filter 133 removes information equivalent to personal information (name, contractor number, ID, etc.) from the behavior corpus 121, thereby creating an anonymous behavior corpus 121 (S32). That is, when the specific information filter 133 generates a word graph 122 from sensor information about multiple subjects, the words equivalent to personal information that can identify the subject are excluded from the word graph 122.

接著,單詞圖生成部131係對S32的行為語料庫121,按每個不同屬性(在此為需照護度),生成單詞圖122(S41)。 Next, the word graph generation unit 131 generates a word graph 122 (S41) for each different attribute (here, the degree of care required) of the behavior corpus 121 in S32.

圖15係顯示在單詞圖211、212間的轉換函數213及逆轉換函數214的畫面圖。 FIG. 15 is a screen diagram showing the conversion function 213 and the inverse conversion function 214 between the word graphs 211 and 212.

單詞圖變遷特徵抽出部132係抽出用以將彼此不同的屬性資訊123的單詞圖122(圖2)相互轉換的轉換規則(轉換函數213及逆轉換函數214)。 The word graph transition feature extraction unit 132 extracts conversion rules (conversion function 213 and inverse conversion function 214) for converting word graphs 122 (FIG. 2) of different attribute information 123 to each other.

單詞圖變遷特徵抽出部132係在第1單詞圖211、及第2單詞圖212之中,對相當於與對象者相同的屬性資訊123的其中一方單詞圖適用轉換規則,藉此生成另一方單詞圖。 The word graph transition feature extraction unit 132 applies a conversion rule to one of the first word graph 211 and the second word graph 212 that is equivalent to the same attribute information 123 as the object, thereby generating the other word graph.

在畫面210係排列顯示有需照護度=輕度的單詞圖211、與需照護度=重度的單詞圖212(S43)。藉此,可提案用以將需照護度為重度之群接近輕度之群的生活型態。因此,單詞圖變遷特徵抽出部132係導出由單詞圖211對單詞圖212的轉換函數213、及由單詞圖212對單詞圖211的逆轉換函數214。 On screen 210, a word graph 211 of care need = mild and a word graph 212 of care need = severe are displayed in sequence (S43). Thus, a lifestyle for bringing the group with severe care need closer to the group with mild care need can be proposed. Therefore, the word graph transition feature extraction unit 132 derives a conversion function 213 from the word graph 211 to the word graph 212, and an inverse conversion function 214 from the word graph 212 to the word graph 211.

具體而言,單詞圖變遷特徵抽出部132係根據在彼此不同的需照護度的單詞圖122為共通的單詞(表示時段的單詞、或睡覺、用餐等)中的配置傾向不同,求出用以相互轉換如圖15所示之不同屬性的單詞圖的轉換函數213及逆轉換函數214,作為S42的單詞圖變遷特徵。 Specifically, the word graph transition feature extraction unit 132 obtains the conversion function 213 and the inverse conversion function 214 for converting the word graphs of different attributes shown in FIG. 15 based on the different placement tendencies of the common words (words representing time periods, or sleeping, eating, etc.) in the word graphs 122 of different care needs, as the word graph transition feature of S42.

接著,單詞圖變遷特徵抽出部132係除了畫面210之外,亦可使轉換函數213的具體內容及逆轉換函數214的具體內容,作為警報或建議而對高齡者自身或服高住的事業者顯示。例如,顯示對用餐關連叢集有無「早晨」等單詞、「中午前」、「過午」所屬叢集的不同等。藉此,可對需照護度為重度之群,建議吃早餐、或建議在中午前~過午外出。 Next, the word graph transition feature extraction unit 132 can display the specific content of the conversion function 213 and the specific content of the inverse conversion function 214 as a warning or suggestion to the elderly themselves or the senior housing service provider in addition to the screen 210. For example, it can display whether there are words such as "morning" in the meal-related cluster, and the difference in the clusters to which "before noon" and "after noon" belong. In this way, it can be recommended to eat breakfast or go out before noon to after noon for the group with a high degree of care needs.

其中,在轉換函數213及逆轉換函數214係包含例如以下的(轉換B1)~(轉換B3)。 Among them, the conversion function 213 and the inverse conversion function 214 include, for example, the following (conversion B1) to (conversion B3).

(轉換B1)單詞間或叢集間的距離的變更。例如,在圖15中,「早晨」與「中午前」的距離在單詞圖122間予以變更。 (Transition B1) Changes in the distance between words or clusters. For example, in Figure 15, the distance between "morning" and "before noon" is changed between the word graph 122.

(轉換B2)叢集數的變更。 (Conversion B2) Changes in the number of clusters.

(轉換B3)構成叢集的單詞的變更。例如,在圖15中,「早晨」由家務用餐C變更為就寢C。 (Transformation B3) Changes in the words that make up the cluster. For example, in Figure 15, "morning" is changed from housework, dining, C to bedtime, C.

此外,轉換函數213及逆轉換函數214亦可為複合式進行(轉換B1)~(轉換B3)者。此時,單詞圖變遷特徵抽出部132亦可僅調整特定的單詞間或叢集間的距離,亦可使用特定的單詞間的距離來調整全部單詞間或叢集間的距離。 In addition, the conversion function 213 and the inverse conversion function 214 may also be compound functions that perform (conversion B1) to (conversion B3). At this time, the word graph transition feature extraction unit 132 may only adjust the distance between specific words or clusters, or may use the distance between specific words to adjust the distance between all words or clusters.

如上所示所導出的轉換函數213及逆轉換函數214係例如在以下場面中使用。 The conversion function 213 and the inverse conversion function 214 derived as shown above are used, for example, in the following scenario.

某需照護度=重度的高齡者X入住服高住,根據入住第一週的生活習慣,單詞圖生成部131生成單詞圖122(單詞圖X1)。該單詞圖X1係單獨將需照護度=重度的生活習慣可視化者。高齡者X係藉由與如何改善其生活習慣較好等目標的單詞圖122(單詞圖X2)作對比,以獲得生活改善的發現。但是,在入住第一週剛入住服高住的高齡者X,由於沒有過去的資料,因此由高齡者X的個人資料並無法作成單詞圖X2。 An elderly person X with a high care requirement is admitted to a high-end residential care facility. Based on his living habits in the first week of his stay, the word graph generation unit 131 generates a word graph 122 (word graph X1). This word graph X1 visualizes the living habits of a person with a high care requirement. Elderly person X is compared with the word graph 122 (word graph X2) with the goal of improving his living habits to obtain a discovery of improvement in his life. However, since elderly person X has no past data for the first week of his stay, word graph X2 cannot be generated from the personal data of elderly person X.

因此,單詞圖生成部131係對單詞圖X1適用逆轉換函數214,藉此作成修正了單詞圖X1的單詞圖X2。該單詞圖X2係將高齡者X個人的單詞圖X1作為基礎,因此相較於被看到需照護度=輕度的一般(集團的)單詞圖Y1,對高齡者X而言較具說服力。 Therefore, the word graph generation unit 131 applies the inverse conversion function 214 to the word graph X1, thereby creating a word graph X2 that modifies the word graph X1. The word graph X2 is based on the individual word graph X1 of the elderly person X, so it is more convincing to the elderly person X than the general (group) word graph Y1 that is seen as requiring care = mild.

此外,假設高齡者X入住經過了3個月。藉此,由於亦可作成入住3個月後的單詞圖X3,因此如實施例1中所作說明,亦可排列顯示入住第一週的個人的單詞 圖X1、與入住3個月後的個人的單詞圖X3。在此,單詞圖變遷特徵抽出部132係重新生成單詞圖X1→單詞圖X3的轉換函數X4。單詞圖變遷特徵抽出部132亦可顯示將該個人的轉換函數X4、與圖15中所顯示的集團的轉換函數213(或逆轉換函數214)作比較後的結果。藉此,可分析高齡者X的遷移狀態朝向需照護度的惡化方向及改善方向何者。 In addition, it is assumed that three months have passed since the elderly X moved in. In this way, since the word graph X3 after three months of moving in can also be created, as described in Example 1, the word graph X1 of the individual in the first week of moving in and the word graph X3 of the individual after three months of moving in can also be arranged and displayed. Here, the word graph transition feature extraction unit 132 regenerates the conversion function X4 of the word graph X1→word graph X3. The word graph transition feature extraction unit 132 can also display the result of comparing the conversion function X4 of the individual with the conversion function 213 (or the inverse conversion function 214) of the group shown in Figure 15. In this way, it is possible to analyze whether the migration status of the elderly X is heading towards the deterioration or improvement of the degree of care required.

在S44中,例如保險事業者的終端機裝置30係藉由定期判定已加入服高住的高齡者接近哪個屬性的單詞圖122、或變遷至哪個屬性,來建議重新考慮所加入的商品。或者,終端機裝置30係可對加入者,以逐漸朝輕度的需照護度的單詞圖122中的生活型態接近的方式推薦行為改變。結果,若該高齡者個人的單詞圖122接近輕度的需照護度,可降低保險費,且可提高保險事業中的附加價值。 In S44, for example, the terminal device 30 of the insurance company periodically determines which attribute of the word graph 122 the elderly who have joined the service are close to, or which attribute they are changing to, and recommends reconsidering the products they have joined. Alternatively, the terminal device 30 can recommend behavioral changes to the subscriber in a way that gradually approaches the lifestyle in the word graph 122 of a mild need for care. As a result, if the word graph 122 of the elderly individual is close to a mild need for care, the insurance premium can be reduced and the added value in the insurance business can be increased.

[實施例3] [Implementation Example 3]

在實施例3中,例示在企業的工會中供勞動環境改善用的討論(意見收集及改善措施擬定)中適用生活支援系統100的情形。在企業的工會內,透過供勞動環境改善用的討論或問卷調查,定期進行來自工會會員的意見收集。但是,多樣的意見收集或主要的問題抽出、及對該等的改善措施的擬定大多由工會執行委員在日常職務的同時進行,有對員工造成負擔的情形。因此,在實施例3中,提供作為支援意見收集等的工具的功能。 In Example 3, the case where the life support system 100 is applied in the discussion (opinion collection and improvement measures formulation) for the improvement of the working environment in the enterprise union is illustrated. In the enterprise union, opinions from union members are collected regularly through discussions or questionnaires for the improvement of the working environment. However, the collection of various opinions or the extraction of major issues and the formulation of improvement measures are mostly carried out by the union executive committee while performing their daily duties, which may cause a burden on employees. Therefore, in Example 3, a function as a tool to support opinion collection, etc. is provided.

圖16係實施例3中的生活支援裝置的構成圖。 Figure 16 is a diagram showing the structure of the life support device in Example 3.

圖16的生活支援裝置10係由圖5的生活支援裝置10中刪除類別分類部1300、時間序列分析部1301、算術運算部1302、及比較/邏輯運算部1303。此外,圖16的生活支援裝置10係對圖5的生活支援裝置10追加聲音辨識部1304、畫像辨識部1305、特定資訊過濾部133、單詞範數分析抽出部134、及單詞範數124。 The life support device 10 of FIG16 is obtained by deleting the category classification unit 1300, the time series analysis unit 1301, the arithmetic operation unit 1302, and the comparison/logic operation unit 1303 from the life support device 10 of FIG5. In addition, the life support device 10 of FIG16 is obtained by adding a voice recognition unit 1304, an image recognition unit 1305, a specific information filtering unit 133, a word mode analysis and extraction unit 134, and a word mode 124 to the life support device 10 of FIG5.

在S11中,資訊輸入部110係取得工會關係的討論中的麥克風或攝影機41A的資訊。該所取得的討論的資訊係例如以下所示。 In S11, the information input unit 110 obtains information from the microphone or camera 41A regarding the discussion of union relations. The obtained discussion information is as follows, for example.

‧聲音辨識部1304將發話者的發言的內容文本化(S24)的資訊。 ‧Information that the voice recognition unit 1304 converts the content of the speaker's speech into text (S24).

‧畫像辨識部1305將由攝影機41A等表示發話者發言時的樣子的非言語性資訊(喜、怒等情緒等)進行文本化的(S25)資訊。 ‧The image recognition unit 1305 converts the non-verbal information (emotions such as joy and anger) of the speaker's appearance when speaking, which is represented by the camera 41A, into text (S25).

‧由終端機裝置30被輸入在書面或Web上被收集到的問卷調查的文本資訊(S12)的資訊。 ‧The terminal device 30 inputs the text information (S12) of the questionnaire collected in writing or on the Web.

文本化處理部130係將在S24、S25、S12中被輸入的討論的資訊轉換為行為語料庫121而儲存在記憶部12(S13)。 The text processing unit 130 converts the discussion information input in S24, S25, and S12 into a behavior corpus 121 and stores it in the memory unit 12 (S13).

在S52中,單詞範數分析抽出部134係分析S13的行為語料庫121所包含的單詞的範數。其中,被認為愈為類似的文脈且頻繁出現的單詞,與其他單詞相比較,具有相對較大的範數,且被認為是表現多數工會會員共通 的問題意識的單詞。接著,單詞範數分析抽出部134係單詞範數124的分析的結果,將單詞以範數的大小進行排序,且抽出上位數單詞作為勞動環境問題的關鍵字。 In S52, the word category analysis and extraction unit 134 analyzes the category of words contained in the behavior corpus 121 of S13. Among them, the words that are considered to have more similar context and appear frequently have a relatively large category compared to other words, and are considered to be words that express the common problem consciousness of most union members. Next, the word category analysis and extraction unit 134 is the result of the analysis of the word category 124, sorts the words according to the size of the category, and extracts the upper number words as keywords of the labor environment problem.

如上所示,文本化處理部130係轉換為包含表示會議內容的單詞的文本。接著,單詞圖生成部131係將表示會議內容的各單詞的向量範數為未達預定值的單詞,由單詞圖122除外。 As shown above, the text processing unit 130 converts the text into words representing the content of the meeting. Then, the word graph generation unit 131 excludes the words whose vector norms of each word representing the content of the meeting do not reach a predetermined value from the word graph 122.

圖17係實施例3中收集了過去的意見的單詞圖221的畫面圖。 FIG. 17 is a screen shot of the word graph 221 that collects past opinions in Example 3.

在S53中,單詞圖生成部131係根據由過去的討論而在S52中所抽出的關鍵字,生成收集了過去的意見的單詞圖221(過去的意見圖)。在圖17的過去的意見圖,相似文脈或類似主題中所使用的單詞係配置較近(叢集化),可進行勞動環境所存有的問題的分類及其內容的抽出。 In S53, the word graph generation unit 131 generates a word graph 221 (past opinion graph) that collects past opinions based on the keywords extracted in S52 from past discussions. In the past opinion graph of FIG17, words used in similar contexts or similar topics are arranged close together (clustered), and the problems existing in the labor environment can be classified and their contents extracted.

‧第1問題C=雜事、效率、業務量、深夜勞動、加班係在A:業務體制/工作量的問題中被叢集化。 ‧Question 1 C = chores, efficiency, workload, late night work, and overtime are clustered in A: business system/workload issues.

‧第2問題C=居家工作、IT工具、溝通、運動不足係在隨同B:居家工作的問題中被叢集化。 ‧Question 2 C = work from home, IT tools, communication, and lack of exercise are clustered together with B: the problem of work from home.

‧第3問題C=工資、獎金、基本薪資、稅金、高物價係在C:關於工資與生活費的問題中被叢集化。 ‧Question 3 C = wages, bonuses, basic salary, taxes, and high prices are clustered in C: Questions about wages and living expenses.

‧第4問題C=育嬰假、產假、人手不足、補貼係在D:關於兼顧工作與育兒的問題中被叢集化。 ‧Question 4 C = Parental leave, maternity leave, staff shortage, and subsidies are clustered in D: Questions about balancing work and childcare.

其中,單詞圖生成部131係藉由例如Elbow法來決定叢集數,且藉由例如k-means法來求出單詞向量間的類似 度。藉此,單詞圖生成部131係可導出單詞間的涵義的類似度,並且進行涵義的類似度高(在單詞圖221上近接)的單詞彼此的叢集。 The word graph generation unit 131 determines the number of clusters by, for example, the Elbow method, and finds the similarity between word vectors by, for example, the k-means method. In this way, the word graph generation unit 131 can derive the similarity of the meanings between words, and cluster words with high similarity of meaning (close to each other on the word graph 221).

圖18係實施例3中收集了現在的意見的單詞圖222的畫面圖。 FIG. 18 is a screen shot of the word graph 222 that collects current opinions in Example 3.

在S53中,單詞圖生成部131係根據由現在的討論而在S52中所抽出的關鍵字,生成收集了現在的意見的單詞圖222(現在的意見圖)。 In S53, the word graph generation unit 131 generates a word graph 222 (current opinion graph) that collects current opinions based on the keywords extracted in S52 from the current discussion.

接著,單詞圖變遷特徵抽出部132係顯示將過去的(圖17的)意見圖、與現在的(圖18的)意見圖作對比的畫面,並且抽出在雙方的意見圖間的單詞圖變遷特徵。藉此,抽出經改善的勞動環境問題(例如「深夜勞動」)、殘留的問題(例如「運動不足」)、新出現的問題(例如「高物價」)等。 Next, the word graph change feature extraction unit 132 displays a screen comparing the past opinion graph (FIG. 17) and the current opinion graph (FIG. 18), and extracts the word graph change features between the opinion graphs of both parties. In this way, improved labor environment problems (such as "late night work"), remaining problems (such as "lack of exercise"), and emerging problems (such as "high prices") are extracted.

藉此,在S44中,工會的執行部門的終端機裝置30係根據在S52中被抽出的關鍵字、與在S53中被抽出的單詞圖變遷特徵,可擬定作為公司措施所要求的改善措施。 Thus, in S44, the terminal device 30 of the executive department of the union can formulate improvement measures required as company measures based on the keywords extracted in S52 and the word graph change characteristics extracted in S53.

[實施例4] [Implementation Example 4]

在實施例4中,係例示在家庭或辦公室專用的行為改變的建議服務適用生活支援系統100的情形。 In Example 4, a case where a life support system 100 is applied to a behavior change recommendation service for home or office use is illustrated.

圖19係實施例4中的生活支援裝置的構成圖。圖19的生活支援裝置10係對圖5的生活支援裝置10,追加關連語抽出部135、建議編輯部136、建議輸入部112、及單詞分 散表現125。 FIG. 19 is a diagram showing the structure of the life support device in Example 4. The life support device 10 in FIG. 19 is obtained by adding a related word extraction unit 135, a suggestion editing unit 136, a suggestion input unit 112, and a word distribution expression 125 to the life support device 10 in FIG. 5.

圖20係顯示實施例4中的行為語料庫121之一例的說明圖。 FIG20 is an explanatory diagram showing an example of the behavior corpus 121 in Embodiment 4.

若與圖11的行為語料庫121作比較,在圖20的行為語料庫121係附加有各行為的主語。類別分類部1300係進行對文本賦予主語時的個人識別。該個人識別的方法亦可為藉由攝影機41A的攝影畫像所為之人臉辨識,亦可為心率或步態等與畫像作比較為隱私性較高的生命徵象。 Compared with the behavior corpus 121 in FIG. 11 , the behavior corpus 121 in FIG. 20 is attached with the subject of each behavior. The category classification unit 1300 performs personal identification when assigning a subject to the text. The method of personal identification can also be face recognition by using the image taken by the camera 41A, or can be a life sign such as heart rate or gait that is more private by comparing it with the image.

在S41中,單詞圖生成部131係根據表示出現在行為語料庫121的各單詞的涵義的單詞分散表現125等,生成單詞圖122。由於在行為語料庫121賦予主語,因此在單詞圖122配置與特定人物為關連性高的行為或場所。 In S41, the word graph generation unit 131 generates a word graph 122 based on the word distribution representation 125 etc. which indicates the meaning of each word appearing in the behavior corpus 121. Since a subject is given to the behavior corpus 121, behaviors or places that are highly related to a specific person are arranged in the word graph 122.

圖21係顯示目標語的建議作成處理(S62)的詳細的流程圖。 FIG21 is a detailed flowchart showing the target language suggestion creation process (S62).

在S621中,建議輸入部112係透過終端機裝置30來接受成為建議的線索的表現(以下為線索文句)的輸入。 In S621, the suggestion input unit 112 receives input of a clue expression (hereinafter referred to as a clue sentence) serving as a suggestion through the terminal device 30.

建議輸入部112係接受線索文句的輸入。被輸入的線索文句係直接指示服務利用者的行為改變。亦可為例如「睡覺吧」、「運動吧」、「放鬆吧」、「聊聊吧」、「洗澡吧」等與健康或Well-being相關的行為。或者,線索文句亦可為「關掉未使用的照明吧」、「提高空調的設定溫度吧」等與省能源行為相關的行為。 The suggestion input unit 112 receives input of clue sentences. The input clue sentences directly instruct the service user to change his/her behavior. For example, the clue sentences may be behaviors related to health or Well-being, such as "Let's sleep", "Let's exercise", "Let's relax", "Let's chat", "Let's take a bath", etc. Alternatively, the clue sentences may be behaviors related to energy saving, such as "Let's turn off unused lighting", "Let's increase the temperature setting of the air conditioner", etc.

或者,在S621中,建議輸入部112亦可將根據由裝設有已被裝載生命徵象感測器43A等感測器群40的 手錶(智慧型手錶)等的高齡者所計測到的心率資料等感測器資料所計算出的線索文句作為輸入對象。 Alternatively, in S621, the suggestion input unit 112 may also use clue sentences calculated based on sensor data such as heart rate data measured by an elderly person equipped with a sensor group 40 such as a watch (smart watch) equipped with a vital sign sensor 43A as an input object.

圖22係實施例4的單詞圖122之一例。 Figure 22 is an example of a word graph 122 of Example 4.

在S622中,關連語抽出部135係由在S41中所生成的單詞圖122中抽出在S621中被輸入的線索文句的關連語。 In S622, the related word extraction unit 135 extracts related words of the clue sentence input in S621 from the word graph 122 generated in S41.

關連語抽出部135係將線索文句進行形態分析,且在單詞圖122上特定解析結果的建議內容所包含的單詞或其類義語(以下為「目標語」),且抽出關連語。例如,由「放鬆吧」的線索文句,特定「放鬆」的目標語。 The related word extraction unit 135 performs morphological analysis on the clue sentence, identifies the words or similar words (hereinafter referred to as "target words") included in the suggested content of the analysis result on the word graph 122, and extracts the related words. For example, from the clue sentence "Relax", the target word "Relax" is identified.

接著,關連語抽出部135亦可如圖22所示,由位於包含目標語的叢集內的單詞(一郎、客廳、電視)生成,作為對目標語的關連語的抽出處理。或者,若在單詞圖122上未形成叢集時,關連語抽出部135亦可選擇配置在目標語的周邊的單詞。 Next, the related word extraction unit 135 may also generate related words (一郎, 廳, 電視) in the cluster containing the target word as shown in FIG. 22 as the extraction process of the related words for the target word. Alternatively, if no cluster is formed on the word graph 122, the related word extraction unit 135 may also select words arranged around the target word.

在S623中,建議編輯部136係由在S622中所抽出的關連語,機械式或以手工作業編輯線索文句,藉此生成建議文句。 In S623, the suggestion editing unit 136 edits the clue sentence mechanically or manually based on the related words extracted in S622 to generate a suggestion sentence.

建議編輯部136係由在S621中所抽出的關連語、及線索文句的目標語來編輯建議。建議編輯部136係「行為的內容(Do)」、「狀態的內容(Be)」、「何時(When)」、「在何處(Where)」、「誰(Who)」、「什麼(What)」、「和誰(With Whom)」等建議文句的模板(template),套用關連語,藉此生成建議文句。 The suggestion editing unit 136 edits suggestions based on the related words extracted in S621 and the target words of the clue sentence. The suggestion editing unit 136 is a template for suggestion sentences such as "content of behavior (Do)", "content of state (Be)", "when (When)", "where (Where)", "who (Who)", "what (What)", and "with whom (With Whom)", and applies related words to generate suggestion sentences.

因此,預先備有「客廳=表示場所的名詞,成為套用 於在何處(Where)~的候補」等單詞字典。此外,建議編輯部136係將所套用的詞類間以助詞或助動詞、動詞等進行插值,藉此生成有意義的建議文句。其中,線索文句的目標語係補充的動詞的候補。 Therefore, a word dictionary such as "Living room = a noun indicating a place, which is applied to where~" is prepared in advance. In addition, the suggestion editing unit 136 interpolates the applied word classes with particles, auxiliary verbs, verbs, etc. to generate meaningful suggestion sentences. Among them, the target language of the clue sentence is the candidate of the verb to be supplemented.

圖23係顯示實施例4的建議編輯部136的輸出畫面220之一例的畫面圖。 FIG. 23 is a screen shot showing an example of an output screen 220 of the suggestion editing unit 136 of Embodiment 4.

在S624中,建議編輯部136係將在S623中所編輯的建議文句輸出至終端機裝置30的提示部31。 In S624, the suggestion editing unit 136 outputs the suggestion sentence edited in S623 to the prompting unit 31 of the terminal device 30.

其中,圖23係在智慧型手機的鎖定中的畫面通知建議文句之一例。不僅鎖定中的畫面,亦可對智慧型手錶輸出通知,亦可輸出作為藉由家庭用機器人或智慧喇叭所為之聲音通知。 Among them, Figure 23 is an example of a notification suggestion sentence on the locked screen of a smartphone. Notifications can be output not only on the locked screen but also on a smart watch, and can also be output as voice notifications through a home robot or smart speaker.

如上所示,關連語抽出部135係由成為所被輸入的建議的線索的表現中抽出目標語,由單詞圖生成部131所生成的單詞圖122內的單詞檢索目標語,且抽出配置在該單詞圖122內的目標語的附近的關連語。 As shown above, the related word extraction unit 135 extracts the target word from the expression of the input suggestion clue, searches for the target word from the words in the word graph 122 generated by the word graph generation unit 131, and extracts the related words arranged near the target word in the word graph 122.

接著,建議編輯部136係根據關連語抽出部135所抽出的目標語與關連語,生成補充成為所被輸入的建議的線索的表現的建議文句。 Next, the suggestion editing unit 136 generates a suggestion sentence that complements the input suggestion clue based on the target word and related words extracted by the related word extraction unit 135.

圖24係生活支援系統100的各裝置的硬體構成圖。 FIG24 is a diagram showing the hardware configuration of each device of the life support system 100.

生活支援系統100的各裝置(生活支援裝置10、終端機裝置30、感測器群40)係構成為分別具有CPU901、RAM902、ROM903、HDD904、通訊I/F905、輸出入 I/F906、及媒體I/F907的電腦900。 Each device of the life support system 100 (life support device 10, terminal device 30, sensor group 40) is configured as a computer 900 having a CPU 901, a RAM 902, a ROM 903, a HDD 904, a communication I/F 905, an input/output I/F 906, and a media I/F 907.

通訊I/F905係與外部的通訊裝置915相連接。輸出入I/F906係與輸出入裝置916相連接。媒體I/F907係由記錄媒體917讀寫資料。此外,CPU901係藉由執行已讀入至RAM902的程式(亦稱為應用程式、或其簡略的APP),將各處理部進行改善控制。接著,該程式亦可透過通訊線路來發佈、或記錄在CD-ROM等記錄媒體917來發佈。 The communication I/F 905 is connected to an external communication device 915. The input/output I/F 906 is connected to an input/output device 916. The media I/F 907 reads and writes data from a recording medium 917. In addition, the CPU 901 improves and controls each processing unit by executing a program (also called an application program or simply APP) that has been read into the RAM 902. Then, the program can also be distributed through a communication line or recorded on a recording medium 917 such as a CD-ROM.

其中,生活支援裝置10等電腦900亦可將圖24所示之構成要素集中在1個物理性計算機。或者,電腦900亦可分散配置在雲端伺服器或邊緣伺服器等複數計算資源,採取各個透過網路而相連接的形態。 Among them, the computer 900 such as the life support device 10 can also concentrate the components shown in Figure 24 on one physical computer. Alternatively, the computer 900 can also be distributed in multiple computing resources such as cloud servers or edge servers, each of which is connected through a network.

此外,複數裝置(終端機裝置30、生活支援裝置10)的功能亦可集中配置為1個裝置(例如在終端機裝置30內),亦可在雲端伺服器僅配置運算部13。 In addition, the functions of multiple devices (terminal device 30, life support device 10) can also be centrally configured into one device (for example, in the terminal device 30), or only the computing unit 13 can be configured in the cloud server.

以上說明的各實施例的生活支援系統100係將表示服務利用者的行為的資訊、表示狀態的資訊、或將表示周圍環境的資訊文本化的資料進行分析,作為單詞圖122。藉此,對服務利用者而言導出表示生活型態的單詞而活用在服務內容,藉此可提供依服務利用者的生活型態或其變遷而個人化的有效生活支援。在表示單詞圖122內的生活型態的單詞係包含例如表示與特定的行為或狀態為關連性高的行為/狀態/時間/場所/人物等的單詞。 The life support system 100 of each embodiment described above analyzes the information representing the behavior of the service user, the information representing the status, or the textualized data representing the surrounding environment as a word map 122. In this way, words representing the lifestyle of the service user are derived and used in the service content, thereby providing personalized and effective life support according to the lifestyle of the service user or its changes. The words representing the lifestyle in the word map 122 include, for example, words representing behaviors/statuses/times/places/people that are highly related to specific behaviors or states.

另一方面,在以往支援行為改變的系統中,基於以下理由,並無法獲得如本實施形態的生活支援系統 100般的效果。 On the other hand, in the previous systems that support behavior change, it is not possible to obtain the same effect as the life support system of this embodiment 100 due to the following reasons.

‧行為改變的規則對眾人具統一性,因此有提示內容與服務利用者的生活型態背離的情形。 ‧The rules for behavior change are uniform for everyone, so there are cases where the content of the prompts deviates from the lifestyle of the service users.

‧當催促人進行行為改變時,並非使本人注意,而是直接的指示或命令,因此有發生忽視或排斥的情形。 ‧When urging people to change their behavior, it is not to draw their attention, but to give direct instructions or orders, so there is a possibility of neglect or rejection.

此外,本發明並非為侷限於上述各實施形態者,只要未脫離申請專利範圍所記載的本發明之要旨,當然可取得其他各種應用例、變形例。例如,上述各實施形態係為了容易瞭解地說明本發明,詳細且具體地說明生活支援系統100的構成者,並不一定限定於具備所說明的全部構成要素者。此外,亦可將某實施形態的構成的一部分置換為其他實施形態的構成要素。此外,亦可在某實施形態的構成加上其他實施形態的構成要素。此外,針對各實施形態的構成的一部分,亦可進行其他構成要素的追加或置換、刪除。 In addition, the present invention is not limited to the above-mentioned embodiments. As long as it does not deviate from the gist of the present invention described in the scope of the patent application, other various application examples and variant examples can be obtained. For example, the above-mentioned embodiments are for the purpose of explaining the present invention in detail and specifically, and are not necessarily limited to those having all the described components. In addition, part of the components of a certain embodiment can be replaced with components of other embodiments. In addition, components of other embodiments can be added to the components of a certain embodiment. In addition, for part of the components of each embodiment, other components can be added, replaced, or deleted.

此外,上述各構成、功能、處理部等亦可將該等的一部分或全部,例如藉由以積體電路進行設計等而以硬體實現。以硬體而言,亦可使用FPGA(Field Programmable Gate Array,現場可程式閘陣列)或ASIC(Application Specific Integrated Circuit,特殊應用積體電路)等廣義的處理器元件。 In addition, the above-mentioned structures, functions, processing units, etc. may also be partially or entirely implemented in hardware, such as by designing with integrated circuits. In terms of hardware, broad processor components such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit) may also be used.

此外,上述實施形態之生活支援系統100的各構成要素若各個的硬體可透過網路而互相傳送接收資訊,亦可構裝在任何硬體。此外,藉由某處理部所執行的處理亦可藉 由1個硬體來實現,亦可藉由利用複數硬體所為之分散處理來實現。 In addition, each component of the life support system 100 of the above-mentioned embodiment can be installed in any hardware if each hardware can transmit and receive information to each other through the network. In addition, the processing performed by a certain processing unit can also be realized by 1 hardware, or by distributed processing using multiple hardware.

10:生活支援裝置 10: Life support devices

11:輸出入部 11: Input and output department

12:記憶部 12: Memory Department

13:運算部 13: Operation Department

110:資訊輸入部 110: Information Input Department

111:資訊輸出部 111: Information output department

112:建議輸入部 112: Recommended input department

120:文本化規則 120: Textual rules

121:行為語料庫 121: Behavior Corpus

122:單詞圖 122: Word map

123:屬性資訊 123: Attribute information

124:單詞範數 124: Word category

125:單詞分散表現 125: Word dispersion

130:文本化處理部 130: Text Processing Department

131:單詞圖生成部 131: Word graph generation unit

132:單詞圖變遷特徵抽出部(單詞圖比較部) 132: Word-graph transition feature extraction section (word-graph comparison section)

133:特定資訊過濾部 133: Specific information filtering section

134:單詞範數分析抽出部 134: Word pattern analysis and extraction unit

135:關連語抽出部 135: Related word extraction section

136:建議編輯部 136: Suggestions to the editorial department

1300:類別分類部 1300: Category Classification Department

1301:時間序列分析部 1301: Time Series Analysis Department

1302:算術運算部 1302: Arithmetic Operation Department

1303:比較/邏輯運算部 1303: Comparison/Logical Operation Department

1304:聲音辨識部 1304: Sound recognition unit

1305:畫像辨識部 1305: Image Recognition Department

Claims (10)

一種生活支援系統,其係具有:取得關於計測生活型態的對象者的感測器資訊的感測器群;及根據所取得的感測器資訊,對對象者提示提案生活型態的提案畫面的生活支援裝置,該生活支援系統之特徵為: 前述生活支援裝置係具備: 文本化處理部,其係根據由記憶部所讀入的文本化規則,將前述感測器群所取得的感測器資訊轉換為文本; 單詞圖生成部,其係將前述文本化處理部轉換後的文本的各單詞配置在作為2維以上的向量空間的單詞圖內;及 單詞圖比較部,其係輸出可比較由將由前述感測器群所取得的第1感測器資訊作轉換後的文本的單詞所生成的第1單詞圖、及由將由前述感測器群所取得的第2感測器資訊作轉換後的文本的單詞所生成的第2單詞圖的前述提案畫面。 A life support system, which has: a sensor group that obtains sensor information about a subject whose lifestyle is measured; and a life support device that presents a proposal screen for a proposed lifestyle to the subject based on the obtained sensor information, the life support system is characterized as follows: The aforementioned life support device is equipped with: A text processing unit that converts the sensor information obtained by the aforementioned sensor group into text according to the text rules read by the memory unit; A word graph generation unit that arranges each word of the text converted by the aforementioned text processing unit in a word graph that is a vector space of two dimensions or more; and The word graph comparison unit outputs the above-mentioned proposal screen that can compare the first word graph generated by the words of the text converted by the first sensor information obtained by the above-mentioned sensor group and the second word graph generated by the words of the text converted by the second sensor information obtained by the above-mentioned sensor group. 如請求項1之生活支援系統,其中,前述單詞圖生成部係將針對前述文本化處理部轉換後的文本的各單詞的涵義形成為向量表現而向量化,且根據該向量表現,計算各單詞彼此的類似度,以愈為類似度大的單詞間,在前述單詞圖內愈為接近的方式進行配置。A life support system as claimed in claim 1, wherein the word graph generating unit vectorizes the meaning of each word in the text converted by the text processing unit into a vector expression, and calculates the similarity between each word based on the vector expression, so that words with greater similarity are arranged closer to each other in the word graph. 如請求項1之生活支援系統,其中,前述單詞圖比較部係針對前述第1單詞圖、與前述第2單詞圖,將分別表示前述單詞圖內的時段的單詞彼此,藉由前述單詞圖內的位置近、且依該時段的經過順序相連接而生成行為路徑,且將該所生成的行為路徑顯示在各自的前述單詞圖內。A life support system as claimed in claim 1, wherein the word graph comparison unit generates a behavior path for the first word graph and the second word graph, by connecting words that respectively represent time segments in the word graphs by virtue of their close positions in the word graphs and in the order in which the time segments pass, and displays the generated behavior path in each of the word graphs. 如請求項1之生活支援系統,其中,在前述記憶部係另外儲存有用以將複數位對象者作分類的屬性資訊, 前述單詞圖生成部係由關於前述屬性資訊相同的複數位對象者的感測器資訊,生成1個前述單詞圖。 As in the life support system of claim 1, wherein the memory unit additionally stores attribute information for classifying multiple subjects, and the word graph generation unit generates one word graph from sensor information about multiple subjects with the same attribute information. 如請求項4之生活支援系統,其中,前述生活支援裝置係另外具備有:特定資訊過濾部, 前述特定資訊過濾部係若由關於複數位對象者的感測器資訊,生成1個前述單詞圖時,將相當於可特定對象者的個人的資訊的單詞由前述單詞圖除外。 As in claim 4, the life support device is further provided with: a specific information filter unit, The specific information filter unit is configured to exclude words corresponding to information of an individual who can identify a specific subject from the word graph when generating the word graph from sensor information about a plurality of subjects. 如請求項4之生活支援系統,其中,前述單詞圖比較部係抽出用以相互轉換彼此不同的前述屬性資訊的前述單詞圖的轉換規則, 在前述第1單詞圖與前述第2單詞圖之中,對相當於與對象者相同的前述屬性資訊的其中一方的前述單詞圖適用前述轉換規則,藉此生成另一方的前述單詞圖。 A life support system as claimed in claim 4, wherein the word graph comparison unit extracts conversion rules of the word graphs for converting the attribute information different from each other, and applies the conversion rules to the word graph of one of the first word graph and the second word graph that is equivalent to the attribute information identical to the object, thereby generating the word graph of the other one. 如請求項1之生活支援系統,其中,前述文本化處理部係轉換為包含表示會議內容的單詞的文本, 前述單詞圖生成部係將表示會議內容的各單詞的向量範數為未達預定值的單詞,由前述單詞圖除外。 As in the life support system of claim 1, wherein the text processing unit converts the text into a text containing words representing the content of the meeting, and the word graph generation unit excludes words whose vector norms of each word representing the content of the meeting do not reach a predetermined value from the word graph. 如請求項1之生活支援系統,其中,前述生活支援裝置係另外具備有:關連語抽出部、及建議編輯部, 前述關連語抽出部係由成為所被輸入的建議的線索的表現抽出目標語,由前述單詞圖生成部所生成的前述單詞圖內的單詞檢索目標語,且抽出配置在該單詞圖內的目標語的附近的關連語, 前述建議編輯部係根據前述關連語抽出部所抽出的目標語及關連語,生成補充成為所被輸入的建議的線索的表現的建議文句。 A life support system as claimed in claim 1, wherein the life support device further comprises: a related word extraction unit and a suggestion editing unit, The related word extraction unit extracts a target word from an expression that becomes a clue of the input suggestion, searches for the target word in the word graph generated by the word graph generation unit, and extracts related words arranged near the target word in the word graph, The suggestion editing unit generates a suggestion sentence that supplements the expression that becomes a clue of the input suggestion based on the target word and related words extracted by the related word extraction unit. 一種生活支援裝置,其係由感測器群取得關於計測生活型態的對象者的感測器資訊,根據該感測器資訊,對對象者提示提案生活型態的提案畫面的生活支援裝置,其特徵為: 具備: 文本化處理部,其係根據由記憶部所讀入的文本化規則,將前述感測器群所取得的感測器資訊轉換為文本; 單詞圖生成部,其係將前述文本化處理部轉換後的文本的各單詞,配置在作為2維以上的向量空間的單詞圖內;及 單詞圖比較部,其係輸出可比較由將由前述感測器群所取得的第1感測器資訊作轉換後的文本的單詞所生成的第1單詞圖、及由將由前述感測器群所取得的第2感測器資訊作轉換後的文本的單詞所生成的第2單詞圖的前述提案畫面。 A life support device, which obtains sensor information about a subject whose lifestyle is measured by a sensor group, and presents a proposal screen for proposing a lifestyle to the subject based on the sensor information, characterized by: It has: A text processing unit, which converts the sensor information obtained by the sensor group into text based on the text rules read by the memory unit; A word graph generating unit, which arranges each word of the text converted by the text processing unit in a word graph which is a vector space of two dimensions or more; and The word graph comparison unit outputs the above-mentioned proposal screen that can compare the first word graph generated by the words of the text converted by the first sensor information obtained by the above-mentioned sensor group and the second word graph generated by the words of the text converted by the second sensor information obtained by the above-mentioned sensor group. 一種生活支援方法,其特徵為:由感測器群取得關於計測生活型態的對象者的感測器資訊,根據該感測器資訊,對對象者提示提案生活型態的提案畫面的生活支援裝置係具備有:文本化處理部、單詞圖生成部、及單詞圖比較部, 前述文本化處理部係根據由記憶部所讀入的文本化規則,將前述感測器群所取得的感測器資訊轉換為文本, 前述單詞圖生成部係將前述文本化處理部轉換後的文本的各單詞配置在作為2維以上的向量空間的單詞圖內, 前述單詞圖比較部係輸出可比較由將由前述感測器群所取得的第1感測器資訊作轉換後的文本的單詞所生成的第1單詞圖、及由將由前述感測器群所取得的第2感測器資訊作轉換後的文本的單詞所生成的第2單詞圖的前述提案畫面。 A life support method, characterized in that: a life support device that obtains sensor information about a subject whose lifestyle is measured by a sensor group, and presents a proposal screen for a proposed lifestyle to the subject based on the sensor information, comprises: a text processing unit, a word graph generation unit, and a word graph comparison unit, The text processing unit converts the sensor information obtained by the sensor group into text based on a text rule read by a memory unit, The word graph generation unit arranges each word of the text converted by the text processing unit in a word graph that is a vector space of two dimensions or more, The word graph comparison unit outputs the proposal screen that can compare the first word graph generated by the words of the text converted from the first sensor information obtained from the sensor group and the second word graph generated by the words of the text converted from the second sensor information obtained from the sensor group.
TW112149328A 2023-01-06 2023-12-18 Life support system, life support device, and life support method TWI874052B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023001236A JP2024097643A (en) 2023-01-06 2023-01-06 LIFE SUPPORT SYSTEM, LIFE SUPPORT DEVICE, AND LIFE SUPPORT METHOD
JP2023-001236 2023-01-06

Publications (2)

Publication Number Publication Date
TW202429370A TW202429370A (en) 2024-07-16
TWI874052B true TWI874052B (en) 2025-02-21

Family

ID=91803910

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112149328A TWI874052B (en) 2023-01-06 2023-12-18 Life support system, life support device, and life support method

Country Status (3)

Country Link
JP (1) JP2024097643A (en)
TW (1) TWI874052B (en)
WO (1) WO2024147259A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180308473A1 (en) * 2015-09-02 2018-10-25 True Image Interactive, Inc. Intelligent virtual assistant systems and related methods
JP2019133638A (en) * 2018-02-02 2019-08-08 Necソリューションイノベータ株式会社 Behavior modification support system, behavior modification support device, behavior modification support method, and program
TW201941083A (en) * 2018-03-20 2019-10-16 日商斯庫林集團股份有限公司 Text mining method, recording medium that records text mining program, and text mining apparatus in which a screen is shown to display a duration change of a cluster including a word of interest
TW202009732A (en) * 2018-08-10 2020-03-01 全球華人股份有限公司 A recommendation method based on high-frequency words for enterprise attribute
WO2021132088A1 (en) * 2019-12-25 2021-07-01 ソニーグループ株式会社 Information processing system, information processing device, and information processing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170109443A1 (en) * 2015-10-16 2017-04-20 Fujitsu Limited Providing cloud-based health-related data analytics services
WO2021235225A1 (en) * 2020-05-21 2021-11-25 ソニーグループ株式会社 Information processing device and information processing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180308473A1 (en) * 2015-09-02 2018-10-25 True Image Interactive, Inc. Intelligent virtual assistant systems and related methods
JP2019133638A (en) * 2018-02-02 2019-08-08 Necソリューションイノベータ株式会社 Behavior modification support system, behavior modification support device, behavior modification support method, and program
TW201941083A (en) * 2018-03-20 2019-10-16 日商斯庫林集團股份有限公司 Text mining method, recording medium that records text mining program, and text mining apparatus in which a screen is shown to display a duration change of a cluster including a word of interest
TWI736860B (en) * 2018-03-20 2021-08-21 日商斯庫林集團股份有限公司 Text exploration method, recording medium with text exploration program recorded, and text exploration device
TW202009732A (en) * 2018-08-10 2020-03-01 全球華人股份有限公司 A recommendation method based on high-frequency words for enterprise attribute
TWI709048B (en) * 2018-08-10 2020-11-01 全球華人股份有限公司 A recommendation method based on high-frequency words for enterprise attribute
WO2021132088A1 (en) * 2019-12-25 2021-07-01 ソニーグループ株式会社 Information processing system, information processing device, and information processing method

Also Published As

Publication number Publication date
WO2024147259A1 (en) 2024-07-11
JP2024097643A (en) 2024-07-19
TW202429370A (en) 2024-07-16

Similar Documents

Publication Publication Date Title
Witteborn Digitalization, digitization and datafication: the" three D" transformation of forced migration management
US10832094B2 (en) Generating hyperspectral image database by machine learning and mapping of color images to hyperspectral domain
Fatima et al. Smart CDSS: Integration of social media and interaction engine (SMIE) in healthcare for chronic disease patients
Lull et al. Interactive process mining in iot and human behaviour modelling
Knight Innovations in unobtrusive methods
Veneruso et al. A model-based simulator for smart homes: Enabling reproducibility and standardization
KR101717290B1 (en) Method for child psychology, family psychology and childcare psychology related child emotion management, and recording medium storing program for executing the same, and recording medium storing program for executing the same
Cao et al. Interaction with cutting-edge technologies: A bibliometric analysis and a theoretical framework
Adewoyin et al. The PBC model: supporting positive behaviours in smart environments
Kim et al. A comparative analysis of job satisfaction prediction models using machine learning: a mixed-method approach
Tropnikov et al. Development of a prognostic model of the user’s information image using automated tools for processing data from social networks
TWI874052B (en) Life support system, life support device, and life support method
Eldib et al. Discovering activity patterns in office environment using a network of low-resolution visual sensors
Cardinale et al. Streaming processing for ADL monitoring in smart home environments
Rocklin et al. The affective dynamics of everyday digital life: Opening computational possibility
Elmamooz et al. Towards understanding mobility in museums
JP7219546B2 (en) Property search system
Yang et al. A context-aware system in Internet of Things using modular Bayesian networks
Alibasa et al. Predicting mood from digital footprints using frequent sequential context patterns features
Neto et al. Data Mining approach to understand the association between mental disorders and unemployment
Kalra et al. Ballparking the urban placeness: A case study of analyzing starbucks posts on instagram
Huang et al. On improving the acceptance of intelligent companion robots among Chinese empty-nesters with the application of emotional design
KR20120050255A (en) Method and system for providing context-aware based services on user identity modeling basis
JP7123601B2 (en) Value evaluation system and property search system
Valmorbida et al. U-Library: An Intelligent Model for Ubiquitous Library Support