[go: up one dir, main page]

TWI869276B - Processing system and method for detecting adhesive threads - Google Patents

Processing system and method for detecting adhesive threads Download PDF

Info

Publication number
TWI869276B
TWI869276B TW113116239A TW113116239A TWI869276B TW I869276 B TWI869276 B TW I869276B TW 113116239 A TW113116239 A TW 113116239A TW 113116239 A TW113116239 A TW 113116239A TW I869276 B TWI869276 B TW I869276B
Authority
TW
Taiwan
Prior art keywords
detection device
pixel
adhesive
target block
image
Prior art date
Application number
TW113116239A
Other languages
Chinese (zh)
Other versions
TW202544738A (en
Inventor
林一帆
闕稚庭
Original Assignee
香港商永道無線射頻標籤(香港)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港商永道無線射頻標籤(香港)有限公司 filed Critical 香港商永道無線射頻標籤(香港)有限公司
Priority to TW113116239A priority Critical patent/TWI869276B/en
Application granted granted Critical
Publication of TWI869276B publication Critical patent/TWI869276B/en
Publication of TW202544738A publication Critical patent/TW202544738A/en

Links

Landscapes

  • Image Analysis (AREA)

Abstract

A processing system and method for detecting adhesive threads is provided. The processing system comprises a camera device and a detection device. The camera device captures a surface image of the adhesive; the detection device extracts a target block from the surface image; the detection device traverses each pixel in the first axis of the target block; the current pixel is the starting point of the region; the detection device obtains the first depth value of the starting point of the region; the detection device obtains the second depth values of the remaining pixels in the first axis; the detection device calculates the difference between the first depth value and each second depth value to obtain the depth difference set of the starting point of the region; the detection device judges whether the starting point of the region belongs to the adhesive category or non-adhesive category based on the depth difference set; the detection device performs contour marking processing on the non-adhesive category to generate at least one non-adhesive contour region; the detection device generates the detection result based on the non-adhesive contour region.

Description

檢測塗膠缺陷的處理系統與方法Processing system and method for detecting adhesive defects

關於一種數位影像的檢測設備與檢測方法,特別有關一種檢測塗膠缺陷的處理系統與方法。The invention relates to a digital image detection device and a detection method, and in particular to a processing system and a method for detecting adhesive coating defects.

離型紙(release liner)主要用於承載具有黏性表面的物件,例如標籤、貼紙、膠帶或雙面膠等,使這些黏性物件在運送和存放過程中不會相互黏合。具體而言,在離型紙的一面(或雙面)塗佈黏著劑(release agent),再將黏性物件的面材貼附於塗佈有黏著劑的離型紙上,經裁切製程及去除黏性物件邊料。離型紙對黏性物件具有適當的黏附力,同時也具有良好的釋放效果。即撕除黏性物件時,黏著層會完整的貼附在黏性物件的面材上且離型紙上不會有殘膠。只有當黏著劑塗佈均勻時,使用者撕去黏性物件的成品並貼附於商品物件時才能實現完整貼附而不脫落。Release liner is mainly used to carry objects with sticky surfaces, such as labels, stickers, tapes or double-sided tape, so that these sticky objects will not stick to each other during transportation and storage. Specifically, an adhesive (release agent) is applied to one side (or both sides) of the release liner, and then the surface material of the sticky object is attached to the release liner coated with adhesive, and then the cutting process and the sticky object edge material are removed. Release paper has appropriate adhesion to sticky objects and also has a good release effect. That is, when the sticky object is torn off, the adhesive layer will be completely attached to the surface material of the sticky object and there will be no residual glue on the release paper. Only when the adhesive is evenly applied can the user tear off the finished adhesive and stick it to the product object to achieve complete adhesion without falling off.

若黏著劑塗佈不均時,將會造成黏性物件與離型紙的貼附效果不足。換言之,容易造成黏性物件在製程中脫離離型紙或發生位移,在將黏性物件的成品與離型紙撕離後並貼附於商品物件時,也會因黏附力不足而脫落。當人員在成品檢測或後段製程中發現黏性物件的這些問題時,往往已經有大量塗佈不均勻的離型紙被生產出來。If the adhesive is not evenly applied, the adhesion between the adhesive object and the release paper will be insufficient. In other words, the adhesive object is likely to fall off the release paper or shift during the production process. When the finished adhesive object is torn off the release paper and attached to the product object, it will also fall off due to insufficient adhesion. When personnel discover these problems with adhesive objects during finished product testing or in the later stages of the production process, a large amount of unevenly applied release paper has often been produced.

除了前述在離型紙上塗佈黏著劑的方式外,黏著劑也可以被塗佈在黏性物件的面材背面,以使黏性物件可以貼附於離型紙上。由於塗佈不均勻,也會造成黏性物件容易從離型紙上脫落或位移,及在將黏性物件的成品與離型紙分離後並貼附於商品物件時會造成黏性不足且脫離。In addition to the aforementioned method of applying adhesive on release paper, adhesive can also be applied on the back of the surface material of the sticky object so that the sticky object can be attached to the release paper. Due to uneven application, the sticky object will easily fall off or shift from the release paper, and when the finished sticky object is separated from the release paper and attached to a product object, it will cause insufficient adhesion and fall off.

有鑑於此,在一實施例中,所述的檢測塗膠缺陷的處理系統包括攝像設備與檢測設備。攝像設備用以拍攝膠面影像;檢測設備連接於攝像設備,檢測設備從膠面影像中擷取目標圖塊,檢測設備遍歷目標圖塊的第一軸向上的每一像素,當前所選的像素為區域起點,檢測設備獲取區域起點的第一深度值,檢測設備獲取第一軸向上的其餘像素的第二深度值,檢測設備以第一深度值與每一第二深度值進行差值計算,獲取多個差值,將差值記錄於深度差值集合,檢測設備根據深度差值集合判斷區域起點屬於正常塗佈區域或異常塗佈區域,檢測設備對異常塗佈區域進行輪廓標記處理,產生至少一塗膠缺陷輪廓區域,檢測設備根據塗膠缺陷輪廓區域產生檢測結果。檢測塗膠缺陷的處理系統可以快速辨識離型紙上是否塗佈膠膜與膠膜厚度。當產線上的離型紙中未塗佈膠膜或膠膜厚度不足時,檢測設備可以即時發出檢測結果通知工作人員。In view of this, in one embodiment, the processing system for detecting adhesive defects includes a camera and a detection device. The camera is used to take an image of the adhesive surface; the detection device is connected to the camera, and the detection device captures the target block from the adhesive surface image. The detection device traverses each pixel in the first axis direction of the target block, and the currently selected pixel is the starting point of the region. The detection device obtains the first depth value of the starting point of the region, and the detection device obtains the second depth value of the remaining pixels in the first axis direction. The detection device uses the first depth value to calculate the depth of the target block. The difference between the first depth value and each second depth value is calculated to obtain multiple differences, which are recorded in a depth difference set. The detection equipment determines whether the starting point of the area belongs to a normal coating area or an abnormal coating area according to the depth difference set. The detection equipment performs contour marking processing on the abnormal coating area to generate at least one coating defect contour area. The detection equipment generates a detection result based on the coating defect contour area. The processing system for detecting coating defects can quickly identify whether a rubber film is coated on the release paper and the thickness of the rubber film. When the release paper on the production line is not coated with a rubber film or the thickness of the rubber film is insufficient, the detection equipment can immediately issue a detection result to notify the staff.

在一實施例中,一種檢測塗膠缺陷的處理方法包括以下步驟:檢測設備從膠面影像中擷取目標圖塊;檢測設備計算目標圖塊的第一軸向的多個像素之間的深度差值集合;檢測設備根據每一深度差值集合對相應的像素分類為正常塗佈區域或異常塗佈區域;檢測設備對異常塗佈區域進行輪廓標記處理,產生至少一塗膠缺陷輪廓區域;檢測設備根據塗膠缺陷輪廓區域產生檢測結果。In one embodiment, a method for detecting adhesive coating defects includes the following steps: a detection device captures a target block from an adhesive surface image; the detection device calculates a depth difference set between multiple pixels in a first axis of the target block; the detection device classifies corresponding pixels into a normal coating area or an abnormal coating area according to each depth difference set; the detection device performs contour marking processing on the abnormal coating area to generate at least one adhesive coating defect contour area; the detection device generates a detection result based on the adhesive coating defect contour area.

所述的檢測塗膠缺陷的處理系統與方法提供一種利用以數位影像即時檢測塗膠噴塗狀況,藉以提示所塗佈的黏著劑的膜層深度是否符合所設定標準。由於檢測設備可以在離型紙噴塗後立即確認紙面上膠膜深度,所以檢測設備可以即時發出相關的警示通知,藉以提示產線人員對相關錯誤進行排除。The processing system and method for detecting glue defects provide a method for using digital images to detect the glue spraying status in real time, so as to prompt whether the film depth of the applied adhesive meets the set standard. Since the detection equipment can immediately confirm the depth of the glue film on the release paper after spraying, the detection equipment can immediately issue relevant warning notifications to prompt production line personnel to eliminate relevant errors.

請參考圖1與圖2所示,分別為一實施例的噴塗離型紙的局部示意圖與檢測設備元件示意圖。圖1中包括噴塗設備100與檢測塗膠缺陷的處理系統(簡稱處理系統200)。處理系統200可以獨立於噴塗設備100外,也可以內建於噴塗設備100。為方便說明,將噴塗設備100與處理系統200分別說明。噴塗設備100輸出已噴塗黏著劑的離型紙912。為便於說明,均以離型紙912指代為已塗佈的離型紙912。在正常狀態下,黏著劑噴塗於離型紙912時會形成多組膠條(或稱膠絲),而所述膠條(或膠絲)的集合將會形成膠面。當噴塗設備100發生堵塞或其他狀況時,將造成離型紙912上的膠面上產生分布不均,使得區域中會有部分缺膠或厚度不均的狀態,例如形成連續或非連續條紋、絲狀或斑點的缺膠狀態。Please refer to FIG. 1 and FIG. 2, which are respectively a partial schematic diagram of a spray coating release paper and a schematic diagram of a detection device component of an embodiment. FIG. 1 includes a spray coating device 100 and a processing system for detecting adhesive coating defects (referred to as the processing system 200). The processing system 200 can be independent of the spray coating device 100 or built into the spray coating device 100. For the convenience of explanation, the spray coating device 100 and the processing system 200 are described separately. The spray coating device 100 outputs the release paper 912 on which the adhesive has been sprayed. For the convenience of explanation, the release paper 912 is referred to as the coated release paper 912. Under normal conditions, when the adhesive is sprayed on the release paper 912, multiple groups of adhesive strips (or adhesive threads) will be formed, and the collection of the adhesive strips (or adhesive threads) will form an adhesive surface. When the spraying device 100 is blocked or other conditions occur, it will cause uneven distribution on the adhesive surface of the release paper 912, so that there will be a state of partial adhesive shortage or uneven thickness in the area, such as the formation of continuous or discontinuous stripes, filaments or spots of adhesive shortage.

處理系統200包括攝像設備210、儲存設備220與檢測設備230。檢測設備230可以是但不限定為個人電腦、筆記型電腦、嵌入式系統(embedded system)或伺服器。檢測設備230連接於攝像設備210與儲存設備220。攝像設備210可以通過電纜連接於檢測設備230,也可以通過無線通訊連接於檢測設備230。攝像設備210設置於塗佈設備的輸出側。攝像設備210拍攝塗佈設備所輸出的膠面影像410,其中膠面影像410具有已噴塗的離型紙912。攝像設備210可以即時拍攝離型紙912,也可以分段拍攝離型紙912。前述的分段拍攝可以是每間隔固定時間或者間隔固定長度的離型紙912。The processing system 200 includes a camera device 210 , a storage device 220 and a detection device 230 . The detection device 230 may be, but is not limited to, a personal computer, a laptop, an embedded system or a server. The detection device 230 is connected to the camera device 210 and the storage device 220 . The camera device 210 may be connected to the detection device 230 through a cable, or may be connected to the detection device 230 through wireless communication. The camera device 210 is provided on the output side of the coating device. The camera device 210 captures the rubber surface image 410 output by the coating device, where the rubber surface image 410 has the sprayed release paper 912 . The camera device 210 can shoot the release paper 912 in real time or in sections. The above-mentioned sectioned shooting can be shooting the release paper 912 at fixed intervals or fixed lengths.

儲存設備220儲存影像檢測程式221、膠面影像410與檢測結果222。檢測設備230執行影像檢測程式221,並產生相應的檢測結果222。影像檢測程式221執行以下步驟,並請參考圖3所示: 步驟S310:檢測設備從膠面影像中擷取目標圖塊; 步驟S320:檢測設備計算目標圖塊的第一軸向的多個像素之間的深度差值集合; 步驟S330:檢測設備根據每一深度差值集合對相應的像素分類為正常塗佈區域或異常塗佈區域; 步驟S340:檢測設備對異常塗佈區域進行輪廓標記處理,產生至少一塗膠缺陷輪廓區域;以及 步驟S350:檢測設備根據塗膠缺陷輪廓區域產生檢測結果。 The storage device 220 stores the image detection program 221, the adhesive surface image 410 and the detection result 222. The detection device 230 executes the image detection program 221 and generates the corresponding detection result 222. The image detection program 221 executes the following steps, and please refer to FIG3: Step S310: The detection device captures the target block from the adhesive surface image; Step S320: The detection device calculates the depth difference set between multiple pixels in the first axis of the target block; Step S330: The detection device classifies the corresponding pixels into normal coating areas or abnormal coating areas according to each depth difference set; Step S340: The detection device performs contour marking processing on the abnormal coating area to generate at least one adhesive coating defect contour area; and Step S350: The detection device generates a detection result according to the adhesive coating defect contour area.

在噴塗設備100塗佈黏著劑於紙面上後,由攝像設備210拍攝輸出的膠面影像410,如圖4所示。檢測設備230從膠面影像410中擷取出目標圖塊420。檢測設備230可以通過預設尺寸的圖框從膠面影像410中擷取對應大小的目標圖塊420。在圖4中的虛線框意即膠面影像410中的目標圖塊420。After the spraying device 100 applies adhesive on the paper surface, the camera device 210 shoots and outputs a laminated image 410, as shown in FIG4 . The detection device 230 extracts a target block 420 from the laminated image 410. The detection device 230 can extract a target block 420 of a corresponding size from the laminated image 410 using a frame of a preset size. The dashed frame in FIG4 means the target block 420 in the laminated image 410.

一般而言,目標圖塊420具有第一軸向431與第二軸向432。第一軸向431係對應於圖4中的橫向軸向,第二軸向432係對應圖4的縱向軸向。檢測設備230將會在第一軸向431上遍歷(traversal)每一個像素。對於每一像素而言均具有兩種屬性,分別為「像素位置」與「像素數值」。以下說明中為能區別兩種屬性,下文中以「像素」指稱為「像素位置」,而以「像素數值」指稱該像素的「數值」。Generally speaking, the target block 420 has a first axis 431 and a second axis 432. The first axis 431 corresponds to the horizontal axis in FIG. 4 , and the second axis 432 corresponds to the vertical axis in FIG. 4 . The detection device 230 will traverse each pixel on the first axis 431. Each pixel has two attributes, namely, "pixel position" and "pixel value". In the following description, in order to distinguish the two attributes, "pixel" refers to "pixel position" and "pixel value" refers to the "value" of the pixel.

在此將當前所選的像素稱其為區域起點711。接著,檢測設備230獲取區域起點711的像素數值為第一深度值,而其餘像素的像素數值為第二深度值。檢測設備230以第一深度值與所有第二深度值分別進行差值計算,用以獲取區域起點711對其他像素的差值。檢測設備230將這些差值記錄至深度差值集合中。檢測設備230根據深度差值集合判斷區域起點711屬於正常塗佈區域或異常塗佈區域510。正常塗佈區域係為離型紙912中具有黏著劑所形成膠面部分的像素之集合,意即該區域中均塗佈黏著劑。異常塗佈區域510是離型紙912中存在至少一處不具有黏著劑或膠膜厚度不足的絲狀部分(或條狀)的像素集合。換言之,異常塗佈區域510中未被完整塗佈黏著劑。The currently selected pixel is referred to as the region starting point 711. Then, the detection device 230 obtains the pixel value of the region starting point 711 as the first depth value, and the pixel values of the remaining pixels as the second depth value. The detection device 230 performs difference calculations with the first depth value and all the second depth values to obtain the difference between the region starting point 711 and other pixels. The detection device 230 records these differences in a depth difference set. The detection device 230 determines whether the region starting point 711 belongs to the normal coating area or the abnormal coating area 510 based on the depth difference set. The normal coating area is a set of pixels having a glue surface formed by an adhesive in the release paper 912, which means that the adhesive is evenly coated in the area. The abnormal coating area 510 is a pixel set in which at least one thread-like portion (or strip) without adhesive or with insufficient film thickness exists in the release paper 912. In other words, the adhesive is not completely coated in the abnormal coating area 510.

在一些實施例中,檢測設備230判斷深度差值集合中的每一差值是否大於深度門檻值。若深度差值集合中存在大於深度門檻值的任一差值,則檢測設備230將區域起點711歸類於異常塗佈區域510,反之,檢測設備230將區域起點711歸類為正常塗佈區域。深度門檻值根據噴塗設備100有無配置外設光源911所決定。一般而言,若噴塗設備100配置外設光源911,則檢測設備230可以調整深度門檻值,藉以符合現場拍攝時的環境亮度。In some embodiments, the detection device 230 determines whether each difference in the depth difference set is greater than a depth threshold. If there is any difference greater than the depth threshold in the depth difference set, the detection device 230 classifies the region start point 711 as the abnormal coating region 510, otherwise, the detection device 230 classifies the region start point 711 as the normal coating region. The depth threshold is determined by whether the spraying device 100 is configured with an external light source 911. Generally speaking, if the spraying device 100 is configured with an external light source 911, the detection device 230 can adjust the depth threshold to match the ambient brightness during on-site shooting.

檢測設備230遍歷第一軸向431上的所有像素後,檢測設備230可以將第一軸像的所有像素分類為正常塗佈區域或異常塗佈區域510。接著,檢測設備230以第一個區域起點711為主並沿著第二軸向432上選擇另一個像素,並對新選出的像素與所屬的第一軸向431進行步驟S320與步驟S330,直至檢測設備230完成第二軸向432與第一軸向431上的所有像素為止。當檢測設備230完成第二軸向432上各像素的處理後,檢測設備230則完成目標圖塊420中的正常塗佈區域與異常塗佈區域510的分類,請參考圖5所示。After the detection device 230 traverses all pixels on the first axis 431, the detection device 230 can classify all pixels on the first axis as a normal coating area or an abnormal coating area 510. Then, the detection device 230 takes the first area starting point 711 as the main point and selects another pixel along the second axis 432, and performs steps S320 and S330 on the newly selected pixel and the first axis 431 to which it belongs, until the detection device 230 completes all pixels on the second axis 432 and the first axis 431. After the detection device 230 completes the processing of each pixel in the second axis direction 432, the detection device 230 completes the classification of the normal coating area and the abnormal coating area 510 in the target block 420, as shown in FIG. 5 .

圖5是對應圖4的目標圖塊420中的異常塗佈區域510並以反白後的顯示結果。檢測設備230在分類異常塗佈區域510與正常塗佈區域的同時,檢測設備230對異常塗佈區域510進行物件編號的設定。檢測設備230為能區別正常塗佈區域對異常塗佈區域510與背景的區別。檢測設備230將正常塗佈區域的物件標號、異常塗佈區域510的物件編號各自指派特定的數值。FIG5 is a display result of the abnormal coating area 510 in the target block 420 corresponding to FIG4 and highlighted. While the detection device 230 classifies the abnormal coating area 510 and the normal coating area, the detection device 230 sets the object number for the abnormal coating area 510. The detection device 230 is capable of distinguishing the abnormal coating area 510 from the background in order to distinguish the normal coating area. The detection device 230 assigns specific values to the object number of the normal coating area and the object number of the abnormal coating area 510.

例如:正常塗佈區域的物件編號可以設定為「-1」,而異常塗佈區域510的物件編號可以初始設定為「0」,請參考圖6。圖6係為局部的目標圖塊420的輪廓編號表格610的示意。以下將對應目標圖塊420的物件標號的集合稱其為輪廓編號表格610。換言之,輪廓編號表格610的大小等同於目標圖塊420的影像大小,且目標圖塊420的每一像素位置對應於輪廓編號表格610的每一物件編號。For example, the object number of the normal coating area can be set to "-1", and the object number of the abnormal coating area 510 can be initially set to "0", please refer to Figure 6. Figure 6 is a schematic diagram of the contour number table 610 of the local target block 420. The set of object numbers corresponding to the target block 420 is referred to as the contour number table 610. In other words, the size of the contour number table 610 is equal to the image size of the target block 420, and each pixel position of the target block 420 corresponds to each object number in the contour number table 610.

檢測設備230從輪廓編號表格610中選擇其中一個像素,受選的像素為起始像素611。一般而言,檢測設備230可以從目標圖塊420的側邊邊界開始選擇。或者,從目標圖塊420的中軸為起點開始選擇。檢測設備230對起始像素611進行輪廓標記處理,用以標記起始像素611與其週邊像素的物件標號。輪廓標記處理的具體步驟與運作方式請配合圖7。輪廓編號表格610的物件標號的初始值包括以下步驟: 步驟S710:檢測設備以起始像素為中心設置輪廓檢測框,並獲取起始像素相鄰的像素為週邊像素; 步驟S720:檢測設備根據各週邊像素的物件標號調整該起始像素的物件標號; 步驟S730:若各週邊像素的物件編號均為「-1」,檢測設備設定起始像素的物件編號; 步驟S740:若任一週邊像素的物件編號不為「-1」且前述物件標號均相同,檢測設備以週邊像素的物件編號設定起始像素的物件標號; 步驟S750:若任一週邊像素的物件編號不為「-1」且前述物件標號均相異,檢測設備從前述週邊像素中選擇最小值的物件標號,並以受選的物件編號更新至起始像素的物件編號;以及 步驟S760:檢測設備遍歷目標圖塊中的所有像素後獲取調整後的輪廓編號表格。 The detection device 230 selects one pixel from the contour number table 610, and the selected pixel is the starting pixel 611. Generally speaking, the detection device 230 can start selecting from the side boundary of the target block 420. Or, the detection device 230 starts selecting from the center axis of the target block 420. The detection device 230 performs contour marking processing on the starting pixel 611 to mark the object number of the starting pixel 611 and its surrounding pixels. Please refer to Figure 7 for the specific steps and operation of the contour marking processing. The initial value of the object number of the contour number table 610 includes the following steps: Step S710: The detection device sets the contour detection frame with the starting pixel as the center, and obtains the pixels adjacent to the starting pixel as the peripheral pixels; Step S720: The detection device adjusts the object number of the starting pixel according to the object numbers of each peripheral pixel; Step S730: If the object numbers of each peripheral pixel are "-1", the detection device sets the object number of the starting pixel; Step S740: If the object number of any peripheral pixel is not "-1" and the aforementioned object numbers are the same, the detection device sets the object number of the starting pixel with the object number of the peripheral pixel; Step S750: If the object number of any peripheral pixel is not "-1" and the aforementioned object numbers are all different, the detection device selects the object number with the minimum value from the aforementioned peripheral pixels, and updates the object number of the starting pixel with the selected object number; and Step S760: The detection device traverses all pixels in the target block and obtains the adjusted contour number table.

在初始時,將目標圖塊420中正常塗佈區域的各像素物件編號設定為「-1」,而異常塗佈區域510的物件編號初始為「1」。檢測設備230在目標圖塊420中選擇起始像素611的行進方向係為由左至右、由上至下的逐一選擇。檢測設備230可以選擇部分週邊像素作為比對,藉以降低整體運算負載。Initially, the object number of each pixel in the normal coating area of the target block 420 is set to "-1", and the object number of the abnormal coating area 510 is initially set to "1". The detection device 230 selects the starting pixel 611 in the target block 420 from left to right and from top to bottom one by one. The detection device 230 can select some peripheral pixels for comparison to reduce the overall computing load.

在圖8中,檢測設備230遇到物件編號為「1」的像素,檢測設備230將會以此像素為起始像素611並選擇相應的輪廓檢測框620。檢測設備230以起始像素611為中心並設置輪廓檢測框620。圖8係承接圖6的輪廓編號表格610,在圖8中繪製第一輪廓檢測框621與第二輪廓檢測框622,圖8中的粗黑線框且欄位中以灰色區塊作為表示。輪廓檢測框620設定為3*3像素大小的陣列。在輪廓檢測框620中以起始像素611為中心,起始像素611周圍的像素稱其為週邊像素(對應步驟S710)。In Figure 8, the detection device 230 encounters a pixel with an object number of "1". The detection device 230 will use this pixel as the starting pixel 611 and select the corresponding contour detection frame 620. The detection device 230 sets the contour detection frame 620 with the starting pixel 611 as the center. Figure 8 is a continuation of the contour number table 610 of Figure 6. The first contour detection frame 621 and the second contour detection frame 622 are drawn in Figure 8. The thick black line frame in Figure 8 and the gray area in the column are represented. The contour detection frame 620 is set to an array of 3*3 pixels. In the contour detection frame 620, the starting pixel 611 is used as the center, and the pixels around the starting pixel 611 are called peripheral pixels (corresponding to step S710).

檢測設備230以起始像素611的物件編號對其週邊像素的物件編號進行比對,並根據比對結果更新起始像素611的物件編號(對應步驟S720)。檢測設備230選擇使用相鄰的8個週邊像素進行比對,也可以選擇部分的週邊像素進行比對。舉例來說,檢測設備230選擇起始像素611的「左上方」、「正上方」、「右上方」、「左方」的像素為週邊像素。根據前述的起始像素611的選擇方式,所以輪廓檢測框620沿著輪廓編號表格610的左側向右並由上而下的方式移動。因此在輪廓編號表格610中選擇兩相異位置為例說明。The detection device 230 compares the object number of the starting pixel 611 with the object number of its peripheral pixels, and updates the object number of the starting pixel 611 according to the comparison result (corresponding to step S720). The detection device 230 chooses to use 8 adjacent peripheral pixels for comparison, and can also select part of the peripheral pixels for comparison. For example, the detection device 230 selects the pixels at the "upper left", "directly above", "upper right", and "left" of the starting pixel 611 as peripheral pixels. According to the aforementioned selection method of the starting pixel 611, the contour detection frame 620 moves from the left side of the contour number table 610 to the right and from top to bottom. Therefore, two different positions are selected in the contour number table 610 as an example for explanation.

在第一輪廓檢測框621中,起始像素611的週邊像素的物件編號分別為「-1」、「-1」「-1」、「-1」。由於這些週邊像素的物件編號均為「-1」時,意即這些週邊像素均屬於正常塗佈區域,所以檢測設備230不對第一輪廓檢測框621的起始像素611進行物件編號的調整。接著,檢測設備230會判斷這些週邊像素的物件編號是否均為「1」。若是週邊像素的物件編號均為「1」時,檢測設備230將起始像素611標記一個新的物件編號(對應步驟S730)。In the first contour detection frame 621, the object numbers of the peripheral pixels of the starting pixel 611 are "-1", "-1", "-1", and "-1", respectively. Since the object numbers of these peripheral pixels are all "-1", it means that these peripheral pixels all belong to the normal coating area, so the detection device 230 does not adjust the object number of the starting pixel 611 of the first contour detection frame 621. Then, the detection device 230 will determine whether the object numbers of these peripheral pixels are all "1". If the object numbers of the peripheral pixels are all "1", the detection device 230 will mark the starting pixel 611 with a new object number (corresponding to step S730).

第二輪廓檢測框622的週邊像素的物件編號分別為「1」、「-1」「-1」、「-1」。因此檢測設備230將起始像素611的物件標號由「1」累加為「2」(對應步驟S740)。於此同時,由於第二輪廓檢測框622的起始像素611的左方像素的物件編號為「1」。前述相鄰的兩像素是連接的,所以也會將所述的左方像素的物件編號調整為「2」(對應步驟S750)。檢測設備230重複前述步驟後,可以獲得如圖9具有多組不同物件編號的異常塗佈區域510的輪廓編號表格610。The object numbers of the peripheral pixels of the second contour detection frame 622 are "1", "-1", "-1", and "-1", respectively. Therefore, the detection device 230 accumulates the object number of the starting pixel 611 from "1" to "2" (corresponding to step S740). At the same time, since the object number of the left pixel of the starting pixel 611 of the second contour detection frame 622 is "1". The aforementioned two adjacent pixels are connected, the object number of the left pixel will also be adjusted to "2" (corresponding to step S750). After the detection device 230 repeats the aforementioned steps, a contour number table 610 of the abnormal coating area 510 with multiple sets of different object numbers can be obtained as shown in Figure 9.

接著,檢測設備230對新的輪廓編號表格610進行步驟S710~S760的處理,用以將圖9的輪廓編號表格610的物件編號進行合併。合併後的結果請參考圖10所示,其係為經過第二次設定物件標編號的輪廓編號表格610示意圖。Next, the detection device 230 processes the new contour number table 610 in steps S710-S760 to merge the object numbers of the contour number table 610 of Fig. 9. The result after merging is shown in Fig. 10, which is a schematic diagram of the contour number table 610 after the second setting of the object number.

檢測設備230根據目標圖塊420的輪廓編號表格610繪製相應的區域,而所繪製的區域係為塗膠缺陷輪廓區域631,請參考圖11。塗膠缺陷輪廓區域631係為多個相鄰的異常塗佈區域510的集合,或是將多個相近的異常塗佈區域510的集合。在此一實施例中,是以圖11中的垂直方向作為判斷相鄰(或相近)異常塗佈區域510的集合。在其他實施例中,也可以將以水平方向作為判斷依據。在一些實施例中,檢測設備230判斷每一個塗膠缺陷輪廓區域631的區域面積是否大於面積門檻值。檢測設備230選擇塗膠缺陷輪廓區域631的區域面積大於面積門檻值,檢測設備230將受選的塗膠缺陷輪廓區域631加入至檢測結果222。The detection device 230 draws a corresponding area according to the contour number table 610 of the target block 420, and the drawn area is a coating defect contour area 631, please refer to FIG11. The coating defect contour area 631 is a collection of multiple adjacent abnormal coating areas 510, or a collection of multiple similar abnormal coating areas 510. In this embodiment, the vertical direction in FIG11 is used as a judgment basis for the collection of adjacent (or similar) abnormal coating areas 510. In other embodiments, the horizontal direction can also be used as a judgment basis. In some embodiments, the detection device 230 determines whether the area of each adhesive coating defect contour region 631 is greater than the area threshold. The detection device 230 selects the adhesive coating defect contour region 631 whose area is greater than the area threshold, and the detection device 230 adds the selected adhesive coating defect contour region 631 to the detection result 222.

檢測設備230根據離型紙912的實際寬度與膠面影像410的影像寬度計算一轉換比例。進一步而言,檢測設備230根據離型紙912的寬度與膠面影像410的寬度像素數量計算轉換比例。檢測設備230根據轉換比例計算塗膠缺陷輪廓區域631對應於離型紙912的實際面積。除此之外,檢測設備230也可以根據轉換比例計算各塗膠缺陷輪廓區域631在膠面影像410上的位置。The detection device 230 calculates a conversion ratio based on the actual width of the release paper 912 and the image width of the laminated surface image 410. In more detail, the detection device 230 calculates the conversion ratio based on the width of the release paper 912 and the number of pixels of the width of the laminated surface image 410. The detection device 230 calculates the actual area of the release paper 912 corresponding to the adhesive coating defect contour area 631 based on the conversion ratio. In addition, the detection device 230 can also calculate the position of each adhesive coating defect contour area 631 on the laminated surface image 410 based on the conversion ratio.

在一些實施例中,檢測設備230可以對膠面影像410進行灰階處理,用以獲取灰階影像。檢測設備230沿著灰階影像的第一軸向431獲取每一像素的像素數值。其中,檢測設備230可以根據膠面影像410的兩側開始獲取像素,也可以從膠面影像410的中軸開始向兩側邊獲取各像素的像素數值。下表為灰階影像的各影像參數的定義: X 𝑥軸的座標(意即第一軸向) Y 𝑦軸的座標(意即第二軸向) 𝐺𝑟𝑎𝑦(𝑥,𝑦) 在座標(𝑥,𝑦) 的像素數值 𝐺𝑟𝑎𝑦 𝑅𝑒𝑠𝑢𝑙𝑡(𝑥,𝑦) 𝐺𝑟𝑎𝑦(𝑥,𝑦)處理後的像素數值 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑒𝑇𝑜𝑝𝑥 反光的上邊界的𝑦軸值,預設值為「-1」 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑒𝐵𝑜𝑡𝑡𝑜𝑚𝑥 反光的下邊界的𝑦軸值,預設值為「-1」 表1.灰階影像的影像參數的定義表 In some embodiments, the detection device 230 can perform grayscale processing on the laminated image 410 to obtain a grayscale image. The detection device 230 obtains the pixel value of each pixel along the first axis 431 of the grayscale image. The detection device 230 can obtain pixels from both sides of the laminated image 410, or can obtain the pixel value of each pixel from the middle axis of the laminated image 410 to both sides. The following table defines the image parameters of the grayscale image: X The coordinate of the 𝑥-axis (i.e. the first axis) Y The coordinate of the 𝑦-axis (i.e. the second axis) 𝐺𝑟𝑎𝑦(𝑥,𝑦) The pixel value at coordinate (𝑥,𝑦) 𝐺𝑟𝑎𝑦 𝑅𝑒𝑠𝑢𝑙gna (𝑦,𝑦) 𝐺𝑟𝑎𝑦(𝑥,𝑦) is the pixel value after processing 𝑅𝑒𝑓𝑙𝑒𝑐սլ𝑣𝑒𝑇𝑜𝑝ɡ The 𝑦-axis value of the upper boundary of the reflection. The default value is "-1" 𝑅𝑒𝑓𝑙𝑒𝑐սյ𝑣𝑒𝐵𝑜𝑒𝑜𝑚 The 𝑦-axis value of the lower boundary of the reflection. The default value is "-1" Table 1. Definition of image parameters of grayscale images

檢測設備230沿著第一軸向431並遍歷每一灰階影像的像素的像素數值。如果被訪問的像素𝐺𝑟𝑎𝑦(𝑥,𝑦)小於或等於「40」,則檢測設備230將𝐺𝑟𝑎𝑦𝑅𝑒𝑠𝑢𝑙𝑡(𝑥,𝑦)設定為「255」,意即該像素設為白色並表示該像素有膠,因此形成有膠反光。如果被訪問的像素𝐺𝑟𝑎𝑦(𝑥,𝑦)大於「40」,檢測設備230將𝐺𝑟𝑎𝑦𝑅𝑒𝑠𝑢𝑙𝑡(𝑥,𝑦)設定為「0」,意即該像素設為黑色並表示該像素無膠反光。並且檢測設備230對設定為「黑色」的像素檢查是否存在無反光特徵。所述數值「40」係為舉例說明,實際上可以根據塗佈設備的環境亮度或外設光源911強度所決定。The detection device 230 traverses the pixel values of each pixel of the grayscale image along the first axis 431. If the accessed pixel 𝐺𝑟𝑎𝑦(𝑥,𝑦) is less than or equal to "40", the detection device 230 sets 𝐺𝑟𝑎𝑦𝑅𝑒𝑠𝑢𝑙𝑡(𝑥,𝑦) to "255", which means that the pixel is set to white and indicates that the pixel has glue, thus forming glue reflection. If the accessed pixel 𝐺𝑟𝑎𝑦(𝑥,𝑦) is greater than "40", the detection device 230 sets 𝐺𝑟𝑎𝑦𝑅𝑒𝑠𝑢𝑙𝑡(𝑥,𝑦) to "0", which means that the pixel is set to black and indicates that the pixel has no glue reflection. And the detection device 230 checks whether there is a non-reflective feature for the pixel set to "black". The value "40" is for example, and can actually be determined according to the ambient brightness of the coating device or the intensity of the external light source 911.

檢測設備230發現「黑色」像素產生後,檢測設備230根據「黑色」像素𝐺𝑟𝑎𝑦(𝑥,𝑦)與在第二軸向432上間隔一指定距離(Δ𝑦)的像素進行差值計算,其差值計算如下所示:𝐺𝑟𝑎𝑦(𝑥,𝑦-Δ𝑦)-𝐺𝑟𝑎𝑦(𝑥,𝑦)。如果兩像素的差值小於或等於「20」,檢測設備230將視為「黑色」像素𝐺𝑟𝑎𝑦(𝑥,𝑦)是有膠反光。檢測設備230將「黑色」像素𝐺𝑟𝑎𝑦(𝑥,𝑦)的𝑦軸值設定至反光的下邊界(𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑒𝐵𝑜𝑡𝑡𝑜𝑚𝑥)。若是兩像素的差值大於「20」,表示兩像素數值的亮度變化大,所以檢測設備230判斷「黑色」像素𝐺𝑟𝑎𝑦(𝑥,𝑦)為無膠所產生反光差值。檢測設備230記錄第一軸向431上所有的無膠反光的像素位置為無反光特徵。因此,檢測設備230可以根據第一軸向431的無反光特徵與第二軸向432的無反光特徵找到膠面影像410的邊界。檢測設備230根據膠面影像410的邊界集合所涵蓋的範圍為目標圖塊420,如圖12所示。After the detection device 230 finds that a "black" pixel is generated, the detection device 230 performs a difference calculation based on the "black" pixel 𝐺𝑟𝑎𝑦(𝑥,𝑦) and the pixel separated by a specified distance (Δ𝑦) on the second axis 432. The difference calculation is as follows: 𝐺𝑟𝑎𝑦(𝑥,𝑦-Δ𝑦)-𝐺𝑟𝑎𝑦(𝑥,𝑦). If the difference between the two pixels is less than or equal to "20", the detection device 230 will regard the "black" pixel 𝐺𝑟𝑎𝑦(𝑥,𝑦) as having glue reflection. The detection device 230 sets the 𝑦-axis value of the "black" pixel 𝐺𝑟𝑎𝑦(𝑥,𝑦) to the lower boundary of the reflection (𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑒𝐵𝑜𝑡𝑡𝑜𝑚𝑥). If the difference between the two pixels is greater than "20", it means that the brightness change of the two pixel values is large, so the detection device 230 determines that the "black" pixel 𝐺𝑟𝑎𝑦(𝑥,𝑦) is the reflection difference caused by no glue. The detection device 230 records all the pixel positions with no glue reflection on the first axis 431 as no reflection characteristics. Therefore, the detection device 230 can find the boundary of the laminated image 410 according to the non-reflective feature in the first axis 431 and the non-reflective feature in the second axis 432. The detection device 230 defines the range covered by the boundary set of the laminated image 410 as the target block 420, as shown in FIG. 12 .

在一些實施例中,檢測設備230可以對膠面影像410進行二值化處理,並獲取二值化影像。檢測設備230從二值化影像中獲取第一軸向431與第二軸向432的無反光特徵。檢測設備230根據兩軸像的無反光特徵獲取第一邊界441與第二邊界442,從而獲取二值化影像中的目標圖塊420。In some embodiments, the detection device 230 may perform binarization processing on the plastic surface image 410 and obtain a binarized image. The detection device 230 obtains the non-reflective features in the first axial direction 431 and the second axial direction 432 from the binarized image. The detection device 230 obtains the first boundary 441 and the second boundary 442 according to the non-reflective features of the two axial images, thereby obtaining the target block 420 in the binarized image.

在一些實施例中,檢測設備230獲取目標圖塊420後,另對目標圖塊420進行影像平滑處理,其中影像平滑處理可以是高斯平滑(Gaussian Blur)、均值模糊、中值模糊或指數模糊等。目標圖塊420可以由膠面影像410、灰階影像或二值化影像中獲取。以下將經過影像平化處理的輸出結果,稱其為平滑影像。平滑影像中的像素稱為平滑像素,並承前述方式,平滑像素係為該像素的「像素位置」,平滑像素值為該像素的「像素數值」。以下是膠面影像410的各影像參數的定義: X 𝑥軸的座標(意即第一軸向) Y 𝑦軸的座標(意即第二軸向) 𝐺𝑟𝑎𝑦(𝑥,𝑦) 膠面影像在座標(𝑥,𝑦) 的像素數值 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑒𝑇𝑜𝑝𝑥 反光的上邊界的𝑦軸值,預設值為「-1」 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑒𝐵𝑜𝑡𝑡𝑜𝑚𝑥 反光的下邊界的𝑦軸值,預設值為「-1」 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑒𝐿𝑒𝑓𝑡𝑅𝑒𝑠𝑢𝑙𝑡 反光的左邊界的x軸值,預設值為「-1」 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑒𝑅𝑖𝑔ℎ𝑡𝑅𝑒𝑠𝑢𝑙𝑡 反光的右邊界的x軸值,預設值為「-1」 𝑆𝑚𝑜𝑜𝑡ℎ(𝑥,𝑦) 平滑影像的像素數值 𝑉𝑎𝑔𝑢𝑒𝑁 膠面影像的像素跟平滑像素的差值 𝑉𝑎𝑔𝑢𝑒𝐴𝑣𝑒𝑟𝑎𝑔𝑒 膠面影像的像素跟平滑像素的差值平均值 𝑉𝑎𝑔𝑢𝑒(%) 模糊度 表2.目標圖塊的模糊度相關參數的定義表 In some embodiments, after the detection device 230 obtains the target block 420, it also performs image smoothing processing on the target block 420, wherein the image smoothing processing can be Gaussian smoothing (Gaussian Blur), mean blur, median blur or exponential blur, etc. The target block 420 can be obtained from the laminated image 410, the grayscale image or the binary image. The output result after the image smoothing processing is referred to as the smoothed image below. The pixels in the smoothed image are called smoothed pixels, and in the above manner, the smoothed pixel is the "pixel position" of the pixel, and the smoothed pixel value is the "pixel value" of the pixel. The following is the definition of each image parameter of the laminated image 410: X The coordinate of the 𝑥-axis (i.e. the first axis) Y The coordinate of the 𝑦-axis (i.e. the second axis) 𝐺𝑟𝑎𝑦(𝑥,𝑦) The pixel value of the laminated image at coordinate (𝑥,𝑦) 𝑅𝑒𝑓𝑙𝑒𝑐սլ𝑣𝑒𝑇𝑜𝑝ɡ The 𝑦-axis value of the upper boundary of the reflection. The default value is "-1" 𝑅𝑒𝑓𝑙𝑒𝑐սյ𝑣𝑒𝐵𝑜𝑒𝑜𝑚 The 𝑦-axis value of the lower boundary of the reflection. The default value is "-1" 𝑅𝑒𝑓𝑙𝑒𝑐ստ𝑣𝑒𝐿𝑒𝑓𝑡𝑅𝑒𝑠𝑢𝑙𝑡 The x-axis value of the left edge of the reflection. The default value is "-1" 𝑅𝑒𝑓𝑙𝑒𝑐սս𝑣𝑒𝑅 𝑔ℎ𝑡𝑅𝑒𝑠𝑢𝑙ս The x-axis value of the right edge of the reflection. The default value is "-1" 𝑆𝑚𝑜𝑜gnaℎ(𝑦,𝑦) Smooth the pixel values of the image 𝑉𝑎𝑔𝑢𝑒𝑁 The difference between the pixels of the laminated image and the smoothed pixels 𝑉𝑎𝑔𝑢𝑒𝐴𝑣𝑒𝑟𝑎𝑔𝑒 The average difference between the pixels of the laminated image and the smoothed pixels 𝑉𝑎𝑔𝑢𝑒(%) Fuzziness Table 2. Definition of fuzziness related parameters of target blocks

檢測設備230沿著第一軸向431遍歷目標圖塊420的像素,並根據從目標圖塊420中所獲取的像素選取平滑影像中對應位置的像素數值。其中,目標圖塊420在第一軸向431上的所有像素稱為像素分布集合641。檢測設備230在平滑影像中且相應於像素分布集合641,用以獲取平滑像素分布集合642。檢測設備230對像素分布集合641與平滑像素分布集合642的每一像素進行差值計算,請參考圖13所示。圖13的橫軸為目標圖塊420與平面影像的部分第一軸向431上的像素,縱軸為像素的像素數值。檢測設備230根據所有差值計算的結果獲取該目標圖塊420的集合差值,請參考圖14所示。圖14中的藍色曲線部分係為圖12的目標圖塊420與平面影像的像素數值的差值。圖13的粗黑色水平線為模糊度643,其計算後文另述。The detection device 230 traverses the pixels of the target block 420 along the first axis 431, and selects the pixel value of the corresponding position in the smooth image according to the pixels obtained from the target block 420. Among them, all pixels of the target block 420 on the first axis 431 are called pixel distribution set 641. The detection device 230 is used to obtain a smooth pixel distribution set 642 in the smooth image and corresponding to the pixel distribution set 641. The detection device 230 performs a difference calculation on each pixel of the pixel distribution set 641 and the smooth pixel distribution set 642, please refer to FIG. 13. The horizontal axis of FIG. 13 is the pixels on the first axis 431 of the target block 420 and part of the plane image, and the vertical axis is the pixel value of the pixel. The detection device 230 obtains the collective difference of the target block 420 according to the results of all difference calculations, as shown in FIG14. The blue curve in FIG14 is the difference between the pixel values of the target block 420 and the plane image in FIG12. The thick black horizontal line in FIG13 is the blur 643, the calculation of which will be described later.

集合差值代表膠面影像410(亦可為灰階影像、二值化影像)與平滑影像在第一軸向431上每一像素的差值,且取差值的絕對值,意即集合差值𝑉𝑎𝑔𝑢𝑒𝑁=|𝑆𝑚𝑜𝑜𝑡ℎ(𝑥,𝑦)-𝐺𝑟𝑎𝑦(𝑥,𝑦)|。當該像素的差值不為0時,檢測設備230累加「1」至集合差值中。接著,檢測設備230加總所有差值並且除上集合差值,意即差值平均值𝑉𝑎𝑔𝑢𝑒𝐴𝑣𝑒𝑟𝑎𝑔𝑒=∑(VagueN)/N。The collective difference represents the difference between each pixel of the laminated image 410 (which may also be a grayscale image or a binary image) and the smoothed image in the first axis 431, and takes the absolute value of the difference, that is, the collective difference 𝑉𝑎𝑔𝑢𝑒𝑁=|𝑆𝑚𝑜𝑜𝑡ℎ(𝑥,𝑦)-𝐺𝑟𝑎𝑦(𝑥,𝑦)|. When the difference of the pixel is not 0, the detection device 230 accumulates "1" into the collective difference. Then, the detection device 230 sums up all the differences and divides the sum by the aggregate difference, that is, the difference average 𝑉𝑎𝑔𝑢𝑒𝐴𝑣𝑒𝑟𝑎𝑔𝑒=∑(VagueN)/N.

檢測設備230對差值平均值的數值範圍進行調整,以使調整後的差值平均值的數值範圍落於0~100之間。換言之,調整後的差值平均值即為模糊度643(%)。檢測設備230對每一像素的差值平均值的處理可以預先減去基準值。當差值平均值減去基準值後,輸出結果可能小於「0」。因此檢測設備230對每一個輸出結果進行判斷。若輸出結果小於「0」,檢測設備230將該像素的差值平均值設定為「0」。若輸出結果大於「2」,檢測設備230將該像素的差值平均值設定為「2」。輸出結果落於「0」與「2」之間的像素,則檢測設備230不調整該像素的差值平均值。The detection device 230 adjusts the numerical range of the difference average value so that the numerical range of the adjusted difference average value falls between 0 and 100. In other words, the adjusted difference average value is the blurriness 643 (%). The detection device 230 can pre-subtract the reference value from the difference average value of each pixel. When the reference value is subtracted from the difference average value, the output result may be less than "0". Therefore, the detection device 230 makes a judgment on each output result. If the output result is less than "0", the detection device 230 sets the difference average value of the pixel to "0". If the output result is greater than "2", the detection device 230 sets the difference average value of the pixel to "2". For pixels whose output results fall between "0" and "2", the detection device 230 does not adjust the difference average value of the pixel.

最後,檢測設備230對所有像素的差值平均值再乘上數值「50」。由於所有的差值平均值落於範圍0~2之間,因此乘上數值「50」後的結果會落於範圍0~100內。最後,檢測設備230以數值「100」減去前述乘數結果後獲取模糊度643,即可獲得模糊度𝑉𝑎𝑔𝑢𝑒=100-(𝑉𝑎𝑔𝑢𝑒𝐴𝑣𝑒𝑟𝑎𝑔𝑒*50)。一般而言,模糊度643越低表示攝像設備210的鏡頭越乾淨,意即攝像設備210的鏡頭未有膠絲的沾黏。反之,模糊度643越高表示鏡頭上沾黏膠絲。檢測設備230獲取模糊度643後,檢測設備230判斷模糊度643是否大於一模糊門檻值。當模糊度643大於一模糊門檻值,檢測設備230輸出清潔訊號,藉以提示工作人員清潔攝像設備210。Finally, the detection device 230 multiplies the difference average of all pixels by the value "50". Since all the difference averages fall within the range of 0 to 2, the result after multiplying by the value "50" will fall within the range of 0 to 100. Finally, the detection device 230 subtracts the multiplier result from the value "100" to obtain the blur 643, and the blur 𝑉𝑎𝑔𝑢𝑒=100-(𝑉𝑎𝑔𝑢𝑒𝐴𝑣𝑒𝑟𝑎𝑔𝑒*50) is obtained. Generally speaking, the lower the blur 643 is, the cleaner the lens of the camera device 210 is, which means that there is no glue stuck on the lens of the camera device 210. On the contrary, the higher the blur 643 is, the more glue is stuck on the lens. After the detection device 230 obtains the blur 643, the detection device 230 determines whether the blur 643 is greater than a blur threshold value. When the blur 643 is greater than a blur threshold value, the detection device 230 outputs a cleaning signal to prompt the staff to clean the camera device 210.

在一些實施例中,檢測設備230根據區域起點711的像素數值、模糊度643與亮度補償值,用以獲取目標圖塊420中的各深度值。而目標圖塊420可以從膠面影像410、灰階影像或二值化影像中獲取。檢測設備230根據模糊度643與亮度補償值對區域起點711的像素數值進行調整。亮度補償值係為噴塗設備100的環境亮度的對應補償數值。檢測設備230根據亮度補償值與模糊度643計算每一像素的照光強度值Light,照光強度值Light可以以下式表示: In some embodiments, the detection device 230 is used to obtain each depth value in the target block 420 according to the pixel value of the area starting point 711, the blur 643 and the brightness compensation value. The target block 420 can be obtained from the plastic surface image 410, the grayscale image or the binary image. The detection device 230 adjusts the pixel value of the area starting point 711 according to the blur 643 and the brightness compensation value. The brightness compensation value is the corresponding compensation value of the ambient brightness of the spraying device 100. The detection device 230 calculates the light intensity value Light of each pixel according to the brightness compensation value and the blur 643. The light intensity value Light can be expressed as follows:

其中,Δ1、Δ2為常數。檢測設備230對每一像素進行深度值的計算。為方便說明,檢測設備230將當前選出的像素的深度值稱其為第一深度值。同理,檢測設備230根據像素深度與模糊度643對其餘像素進行計算並獲取深度值。檢測設備230將所有像素的深度值儲存至深度差值集合中。Wherein, Δ1 and Δ2 are constants. The detection device 230 calculates the depth value for each pixel. For the convenience of explanation, the detection device 230 refers to the depth value of the currently selected pixel as the first depth value. Similarly, the detection device 230 calculates and obtains the depth value of the remaining pixels according to the pixel depth and blur 643. The detection device 230 stores the depth values of all pixels in the depth difference set.

請參考圖15,圖15的左側表格T記錄目標圖塊420在第一軸向431上部分的像素位置、像素數值、像素深度與深度值的列表T。檢測設備230在遍歷目標圖塊420在第一軸向431上的所有像素數後,檢測設備230根據各像素的像素數值、照光強度值與像素深度獲取相應的深度值。接著,檢測設備230以區域起點711的像素數值與其餘像素的像素數值進行差值計算並將各項差值記錄至深度差值集合,如圖15的右側表格L所示。Please refer to FIG. 15 . The table T on the left side of FIG. 15 records the pixel position, pixel value, pixel depth and depth value list T of the target block 420 on the first axis 431. After traversing all the pixels of the target block 420 on the first axis 431, the detection device 230 obtains the corresponding depth value according to the pixel value, light intensity value and pixel depth of each pixel. Then, the detection device 230 calculates the difference between the pixel value of the region starting point 711 and the pixel values of the remaining pixels and records each difference in the depth difference set, as shown in the table L on the right side of FIG. 15 .

在圖15中係以像素位置「1834」的像素為區域起點711。檢測設備230以區域起點711的深度值作為深度門檻值,並對各第二深度值的差值進行比對。從圖15可知,像素位置「1835」的像素數值「127」。因此區域起點711與像素位置「1835」的差值為「-3」。而區域起點711的深度門檻值為「11.904」,所以像素位置「1835」的差值「-3」小於區域起點711的深度門檻值「11.904」。因此,檢測設備230判定像素位置「1834」與像素位置「1835」的比對結果為「未超過」。換言之,像素位置「1834」判斷為「沒有膠絲」的正常塗佈區域。In FIG. 15 , the pixel at the pixel position "1834" is the region start point 711. The detection device 230 uses the depth value of the region start point 711 as the depth threshold value, and compares the difference between each second depth value. As can be seen from FIG. 15 , the pixel value of the pixel position "1835" is "127". Therefore, the difference between the region start point 711 and the pixel position "1835" is "-3". The depth threshold value of the region start point 711 is "11.904", so the difference "-3" of the pixel position "1835" is less than the depth threshold value "11.904" of the region start point 711. Therefore, the detection device 230 determines that the comparison result between the pixel position "1834" and the pixel position "1835" is "not exceeded". In other words, the pixel position "1834" is judged as a normal coating area with "no glue".

在一些實施例中,檢測設備230可以以區域起點711為中心,並設定第一數量的範圍。而第一數量的範圍為至少1個像素以上。以圖15為例,區域起點711為像素位置「1834」,第一數量可以設定為「10」個像素,意即以像素位置「1834」對像素位置「1835」~「1844」進行比對。當第一數量的範圍中任一像素的差值大於深度門檻值,則表示區域起點711屬於異常塗佈區域510,反之亦然。因此,圖15的區域起點711(對應像素位置「1834」)與像素位置「1839」的差值大於深度門檻值,且像素位置「1839」位於像素位置「1834」與的第一數量的範圍內。所以將像素位置「1834」歸類為「有膠絲」的異常塗佈區域510,意即像素位置「1834」為「有膠絲」。In some embodiments, the detection device 230 can be centered on the region starting point 711 and set a range of the first quantity. The range of the first quantity is at least 1 pixel. Taking Figure 15 as an example, the region starting point 711 is the pixel position "1834", and the first quantity can be set to "10" pixels, which means that the pixel position "1834" is compared with the pixel positions "1835" to "1844". When the difference of any pixel in the range of the first quantity is greater than the depth threshold, it means that the region starting point 711 belongs to the abnormal coating area 510, and vice versa. Therefore, the difference between the region starting point 711 (corresponding to the pixel position "1834") and the pixel position "1839" in Figure 15 is greater than the depth threshold, and the pixel position "1839" is within the range of the pixel position "1834" and the first quantity. Therefore, the pixel position "1834" is classified as the abnormal coating area 510 of "having glue", which means that the pixel position "1834" is "having glue".

相較於以兩相鄰像素的比對方式,以區域起點711與第一數量的比對方式可以避免連續的像素變化差異不大可能造成的沒有膠絲的誤判。檢測設備230只要判斷第一數量中的任一組的差值屬於「超過」時,就可以判斷為「有膠絲」。並且檢測設備230可以選擇次一像素為新的區域起點711並進行新的差值判斷,藉以增加檢查的速度。Compared with the comparison method of two adjacent pixels, the comparison method of the region starting point 711 and the first quantity can avoid the misjudgment of no glue caused by the unlikely difference of continuous pixel changes. As long as the detection device 230 determines that the difference of any group in the first quantity is "exceeding", it can be judged as "there is glue". And the detection device 230 can select the next pixel as the new region starting point 711 and perform a new difference judgment, so as to increase the speed of inspection.

圖16係為圖11的目標圖塊420的部分區域,其對應於第一軸向431上的6個像素位置,6個像素位置分別為「1831(像素值118)」、「1832(像素值128)」、「1833(像素值133)」、「1834(像素值130)」、「1835(像素值127)」、「1836(像素值125)」。而各像素所對像素值、深度門檻值與差值也列於圖16中。以像素位置「1831」為區域起點711,其對應的深度門檻值為「11.928」。像素位置「1833」與「1831」的差值「15」,因此差值超過深度門檻值。所以檢測設備230判斷像素位置「1831」是為異常塗佈區域510。檢測設備230即可選擇次一像素位置「1832」進行次一回合的差值判斷。FIG. 16 is a partial area of the target block 420 of FIG. 11 , which corresponds to 6 pixel positions on the first axis 431, and the 6 pixel positions are respectively "1831 (pixel value 118)", "1832 (pixel value 128)", "1833 (pixel value 133)", "1834 (pixel value 130)", "1835 (pixel value 127)", and "1836 (pixel value 125)". The pixel values, depth threshold values, and differences corresponding to each pixel are also listed in FIG. 16 . The pixel position "1831" is taken as the region starting point 711, and the corresponding depth threshold value is "11.928". The difference between the pixel positions "1833" and "1831" is "15", so the difference value exceeds the depth threshold value. Therefore, the detection device 230 determines that the pixel position "1831" is the abnormal coating area 510. The detection device 230 can select the next pixel position "1832" to perform the next round of difference judgment.

檢測設備230也可以選擇以間隔至少一個像素的方式進行差值的比對。前述段落中,檢測設備230是以間隔一個像素進行差值的比對。在其他實施例中,檢測設備230可以間隔兩個或更多像素的方式進行差值比對。舉例來說,檢測設備230以像素位置「1834」為區域起點711,且選擇間隔兩像素進行比對。檢測設備230將會選擇像素位置「1836」與像素位置「1834」進行差值比對,藉以判斷區域起點711是否屬於異常塗佈區域510。The detection device 230 may also choose to perform a difference comparison at intervals of at least one pixel. In the aforementioned paragraph, the detection device 230 performs a difference comparison at intervals of one pixel. In other embodiments, the detection device 230 may perform a difference comparison at intervals of two or more pixels. For example, the detection device 230 uses the pixel position "1834" as the region start point 711 and chooses to perform a comparison at intervals of two pixels. The detection device 230 will select the pixel position "1836" and the pixel position "1834" for a difference comparison to determine whether the region start point 711 belongs to the abnormal coating region 510.

檢測設備230可以從目標圖塊420的第一軸向431的任一方向進行前述的差值比對。舉例來說,檢測設備230可以由第一軸向431的左側至右側對每一像素進行差值比對。也可以是,由第一軸向431的左右兩側至中央的方式同時進行差值比對。當檢測設備230遍歷第一軸向431上的所有像素後,檢測設備230將移至第二軸向432的次一像素並開始遍歷第一軸向431的所有像素與差值的比對。The detection device 230 can perform the aforementioned difference comparison from any direction of the first axis 431 of the target block 420. For example, the detection device 230 can perform a difference comparison on each pixel from the left side to the right side of the first axis 431. Alternatively, the difference comparison can be performed simultaneously from the left and right sides to the center of the first axis 431. After the detection device 230 traverses all pixels on the first axis 431, the detection device 230 will move to the next pixel in the second axis 432 and begin to traverse all pixels in the first axis 431 and compare the differences.

所述的檢測塗膠缺陷的處理系統200與處理方法提供一種利用以數位影像即時檢測塗膠缺陷噴塗狀況,藉以提示所塗佈的黏著劑膠膜的深度是否符合所設定標準。由於檢測設備230可以在離型紙912噴塗後立即確認紙面上膠膜深度,所以檢測設備230可以即時發出相關的警示通知,藉以提示產線人員對相關錯誤進行排除。The processing system 200 and processing method for detecting adhesive defects provide a method of using digital images to detect the spraying status of adhesive defects in real time, so as to prompt whether the depth of the applied adhesive film meets the set standard. Since the detection device 230 can immediately confirm the depth of the adhesive film on the release paper 912 after spraying, the detection device 230 can immediately issue relevant warning notifications to prompt production line personnel to eliminate relevant errors.

100:噴塗設備 200:處理系統 210:攝像設備 220:儲存設備 221:影像檢測程式 222:檢測結果 230:檢測設備 410:膠面影像 420:目標圖塊 431:第一軸向 432:第二軸向 441:第一邊界 442:第二邊界 510:異常塗佈區域 610:輪廓編號表格 611:起始像素 620:輪廓檢測框 621:第一輪廓檢測框 622:第二輪廓檢測框 631:塗膠缺陷輪廓區域 641:像素分布集合 642:平滑像素分布集合 643:模糊度 711:區域起點 911:外設光源 912:離型紙 T:列表 L:表格 S310,S320,S330,S340,S350,S710,S720,S730,S740,S750,S760:步驟100: Spraying equipment 200: Processing system 210: Camera equipment 220: Storage equipment 221: Image detection program 222: Detection results 230: Detection equipment 410: Glue surface image 420: Target block 431: First axis 432: Second axis 441: First boundary 442: Second boundary 510: Abnormal coating area 610: Contour number table 611: Starting pixel 620: Contour detection frame 621: First contour detection frame 622: Second contour detection frame 631: Glue defect contour area 641: Pixel distribution set 642: Smooth pixel distribution set 643: Blur 711: Region start point 911: External light source 912: Release paper T: List L: Table S310, S320, S330, S340, S350, S710, S720, S730, S740, S750, S760: Steps

圖1為一實施例的噴塗離型紙的局部示意圖。 圖2為一實施例的檢測設備元件示意圖。 圖3為一實施例的影像檢測程式流程示意圖。 圖4為一實施例的膠面影像與目標圖塊的示意圖。 圖5為一實施例的目標圖塊與異常塗佈區域的示意圖。 圖6為一實施例的局部目標圖塊的輪廓編號表格的示意圖。 圖7為一實施例的輪廓標記處理的流程示意圖。 圖8為一實施例的輪廓檢測框的移動示意圖。 圖9為一實施例的輪廓編號表格的物件編號示意圖。 圖10為一實施例的第二次設定物件標編號的輪廓編號表格示意圖。 圖11為一實施例的目標圖塊中的塗膠缺陷輪廓區域的示意圖。 圖12為一實施例的膠面影像的第一邊界與第二邊界的示意圖。 圖13為一實施例的像素分布集合與平滑像素分布集合的示意圖。 圖14為一實施例的目標圖塊與平面影像的像素數值的差值的示意圖。 圖15為一實施例的部分目標圖塊的深度差值集合的示意圖。 圖16為一實施例的不同的區域起點的差值比對示意圖。 FIG. 1 is a partial schematic diagram of a spray-coated release paper of an embodiment. FIG. 2 is a schematic diagram of a detection device component of an embodiment. FIG. 3 is a schematic diagram of an image detection program flow of an embodiment. FIG. 4 is a schematic diagram of a rubber surface image and a target block of an embodiment. FIG. 5 is a schematic diagram of a target block and an abnormal coating area of an embodiment. FIG. 6 is a schematic diagram of a contour numbering table of a local target block of an embodiment. FIG. 7 is a schematic diagram of a contour marking process of an embodiment. FIG. 8 is a schematic diagram of the movement of a contour detection frame of an embodiment. FIG. 9 is a schematic diagram of an object number of a contour numbering table of an embodiment. FIG. 10 is a schematic diagram of a contour numbering table for setting object numbering for the second time of an embodiment. FIG. 11 is a schematic diagram of the outline area of the glue defect in the target block of an embodiment. FIG. 12 is a schematic diagram of the first boundary and the second boundary of the glue surface image of an embodiment. FIG. 13 is a schematic diagram of the pixel distribution set and the smooth pixel distribution set of an embodiment. FIG. 14 is a schematic diagram of the difference in pixel values between the target block and the plane image of an embodiment. FIG. 15 is a schematic diagram of the depth difference set of a part of the target block of an embodiment. FIG. 16 is a schematic diagram of the difference comparison of different regional starting points of an embodiment.

200:處理系統 200:Processing system

210:攝像設備 210: Camera equipment

410:膠面影像 410: Laminated image

230:檢測設備 230: Testing equipment

220:儲存設備 220: Storage equipment

221:影像檢測程式 221: Image detection program

222:檢測結果 222:Test results

Claims (17)

一種檢測塗膠缺陷的處理系統,包括: 一攝像設備,用以拍攝一膠面影像;以及 一檢測設備,連接於該攝像設備,該檢測設備從該膠面影像中擷取一目標圖塊,該檢測設備遍歷該目標圖塊的一第一軸向上的每一像素,當前所選的該像素為一區域起點,該檢測設備獲取該區域起點的一第一深度值,該檢測設備獲取該第一軸向上的其餘該像素的一第二深度值,該檢測設備以該第一深度值與每一該第二深度值進行差值計算,獲取多個差值,將該些差值記錄於一深度差值集合,該檢測設備根據該深度差值集合判斷該區域起點屬於一異常塗佈區域或一正常塗佈區域,該檢測設備對該正常塗佈區域進行一輪廓標記處理,產生至少一塗膠缺陷輪廓區域,該檢測設備根據該些塗膠缺陷輪廓區域產生一檢測結果。 A processing system for detecting adhesive coating defects, comprising: a camera device for photographing an adhesive surface image; and a detection device connected to the camera device, the detection device captures a target block from the adhesive surface image, the detection device traverses each pixel in a first axis direction of the target block, the currently selected pixel is a region starting point, the detection device obtains a first depth value of the region starting point, the detection device obtains a second depth value of the remaining pixels in the first axis direction, and the detection device compares the first depth value with each pixel in the first axis direction. The second depth value is subjected to difference calculation to obtain multiple differences, and the differences are recorded in a depth difference set. The detection device determines whether the starting point of the area belongs to an abnormal coating area or a normal coating area according to the depth difference set. The detection device performs a contour marking process on the normal coating area to generate at least one coating defect contour area. The detection device generates a detection result according to the coating defect contour areas. 如請求項1所述的檢測塗膠缺陷的處理系統,其中該檢測設備對該膠面影像進行一灰階處理,用以獲取一灰階影像。A processing system for detecting adhesive defects as described in claim 1, wherein the detection equipment performs a grayscale processing on the adhesive surface image to obtain a grayscale image. 如請求項2所述的檢測塗膠缺陷的處理系統,其中該檢測設備根據該灰階影像的該第一軸向的一無反光特徵獲取一第一邊界,該檢測設備根據該灰階影像的一第二軸向的另一該無反光特徵獲取一第二邊界,該檢測設備根據該第一邊界與該第二邊界從該灰階影像中擷取該目標圖塊。A processing system for detecting adhesive defects as described in claim 2, wherein the detection device obtains a first boundary based on a non-reflective feature in the first axis of the grayscale image, the detection device obtains a second boundary based on another non-reflective feature in the second axis of the grayscale image, and the detection device captures the target block from the grayscale image based on the first boundary and the second boundary. 如請求項1所述的檢測塗膠缺陷的處理系統,其中該檢測設備對該膠面影像進行一二值化處理,用以獲取一二值化影像。A processing system for detecting adhesive defects as described in claim 1, wherein the detection equipment performs a binarization process on the adhesive surface image to obtain a binary image. 如請求項4所述的檢測塗膠缺陷的處理系統,其中該檢測設備根據該二值化影像的該第一軸向的一無反光特徵獲取一第一邊界,該檢測設備根據該二值化影像的一第二軸向的該無反光特徵獲取一第二邊界,該檢測設備根據該第一邊界與該第二邊界從該二值化影像中擷取該目標圖塊。A processing system for detecting adhesive defects as described in claim 4, wherein the detection device obtains a first boundary based on a non-reflective feature in the first axis of the binary image, the detection device obtains a second boundary based on the non-reflective feature in the second axis of the binary image, and the detection device captures the target block from the binary image based on the first boundary and the second boundary. 如請求項1、3或5所述的檢測塗膠缺陷的處理系統,其中該檢測設備對該目標圖塊進行一影像平滑處理,用以獲取一平滑像素分布集合,該檢測設備另獲取該目標圖塊的一像素分布集合,該檢測設備根據該平滑像素分布集合與該像素分布集合的差值獲取一集合差值,該檢測設備根據該集合差值獲取一模糊度。A processing system for detecting adhesive defects as described in claim 1, 3 or 5, wherein the detection device performs an image smoothing process on the target block to obtain a smooth pixel distribution set, the detection device also obtains a pixel distribution set of the target block, the detection device obtains a set difference based on the difference between the smooth pixel distribution set and the pixel distribution set, and the detection device obtains a blur based on the set difference. 如請求項6所述的檢測塗膠缺陷的處理系統,其中該檢測設備判斷該模糊度大於一模糊門檻值,該檢測設備輸出一清潔訊號。A processing system for detecting adhesive defects as described in claim 6, wherein the detection device determines that the fuzziness is greater than a fuzziness threshold value, and the detection device outputs a clean signal. 如請求項6所述的檢測塗膠缺陷的處理系統,其中該檢測設備根據該區域起點的一像素值、該模糊度及一亮度補償值,用以獲取該第一深度值與其餘該些像素的該第二深度值。A processing system for detecting adhesive defects as described in claim 6, wherein the detection device is used to obtain the first depth value and the second depth value of the remaining pixels based on a pixel value at the starting point of the area, the blurriness and a brightness compensation value. 如請求項1所述的檢測塗膠缺陷的處理系統,其中該檢測設備以該區域起點並選取該第一軸向上的一第一數量的該些像素,該檢測設備計算該區域起點與該第一數量的該些像素的該第一深度值與該些第二深度值。A processing system for detecting adhesive defects as described in claim 1, wherein the detection device takes the starting point of the area and selects a first number of pixels in the first axis direction, and the detection device calculates the first depth value and the second depth values of the starting point of the area and the first number of pixels. 如請求項9所述的檢測塗膠缺陷的處理系統,其中該檢測設備判斷該深度差值集合的該些差值是否均大於一深度門檻值,若任一該差值大於該深度門檻值,該檢測設備判斷該區域起點為該異常塗佈區域。A processing system for detecting adhesive defects as described in claim 9, wherein the detection device determines whether the differences in the depth difference set are all greater than a depth threshold value. If any of the differences is greater than the depth threshold value, the detection device determines that the starting point of the area is the abnormal coating area. 如請求項1所述的檢測塗膠缺陷的處理系統,其中該檢測設備根據該異常塗佈區域與該正常塗佈區域的一物件編號建立一輪廓編號表格,該目標圖塊的每一該像素的位置各自對應於該輪廓編號表格的不同該物件編號,該檢測設備從該輪廓編號表格選擇其中一該像素,受選的該像素為一起始像素,該檢測設備對該起始像素進行該輪廓標記處理,重新標記該起始像素與相鄰該像素的一物件標號,該輪廓標記處理將相同的該物件標號指派為同一該塗膠缺陷輪廓區域。A processing system for detecting glue defects as described in claim 1, wherein the detection device establishes a contour number table based on an object number of the abnormal coating area and the normal coating area, the position of each pixel of the target block corresponds to a different object number in the contour number table, the detection device selects one of the pixels from the contour number table, the selected pixel is a starting pixel, the detection device performs the contour marking process on the starting pixel, re-marks the starting pixel and the adjacent pixels with an object number, and the contour marking process assigns the same object number to the same glue defect contour area. 如請求項1所述的檢測塗膠缺陷的處理系統,其中該檢測設備選擇該塗膠缺陷輪廓區域的一區域面積大於一面積門檻值,該檢測設備將受選的該塗膠缺陷輪廓區域加入至該檢測結果。A processing system for detecting coating defects as described in claim 1, wherein the detection device selects a region of the coating defect contour region whose area is greater than an area threshold value, and the detection device adds the selected coating defect contour region to the detection result. 一種檢測塗膠缺陷的處理方法,包括: 一檢測設備從一膠面影像中擷取一目標圖塊; 該檢測設備計算該目標圖塊的一第一軸向的多個像素之間的一深度差值集合; 該檢測設備根據每一該深度差值集合對相應的該像素分類為一異常塗佈區域或一正常塗佈區域; 該檢測設備對該正常塗佈區域進行一輪廓標記處理,產生至少一塗膠缺陷輪廓區域;以及 該檢測設備根據該塗膠缺陷輪廓區域產生一檢測結果。 A processing method for detecting adhesive coating defects, comprising: A detection device captures a target block from an adhesive surface image; The detection device calculates a depth difference set between a plurality of pixels in a first axial direction of the target block; The detection device classifies the corresponding pixel into an abnormal coating area or a normal coating area according to each depth difference set; The detection device performs a contour marking process on the normal coating area to generate at least one adhesive coating defect contour area; and The detection device generates a detection result according to the adhesive coating defect contour area. 如請求項13所述的檢測塗膠缺陷的處理方法,其中由該檢測設備從該膠面影像中擷取該目標圖塊步驟包括: 該檢測設備對該膠面影像進行一灰階處理,用以獲取一灰階影像; 該檢測設備根據該灰階影像的該第一軸向的一無反光特徵獲取一第一邊界; 該檢測設備根據該灰階影像的一第二軸向的該無反光特徵獲取一第二邊界;以及 該檢測設備根據該第一邊界與該第二邊界從該灰階影像中擷取該目標圖塊。 The processing method for detecting adhesive defects as described in claim 13, wherein the step of extracting the target block from the adhesive surface image by the detection device includes: The detection device performs a grayscale processing on the adhesive surface image to obtain a grayscale image; The detection device obtains a first boundary based on a non-reflective feature in the first axis of the grayscale image; The detection device obtains a second boundary based on the non-reflective feature in the second axis of the grayscale image; and The detection device extracts the target block from the grayscale image based on the first boundary and the second boundary. 如請求項13所述的檢測塗膠缺陷的處理方法,其中由該檢測設備從該膠面影像中擷取該目標圖塊步驟包括: 該檢測設備該膠面影像進行一二值化處理,用以獲取一二值化影像; 該檢測設備根據該二值化影像的該第一軸向的一無反光特徵獲取一第一邊界; 該檢測設備根據該二值化影像的一第二軸向的該無反光特徵獲取一第二邊界;以及 該檢測設備根據該第一邊界與該第二邊界從該二值化影像中擷取該目標圖塊。 The processing method for detecting adhesive defects as described in claim 13, wherein the step of capturing the target block from the adhesive surface image by the detection device includes: The detection device performs a binarization process on the adhesive surface image to obtain a binarized image; The detection device obtains a first boundary based on a non-reflective feature in the first axis of the binarized image; The detection device obtains a second boundary based on the non-reflective feature in the second axis of the binarized image; and The detection device captures the target block from the binarized image based on the first boundary and the second boundary. 如請求項13所述的檢測塗膠缺陷的處理方法,其中該檢測設備從該膠面影像中擷取該目標圖塊步驟包括: 該檢測設備該膠面影像進行一影像平滑處理,用以獲取一平滑像素分布集合; 該檢測設備獲取該膠面影像的一像素分布集合; 該檢測設備根據該平滑像素分布集合與該像素分布集合獲取一模糊度;以及 該檢測設備判斷該模糊度大於一模糊門檻值,該檢測設備輸出一清潔訊號。 The processing method for detecting adhesive coating defects as described in claim 13, wherein the step of the detection device capturing the target block from the adhesive surface image includes: The detection device performs an image smoothing process on the adhesive surface image to obtain a smooth pixel distribution set; The detection device obtains a pixel distribution set of the adhesive surface image; The detection device obtains a blur according to the smooth pixel distribution set and the pixel distribution set; and The detection device determines that the blur is greater than a blur threshold value, and the detection device outputs a clean signal. 如請求項13所述的檢測塗膠缺陷的處理方法,其中該檢測設備計算該目標圖塊的該第一軸向的多個該像素之間的該深度差值集合步驟包括: 該檢測設備遍歷該目標圖塊的該第一軸向的每一該像素,並將當前所選的該像素為一區域起點; 該檢測設備獲取該區域起點的一第一深度值; 該檢測設備獲取該第一軸向上的其餘該些像素的一第二深度值;以及 該檢測設備以該第一深度值與每一該第二深度值進行差值計算獲取該區域起點的該深度差值集合。 The processing method for detecting adhesive defects as described in claim 13, wherein the step of the detection device calculating the depth difference set between the plurality of pixels in the first axis of the target block includes: The detection device traverses each pixel in the first axis of the target block and takes the currently selected pixel as a region starting point; The detection device obtains a first depth value of the region starting point; The detection device obtains a second depth value of the remaining pixels in the first axis; and The detection device calculates the difference between the first depth value and each second depth value to obtain the depth difference set of the region starting point.
TW113116239A 2024-04-30 2024-04-30 Processing system and method for detecting adhesive threads TWI869276B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW113116239A TWI869276B (en) 2024-04-30 2024-04-30 Processing system and method for detecting adhesive threads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW113116239A TWI869276B (en) 2024-04-30 2024-04-30 Processing system and method for detecting adhesive threads

Publications (2)

Publication Number Publication Date
TWI869276B true TWI869276B (en) 2025-01-01
TW202544738A TW202544738A (en) 2025-11-16

Family

ID=95151673

Family Applications (1)

Application Number Title Priority Date Filing Date
TW113116239A TWI869276B (en) 2024-04-30 2024-04-30 Processing system and method for detecting adhesive threads

Country Status (1)

Country Link
TW (1) TWI869276B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190244344A1 (en) * 2015-05-28 2019-08-08 Jabil Inc. System, apparatus and method for dispensed adhesive material inspection
US20200130289A1 (en) * 2017-06-19 2020-04-30 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method and device for inspecting a joining surface
CN113643233A (en) * 2021-07-01 2021-11-12 深圳市格灵精睿视觉有限公司 Oily coating detection method, system and equipment and computer readable storage medium
TW202229848A (en) * 2021-01-26 2022-08-01 鑫中田企業有限公司 Intelligent optical defect identification systems and method
CN117392060A (en) * 2023-09-14 2024-01-12 广州市斯睿特智能科技有限公司 Glue spreading detection method, system, device and storage medium
US20240094139A1 (en) * 2019-11-08 2024-03-21 3M Innovative Properties Company Ultraviolet light-based inspection for detecting coating defects in manufactured webs using fluorescing agents

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190244344A1 (en) * 2015-05-28 2019-08-08 Jabil Inc. System, apparatus and method for dispensed adhesive material inspection
US20200130289A1 (en) * 2017-06-19 2020-04-30 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method and device for inspecting a joining surface
US20240094139A1 (en) * 2019-11-08 2024-03-21 3M Innovative Properties Company Ultraviolet light-based inspection for detecting coating defects in manufactured webs using fluorescing agents
TW202229848A (en) * 2021-01-26 2022-08-01 鑫中田企業有限公司 Intelligent optical defect identification systems and method
CN113643233A (en) * 2021-07-01 2021-11-12 深圳市格灵精睿视觉有限公司 Oily coating detection method, system and equipment and computer readable storage medium
CN117392060A (en) * 2023-09-14 2024-01-12 广州市斯睿特智能科技有限公司 Glue spreading detection method, system, device and storage medium

Similar Documents

Publication Publication Date Title
CN109816678B (en) Automatic nozzle atomization angle detection system and method based on vision
CN115439494B (en) Spray image processing method for quality inspection of sprayer
CN101358934B (en) Inspection device, inspection method, inspection system and method of manufacturing color filter
CA3053219C (en) Real-time, full web image processing method and system for web manufacturing supervision
CN109472261B (en) Computer vision-based automatic monitoring method for grain storage quantity change of granary
CN112889087B (en) System, processing unit and method for automatic inspection of sheet material components
JP2001527645A (en) Uneven defect detection method and detection device
TWI548269B (en) Method, electronic device and computer readable medium for processing a reflective area in an image
US8610770B2 (en) Image sensing apparatus and method for sensing target that has defective portion region
CN113628161B (en) Defect detection method, device and computer readable storage medium
CN112669272B (en) AOI rapid detection method and rapid detection system
TWI869276B (en) Processing system and method for detecting adhesive threads
CN118505689A (en) Method and system for rapidly detecting defects of textile products based on image features
TWI714923B (en) Automated optical inspection system and automated optical inspection method using the same
CN101727664A (en) Image processing method, paint inspection method and paint inspection system
KR101966075B1 (en) Apparatus and Method for Detection MURA in Display Device
CN105405109A (en) Dirty spot detection method based on zonal background modeling
TW202544738A (en) Processing system and method for detecting adhesive threads
CN109583330B (en) A pore detection method for face photos
CN120870120A (en) Processing system and method for detecting gluing defects
WO2020252879A1 (en) Mobile phone screen defect detection system based on ultrasonic spray
CN110516725A (en) Detection method of plank stripe spacing and color based on machine vision
Jakštys et al. Detection of the road pothole contour in raster images
JP4247993B2 (en) Image inspection apparatus, image inspection method, control program, and readable storage medium
CN100378753C (en) Method for determining important area in skin print image