[go: up one dir, main page]

TWI869149B - Knowledge recommendation system and knowledge recommendation method - Google Patents

Knowledge recommendation system and knowledge recommendation method Download PDF

Info

Publication number
TWI869149B
TWI869149B TW113100095A TW113100095A TWI869149B TW I869149 B TWI869149 B TW I869149B TW 113100095 A TW113100095 A TW 113100095A TW 113100095 A TW113100095 A TW 113100095A TW I869149 B TWI869149 B TW I869149B
Authority
TW
Taiwan
Prior art keywords
knowledge
keyword
numbers
recommended
weight
Prior art date
Application number
TW113100095A
Other languages
Chinese (zh)
Other versions
TW202528951A (en
Inventor
陳仲詠
Original Assignee
中華電信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中華電信股份有限公司 filed Critical 中華電信股份有限公司
Priority to TW113100095A priority Critical patent/TWI869149B/en
Application granted granted Critical
Publication of TWI869149B publication Critical patent/TWI869149B/en
Publication of TW202528951A publication Critical patent/TW202528951A/en

Links

Images

Landscapes

  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

A knowledge recommendation method includes: reading the knowledge numbers, the knowledge names and the knowledge keyword groups corresponding to each of the knowledge numbers; calculating the similarities between the voice data and each of the knowledge names, and filtering out multiple candidate knowledge numbers based on the similarities; identifying and marking the voice keywords in the voice data based on each of the keyword groups; adding the time tags to the voice keywords to become the term keywords; comparing at least one knowledge keyword with the term keywords and filtering out multiple knowledge numbers to be recommended from the candidate knowledge numbers; calculating the keyword weight scores corresponding to each of the knowledge numbers to be recommended based on the weights corresponding to each of the knowledge keyword groups; and sorting the knowledge numbers to be recommended based on the keyword weight scores and the similarities corresponding to each of the knowledge numbers to be recommended from high to low to produce knowledge recommendation sorting results.

Description

知識推薦系統以及知識推薦方法Knowledge recommendation system and knowledge recommendation method

本發明是有關於一種推薦技術,且特別是有關於一種基於上下文情境的知識推薦系統以及知識推薦方法。 The present invention relates to a recommendation technology, and in particular to a context-based knowledge recommendation system and a knowledge recommendation method.

電信業者、銀行業者、其他服務業或者是公家機關的臨櫃人員每天均會面臨大量客戶詢問或要求提供產業相關服務,而產業相關服務的複雜程度則會造成臨櫃人員處理客戶需求的服務時間,倘若臨櫃人員是仍在培訓中的新進人員,可能會無法即時提供最恰當的產業相關服務給客戶,並且也會讓臨櫃人員的培訓時間變長。因此,針對客戶臨櫃談話內容,進行即時的服務知識推薦供臨櫃人員挑選,協助臨櫃人員回憶服務流程,提升客戶滿意度,除了可減少培訓時間,減輕企業培訓成本,實為亟欲解決的問題。 Telecom operators, banks, other service industries or counter staff in government agencies face a large number of customer inquiries or requests for industry-related services every day. The complexity of industry-related services will increase the service time for counter staff to handle customer needs. If the counter staff is a new employee who is still in training, they may not be able to provide the most appropriate industry-related services to customers in a timely manner, and the training time of counter staff will also be prolonged. Therefore, according to the content of customer counter conversations, real-time service knowledge recommendations are provided for counter personnel to choose from, helping counter personnel to recall service processes and improve customer satisfaction. In addition to reducing training time and reducing corporate training costs, this is an issue that needs to be solved urgently.

本發明提供一種知識推薦系統,包括記憶體以及處理器。記憶體儲存多個模組;處理器耦接記憶體,用以讀取並執行多個模 組以產生知識推薦排序結果,其中多個模組包括知識資料模組、語音相似度計算模組、關鍵字識別模組、關鍵字期限模組、關鍵字比對模組、關鍵字權重模組以及知識推薦排序模組。知識資料模組用以儲存多個知識編號、對應每一知識編號的知識名稱以及多個知識關鍵字群組,其中每一知識關鍵字群組具有對應的權重並且包含至少一知識關鍵字。語音相似度計算模組用以計算語音資料與每一知識編號對應的知識名稱的相似度,並根據相似度自知識編號中篩選出多個候選知識編號。關鍵字識別模組用以基於每一知識編號對應的關鍵字群組識別並標註語音資料中的多個語音關鍵字。關鍵字期限模組用以於語音關鍵字加上時間標籤以成為多個期限關鍵字。關鍵字比對模組用以比對至少一知識關鍵字與期限關鍵字,並基於符合知識關鍵字的期限關鍵字自候選知識編號中篩選出待推薦知識編號。關鍵字權重模組用以根據每一知識關鍵字群組所對應的權重計算對應每一待推薦知識編號的關鍵字權重分數。知識推薦排序模組用以根據每一待推薦知識編號的關鍵字權重分數以及相似度由高至低排序待推薦知識編號以產生知識推薦排序結果。 The present invention provides a knowledge recommendation system, including a memory and a processor. The memory stores multiple modules; the processor is coupled to the memory to read and execute multiple modules to generate knowledge recommendation ranking results, wherein the multiple modules include a knowledge data module, a voice similarity calculation module, a keyword recognition module, a keyword deadline module, a keyword comparison module, a keyword weight module and a knowledge recommendation ranking module. The knowledge data module is used to store a plurality of knowledge numbers, a knowledge name corresponding to each knowledge number, and a plurality of knowledge keyword groups, wherein each knowledge keyword group has a corresponding weight and includes at least one knowledge keyword. The voice similarity calculation module is used to calculate the similarity between the voice data and the knowledge name corresponding to each knowledge number, and select a plurality of candidate knowledge numbers from the knowledge numbers according to the similarity. The keyword recognition module is used to recognize and annotate a plurality of voice keywords in the voice data based on the keyword group corresponding to each knowledge number. The keyword expiration module is used to add a time tag to the voice keyword to form a plurality of expiration keywords. The keyword matching module is used to match at least one knowledge keyword with an expiration keyword, and to filter out a knowledge number to be recommended from candidate knowledge numbers based on the expiration keyword that matches the knowledge keyword. The keyword weight module is used to calculate a keyword weight score corresponding to each knowledge number to be recommended according to the weight corresponding to each knowledge keyword group. The knowledge recommendation ranking module is used to sort the knowledge numbers to be recommended from high to low according to the keyword weight score and similarity of each knowledge number to be recommended to generate the knowledge recommendation ranking results.

於一實施例中,模組更包括對話儲存模組,用以儲存語音資料。 In one embodiment, the module further includes a dialogue storage module for storing voice data.

於一實施例中,語音資料是透過兩收音裝置所接收的多個聲音訊號所組成。 In one embodiment, the voice data is composed of multiple sound signals received by two receiving devices.

於一實施例中,知識關鍵字群組包括類別關鍵字群組、子 類別關鍵字群組以及一般關鍵字群組。 In one embodiment, the knowledge keyword group includes a category keyword group, a subcategory keyword group, and a general keyword group.

於一實施例中,類別關鍵字群組對應第一權重,子類別關鍵字群組對應第二權重,一般關鍵字群組對應第三權重,其中第一權重大於第二權重,第二權重大於第三權重。 In one embodiment, the category keyword group corresponds to the first weight, the subcategory keyword group corresponds to the second weight, and the general keyword group corresponds to the third weight, wherein the first weight is greater than the second weight, and the second weight is greater than the third weight.

於一實施例中,語音相似度計算模組更用以透過字串比對的演算法計算語音資料與每一知識編號對應的知識名稱的相似度。 In one embodiment, the voice similarity calculation module is further used to calculate the similarity between the voice data and the knowledge name corresponding to each knowledge number through a string matching algorithm.

於一實施例中,關鍵字權重模組根據每一知識關鍵字群組所對應的權重計算對應每一待推薦知識編號的關鍵字權重分數之前,關鍵字期限模組更用以擷取時間標籤在一設定時段內的部分期限關鍵字所對應的部分待推薦知識編號。 In one embodiment, before the keyword weight module calculates the keyword weight score corresponding to each knowledge number to be recommended according to the weight corresponding to each knowledge keyword group, the keyword deadline module is further used to capture part of the knowledge numbers to be recommended corresponding to part of the deadline keywords with time tags within a set time period.

於一實施例中,知識資料模組更用以接收對應於知識關鍵字群組中至少一者的至少一新增知識關鍵字。 In one embodiment, the knowledge data module is further used to receive at least one newly added knowledge keyword corresponding to at least one of the knowledge keyword groups.

於一實施例中,知識推薦排序結果包括該些待推薦知識編號中排序在前的部分推薦知識編號。 In one embodiment, the knowledge recommendation ranking result includes some recommended knowledge numbers ranked first among the knowledge numbers to be recommended.

於一實施例中,知識推薦系統更包括顯示器,顯示器耦接處理器,用以顯示每一該些推薦知識編號所對應的推薦知識描述。 In one embodiment, the knowledge recommendation system further includes a display, which is coupled to the processor to display the recommended knowledge description corresponding to each of the recommended knowledge numbers.

本發明還提供一種知識推薦方法,包括:自知識資料模組中讀取多個知識編號、及對應每一知識編號的知識名稱以及多個知識關鍵字群組,其中每一知識關鍵字群組具有對應的權重並且包含至少一知識關鍵字;計算語音資料與每一知識編號對應的知識名稱的相似度,並根據相似度自知識編號中篩選出多個候選知 識編號;基於每一知識編號對應的關鍵字群組識別並標註語音資料中的多個語音關鍵字;於語音關鍵字加上時間標籤以成為多個期限關鍵字;比對至少一知識關鍵字與期限關鍵字,並基於符合知識關鍵字的期限關鍵字自候選知識編號中篩選出待推薦知識編號;根據每一知識關鍵字群組所對應的權重計算對應每一待推薦知識編號的關鍵字權重分數;以及根據每一待推薦知識編號的關鍵字權重分數以及相似度由高至低排序待推薦知識編號以產生知識推薦排序結果。 The present invention also provides a knowledge recommendation method, comprising: reading a plurality of knowledge numbers, a knowledge name corresponding to each knowledge number, and a plurality of knowledge keyword groups from a knowledge data module, wherein each knowledge keyword group has a corresponding weight and includes at least one knowledge keyword; calculating the similarity between the voice data and the knowledge name corresponding to each knowledge number, and selecting a plurality of candidate knowledge numbers from the knowledge numbers according to the similarity; identifying and annotating a plurality of candidate knowledge numbers in the voice data based on the keyword group corresponding to each knowledge number; Voice keywords; adding time tags to the voice keywords to form multiple time-limit keywords; comparing at least one knowledge keyword with the time-limit keyword, and screening the knowledge number to be recommended from the candidate knowledge numbers based on the time-limit keywords that match the knowledge keyword; calculating the keyword weight score corresponding to each knowledge number to be recommended according to the weight corresponding to each knowledge keyword group; and sorting the knowledge numbers to be recommended from high to low according to the keyword weight score and similarity of each knowledge number to be recommended to generate a knowledge recommendation sorting result.

基於上述,本發明所提供的知識推薦系統以及知識推薦方法可提供針對客戶臨櫃談話內容,進行即時的服務知識推薦供臨櫃人員挑選,協助臨櫃人員回憶服務流程,提升客戶滿意度,除了可減少培訓時間,減輕企業培訓成本。 Based on the above, the knowledge recommendation system and knowledge recommendation method provided by the present invention can provide real-time service knowledge recommendations for counter personnel to select based on the content of customer counter conversations, assist counter personnel to recall service processes, and improve customer satisfaction. In addition to reducing training time, it can also reduce corporate training costs.

1:知識推薦系統 1: Knowledge recommendation system

11:記憶體 11: Memory

111:對話儲存模組 111: Dialogue storage module

112:知識資料模組 112: Knowledge data module

113:語音相似度計算模組 113: Voice similarity calculation module

114:關鍵字識別模組 114:Keyword recognition module

115:關鍵字期限模組 115:Keyword deadline module

116:關鍵字比對模組 116:Keyword matching module

117:關鍵字權重模組 117:Keyword weight module

118:知識推薦排序模組 118: Knowledge recommendation sorting module

12:處理器 12: Processor

13:顯示器 13: Display

3:知識推薦方法 3: Knowledge recommendation method

S310~S380:步驟 S310~S380: Steps

圖1是依照本發明一實施例的一種知識推薦系統的架構圖。 Figure 1 is a diagram of the architecture of a knowledge recommendation system according to an embodiment of the present invention.

圖2是依照本發明一實施例所繪示的一種知識推薦系統執行知識推薦方法的示意圖。 Figure 2 is a schematic diagram of a knowledge recommendation system executing a knowledge recommendation method according to an embodiment of the present invention.

圖3是依照本發明一實施例所繪示的一種知識推薦方法的流程圖。 Figure 3 is a flow chart of a knowledge recommendation method according to an embodiment of the present invention.

圖1是依照本發明一實施例的一種知識推薦系統1的架構圖。請參考圖1,知識推薦系統1包括記憶體11、處理器12以及顯示器13,其中處理器12耦接記憶體11和顯示器13。實務上來說,知識推薦系統1可由電腦裝置來實作,例如是桌上型電腦、筆記型電腦、平板電腦、工作站等具有運算功能、顯示功能以及連網功能的電腦裝置,本發明並不加以限制。 FIG1 is a structural diagram of a knowledge recommendation system 1 according to an embodiment of the present invention. Referring to FIG1 , the knowledge recommendation system 1 includes a memory 11, a processor 12, and a display 13, wherein the processor 12 is coupled to the memory 11 and the display 13. In practice, the knowledge recommendation system 1 can be implemented by a computer device, such as a desktop computer, a laptop computer, a tablet computer, a workstation, or other computer device with computing functions, display functions, and networking functions, and the present invention is not limited thereto.

記憶體11儲存多個模組,其中多個模組包括對話儲存模組111、知識資料模組112、語音相似度計算模組113、關鍵字識別模組114、關鍵字期限模組115、關鍵字比對模組116、關鍵字權重模組117以及知識推薦排序模組118。實務上來說,記憶體11例如是靜態隨機存取記憶體(Static Random-Access Memory,SRAM)、動態隨機存取記憶體(Dynamic Random Access Memory,DRAM)或其他記憶體,本發明並不加以限制。 The memory 11 stores multiple modules, including a conversation storage module 111, a knowledge data module 112, a voice similarity calculation module 113, a keyword recognition module 114, a keyword deadline module 115, a keyword comparison module 116, a keyword weight module 117, and a knowledge recommendation sorting module 118. In practice, the memory 11 is, for example, a static random access memory (SRAM), a dynamic random access memory (DRAM), or other memory, and the present invention is not limited thereto.

處理器12用以讀取記憶體11中儲存的多個模組,並執行該多個模組以產生知識推薦排序結果。實務上來說,處理器12可以是實作知識推薦系統1的電腦裝置上內建的中央處理器(CPU)、微處理器(micro-processor)或嵌入式控制器(embedded controller),本發明並不加以限制。 The processor 12 is used to read multiple modules stored in the memory 11 and execute the multiple modules to generate knowledge recommendation sorting results. In practice, the processor 12 can be a central processing unit (CPU), a microprocessor, or an embedded controller built into the computer device that implements the knowledge recommendation system 1, and the present invention is not limited to this.

圖2是依照本發明一實施例所繪示的一種知識推薦系統1執行知識推薦方法的示意圖,即知識推薦系統1的處理器12讀取記憶體11中的多個模組之後透過多個模組以執行知識推薦方法的示意圖。接下來請同時參照圖1~圖2。 FIG2 is a schematic diagram of a knowledge recommendation system 1 executing a knowledge recommendation method according to an embodiment of the present invention, that is, a schematic diagram of a processor 12 of the knowledge recommendation system 1 reading multiple modules in a memory 11 and then executing the knowledge recommendation method through multiple modules. Please refer to FIG1 and FIG2 simultaneously.

對話儲存模組111用以儲存語音資料。知識推薦系統1外接收音裝置(圖中未示出),透過收音裝置接收聲音訊號並以語音資料的形式儲存於對話儲存模組111。知識推薦系統1可外接兩個收音裝置(例如麥克風),一者接收第一發話者(例如臨櫃辦理業務的客戶)的聲音訊號,另一者接收第二發話者的(例如臨櫃業務人員)聲音訊號,語音資料是透過兩收音裝置所接收的多個聲音訊號所組成。當雙方對話時,雙方的對話紀錄將以語音資料的形式儲存於對話儲存模組111。對話儲存模組111還可根據不同收音裝置所接收的聲音訊號附上標籤。舉例來說,雙方對話的內容如下: The conversation storage module 111 is used to store voice data. The knowledge recommendation system 1 has an external sound receiving device (not shown in the figure), which receives sound signals and stores them in the conversation storage module 111 in the form of voice data. The knowledge recommendation system 1 can be connected to two external sound receiving devices (such as microphones), one of which receives the sound signal of the first speaker (such as a customer who conducts business at the counter), and the other receives the sound signal of the second speaker (such as a counter business staff). The voice data is composed of multiple sound signals received by the two sound receiving devices. When the two parties are talking, the conversation record of the two parties will be stored in the conversation storage module 111 in the form of voice data. The conversation storage module 111 can also attach labels according to the sound signals received by different sound receiving devices. For example, the content of the conversation between the two parties is as follows:

臨櫃辦理業務的客戶:「我想詢問商品售後服務。」 Customers who come to the counter to do business: "I would like to inquire about the after-sales service of the product."

臨櫃業務人員:「請問是哪個商品呢?」 Counter clerk: "What product is this?"

臨櫃辦理業務的客戶:「我想詢問東亞漫遊的價格。」 Customers who come to the counter to conduct business: "I would like to inquire about the price of East Asia roaming."

臨櫃業務人員:「請問要詢問哪一個國家呢?」 Counter clerk: "Which country do you want to inquire about?"

對話儲存模組111會將「我想詢問商品售後服務。」以及「我想詢問東亞漫遊的價格。」附上第一標籤,並將「請問是哪個商品呢?」以及「請問要詢問哪一個國家呢?」附上第二標籤,以區分不同收音裝置所接收的聲音訊號。 The dialogue storage module 111 will attach a first label to "I want to inquire about the product after-sales service." and "I want to inquire about the price of East Asia roaming.", and attach a second label to "Which product is it?" and "Which country do you want to inquire about?" to distinguish the sound signals received by different radio devices.

知識資料模組112用以儲存多個知識編號、對應每一知識編號的知識名稱、知識描述以及多個知識關鍵字群組,其中每一知識關鍵字群組具有對應的權重並且包含至少一知識關鍵字。多個知識關鍵字群組包括類別關鍵字群組、子類別關鍵字群組以及一般關鍵字群組。表1為知識資料模組112中所儲存的知識編號、 對應每一知識編號的知識名稱、知識描述以及多個知識關鍵字群組的範例。 The knowledge data module 112 is used to store multiple knowledge numbers, knowledge names corresponding to each knowledge number, knowledge descriptions, and multiple knowledge keyword groups, wherein each knowledge keyword group has a corresponding weight and includes at least one knowledge keyword. Multiple knowledge keyword groups include category keyword groups, subcategory keyword groups, and general keyword groups. Table 1 is an example of knowledge numbers, knowledge names corresponding to each knowledge number, knowledge descriptions, and multiple knowledge keyword groups stored in the knowledge data module 112.

Figure 113100095-A0305-12-0007-1
Figure 113100095-A0305-12-0007-1

於一實施例中,類別關鍵字群組對應第一權重,子類別關 鍵字群組對應第二權重,一般關鍵字群組對應第三權重,其中第一權重大於第二權重,第二權重大於第三權重。 In one embodiment, the category keyword group corresponds to the first weight, the subcategory keyword group corresponds to the second weight, and the general keyword group corresponds to the third weight, wherein the first weight is greater than the second weight, and the second weight is greater than the third weight.

知識資料模組112更用以接收對應於該些知識關鍵字群組中至少一者的至少一新增知識關鍵字。例如,使用者想在知識編號4的子類別關鍵字群組中新增關鍵字「河內」,則可透過連接至處理器12的輸入裝置(例如鍵盤)輸入「河內」,處理器12將關鍵字「河內」儲存在記憶體11中的知識資料模組112中。 The knowledge data module 112 is further used to receive at least one newly added knowledge keyword corresponding to at least one of the knowledge keyword groups. For example, if the user wants to add the keyword "Hanoi" to the subcategory keyword group of knowledge number 4, the user can input "Hanoi" through an input device (such as a keyboard) connected to the processor 12, and the processor 12 stores the keyword "Hanoi" in the knowledge data module 112 in the memory 11.

語音相似度計算模組113用以計算語音資料與每一知識編號對應的知識名稱的相似度,並根據相似度自知識編號中篩選出多個候選知識編號。語音相似度計算模組113更用以透過字串比對的演算法計算該語音資料與每一該些知識編號對應的該知識名稱的該相似度。 The voice similarity calculation module 113 is used to calculate the similarity between the voice data and the knowledge name corresponding to each knowledge number, and select multiple candidate knowledge numbers from the knowledge numbers according to the similarity. The voice similarity calculation module 113 is further used to calculate the similarity between the voice data and the knowledge name corresponding to each of the knowledge numbers through a string matching algorithm.

於一實施例中,語音相似度計算模組113可透過字串比對的演算法計算語音資料與每一知識編號對應的知識名稱的該相似度。字串比對的演算法例如像是萊文斯坦距離(Levenshtein distance)、餘弦相似度(Cosine Similarity)、皮爾森相似度(Pearson Similiarity)等等,只要是字串比對的演算法均在本發明的保護範圍內。例如,萊文斯坦距離會依據新增、刪除、修改(置換)成另一字串的次數並除以兩個比較字串的總和來做為相似度,公式為(A-B)/A,其中ASUM(String 1 ,String 2),B為MinimumEditDistance(String 1 ,String 2)。 In one embodiment, the voice similarity calculation module 113 can calculate the similarity between the voice data and the knowledge name corresponding to each knowledge number through a string comparison algorithm. The string comparison algorithm is, for example, Levenshtein distance, cosine similarity, Pearson Similiarity, etc. As long as it is a string comparison algorithm, it is within the protection scope of the present invention. For example, Levenshtein distance is calculated based on the number of times a string is added, deleted, or modified (replaced) into another string and divided by the sum of the two compared strings as the similarity, and the formula is ( A - B )/ A , where A is SUM ( String 1 , String 2 ), and B is MinimumEditDistance ( String 1 , String 2 ).

關鍵字識別模組114用以基於知識資料模組112中所儲存的每一知識編號對應的關鍵字群組中的所有知識關鍵字使用命名實體識別即時識別語音資料,並標註語音資料中的多個語音關鍵字。 The keyword recognition module 114 is used to recognize the voice data in real time based on all the knowledge keywords in the keyword group corresponding to each knowledge number stored in the knowledge data module 112 using named entity recognition, and to mark multiple voice keywords in the voice data.

關鍵字期限模組115用以於語音關鍵字加上時間標籤以成為多個期限關鍵字,換言之,每一個期限關鍵字即對應每一個語音關鍵字以及該語音關鍵字出現在語音資料中的時間。 The keyword deadline module 115 is used to add a time tag to the voice keyword to form multiple deadline keywords. In other words, each deadline keyword corresponds to each voice keyword and the time when the voice keyword appears in the voice data.

關鍵字比對模組116用以比對知識資料模組112中的知識關鍵字與關鍵字期限模組115所產生的期限關鍵字,並基於符合知識關鍵字的期限關鍵字自多個候選知識編號中篩選出多個待推薦知識編號。 The keyword matching module 116 is used to compare the knowledge keywords in the knowledge data module 112 with the term keywords generated by the keyword term module 115, and to filter out multiple knowledge numbers to be recommended from multiple candidate knowledge numbers based on the term keywords that match the knowledge keywords.

關鍵字權重模組117用以根據每一知識關鍵字群組所對應的權重計算對應關鍵字比對模組116所篩選出的每一待推薦知識編號的關鍵字權重分數。舉例來說,類別關鍵字群組對應第一權重(例如2),子類別關鍵字群組對應第二權重(例如1),一般關鍵字群組對應第三權重(例如0.5),則待推薦知識編號N的關鍵字權重分數W(k N )計算如下:W(k N )=X N ×2+Y N ×1+Z N ×0.5; 其中X N 為關鍵字期限模組115所產生的每一期限關鍵字符合待推薦知識編號N所對應的類別關鍵字的次數,Y N 為關鍵字期限模組115所產生的每一期限關鍵字符合待推薦知識編號N所對應的子類別關鍵字的次數,而Z N 為關鍵字期限模組115所產生 的每一期限關鍵字符合待推薦知識編號N所對應的子類別關鍵字的次數。 The keyword weight module 117 is used to calculate the keyword weight score of each knowledge number to be recommended selected by the keyword matching module 116 according to the weight corresponding to each knowledge keyword group. For example, the category keyword group corresponds to the first weight (e.g., 2), the subcategory keyword group corresponds to the second weight (e.g., 1), and the general keyword group corresponds to the third weight (e.g., 0.5). The keyword weight score W(k N ) of the knowledge number N to be recommended is calculated as follows: W ( k N )= X N ×2+ Y N ×1+ Z N ×0.5; wherein X N is the number of times each term keyword generated by the keyword term module 115 matches the category keyword corresponding to the knowledge number N to be recommended, Y N is the number of times each term keyword generated by the keyword term module 115 matches the subcategory keyword corresponding to the knowledge number N to be recommended, and Z N is the number of times each deadline keyword generated by the keyword deadline module 115 matches the sub-category keyword corresponding to the knowledge number N to be recommended.

於一實施例中,知識推薦系統1可提供使用者對語音資料進行過濾,以針對語音資料中的一設定時段(例如:0:08:00~0:11:00,三分鐘)內對擷取語音資料,這設定時段內的期限關鍵字將可用於後續的處理,設定時段以外的期限關鍵字將會被忽略,以使得知識推薦系統1在處理上更有效率。因此,關鍵字權重模組117在根據每一知識關鍵字群組所對應的權重計算對應每一待推薦知識編號的關鍵字權重分數之前,關鍵字期限模組115更用以擷取時間標籤在一設定時段內的部分期限關鍵字所對應的部分待推薦知識編號。 In one embodiment, the knowledge recommendation system 1 may provide the user with the ability to filter voice data to capture voice data within a set time period (e.g., 0:08:00~0:11:00, three minutes) in the voice data. The time limit keywords within the set time period will be used for subsequent processing, and the time limit keywords outside the set time period will be ignored, so that the knowledge recommendation system 1 is more efficient in processing. Therefore, before the keyword weight module 117 calculates the keyword weight score corresponding to each knowledge number to be recommended according to the weight corresponding to each knowledge keyword group, the keyword deadline module 115 is further used to capture part of the knowledge numbers to be recommended corresponding to part of the deadline keywords with time tags within a set time period.

知識推薦排序模組118用以根據待推薦知識編號的關鍵字權重分數以及相似度由高至低排序待推薦知識編號以產生知識推薦排序結果。於一實施例中,知識推薦排序結果可以僅包括待推薦知識編號中排序在前的部分推薦知識編號。 The knowledge recommendation ranking module 118 is used to sort the knowledge numbers to be recommended from high to low according to the keyword weight scores and similarities of the knowledge numbers to be recommended to generate knowledge recommendation ranking results. In one embodiment, the knowledge recommendation ranking results may only include some of the recommended knowledge numbers ranked in front of the knowledge numbers to be recommended.

當知識推薦排序模組118產生知識推薦排序結果之後,顯示器13用以顯示知識推薦排序結果中每一推薦知識編號所對應的推薦知識描述。 After the knowledge recommendation ranking module 118 generates the knowledge recommendation ranking result, the display 13 is used to display the recommended knowledge description corresponding to each recommended knowledge number in the knowledge recommendation ranking result.

圖3是依照本發明一實施例所繪示的一種知識推薦方法3的流程圖,即對應圖2所示知識推薦系統1的處理器12透過多個模組以執行知識推薦方法3的流程圖。知識推薦方法3包括步驟S310~S380。接下來請同時參照圖2~圖3。 FIG. 3 is a flow chart of a knowledge recommendation method 3 according to an embodiment of the present invention, i.e., a flow chart of the processor 12 of the knowledge recommendation system 1 shown in FIG. 2 executing the knowledge recommendation method 3 through multiple modules. The knowledge recommendation method 3 includes steps S310 to S380. Please refer to FIG. 2 to FIG. 3 at the same time.

於步驟S310中,自知識資料模組112中讀取多個知識編號、對應每一知識編號的知識名稱以及多個知識關鍵字群組,其中每一知識關鍵字群組具有對應的權重並且包含至少一知識關鍵字。 In step S310, a plurality of knowledge numbers, a knowledge name corresponding to each knowledge number, and a plurality of knowledge keyword groups are read from the knowledge data module 112, wherein each knowledge keyword group has a corresponding weight and includes at least one knowledge keyword.

於步驟S320中,計算語音資料與每一知識編號對應的該知識名稱的相似度,並根據相似度自知識編號中篩選出多個候選知識編號。 In step S320, the similarity between the voice data and the knowledge name corresponding to each knowledge number is calculated, and multiple candidate knowledge numbers are selected from the knowledge numbers according to the similarity.

於步驟S330中,基於每一知識編號對應的關鍵字群組識別並標註語音資料中的多個語音關鍵字。 In step S330, multiple voice keywords in the voice data are identified and labeled based on the keyword group corresponding to each knowledge number.

於步驟S340中,於語音關鍵字加上時間標籤以成為多個期限關鍵字。 In step S340, a time tag is added to the voice keyword to form a plurality of time-limited keywords.

於步驟S350中,比對至少一知識關鍵字與期限關鍵字,並自候選知識編號中篩選出多個待推薦知識編號。 In step S350, at least one knowledge keyword is compared with a deadline keyword, and a plurality of knowledge numbers to be recommended are screened from the candidate knowledge numbers.

於步驟S360中,根據每一知識關鍵字群組所對應的權重計算對應每一待推薦知識編號的關鍵字權重分數。 In step S360, the keyword weight score corresponding to each knowledge number to be recommended is calculated according to the weight corresponding to each knowledge keyword group.

於步驟S370中,根據每一待推薦知識編號的該關鍵字權重分數以及相似度由高至低排序待推薦知識編號以產生知識推薦排序結果。 In step S370, the knowledge numbers to be recommended are sorted from high to low according to the keyword weight score and similarity of each knowledge number to be recommended to generate a knowledge recommendation sorting result.

於步驟S380中,顯示每一推薦知識編號所對應的推薦知識描述。 In step S380, the recommended knowledge description corresponding to each recommended knowledge number is displayed.

接下來,將舉例說明知識推薦系統1的處理器12透過多個模組以執行知識推薦方法3的實施例。 Next, an example will be given to illustrate the implementation of the knowledge recommendation method 3 by the processor 12 of the knowledge recommendation system 1 through multiple modules.

實施例一為語音資料中的上下文只有當下的資料並且關 鍵字權重相等的知識推薦的範例。假設消費者A至某電信門市的櫃台詢問電信業務,抽號碼牌後,至某櫃台詢問,其對話內容如表2:

Figure 113100095-A0305-12-0012-2
Embodiment 1 is an example of knowledge recommendation in which the context of voice data is only current data and the keyword weights are equal. Assume that consumer A goes to a counter of a certain telecommunication store to inquire about telecommunication services. After drawing a number card, he goes to a counter to inquire. The content of the conversation is shown in Table 2:
Figure 113100095-A0305-12-0012-2

櫃台人員可手動觸發知識推薦系統1進行知識推薦。這段對話首先會進行音轉字的程序,並且儲存至對話儲存模組111。之後透過語音相似度計算模組113與知識資料模組112中所儲存的對應每一知識編號的知識名稱進行比對,請參表1。 The counter staff can manually trigger the knowledge recommendation system 1 to make knowledge recommendations. This conversation will first undergo a phonetic-to-text conversion process and be stored in the conversation storage module 111. Afterwards, the speech similarity calculation module 113 will be used to compare the knowledge name corresponding to each knowledge number stored in the knowledge data module 112, see Table 1.

以萊文斯坦比例距離為例,語音相似度計算模組113基於這段對話與知識編號1~6所分別對應的知識名稱計算出六個相似度,依序為0.25、0.375、0.375、0.25、0.2353與0.2353。於一實施例中,使用者事先設定保留相似度大於等於門檻值0.25的知識編號,語音相似度計算模組113會將六個相似度中大於等於門檻值0.25的知識編號篩選出以產生多個候選知識編號。 Taking Levenshtein proportional distance as an example, the speech similarity calculation module 113 calculates six similarities based on the knowledge names corresponding to the conversation and knowledge numbers 1 to 6, which are 0.25, 0.375, 0.375, 0.25, 0.2353 and 0.2353, respectively. In one embodiment, the user sets in advance to retain the knowledge numbers with similarities greater than or equal to the threshold value of 0.25. The speech similarity calculation module 113 will filter out the knowledge numbers with similarities greater than or equal to the threshold value of 0.25 from the six similarities to generate multiple candidate knowledge numbers.

由於知識編號2所對應的知識名稱「韓國漫遊」與知識編號3所對應的知識名稱「泰國漫遊」對應的相似度均為0.375,因此知識編號2、3均被列入候選知識編號。另外,知識編號1所對應的知識名稱「日本漫遊」與知識編號4所對應的知識名稱「越南漫遊」對應的相似度均為0.25,因此知識編號1、4也均被列入候選知識編號。當候選知識編號超過3個時,不再取用相似度低 於0.25的知識編號,因此,語音相似度計算模組113自知識編號1~6中篩選出候選知識編號1、2、3與4。 Since the similarity between the knowledge name "Korea Roaming" corresponding to knowledge number 2 and the knowledge name "Thailand Roaming" corresponding to knowledge number 3 is 0.375, both knowledge numbers 2 and 3 are included in the candidate knowledge numbers. In addition, the similarity between the knowledge name "Japan Roaming" corresponding to knowledge number 1 and the knowledge name "Vietnam Roaming" corresponding to knowledge number 4 is 0.25, so both knowledge numbers 1 and 4 are also included in the candidate knowledge numbers. When the number of candidate knowledge numbers exceeds 3, the knowledge numbers with similarity lower than 0.25 will no longer be used. Therefore, the speech similarity calculation module 113 selects candidate knowledge numbers 1, 2, 3 and 4 from knowledge numbers 1 to 6.

接著,關鍵字識別模組114基於知識資料模組112中所儲存的知識編號1~6對應的關鍵字群組中的所有知識關鍵字使用命名實體識別即時識別對話儲存模組111所儲存的語音資料,並標註語音資料中的多個語音關鍵字,即「漫遊」、「價格」。 Next, the keyword recognition module 114 uses the named entity to recognize the voice data stored in the real-time recognition dialogue storage module 111 based on all the knowledge keywords in the keyword group corresponding to the knowledge numbers 1 to 6 stored in the knowledge data module 112, and labels multiple voice keywords in the voice data, namely "roaming" and "price".

關鍵字期限模組115於語音關鍵字「漫遊」、「價格」加上時間標籤以成為多個期限關鍵字。另外,關鍵字期限模組115也會擷取時間標籤在櫃台人員設定的設定時段(例如:0:08:00~0:11:00,五分鐘)內的語音資料進行過濾。由於語音資料中的對話是在0:08:05擷取的,所以這段對話的相關關鍵字「漫遊」、「價格」會被留下。 The keyword deadline module 115 adds time tags to the voice keywords "roaming" and "price" to form multiple deadline keywords. In addition, the keyword deadline module 115 will also capture the voice data with time tags within the set time period set by the counter staff (for example: 0:08:00~0:11:00, five minutes) for filtering. Since the conversation in the voice data was captured at 0:08:05, the related keywords "roaming" and "price" of this conversation will be retained.

關鍵字比對模組116比對知識資料模組112中的知識關鍵字與關鍵字期限模組115所產生的期限關鍵字「漫遊」、「價格」,並基於符合知識關鍵字的期限關鍵字「漫遊」、「價格」自候選知識編號1、2、3與4中篩選出待推薦知識編號1、2、3與4。 The keyword matching module 116 compares the knowledge keywords in the knowledge data module 112 with the term keywords "roaming" and "price" generated by the keyword term module 115, and selects the knowledge numbers 1, 2, 3 and 4 to be recommended from the candidate knowledge numbers 1, 2, 3 and 4 based on the term keywords "roaming" and "price" that match the knowledge keywords.

關鍵字權重模組117根據類別關鍵字群組、子類別關鍵字群組以及一般關鍵字群組所分別對應的權重2、1以及0.5計算對應關鍵字比對模組116所篩選出的待推薦知識編號1、2、3與4的關鍵字權重分數W(k 1 )、W(k 2 )、W(k 3 )W(k 4 )The keyword weight module 117 calculates the keyword weight scores W(k1), W(k2), W(k3) and W(k4 ) of the knowledge numbers 1 , 2 , 3 and 4 selected by the keyword matching module 116 according to the weights 2, 1 and 0.5 corresponding to the category keyword group , subcategory keyword group and general keyword group respectively.

由於關鍵字期限模組115所產生的期限關鍵字「漫遊」、「價格」符合待推薦知識編號1所對應的類別關鍵字的次數X N 為 0,關鍵字期限模組115所產生的期限關鍵字「漫遊」、「價格」符合待推薦知識編號1所對應的子類別關鍵字的次數Y N 為1,而Z N 為關鍵字期限模組115所產生的期限關鍵字「漫遊」、「價格」符合待推薦知識編號1所對應的子類別關鍵字的次數Z N 為1。因此,關鍵字權重分數W(k 1 )計算如下:W(k 1)=0×2+1×1+1×0.5=1.5 Since the number of times X N that the term keywords "roaming" and "price" generated by the keyword term module 115 match the category keywords corresponding to the knowledge number 1 to be recommended is 0, the number of times Y N that the term keywords "roaming" and "price" generated by the keyword term module 115 match the subcategory keywords corresponding to the knowledge number 1 to be recommended is 1, and Z N is the number of times Z N that the term keywords "roaming" and "price" generated by the keyword term module 115 match the subcategory keywords corresponding to the knowledge number 1 to be recommended. Therefore, the keyword weight score W(k 1 ) is calculated as follows: W ( k 1 )=0×2+1×1+1×0.5=1.5

以此類推,關鍵字權重分數W(k 2 )、W(k 3 )以及W(k 4 )分別計算如下:W(k 2)=0×2+1×1+1×0.5=1.5 By analogy, the keyword weight scores W(k 2 ), W(k 3 ) and W(k 4 ) are calculated as follows: W ( k 2 )=0×2+1×1+1×0.5=1.5

W(k 3)=0×2+1×1+1×0.5=1.5 W ( k 3 )=0×2+1×1+1×0.5=1.5

W(k 4)=0×2+1×1+1×0.5=1.5 W ( k 4 )=0×2+1×1+1×0.5=1.5

接下來,知識推薦排序模組118根據待推薦知識編號1、2、3與4的關鍵字權重分數W(k 1 )、W(k 2 )、W(k 3 )W(k 4 )由高至低排序待推薦知識編號1、2、3與4以產生知識推薦排序結果。由於關鍵字權重模組117針對待推薦知識編號1、2、3與4所計算出的關鍵字權重分數W(k 1 )、W(k 2 )、W(k 3 )W(k 4 )均相同,櫃台人員可設定僅針對排序在前的三筆待推薦知識編號進行推薦。 Next, the knowledge recommendation ranking module 118 ranks the knowledge numbers 1, 2, 3 and 4 to be recommended from high to low according to their keyword weight scores W(k 1 ), W(k 2 ), W(k 3 ) and W(k 4 ) to generate a knowledge recommendation ranking result. Since the keyword weight scores W(k 1 ), W(k 2 ), W(k 3 ) and W(k 4 ) calculated by the keyword weight module 117 for the knowledge numbers 1 , 2, 3 and 4 to be recommended are the same, the counter staff can set to recommend only the top three knowledge numbers to be recommended.

知識推薦排序模組118根據待推薦知識編號1、2、3與4的關鍵字權重分數W(k 1 )、W(k 2 )、W(k 3 )W(k 4 )以及相似度0.25、0.375、0.375、0.25由高至低排序待推薦知識編號以產生包含推薦知識編號的知識推薦排序結果。 The knowledge recommendation ranking module 118 ranks the knowledge numbers 1, 2, 3 and 4 according to their keyword weight scores W( k1 ), W(k2 ) , W(k3 ) and W(k4 ) and similarities 0.25, 0.375, 0.375 and 0.25 from high to low to generate a knowledge recommendation ranking result including the recommended knowledge numbers.

詳細來說,由於待推薦知識編號1、2、3與4的關鍵字 權重分數均相同,但按照待推薦知識編號1、2、3與4的相似度由高至低排序後,可以得到知識推薦排序結果為推薦知識編號2、推薦知識編號3、推薦知識編號1、推薦知識編號4。但由於推薦知識編號1的編號順序在推薦知識編號4之前,因此,最後的知識推薦排序結果僅包括推薦知識編號2、推薦知識編號3、推薦知識編號1。 In detail, since the keyword weight scores of the recommended knowledge numbers 1, 2, 3 and 4 are the same, but after sorting the recommended knowledge numbers 1, 2, 3 and 4 from high to low according to their similarity, the knowledge recommendation ranking results can be obtained as recommended knowledge number 2, recommended knowledge number 3, recommended knowledge number 1, and recommended knowledge number 4. However, since the number sequence of recommended knowledge number 1 is before recommended knowledge number 4, the final knowledge recommendation ranking result only includes recommended knowledge number 2, recommended knowledge number 3, and recommended knowledge number 1.

當知識推薦排序模組118產生知識推薦排序結果之後,顯示器13顯示知識推薦排序結果中推薦知識編號2、推薦知識編號3、推薦知識編號1所分別對應的推薦知識描述。櫃台人員即可從顯示器13中根據推薦知識編號2、推薦知識編號3、推薦知識編號1所分別對應的推薦知識描述傳達給消費者A。 After the knowledge recommendation ranking module 118 generates the knowledge recommendation ranking result, the display 13 displays the recommended knowledge descriptions corresponding to the recommended knowledge number 2, the recommended knowledge number 3, and the recommended knowledge number 1 in the knowledge recommendation ranking result. The counter staff can convey the recommended knowledge descriptions corresponding to the recommended knowledge number 2, the recommended knowledge number 3, and the recommended knowledge number 1 to the consumer A from the display 13.

實施例二為透過本發明所述的知識推薦系統1和知識推薦方法3依據上下文關鍵字進行正確知識推薦的範例。假設消費者B至某電信門市的櫃台詢問電信業務,抽號碼牌後,至某櫃台詢問,其對話內容如表3:

Figure 113100095-A0305-12-0015-3
Embodiment 2 is an example of correct knowledge recommendation based on contextual keywords through the knowledge recommendation system 1 and knowledge recommendation method 3 of the present invention. Assume that consumer B goes to a counter of a certain telecommunications store to inquire about telecommunications services. After drawing a number card, he goes to a certain counter to inquire. The content of the conversation is as shown in Table 3:
Figure 113100095-A0305-12-0015-3

櫃台人員可手動觸發知識推薦系統1進行知識推薦。這 段對話首先會進行音轉字的程序,並且儲存至對話儲存模組111。之後透過語音相似度計算模組113與知識資料模組112中所儲存的對應每一知識編號的知識名稱進行比對,請參表1。 The counter staff can manually trigger the knowledge recommendation system 1 to make knowledge recommendations. This conversation will first undergo a phonetic-to-text conversion process and be stored in the conversation storage module 111. Afterwards, the speech similarity calculation module 113 will be used to compare the knowledge name corresponding to each knowledge number stored in the knowledge data module 112, see Table 1.

以萊文斯坦比例距離為例,語音相似度計算模組113基於這幾段對話與知識編號1~6所分別對應的知識名稱計算出每段對話的六個相似度,如表4所述。 Taking the Levenshtein proportional distance as an example, the speech similarity calculation module 113 calculates six similarities of each dialogue based on the knowledge names corresponding to these dialogues and knowledge numbers 1 to 6, as shown in Table 4.

Figure 113100095-A0305-12-0016-4
Figure 113100095-A0305-12-0016-4

於一實施例中,使用者事先設定保留相似度大於等於門檻值0.25的知識編號,語音相似度計算模組113會依照對話時間的先後順利依序將每段對話的六個相似度中大於等於門檻值0.25的知識編號篩選出以產生多個候選知識編號。 In one embodiment, the user sets in advance to retain knowledge numbers with similarities greater than or equal to the threshold value of 0.25, and the voice similarity calculation module 113 will filter out the knowledge numbers with similarities greater than or equal to the threshold value of 0.25 from the six similarities of each dialogue in order according to the sequence of dialogue time to generate multiple candidate knowledge numbers.

詳細來說,語音相似度計算模組113基於0:08:05的對話與知識編號1~6所分別對應的知識名稱計算出的六個相似度均大於等於門檻值,故全取出。語音相似度計算模組113基於0:08:06與0:08:08的對話與知識編號1~6所分別對應的知識名稱計算出的六個相似度均無超過門檻值0.25,故捨去。語音相似度計算模 組113基於0:08:07的對話與知識編號1~6所分別對應的知識名稱計算出的相似度中僅有與知識編號1的相似度高於門檻值0.25,故取出知識編號1。最後,語音相似度計算模組113取所有對話的相似度的聯集篩選出候選知識編號1~6。 Specifically, the six similarities calculated by the voice similarity calculation module 113 based on the dialogue at 0:08:05 and the knowledge names corresponding to the knowledge numbers 1 to 6 are all greater than or equal to the threshold value, so all of them are taken out. The six similarities calculated by the voice similarity calculation module 113 based on the dialogue at 0:08:06 and 0:08:08 and the knowledge names corresponding to the knowledge numbers 1 to 6 do not exceed the threshold value of 0.25, so they are discarded. The voice similarity calculation module 113 calculates the similarity based on the dialogue at 0:08:07 and the knowledge names corresponding to knowledge numbers 1 to 6. Only the similarity with knowledge number 1 is higher than the threshold value of 0.25, so knowledge number 1 is taken out. Finally, the voice similarity calculation module 113 takes the union of the similarities of all dialogues to filter out candidate knowledge numbers 1 to 6.

接著,關鍵字識別模組114基於知識資料模組112中所儲存的知識編號1~6對應的關鍵字群組中的所有知識關鍵字使用命名實體識別即時識別對話儲存模組111所儲存的語音資料,並標註語音資料中的多個語音關鍵字,即「漫遊」、「價格」、「日本」。 Next, the keyword recognition module 114 uses the named entity to recognize the voice data stored in the real-time recognition dialogue storage module 111 based on all the knowledge keywords in the keyword group corresponding to the knowledge numbers 1 to 6 stored in the knowledge data module 112, and labels multiple voice keywords in the voice data, namely "roaming", "price", and "Japan".

關鍵字期限模組115於語音關鍵字「漫遊」、「價格」、「日本」加上時間標籤以成為多個期限關鍵字。另外,關鍵字期限模組115也會擷取時間標籤在櫃台人員設定的設定時段(例如:0:08:00~0:11:00,五分鐘)內的語音資料進行過濾。由於語音資料中的對話是在0:08:05擷取的,所以這段對話的相關關鍵字「漫遊」、「價格」、「日本」會被留下。 The keyword deadline module 115 adds time tags to the voice keywords "roaming", "price", and "Japan" to form multiple deadline keywords. In addition, the keyword deadline module 115 will also capture the voice data with time tags within the set time period set by the counter staff (for example: 0:08:00~0:11:00, five minutes) for filtering. Since the conversation in the voice data was captured at 0:08:05, the related keywords "roaming", "price", and "Japan" of this conversation will be retained.

關鍵字比對模組116比對知識資料模組112中的知識關鍵字與關鍵字期限模組115所產生的期限關鍵字「漫遊」、「價格」、「日本」,並基於符合知識關鍵字的期限關鍵字「漫遊」、「價格」、「日本」自候選知識編號1~6中篩選出待推薦知識編號1~6。 The keyword matching module 116 compares the knowledge keywords in the knowledge data module 112 with the term keywords "roaming", "price", and "Japan" generated by the keyword term module 115, and selects the knowledge numbers 1 to 6 to be recommended from the candidate knowledge numbers 1 to 6 based on the term keywords "roaming", "price", and "Japan" that match the knowledge keywords.

關鍵字權重模組117根據類別關鍵字群組、子類別關鍵字群組以及一般關鍵字群組所分別對應的權重2、1以及0.5計算對應關鍵字比對模組116所篩選出的待推薦知識編號1~6的關鍵字權重分數W(k 1 )、W(k 2 )、W(k 3 )、W(k 4 )、W(k 5 )、W(k 6 )The keyword weight module 117 calculates the keyword weight scores W(k 1 ), W(k 2 ), W(k 3 ), W(k 4 ) , W (k 5 ), W(k 6 ) of the knowledge numbers 1 to 6 selected by the keyword matching module 116 according to the weights 2, 1, and 0.5 corresponding to the category keyword group, the subcategory keyword group, and the general keyword group , respectively .

由於關鍵字期限模組115所產生的期限關鍵字「漫遊」、「價格」、「日本」符合待推薦知識編號1所對應的類別關鍵字的次數X N 為1,關鍵字期限模組115所產生的期限關鍵字「漫遊」、「價格」、「日本」符合待推薦知識編號1所對應的子類別關鍵字的次數Y N 為1,而Z N 為關鍵字期限模組115所產生的期限關鍵字「漫遊」、「價格」、「日本」符合待推薦知識編號1所對應的子類別關鍵字的次數Z N 為1。因此,關鍵字權重分數W(k 1 )計算如下:W(k 1)=1×2+1×1+1×0.5=3.5 Since the number of times X N that the term keywords "roaming", "price", and "Japan" generated by the keyword term module 115 match the category keywords corresponding to the knowledge number 1 to be recommended is 1, the number of times Y N that the term keywords "roaming", "price", and "Japan" generated by the keyword term module 115 match the subcategory keywords corresponding to the knowledge number 1 to be recommended is 1, and Z N is the number of times Z N that the term keywords "roaming", "price", and "Japan" generated by the keyword term module 115 match the subcategory keywords corresponding to the knowledge number 1 to be recommended is 1. Therefore, the keyword weight score W(k 1 ) is calculated as follows: W ( k 1 )=1×2+1×1+1×0.5=3.5

以此類推,關鍵字權重分數W(k 2 )、W(k 3 )、W(k 4 )、W(k 5 )、W(k 6 )分別計算如下:W(k 2)=0×2+1×1+1×0.5=1.5 By analogy, the keyword weight scores W(k 2 ), W(k 3 ), W(k 4 ), W(k 5 ), and W(k 6 ) are calculated as follows: W ( k 2 )=0×2+1×1+1×0.5=1.5

W(k 3)=0×2+1×1+1×0.5=1.5 W ( k 3 )=0×2+1×1+1×0.5=1.5

W(k 4)=0×2+1×1+1×0.5=1.5 W ( k 4 )=0×2+1×1+1×0.5=1.5

W(k 5)=0×2+1×1+1×0.5=1.5 W ( k 5 )=0×2+1×1+1×0.5=1.5

W(k 6)=0×2+1×1+1×0.5=1.5 W ( k 6 )=0×2+1×1+1×0.5=1.5

接下來,知識推薦排序模組118根據待推薦知識編號1~6的關鍵字權重分數W(k 1 )~W(k 6 )由高至低排序待推薦知識編號1~6以產生知識推薦排序結果。 Next, the knowledge recommendation ranking module 118 ranks the knowledge numbers 1 to 6 to be recommended from high to low according to the keyword weight scores W(k 1 ) to W(k 6 ) of the knowledge numbers 1 to 6 to be recommended to generate a knowledge recommendation ranking result.

櫃台人員設定僅針對排序在前的三筆待推薦知識編號進行推薦,待推薦知識編號1的關鍵字權重分數W(k 1 )是分數最高的,因此,知識推薦排序模組118產生的知識推薦排序結果中,推薦知識編號1為最優先。由於待推薦知識編號2~6的關鍵字權重分 數均相同,知識推薦排序模組118根據待推薦知識編號2~6的關鍵字權重分數W(k 2 )~W(k 6 )以及相似度由高至低排序待推薦知識編號,故留下推薦知識編號2、3。 The counter staff sets the recommendation to be made only for the top three recommended knowledge numbers. The keyword weight score W(k 1 ) of recommended knowledge number 1 is the highest. Therefore, in the knowledge recommendation ranking result generated by the knowledge recommendation ranking module 118, recommended knowledge number 1 is the top priority. Since the keyword weight scores of recommended knowledge numbers 2 to 6 are the same, the knowledge recommendation ranking module 118 ranks the recommended knowledge numbers from high to low according to the keyword weight scores W(k 2 ) to W(k 6 ) of recommended knowledge numbers 2 to 6 and the similarity, so recommended knowledge numbers 2 and 3 are left.

當知識推薦排序模組118產生知識推薦排序結果之後,顯示器13顯示知識推薦排序結果中推薦知識編號1、推薦知識編號2、推薦知識編號3所分別對應的推薦知識描述。櫃台人員即可從顯示器13中根據推薦知識編號1、推薦知識編號2、推薦知識編號3所分別對應的推薦知識描述傳達給消費者B。 After the knowledge recommendation ranking module 118 generates the knowledge recommendation ranking result, the display 13 displays the recommended knowledge descriptions corresponding to the recommended knowledge number 1, the recommended knowledge number 2, and the recommended knowledge number 3 in the knowledge recommendation ranking result. The counter staff can convey the recommended knowledge descriptions corresponding to the recommended knowledge number 1, the recommended knowledge number 2, and the recommended knowledge number 3 from the display 13 to the consumer B.

綜上所述,本發明所提供的知識推薦系統以及知識推薦方法可提供針對客戶臨櫃談話內容,進行即時的服務知識推薦供臨櫃人員挑選,協助臨櫃人員回憶服務流程,提升客戶滿意度,除了可減少培訓時間,減輕企業培訓成本。 In summary, the knowledge recommendation system and knowledge recommendation method provided by the present invention can provide real-time service knowledge recommendations for counter personnel to select based on the content of customer counter conversations, assist counter personnel in recalling service processes, and improve customer satisfaction. In addition to reducing training time, it can also reduce corporate training costs.

3:知識推薦方法 3: Knowledge recommendation method

S310~S380:步驟 S310~S380: Steps

Claims (14)

一種知識推薦系統,包括:記憶體,儲存多個模組;處理器,耦接該記憶體,用以讀取並執行該些模組以產生知識推薦排序結果,其中該些模組包括:知識資料模組,用以儲存多個知識編號、對應每一該些知識編號的知識名稱以及多個知識關鍵字群組,其中每一該些知識關鍵字群組具有對應的權重並且包含至少一知識關鍵字;語音相似度計算模組,用以計算一語音資料與每一該些知識編號對應的該知識名稱的相似度,並根據該相似度自該些知識編號中篩選出多個候選知識編號,其中該語音資料是透過兩麥克風所接收的多個聲音訊號所組成;關鍵字識別模組,用以基於每一該些知識編號對應的該些關鍵字群組識別並標註該語音資料中的多個語音關鍵字;關鍵字期限模組,用以於該些語音關鍵字加上時間標籤以成為多個期限關鍵字;關鍵字比對模組,用以比對該至少一知識關鍵字與該些期限關鍵字,並基於符合該至少一知識關鍵字的該些期限關鍵字自該些候選知識編號中篩選出多個待推薦知識編號;關鍵字權重模組,用以根據每一該些知識關鍵字群組所對應的該權重計算對應每一該些待推薦知識編號的關鍵字權 重分數;以及知識推薦排序模組,用以根據每一該些待推薦知識編號的該關鍵字權重分數以及該相似度由高至低排序該些待推薦知識編號以產生該知識推薦排序結果;其中該些知識關鍵字群組包括類別關鍵字群組、子類別關鍵字群組以及一般關鍵字群組;其中該類別關鍵字群組對應第一權重,該子類別關鍵字群組對應第二權重,該一般關鍵字群組對應第三權重,其中該第一權重大於該第二權重,該第二權重大於該第三權重;其中每一該些待推薦知識編號(N)的該關鍵字權重分數(W(k N ))計算如下:W(k N )=X N ×2+Y N ×1+Z N ×0.5其中X N 為該關鍵字期限模組所產生的每一該些期限關鍵字符合該待推薦知識編號(N)所對應的該類別關鍵字的次數,Y N 為該關鍵字期限模組所產生的每一該些期限關鍵字符合該待推薦知識編號(N)所對應的該子類別關鍵字的次數,而Z N 為該關鍵字期限模組所產生的每一該些期限關鍵字符合該待推薦知識編號(N)所對應的該子類別關鍵字的次數。 A knowledge recommendation system includes: a memory storing a plurality of modules; a processor coupled to the memory for reading and executing the modules to generate a knowledge recommendation ranking result, wherein the modules include: a knowledge data module for storing a plurality of knowledge numbers, a knowledge name corresponding to each of the knowledge numbers, and a plurality of knowledge keyword groups, wherein each of the knowledge keyword groups has a corresponding weight and includes at least one knowledge keyword; a voice similarity calculation module for calculating a voice data The method comprises the steps of: determining a similarity between the knowledge name corresponding to each of the knowledge numbers and filtering out a plurality of candidate knowledge numbers from the knowledge numbers according to the similarity, wherein the voice data is composed of a plurality of sound signals received by two microphones; a keyword recognition module for recognizing and labeling a plurality of voice keywords in the voice data based on the keyword groups corresponding to each of the knowledge numbers; a keyword expiration module for adding time tags to the voice keywords to form a plurality of expiration keywords; and a keyword matching module for matching the at least one knowledge keyword with the time limit keywords, and screening out a plurality of knowledge numbers to be recommended from the candidate knowledge numbers based on the time limit keywords matching the at least one knowledge keyword; a keyword weight module for calculating a keyword weight score corresponding to each of the knowledge numbers to be recommended according to the weight corresponding to each of the knowledge keyword groups; and a knowledge recommendation ranking module for ranking the knowledge numbers to be recommended according to the keyword weight score of each of the knowledge numbers to be recommended. and the similarity is sorted from high to low to generate the knowledge recommendation sorting result; wherein the knowledge keyword groups include category keyword groups, subcategory keyword groups and general keyword groups; wherein the category keyword group corresponds to a first weight, the subcategory keyword group corresponds to a second weight, and the general keyword group corresponds to a third weight, wherein the first weight is greater than the second weight, and the second weight is greater than the third weight; wherein each of the knowledge numbers to be recommended ( N ) is calculated as follows: W ( k N ) = X N ×2+ Y N ×1+ Z N ×0.5 , where X N is the number of times each of the term keywords generated by the keyword term module matches the category keyword corresponding to the knowledge number (N) to be recommended, Y N is the number of times each of the term keywords generated by the keyword term module matches the sub-category keyword corresponding to the knowledge number (N) to be recommended, and Z N is the number of times each of the term keywords generated by the keyword term module matches the sub-category keyword corresponding to the knowledge number (N) to be recommended. 如請求項1所述的知識推薦系統,其中該些模組更包括對話儲存模組,用以儲存該語音資料。 The knowledge recommendation system as described in claim 1, wherein the modules further include a dialogue storage module for storing the voice data. 如請求項1所述的知識推薦系統,其中該語音相似度計算模組更用以透過字串比對的演算法計算該語音資料與每一該些知識編號對應的該知識名稱的該相似度。 The knowledge recommendation system as described in claim 1, wherein the voice similarity calculation module is further used to calculate the similarity between the voice data and the knowledge name corresponding to each of the knowledge numbers through a string matching algorithm. 如請求項1所述的知識推薦系統,其中該關鍵字權重模組根據每一該些知識關鍵字群組所對應的該權重計算對應每一該些待推薦知識編號的關鍵字權重分數之前,該關鍵字期限模組更用以擷取該時間標籤在一設定時段內的部分該些期限關鍵字所對應的部分該些待推薦知識編號。 The knowledge recommendation system as described in claim 1, wherein before the keyword weight module calculates the keyword weight score corresponding to each of the knowledge numbers to be recommended according to the weight corresponding to each of the knowledge keyword groups, the keyword deadline module is further used to capture part of the knowledge numbers to be recommended corresponding to part of the deadline keywords with the time tag within a set time period. 如請求項1所述的知識推薦系統,其中該知識資料模組更用以接收對應於該些知識關鍵字群組中至少一者的至少一新增知識關鍵字。 A knowledge recommendation system as described in claim 1, wherein the knowledge data module is further used to receive at least one newly added knowledge keyword corresponding to at least one of the knowledge keyword groups. 如請求項1所述的知識推薦系統,其中該知識推薦排序結果包括該些待推薦知識編號中排序在前的部分該些推薦知識編號。 A knowledge recommendation system as described in claim 1, wherein the knowledge recommendation ranking result includes some of the recommended knowledge numbers that are ranked first among the knowledge numbers to be recommended. 如請求項6所述的知識推薦系統,更包括:顯示器,耦接該處理器,用以顯示每一該些推薦知識編號所對應的推薦知識描述。 The knowledge recommendation system as described in claim 6 further includes: a display coupled to the processor for displaying the recommended knowledge description corresponding to each of the recommended knowledge numbers. 一種知識推薦方法,包括:藉由處理器執行:自知識資料模組中讀取多個知識編號、對應每一該些知識編號的知識名稱以及多個知識關鍵字群組,其中每一該些知識關鍵字群組具有對應的權重並且包含至少一知識關鍵字; 計算一語音資料與每一該些知識編號對應的該知識名稱的相似度,並根據該相似度自該些知識編號中篩選出多個候選知識編號,其中該語音資料是透過兩麥克風所接收的多個聲音訊號所組成;基於每一該些知識編號對應的該些關鍵字群組識別並標註該語音資料中的多個語音關鍵字;於該些語音關鍵字加上時間標籤以成為多個期限關鍵字;比對該至少一知識關鍵字與該些期限關鍵字,基於符合該至少一知識關鍵字的該些期限關鍵字自該些候選知識編號中篩選出多個待推薦知識編號;根據每一該些知識關鍵字群組所對應的該權重計算對應每一該些待推薦知識編號的關鍵字權重分數;以及根據每一該些待推薦知識編號的該關鍵字權重分數以及該相似度由高至低排序該些待推薦知識編號以產生知識推薦排序結果;其中該些知識關鍵字群組包括類別關鍵字群組、子類別關鍵字群組以及一般關鍵字群組;其中該類別關鍵字群組對應第一權重,該子類別關鍵字群組對應第二權重,該一般關鍵字群組對應第三權重,其中該第一權重大於該第二權重,該第二權重大於該第三權重;其中每一該些待推薦知識編號(N)的該關鍵字權重分數(W(k N ))計算如下:W(k N )=X N ×2+Y N ×1+Z N ×0.5 其中X N 為該關鍵字期限模組所產生的每一該些期限關鍵字符合該待推薦知識編號(N)所對應的該類別關鍵字的次數,Y N 為該關鍵字期限模組所產生的每一該些期限關鍵字符合該待推薦知識編號(N)所對應的該子類別關鍵字的次數,而Z N 為該關鍵字期限模組所產生的每一該些期限關鍵字符合該待推薦知識編號(N)所對應的該子類別關鍵字的次數。 A knowledge recommendation method includes: executing, by a processor: reading a plurality of knowledge numbers, knowledge names corresponding to each of the knowledge numbers, and a plurality of knowledge keyword groups from a knowledge data module, wherein each of the knowledge keyword groups has a corresponding weight and includes at least one knowledge keyword; calculating the similarity between a voice data and the knowledge name corresponding to each of the knowledge numbers, and filtering out a plurality of candidate knowledge numbers from the knowledge numbers according to the similarity, wherein the voice data is composed of a plurality of sound signals received by two microphones; identifying and labeling the candidate knowledge numbers based on the keyword groups corresponding to each of the knowledge numbers; a plurality of voice keywords in the voice data; adding time tags to the voice keywords to form a plurality of time limit keywords; comparing the at least one knowledge keyword with the time limit keywords, and selecting a plurality of knowledge numbers to be recommended from the candidate knowledge numbers based on the time limit keywords that match the at least one knowledge keyword; and selecting a plurality of knowledge numbers to be recommended based on each of the knowledge numbers. The weight corresponding to the keyword group is used to calculate the keyword weight score corresponding to each of the knowledge numbers to be recommended; and the knowledge numbers to be recommended are sorted from high to low according to the keyword weight score of each of the knowledge numbers to be recommended and the similarity to generate a knowledge recommendation sorting result; wherein the knowledge keyword group includes a category keyword group, a subcategory keyword group and a general keyword group; wherein the category keyword group corresponds to a first weight, the subcategory keyword group corresponds to a second weight, and the general keyword group corresponds to a third weight, wherein the first weight is greater than the second weight, and the second weight is greater than the third weight; wherein each of the knowledge numbers to be recommended ( N ) is calculated as follows: W ( k N ) = X N ×2+ Y N ×1+ Z N ×0.5 where X N is the number of times each of the term keywords generated by the keyword term module matches the category keyword corresponding to the knowledge number (N) to be recommended, Y N is the number of times each of the term keywords generated by the keyword term module matches the sub-category keyword corresponding to the knowledge number (N) to be recommended, and Z N is the number of times each of the term keywords generated by the keyword term module matches the sub-category keyword corresponding to the knowledge number (N) to be recommended. 如請求項8所述的知識推薦方法,更包括:藉由該處理器自對話儲存模組讀取該語音資料。 The knowledge recommendation method as described in claim 8 further includes: reading the voice data from the dialogue storage module by the processor. 如請求項8所述的知識推薦方法,更包括:藉由該處理器透過字串比對的演算法計算該語音資料與每一該些知識編號對應的該知識名稱的該相似度。 The knowledge recommendation method as described in claim 8 further includes: the processor calculates the similarity between the voice data and the knowledge name corresponding to each of the knowledge numbers through a string matching algorithm. 如請求項8所述的知識推薦方法,更包括:藉由該處理器根據每一該些知識關鍵字群組所對應的該權重計算對應每一該些待推薦知識編號的關鍵字權重分數之前,擷取該時間標籤在一設定時段內的部分該些期限關鍵字所對應的部分該些待推薦知識編號。 The knowledge recommendation method as described in claim 8 further includes: before the processor calculates the keyword weight score corresponding to each of the knowledge numbers to be recommended according to the weight corresponding to each of the knowledge keyword groups, extracting part of the knowledge numbers to be recommended corresponding to part of the time limit keywords within a set time period of the time tag. 如請求項8所述的知識推薦方法,更包括:藉由該處理器接收對應於該些知識關鍵字群組中至少一者的至少一新增知識關鍵字。 The knowledge recommendation method as described in claim 8 further includes: receiving at least one newly added knowledge keyword corresponding to at least one of the knowledge keyword groups by the processor. 如請求項8所述的知識推薦方法,其中該知識推薦排序結果包括該些待推薦知識編號中排序在前的部分該些推薦知識編號。 The knowledge recommendation method as described in claim 8, wherein the knowledge recommendation ranking result includes some of the recommended knowledge numbers that are ranked first among the knowledge numbers to be recommended. 如請求項13所述的知識推薦方法,更包括:藉由顯示器顯示每一該些推薦知識編號所對應的推薦知識描述。 The knowledge recommendation method as described in claim 13 further includes: displaying the recommended knowledge description corresponding to each of the recommended knowledge numbers by a display.
TW113100095A 2024-01-02 2024-01-02 Knowledge recommendation system and knowledge recommendation method TWI869149B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW113100095A TWI869149B (en) 2024-01-02 2024-01-02 Knowledge recommendation system and knowledge recommendation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW113100095A TWI869149B (en) 2024-01-02 2024-01-02 Knowledge recommendation system and knowledge recommendation method

Publications (2)

Publication Number Publication Date
TWI869149B true TWI869149B (en) 2025-01-01
TW202528951A TW202528951A (en) 2025-07-16

Family

ID=95152202

Family Applications (1)

Application Number Title Priority Date Filing Date
TW113100095A TWI869149B (en) 2024-01-02 2024-01-02 Knowledge recommendation system and knowledge recommendation method

Country Status (1)

Country Link
TW (1) TWI869149B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8612866B2 (en) * 2007-12-04 2013-12-17 Sony Corporation Information processing apparatus, information processing method, and information processing program
CN106796578A (en) * 2014-08-06 2017-05-31 凯巴士有限公司 Autoknowledge system
CN109313649A (en) * 2017-03-24 2019-02-05 微软技术许可有限责任公司 Voice-based knowledge sharing application for chatbots
CN115119066A (en) * 2022-06-30 2022-09-27 武汉美和易思数字科技有限公司 Teaching video interaction method and system based on dynamic weight
TW202316415A (en) * 2021-10-04 2023-04-16 中華電信股份有限公司 Customized intent evaluation system, method and computer-readable medium
CN116523225A (en) * 2023-04-18 2023-08-01 泸州职业技术学院 Data mining-based overturning classroom hybrid teaching method
CN116894085A (en) * 2023-07-21 2023-10-17 湖北星纪魅族科技有限公司 Dialog generation method and device, electronic equipment and storage medium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8612866B2 (en) * 2007-12-04 2013-12-17 Sony Corporation Information processing apparatus, information processing method, and information processing program
CN106796578A (en) * 2014-08-06 2017-05-31 凯巴士有限公司 Autoknowledge system
CN109313649A (en) * 2017-03-24 2019-02-05 微软技术许可有限责任公司 Voice-based knowledge sharing application for chatbots
TW202316415A (en) * 2021-10-04 2023-04-16 中華電信股份有限公司 Customized intent evaluation system, method and computer-readable medium
CN115119066A (en) * 2022-06-30 2022-09-27 武汉美和易思数字科技有限公司 Teaching video interaction method and system based on dynamic weight
CN116523225A (en) * 2023-04-18 2023-08-01 泸州职业技术学院 Data mining-based overturning classroom hybrid teaching method
CN116894085A (en) * 2023-07-21 2023-10-17 湖北星纪魅族科技有限公司 Dialog generation method and device, electronic equipment and storage medium

Also Published As

Publication number Publication date
TW202528951A (en) 2025-07-16

Similar Documents

Publication Publication Date Title
CN110298028B (en) A method and device for extracting key sentences from text paragraphs
WO2021082982A1 (en) Graphic knowledge base-based question and answer method and device, storage medium, and apparatus
CN110472027B (en) Intent recognition method, apparatus, and computer-readable storage medium
WO2022095380A1 (en) Ai-based virtual interaction model generation method and apparatus, computer device and storage medium
CN106683688B (en) Emotion detection method and device
US20040163035A1 (en) Method for automatic and semi-automatic classification and clustering of non-deterministic texts
CN111460170B (en) Word recognition method, device, terminal equipment and storage medium
CN107833059B (en) Customer Service Quality Evaluation Method and System
CN111538828A (en) Text emotion analysis method and device, computer device and readable storage medium
CN112699645A (en) Corpus labeling method, apparatus and device
CN112507133A (en) Method, device, processor and storage medium for realizing association search based on financial product knowledge graph
CN112131348B (en) Method for preventing repeated declaration of project based on similarity of text and image
CN110046648A (en) The method and device of business classification is carried out based at least one business disaggregated model
TWI869149B (en) Knowledge recommendation system and knowledge recommendation method
CN110851560B (en) Information retrieval method, device and equipment
CN107609921A (en) A kind of data processing method and server
CN111160699A (en) Expert recommendation method and system
CN113177116B (en) Information display method and device, electronic equipment, storage medium and program product
CN111524503A (en) Audio data processing method, device, audio recognition device and storage medium
CN114360497A (en) Speech recognition method, speech recognition device, computer equipment and storage medium
CN113177151A (en) Potential customer screening method
Irianto et al. Sentiment Analysis of Livin'by Mandiri Application Reviews Using Word2Vec Feature Extraction and KNN Method
CN111080355B (en) User set display method and device and electronic equipment
CN115393024A (en) Product data pushing method and device, computer equipment and storage medium
CN116055671B (en) Conference opinion display method, device and storage medium