TWI863841B - Text and graphic element recognition system and method for engineering drawings - Google Patents
Text and graphic element recognition system and method for engineering drawings Download PDFInfo
- Publication number
- TWI863841B TWI863841B TW113109316A TW113109316A TWI863841B TW I863841 B TWI863841 B TW I863841B TW 113109316 A TW113109316 A TW 113109316A TW 113109316 A TW113109316 A TW 113109316A TW I863841 B TWI863841 B TW I863841B
- Authority
- TW
- Taiwan
- Prior art keywords
- parameter
- image
- information
- arrow
- frame
- Prior art date
Links
Landscapes
- Image Analysis (AREA)
Abstract
Description
本創作係關於一種辨識系統及方法,尤其是一種圖面之文字及圖元辨識系統及方法。This invention relates to a recognition system and method, and in particular to a text and graphic element recognition system and method.
傳統的接單生產廠商,經常需要依據工程圖將其生產製造的參數,輸入到電腦數值控制(Computer Numerical Control, CNC)加工設備中,進行生產,最理想的情形是委託人可提供通用之工程圖數位圖檔,直接將檔案輸入電腦數值控制加工設備,來取得生產加工參數。惟多數的情況會是客戶只持紙本工程圖或可攜式文件格式(Portable Document Format, PDF)或影像檔的工程圖,廠商大多只能用人工將圖面資訊填入生產加工系統進行後續處理,處理過程緩慢且過程中容易發生因人為因素造成的錯誤,導致生產成本增加。Traditional order-based manufacturers often need to input their production parameters into computer numerical control (CNC) processing equipment based on engineering drawings to carry out production. The ideal situation is that the client can provide a general engineering drawing digital file and directly input the file into the CNC processing equipment to obtain the production and processing parameters. However, in most cases, customers only have paper engineering drawings or engineering drawings in portable document format (PDF) or image files. Most manufacturers can only manually fill in the drawing information into the production and processing system for subsequent processing. The processing process is slow and errors caused by human factors are prone to occur during the process, resulting in increased production costs.
目前有關於影像處理技術應用於工程圖的技術,例如台灣專利證號M552617之一種工程圖影像處理裝置,包含:儲存單元、處理單元以及顯示單元。儲存單元儲存有工程圖之彩色影像資料。處理單元讀取彩色影像資料,進行下列步驟:以非線性濾波器平滑化彩色影像資料;依據平滑化之彩色影像資料中各像素之色相及飽和度,以支持向量機將平滑化之彩色影像資料之像素分類為摺痕區像素及非摺痕區像素;以及以區域臨界值演算器二值化摺痕區像素,以整體臨界值演算器二值化非摺痕區像素,而產生工程圖之二值化影像資料。顯示單元依據二值化影像資料顯示工程圖之二值化影像。惟,該習知技術著重於影像圖檔的提高人工識別清晰度之影像處理,故該習知技術仍需仰賴人工判讀及輸入,與本創作之自動辨識圖面之電腦數值控制加工設備的生產參數不同。Currently, there are technologies related to the application of image processing technology to engineering drawings, such as an engineering drawing image processing device with Taiwan Patent No. M552617, which includes: a storage unit, a processing unit, and a display unit. The storage unit stores color image data of the engineering drawing. The processing unit reads the color image data and performs the following steps: smoothing the color image data with a nonlinear filter; classifying the pixels of the smoothed color image data into crease area pixels and non-crease area pixels with a support vector machine based on the hue and saturation of each pixel in the smoothed color image data; and binarizing the crease area pixels with a regional critical value calculator and binarizing the non-crease area pixels with a global critical value calculator to generate binary image data of the engineering drawing. The display unit displays the binary image of the engineering drawing based on the binary image data. However, the known technology focuses on image processing to improve the clarity of human recognition of image files, so the known technology still needs to rely on human interpretation and input, which is different from the production parameters of the computer numerical control processing equipment that automatically recognizes the drawing in this creation.
另一習知技術如台灣專利證號I788206之一種判讀工程圖面內容之方法及系統,包括:對工程圖面進行邊緣偵測以產生複數初始辨識線段;對該工程圖面進行文字辨識以產生複數初始辨識文字;將該些初始辨識線段提供給經訓練之結構判斷模型進行辨識,以產生初步辨識結果;根據該初步辨識結果處理該些初始辨識線段以及該些初始辨識文字,以產生複數之結構線段以及複數之結構文字;根據複數之結構標示特性將該些結構文字關聯於該些結構線段,以產生複數結構資訊及複數結構標籤;根據該些結構資訊及該些結構標籤產生複數個結構辨識結果;以及將該些結構辨識結果輸出以產生彙整表。惟,該習知技術為自動從可攜式文件格式圖檔或紙本圖檔之建築工程圖中,辨識並計算出該工程圖所需的梁柱鋼筋用量,據而進行工程結構評估計算,並無法自動辨識工程圖面中的物件及該物件形及製造尺寸等參數,且無法將該些製造參數輸入電腦數值控制加工設備進行生產。Another known technology is a method and system for judging the content of an engineering drawing, such as Taiwan Patent No. I788206, which includes: performing edge detection on the engineering drawing to generate a plurality of initial recognition line segments; performing text recognition on the engineering drawing to generate a plurality of initial recognition texts; providing the initial recognition line segments to a trained structure judgment model for recognition to generate a preliminary recognition result; and performing text recognition on the engineering drawing according to the preliminary recognition result. The method comprises the steps of processing the initial recognition line segments and the initial recognition characters according to the results to generate a plurality of structure line segments and a plurality of structure characters; associating the structure characters with the structure line segments according to a plurality of structure marking properties to generate a plurality of structure information and a plurality of structure labels; generating a plurality of structure recognition results according to the structure information and the structure labels; and outputting the structure recognition results to generate a summary table. However, the known technology is to automatically identify and calculate the amount of beam and column steel bars required for architectural engineering drawings in portable file format files or paper files, and perform engineering structure evaluation calculations based on the drawings. It is unable to automatically identify objects in the engineering drawings and parameters such as the shapes and manufacturing dimensions of the objects, and is unable to input these manufacturing parameters into computer numerical control processing equipment for production.
因此,目前的習知之工程圖影像處理技術仍未解決前述無法自動取得紙本之工程圖影像之加工參數,加以進行生產條件相關之研判,甚至自動輸入該加工參數至電腦數值控制加工設備,進行生產的問題。Therefore, the current known engineering drawing image processing technology has not yet solved the aforementioned problem of being unable to automatically obtain the processing parameters of the paper engineering drawing image to conduct relevant research and judgment on production conditions, or even automatically input the processing parameters into the computer numerical control processing equipment for production.
鑑於上述因素,有需要開發能直接辨識並萃取出影像或紙本工程圖之包含規格、尺寸、工差等物件參數,以利進一步直接將該物件參數輸入電腦數值控制加工設備進行自動化生產。In view of the above factors, there is a need to develop a system that can directly identify and extract object parameters including specifications, dimensions, tolerances, etc. from images or paper drawings, so as to further directly input the object parameters into computer numerical control processing equipment for automated production.
為解決上述及其他問題,本創作目的是提供一種圖面之文字及圖元辨識系統及方法,以改良先前技術之缺點。To solve the above and other problems, the present invention aims to provide a system and method for recognizing text and graphics elements in a drawing to improve the shortcomings of the prior art.
本創作的另一目的是提供一種圖面之文字及圖元辨識系統及方法,可避免人工填入圖面資訊至生產設備過程中的人為因素造成的錯誤,導致生產成本增加的問題。Another purpose of this invention is to provide a system and method for recognizing text and graphic elements in drawings, which can avoid errors caused by human factors in the process of manually filling in drawing information into production equipment, leading to increased production costs.
本創作的另一目的是提供一種圖面之文字及圖元辨識系統及方法,可利用電腦自動識別圖片中之文字、物件及物件參數資訊,提高正確率,可降低生產成本並提高生產效率。Another purpose of this invention is to provide a system and method for recognizing text and graphic elements in a drawing, which can use a computer to automatically recognize text, objects and object parameter information in the image, improve the accuracy, reduce production costs and improve production efficiency.
本創作的另一目的是提供一種圖面之文字及圖元辨識系統及方法,可自影像式工程圖或紙本工程圖中,辨識出各零件尺寸或標準零件型態及規格參數,並自動輸入電腦數值控制加工設備,自動生產工程圖中之零件,提高自動化生產比重。Another purpose of this invention is to provide a drawing text and graphic element recognition system and method, which can identify the size of each part or the type and specification parameters of standard parts from image-based engineering drawings or paper engineering drawings, and automatically input them into computer numerical control processing equipment to automatically produce the parts in the engineering drawings, thereby increasing the proportion of automated production.
為達成前述及其他創作目的,本創作實施例提供一種圖面之文字及圖元辨識系統,適於處理一點陣式工程圖之一圖面,該圖面包含一圖框區域與一圖形區域,該圖面之文字及圖元辨識系統包含:一圖框資訊辨識單元,於該圖面中,依一預設座標自該圖框區域擷取一圖框圖片,辨識該圖框圖片一圖框資訊;一物件偵測單元,於該圖面中,依該圖形區域擷取一物件圖片,偵測該物件圖片之一物件寬度,依據該物件寬度與該圖框資訊分割出至少一物件,將各該物件之一物件名稱及其一物件座標,彙整為一物件資訊;一物件參數偵測單元,於該圖面中,刪除對應該物件圖片的部分,以取得一物件參數圖,辨識該物件參數圖為一物件參數,將該物件參數及所屬之一物件參數座標,且彙整為一物件參數資訊;一箭頭起終點偵測單元,於該圖面中,刪除對應該物件圖片及該物件參數圖之部分,以取得一箭頭圖,再偵測該箭頭圖中各箭頭起終點及對應之一箭頭起終點座標,且彙整為一箭頭起終點資訊;及一偵測參數歸屬單元,讀取該圖框資訊、該物件資訊、該物件參數資訊及箭頭起終點資訊,以影像演算法判斷各該物件與各該物件參數之所屬關係,並彙整出文字檔形態之一物件參數對應資訊。In order to achieve the above and other creative purposes, the present creative embodiment provides a drawing text and graphic element recognition system, which is suitable for processing a drawing of a raster engineering drawing, the drawing includes a frame area and a graphic area, the drawing text and graphic element recognition system includes: a frame information recognition unit, in the drawing, according to a preset coordinate, captures a frame image from the frame area , identifying the frame image a frame information; an object detection unit, in the drawing, capturing an object image according to the graphic area, detecting an object width of the object image, segmenting at least one object according to the object width and the frame information, and aggregating an object name and an object coordinate of each object into an object information; an object parameter detection unit, in the drawing In the drawing, a portion corresponding to the object image is deleted to obtain an object parameter map, the object parameter map is identified as an object parameter, and the object parameter and an object parameter coordinate belonging to it are aggregated into an object parameter information; an arrow start and end point detection unit deletes the portion corresponding to the object image and the object parameter map in the drawing to obtain an arrow map, and then detects the arrow. The arrow start and end points in the header image and the corresponding arrow start and end point coordinates are summarized into arrow start and end point information; and a detection parameter attribution unit reads the frame information, the object information, the object parameter information and the arrow start and end point information, determines the relationship between each object and each object parameter by an image algorithm, and summarizes object parameter corresponding information in the form of a text file.
在一實施例中,另包含一生產輸出單元,係導入該物件參數對應資訊至與該偵測參數歸屬單元資訊連接之一電腦數值控制加工設備,以製作該圖面之實體產品。In one embodiment, a production output unit is further included, which imports the object parameter corresponding information into a computer numerical control processing equipment connected to the detection parameter attribution unit information to produce a physical product of the drawing.
為達成前述及其他創作目的,本創作實施例提供一種圖面之文字及圖元辨識方法,適於處理輸入之一點陣式工程圖之一圖面,該圖面包含一圖框區域與一圖形區域,該圖面之文字及圖元辨識方法包含:一圖框資訊辨識步驟,依據該圖框區域擷取一圖框圖片,以影像處理演算法辨識該圖框圖片之文字圖案為一圖框資訊;一物件偵測步驟,依據該圖形區域擷取一物件圖片且以影像處理演算法辨識出一完整物件線框圖及其一最外部物件邊框圖,讀取並依據該圖框資訊,掃描該最外部物件邊框圖以分割出至少一物件,彙整各該物件名稱及其一物件座標為一物件資訊;一物件參數偵測步驟,取得該物件圖片且依據該完整物件線框圖刪除圖中對應之物件,以取得一物件參數圖,辨識該物件參數圖為一物件參數,彙整該物件參數及其一物件參數座標為一物件參數資訊;一箭頭起終點偵測步驟,取得該物件圖片且刪除圖中對應該物件圖片及該物件參數圖之部分,以取得一箭頭圖,再辨識該箭頭圖之各箭頭之起終點及其一箭頭起終點座標,彙整為一箭頭起終點資訊;及一偵測參數歸屬步驟,判斷該圖框資訊辨識步驟、該物件偵測步驟、該物件參數偵測步驟與該箭頭起終點偵測步驟之辨識偵測結果,對應該物件參數座標與該箭頭起終點座標,再對應該箭頭起終點座標與該物件座標,依據判斷結果,對應該物件與物件參數,並將對應結果輸出一物件參數對應資訊。In order to achieve the above and other creative purposes, the present creative embodiment provides a method for recognizing text and graphics on a drawing, which is suitable for processing an inputted raster-type engineering drawing, wherein the drawing includes a frame area and a graphic area. The method for recognizing text and graphics on the drawing includes: a frame information recognition step, capturing a frame image according to the frame area, and using an image processing algorithm to recognize the text pattern of the frame image as a frame information; an object detection step, capturing an object image according to the graphic area and identifying a complete object wireframe and an outermost object frame image by an image processing algorithm, reading and scanning the outermost object frame image to segment at least one object according to the frame information, and collecting the object name and an object coordinate as an object information; an object parameter detection step, obtaining the object image and deleting the object according to the complete object wireframe. The corresponding object in the image is removed to obtain an object parameter image, the object parameter image is identified as an object parameter, and the object parameter and its coordinates are aggregated into an object parameter information; an arrow start and end point detection step is performed to obtain the object image and delete the portion of the image corresponding to the object image and the object parameter image to obtain an arrow image, and then the start and end points of each arrow in the arrow image and the coordinates of the start and end points of the arrows are identified and aggregated into an arrow. The method comprises the steps of: determining the identification results of the frame information identification step, the object detection step, the object parameter detection step and the arrow start and end point detection step, corresponding the object parameter coordinates to the arrow start and end point coordinates, and then corresponding the arrow start and end point coordinates to the object coordinates. According to the determination result, the object and the object parameter are matched, and the matching result is output as an object parameter matching information.
在一實施例中,另包含一圖像前處理步驟,係以影像處理演算法去除該物件圖片之線段、文字及雜點,取得一物件邊框及其至少一子物件邊框,並合併該物件邊框與該子物件邊框而取得該物件之該完整物件線框圖。In one embodiment, an image pre-processing step is further included, which uses an image processing algorithm to remove line segments, text and noise from the object image, obtain an object frame and at least one sub-object frame thereof, and merge the object frame and the sub-object frame to obtain the complete object wireframe of the object.
在一實施例中,該物件偵測步驟係讀取該物件圖片,及依據該完整物件線框圖而取得該最外部物件邊框圖後,掃描該最外部物件邊框圖以取得一物件寬度,依據該物件寬度與該物件相關資訊分割出各該物件,再將各該物件之物件名稱與對應之該物件座標,彙整出一物件資訊。In one embodiment, the object detection step is to read the object image, obtain the outermost object frame image based on the complete object wireframe image, scan the outermost object frame image to obtain an object width, segment each object based on the object width and the object-related information, and then summarize the object name of each object and the corresponding object coordinates to obtain an object information.
在一實施例中,該物件參數偵測步驟係將該物件圖片中的對應該完整物件線框圖的物件刪除以取得該物件參數圖,再辨識該物件參數圖為該物件參數,彙整該物件參數與其對應之該物件參數座標為一物件參數資訊。In one embodiment, the object parameter detection step is to delete the object in the object image corresponding to the complete object wireframe to obtain the object parameter graph, then identify the object parameter graph as the object parameter, and aggregate the object parameter and its corresponding object parameter coordinates into object parameter information.
在一實施例中,該箭頭起終點偵測步驟係將該物件圖片中對應該完整物件線框圖的物件刪除,再去除對應該物件參數圖之該物件參數,以取得一箭頭圖,將該箭頭圖進行骨架化演算法以得到各該箭頭端點,依據各該箭頭端點密集度辨識並彙整輸出各該箭頭起終點座標。In one embodiment, the arrow start and end point detection step is to delete the object in the object image that corresponds to the complete object wireframe diagram, and then remove the object parameters corresponding to the object parameter diagram to obtain an arrow diagram, and perform a skeletonization algorithm on the arrow diagram to obtain each of the arrow endpoints, and identify and aggregate the coordinates of each of the arrow start and end points based on the density of each of the arrow endpoints to output.
在一實施例中,另包含一生產輸出步驟,係將該物件參數對應資訊輸出至一電腦數值控制加工設備,進行各該圖面物件之生產製造。In one embodiment, a production output step is further included, which is to output the corresponding information of the object parameters to a computer numerical control processing equipment to produce each of the drawing objects.
本創作全文所述方向性或其近似用語,例如前、後、左、右、上(頂)、下(底)、內、外、側等,主要是參考圖式的方向,各方向性或其近似用語僅用以輔助說明及理解本創作的各實施例,非用以限制本創作。The directions or similar terms described throughout the present invention, such as front, back, left, right, top, bottom, inside, outside, side, etc., are mainly with reference to the directions of the drawings. Each direction or similar terms are only used to assist in explaining and understanding the various embodiments of the present invention, and are not used to limit the present invention.
本創作全文所記載的元件及構件使用之冠詞,如一或該,僅是為了方便使用或簡化描述,應被解讀為包括一個或至少一個,且單一的概念也包括複數的概念,除非明顯有不同意思。The articles used in the elements and components described in the present invention, such as a or the, are only for the convenience of use or simplified description and should be interpreted as including one or at least one, and a single concept also includes a plural concept unless it is obvious that there is a different meaning.
為讓本創作之上述及其他目的、特徵及優點能更明顯易懂,下文特舉本創作較佳實施例,並配合圖式作詳細說明。在不同圖式中標示相同符號者視為相同,會省略其說明。In order to make the above and other purposes, features and advantages of this invention more clearly understood, the following is a preferred embodiment of this invention and a detailed description thereof with accompanying drawings. The same symbols in different drawings are considered the same and their descriptions are omitted.
圖1是本創作一實施例之系統方塊圖、圖2是本創作另一實施例之圖面之文字及圖元辨識系統的系統方塊圖。請參考圖1及圖2所示,本實施例之圖面之文字及圖元辨識系統,是能夠處理點陣式工程圖之像素化圖面10,該圖面10包含一圖框區域11與一圖形區域12所謂圖框區域11包含工程圖圖框、零件表等內容,所謂圖形區域12包含該圖框區域11以外的圖面內容。該圖面之文字及圖元辨識系統包含:一圖框資訊辨識單元20、一物件偵測單元30、一物件參數偵測單元40、一箭頭起終點偵測單元50及一偵測參數歸屬單元60。該圖框資訊辨識單元20,係能辨識該圖面10中之該圖框區域11的文字影像為一圖框資訊22,該圖框資訊22為字元格式,並視需要將其輸出為可數據交換之圖框資訊檔,例如 Json 檔,以利於在不同設備或系統進行交換。該圖框資訊檔可包含物件名稱、規格、總長、肩部、數量、材質等欄位種類及其欄位值。FIG1 is a system block diagram of an embodiment of the present invention, and FIG2 is a system block diagram of a text and graphic element recognition system of another embodiment of the present invention. Referring to FIG1 and FIG2, the text and graphic element recognition system of the present embodiment is capable of processing a pixelated drawing 10 of a bitmap-type engineering drawing, and the drawing 10 includes a frame area 11 and a graphic area 12. The so-called frame area 11 includes the drawing frame, parts list and other contents, and the so-called graphic area 12 includes the drawing contents outside the frame area 11. The text and graphic element recognition system of the drawing includes: a frame information recognition unit 20, an object detection unit 30, an object parameter detection unit 40, an arrow start and end point detection unit 50 and a detection parameter attribution unit 60. The frame information recognition unit 20 can recognize the text image of the frame area 11 in the drawing 10 as a frame information 22. The frame information 22 is in character format and can be output as a data exchangeable frame information file, such as a Json file, as needed to facilitate exchange between different devices or systems. The frame information file can include field types and field values such as object name, specification, total length, shoulder, quantity, material, etc.
該圖框資訊辨識單元20,係自該圖框區域11之預設座標擷取一圖框圖片21,辨識該圖框圖片21為字元格式之一圖框資訊22,該圖框資訊22包含一物件總長及一肩部種類及數量等資訊。The frame information recognition unit 20 captures a frame image 21 from the preset coordinates of the frame area 11, and recognizes the frame image 21 as a frame information 22 in a character format. The frame information 22 includes information such as the total length of an object and the type and quantity of shoulders.
該物件偵測單元30,係掃描該圖形區域12以擷取一物件圖片31,對該物件圖片31進行影像處理以取得一完整物件線框圖32及其一最外部物件邊框圖321,掃描該最外部物件邊框圖321取得一物件寬度,依據該物件寬度與該圖框資訊22之該物件總長及該肩部種類及數量,分割出至少一物件33,將各該物件33之一物件名稱34與所屬之一物件座標35彙整為一物件資訊36。The object detection unit 30 scans the graphic area 12 to capture an object image 31, performs image processing on the object image 31 to obtain a complete object wireframe 32 and an outermost object border image 321, scans the outermost object border image 321 to obtain an object width, and divides at least one object 33 according to the object width and the total length of the object and the type and number of the shoulders in the frame information 22, and integrates an object name 34 and an object coordinate 35 of each object 33 into an object information 36.
該物件參數偵測單元40,係取得該圖形區域12之該物件圖片31,且刪除其中之對應於該完整物件線框圖32之該物件33,以取得一物件參數圖41,辨識該物件參數圖41中的文字圖形為字元格式之一物件參數42及所屬之一物件參數座標43,且彙整為一物件參數資訊44。The object parameter detection unit 40 obtains the object image 31 of the graphic area 12 and deletes the object 33 corresponding to the complete object wireframe 32 to obtain an object parameter diagram 41, identifies the text graphic in the object parameter diagram 41 as an object parameter 42 in character format and an object parameter coordinate 43 thereof, and aggregates the text into object parameter information 44.
該箭頭起終點偵測單元50,係取得該圖形區域12之該物件圖片31且刪除其中對應該完整物件線框圖32之物件33與對應該物件參數圖41之該物件參數42,以取得數個箭頭圖51,再以影像處理技術偵測各該箭頭圖51中各箭頭起終點52及對應之一箭頭起終點座標53,且彙整為一箭頭起終點資訊54。The arrow start and end point detection unit 50 obtains the object image 31 of the graphic area 12 and deletes the object 33 corresponding to the complete object wireframe image 32 and the object parameter 42 corresponding to the object parameter image 41 to obtain a plurality of arrow images 51, and then uses image processing technology to detect each arrow start and end point 52 and a corresponding arrow start and end point coordinate 53 in each arrow image 51, and aggregates them into arrow start and end point information 54.
該偵測參數歸屬單元60,係讀取該圖框資訊22、該物件資訊36、該物件參數資訊44及該箭頭起終點資訊54,對應該物件參數座標43與該箭頭起終點座標53,再對應各該箭頭起終點座標53與該物件座標35,判斷出各該物件33與各該物件參數42之所屬關係,並彙整輸出文字檔形態之一物件參數對應資訊61。The detection parameter attribution unit 60 reads the frame information 22, the object information 36, the object parameter information 44 and the arrow start and end point information 54, corresponds the object parameter coordinates 43 and the arrow start and end point coordinates 53, and then corresponds each of the arrow start and end point coordinates 53 and the object coordinates 35, determines the relationship between each of the objects 33 and each of the object parameters 42, and summarizes and outputs an object parameter corresponding information 61 in the form of a text file.
同樣地,上述該圖框資訊辨識單元20、該物件偵測單元30、該物件參數偵測單元40、該箭頭起終點偵測單元50及該偵測參數歸屬單元60等各單元所偵測彙整之結果,亦可視需要將其輸出為可數據交換之資訊檔案。Similarly, the detection and aggregation results of the frame information recognition unit 20, the object detection unit 30, the object parameter detection unit 40, the arrow start and end point detection unit 50 and the detection parameter attribution unit 60 can also be output as an information file for data exchange as needed.
如圖2所示,進一步地,本實施例可另包含一生產輸出單元70:即導入該物件參數對應資訊61至一電腦數值控制加工設備,以應用該電腦數值控制加工設備製作該圖面10之實體產品。As shown in FIG. 2 , the present embodiment may further include a production output unit 70 : that is, the object parameter corresponding information 61 is introduced into a computer numerical control processing equipment, so as to use the computer numerical control processing equipment to manufacture the physical product of the drawing 10 .
圖3為是本創作一實施例之圖面之文字及圖元辨識方法的方法流程圖。請參考圖3所示,本實施例之圖面之文字及圖元辨識方法,能處理輸入之點陣式工程圖之圖面10,該圖面10包含一圖框區域11與一圖形區域12,該圖框區域11之外的部分可視為該圖形區域12。該圖面之文字及圖元辨識方法包含:一圖框資訊辨識步驟S20、一物件偵測步驟S30、一物件參數偵測步驟S40、一箭頭起終點偵測步驟S50及一偵測參數歸屬步驟S60。FIG3 is a method flow chart of a method for recognizing text and graphics elements in a drawing of an embodiment of the present invention. Referring to FIG3, the method for recognizing text and graphics elements in a drawing of the present embodiment can process an inputted raster-type engineering drawing 10, wherein the drawing 10 includes a frame area 11 and a graphic area 12, and the portion outside the frame area 11 can be regarded as the graphic area 12. The method for recognizing text and graphics elements in a drawing includes: a frame information recognition step S20, an object detection step S30, an object parameter detection step S40, an arrow start and end point detection step S50, and a detection parameter attribution step S60.
該圖框資訊辨識步驟S20係依據該圖框區域11擷取一圖框圖片21將該一圖框圖片21的文字間隔,分割為數個單一文字圖片,並以預受訓練之深度學習模型識別各該單一文字圖片,以進行各該單一字元辨識及重組,並彙整為一圖框資訊22。The frame information recognition step S20 captures a frame image 21 according to the frame area 11, divides the text intervals of the frame image 21 into a plurality of single text images, and recognizes each of the single text images using a pre-trained deep learning model to perform recognition and reorganization of each single character and aggregate them into a frame information 22.
該物件偵測步驟S30,係自該圖面10之該圖形區域12中,擷取一物件圖片31,以影像處理演算法辨識出該物件圖片31中之一完整物件線框圖32及其一最外部物件邊框圖321,讀取並依據該圖框資訊22,掃描該最外部物件邊框圖321以分割出至少一物件33,彙整各該物件名稱34及其所屬之一物件座標35為一物件資訊36。The object detection step S30 captures an object image 31 from the graphic area 12 of the drawing 10, identifies a complete object wireframe 32 and an outermost object border image 321 in the object image 31 using an image processing algorithm, reads and scans the outermost object border image 321 to segment at least one object 33 based on the frame information 22, and aggregates each object name 34 and an object coordinate 35 thereof into an object information 36.
該物件參數偵測步驟S40,係自該圖面10取得該物件圖片31,且依據該完整物件線框圖321刪除該物件圖片31中對應之物件33,以取得一物件參數圖41,辨識該物件參數圖41為一物件參數42,彙整該物件參數42及其所屬之一物件參數座標43為一物件參數資訊44。The object parameter detection step S40 obtains the object image 31 from the drawing 10, and deletes the corresponding object 33 in the object image 31 according to the complete object wireframe 321 to obtain an object parameter diagram 41, identifies the object parameter diagram 41 as an object parameter 42, and aggregates the object parameter 42 and an object parameter coordinate 43 thereof into an object parameter information 44.
該箭頭起終點偵測步驟S50,係自該圖面10取得該物件圖片31,且刪除該物件圖片31中對應於該完整物件線框圖321之該物件33及對應於該物件參數圖41之該物件參數42之部分,以取得一箭頭圖51,再辨識該箭頭圖51之各箭頭起終點52及其所屬之一箭頭起終點座標53,彙整為一箭頭起終點資訊54。The arrow start and end point detection step S50 obtains the object image 31 from the drawing 10, and deletes the object 33 corresponding to the complete object wireframe diagram 321 and the object parameter 42 corresponding to the object parameter diagram 41 in the object image 31 to obtain an arrow diagram 51, and then identifies each arrow start and end point 52 of the arrow diagram 51 and its corresponding arrow start and end point coordinates 53, and aggregates them into arrow start and end point information 54.
該偵測參數歸屬步驟S60,係以影像處理演算法判斷該圖框資訊辨識步驟S20、該物件偵測步驟S30、該物件參數偵測步驟S40與該箭頭起終點偵測步驟S50之辨識偵測結果,對應該物件參數座標43與該箭頭起終點座標53,再對應該箭頭起終點座標53與該物件座標35,依據上述判斷結果,進行該物件33與物件參數42之對應,並將對應結果輸出為一物件參數對應資訊61。The detection parameter belongs to step S60, which uses an image processing algorithm to determine the identification and detection results of the frame information identification step S20, the object detection step S30, the object parameter detection step S40 and the arrow start and end point detection step S50, and corresponds the object parameter coordinates 43 to the arrow start and end point coordinates 53, and then corresponds the arrow start and end point coordinates 53 to the object coordinates 35. According to the above determination results, the object 33 and the object parameter 42 are matched, and the matching result is output as an object parameter matching information 61.
圖4是本創作另一實施例之圖面之文字及圖元辨識方法的方法流程圖。請參考圖4所示,本實施例另包含一圖像前處理步驟S10,用以該完整物件線框圖32。該圖像前處理步驟S10係以影像處理演算法去除該物件圖片31中之標示線段、標註文字及雜點等圖元,以取得物件邊框及其子物件邊框,再合併該物件邊框與該子物件邊框以取得該物件33之該完整物件線框圖32。FIG4 is a method flow chart of a method for recognizing text and graphic elements in a drawing of another embodiment of the present invention. Referring to FIG4, the present embodiment further includes an image pre-processing step S10 for the complete object wireframe 32. The image pre-processing step S10 uses an image processing algorithm to remove graphic elements such as marked line segments, annotation text, and miscellaneous dots in the object image 31 to obtain an object frame and its sub-object frame, and then merges the object frame and the sub-object frame to obtain the complete object wireframe 32 of the object 33.
詳細而言,該物件偵測步驟S30係讀取該物件圖片31,及依據該完整物件線框圖32而取得該最外部物件邊框圖321後,掃描該最外部物件邊框圖321以取得一物件寬度,依據該物件寬度與該圖框資訊中之該物件相關資訊例如物件總長、肩部數量資訊,分割出各該物件33,再將各該物件33之物件名稱34與對應之該物件座標35,彙整出一物件資訊36。In detail, the object detection step S30 reads the object image 31, obtains the outermost object frame image 321 based on the complete object wireframe image 32, scans the outermost object frame image 321 to obtain an object width, and divides each object 33 according to the object width and the object-related information in the frame information, such as the total length of the object and the number of shoulders, and then summarizes the object name 34 of each object 33 and the corresponding object coordinates 35 to obtain an object information 36.
該物件參數偵測步驟S40係將該物件圖片31中的對應該完整物件線框圖32的物件33刪除以取得該物件參數圖41,再辨識該物件參數圖41為該物件參數42,彙整該物件參數42與其對應之該物件參數座標43為一物件參數資訊44。The object parameter detection step S40 is to delete the object 33 in the object image 31 corresponding to the complete object wireframe 32 to obtain the object parameter diagram 41, then identify the object parameter diagram 41 as the object parameter 42, and integrate the object parameter 42 and the corresponding object parameter coordinates 43 into an object parameter information 44.
該箭頭起終點偵測步驟S50係自該圖面10取得該物件圖片31,將該物件圖片31中對應該完整物件線框圖32之各該物件33刪除,再去除物件圖片31中對應該物件參數圖41之各該物件參數42,以取得一箭頭圖51,將該箭頭圖51進行骨架化演算法運算,以得到各該箭頭端點,依據各該箭頭端點密集度辨識出各該箭頭起終點52,並彙整出與其對應之各該箭頭起終點座標53為一箭頭起終點資訊54。The arrow start and end point detection step S50 obtains the object image 31 from the drawing 10, deletes each object 33 corresponding to the complete object wireframe 32 in the object image 31, and then removes each object parameter 42 corresponding to the object parameter image 41 in the object image 31 to obtain an arrow image 51, performs a skeletonization algorithm operation on the arrow image 51 to obtain each arrow end point, identifies each arrow start and end point 52 according to the density of each arrow end point, and summarizes each arrow start and end point coordinate 53 corresponding to it as an arrow start and end point information 54.
值得說明的是,如圖4所示,本創作之圖面之文字及圖元辨識方法,可更包含一生產輸出步驟S70,為將該物件參數對應資訊61輸出至一電腦數值控制加工設備,以自動化進行各該圖面10物件33之生產製造。It is worth mentioning that, as shown in FIG. 4 , the text and graphic element recognition method of the drawing of the present invention may further include a production output step S70 for outputting the object parameter corresponding information 61 to a computer numerical control processing equipment to automatically produce the objects 33 of each drawing 10.
另一方面,該圖框資訊辨識步驟S20之該圖框資訊22,該物件偵測步驟S30之該物件資訊36、該物件參數偵測步驟S40之該物件參數資訊44,該箭頭起終點偵測步驟S50之該箭頭起終點資訊54及該偵測參數歸屬步驟S60之該物件參數對應資訊61,能分別輸出為可數據交換之一文字檔,以供與其他設備數據交換,擴展應用範圍。On the other hand, the frame information 22 of the frame information identification step S20, the object information 36 of the object detection step S30, the object parameter information 44 of the object parameter detection step S40, the arrow start and end point information 54 of the arrow start and end point detection step S50, and the object parameter corresponding information 61 of the detection parameter attribution step S60 can be output as a text file that can be exchanged for data to be exchanged with other devices, thereby expanding the scope of application.
圖5至圖15係對應圖3各步驟之圖面10及各步驟彙整之文字資訊的示意圖。圖5繪示本創作可處理一點陣式工程圖之圖面10內容,該圖面10內可包含圖框資訊22、零件表資訊、物件33、物件參數42等各圖元;圖6內方框表示該圖框資訊22的位置;圖7,圖中,冒號前之雙引號為圖框資訊22名稱,冒號後之雙引號為其值。圖8是本創作一實施例之圖面中物件偵測步驟之完整物件線框圖之示意圖,該完整物件線框圖32是將取得之物件圖片31刪除標註線段、標註文字、雜點及物件邊框雜訊後的階段成果。圖9是本創作一實施例之物件偵測步驟輸出之物件資訊片段示意圖,圖中,該物件資訊36片段內包含物件名稱34及物件座標35。圖10是本創作一實施例之圖面中物件參數偵測步驟之物件參數圖之示意圖,該物件參數圖41是將取得之物件圖片31刪除物件33後的階段成果。圖11是本創作一實施例之物件參數偵測步驟彙整之物件參數資訊片段示意圖,圖中為物件參數資訊44之片段,其包含物件參數42與物件參數座標43。圖12是本創作一實施例之圖面中箭頭起終點偵測步驟之箭頭圖之示意圖,該箭頭圖51係將取得之圖形區域12刪除對應之物件33及對應之物件參數34後的階段成果,且其中以圓點標示出了該箭頭起終點52之各該箭頭起點521位置,以方塊標示出各該箭頭終點522位置。圖13是本創作一實施例之箭頭起終點偵測步驟彙整之箭頭起終點資訊片段示意圖,圖中為箭頭起終點資訊54之片段,其中包含箭頭編號及其箭頭起終點座標53。圖14是本創作實施例之圖面中偵測參數歸屬步驟之物件與對應之物件參數示意圖,圖中標示不同組但相對應之物件33與物件參數42、物件33’與物件參數42’。圖15是本創作實施例之偵測參數歸屬步驟彙整之物件參數對應資訊示意圖,圖中為物件參數對應資訊61之文字片段。Figures 5 to 15 are schematic diagrams of the drawings 10 and the text information summarized in each step corresponding to each step of Figure 3. Figure 5 shows that the present invention can process the contents of a drawing 10 of a bitmap engineering drawing, and the drawing 10 can include various graphic elements such as frame information 22, parts list information, objects 33, object parameters 42, etc.; the box in Figure 6 indicates the location of the frame information 22; in Figure 7, the double quotation marks before the colon are the name of the frame information 22, and the double quotation marks after the colon are its value. FIG8 is a schematic diagram of a complete object wireframe diagram of the object detection step in the drawing of the first embodiment of the present invention. The complete object wireframe diagram 32 is a stage result after deleting the annotation line segments, annotation text, noise and object border noise from the acquired object image 31. FIG9 is a schematic diagram of an object information segment output by the object detection step of the first embodiment of the present invention. In the figure, the object information segment 36 includes an object name 34 and object coordinates 35. FIG10 is a schematic diagram of an object parameter diagram of the object parameter detection step in the drawing of the first embodiment of the present invention. The object parameter diagram 41 is a stage result after deleting the object 33 from the acquired object image 31. FIG. 11 is a schematic diagram of a fragment of object parameter information summarized in the object parameter detection step of the first embodiment of the present invention, wherein the fragment of object parameter information 44 is shown, which includes object parameters 42 and object parameter coordinates 43. FIG. 12 is a schematic diagram of an arrow diagram of the arrow start and end point detection step in the drawing of the first embodiment of the present invention, wherein the arrow diagram 51 is a stage result after deleting the corresponding object 33 and the corresponding object parameter 34 from the obtained graphic area 12, and wherein the positions of the arrow start points 521 of the arrow start and end points 52 are marked with dots, and the positions of the arrow end points 522 are marked with squares. FIG. 13 is a schematic diagram of a fragment of arrow start and end point information summarized in the arrow start and end point detection step of an embodiment of the present invention, wherein the fragment is a fragment of arrow start and end point information 54, which includes the arrow number and its arrow start and end point coordinates 53. FIG. 14 is a schematic diagram of objects and corresponding object parameters in the detection parameter attribution step in the drawing of the embodiment of the present invention, wherein different groups but corresponding objects 33 and object parameters 42, and objects 33' and object parameters 42' are marked. FIG. 15 is a schematic diagram of object parameter corresponding information summarized in the detection parameter attribution step of the embodiment of the present invention, wherein the text fragment of object parameter corresponding information 61 is shown.
綜上所述,本創作能辨識紙本或影像檔格式之圖面,經由一圖框資訊辨識步驟、一物件偵測步驟、一物件參數偵測步驟、一箭頭起終點偵測步驟及一偵測參數歸屬步驟,將輸入之圖面中包含物件規格、尺寸、加工公差等參數取出為一文字檔。藉此可直接將該文字檔輸入至電腦數值控制加工設備,進行物件生產作業。In summary, this invention can recognize drawings in paper or image file formats, and extract the parameters including object specifications, dimensions, processing tolerances, etc. in the input drawing into a text file through a frame information recognition step, an object detection step, an object parameter detection step, an arrow start and end point detection step, and a detection parameter attribution step. The text file can be directly input into a computer numerical control processing equipment to perform object production operations.
雖然本創作已利用上述較佳實施例揭示,然其並非用以限定本創作,任何在本領域具有通常知識者在不脫離本創作之精神和範圍之內,相對上述實施例進行各種更動與修改仍屬本創作所保護之技術範疇,因此本創作之保護範圍當包含後附之申請專利範圍所記載的文義及均等範圍內之所有變更。又,上述之數個實施例能夠組合時,則本創作包含任意組合的實施態樣。Although the present invention has been disclosed by using the above preferred embodiments, they are not intended to limit the present invention. Any person with ordinary knowledge in the field can make various changes and modifications to the above embodiments within the spirit and scope of the present invention, and they are still within the technical scope protected by the present invention. Therefore, the protection scope of the present invention includes all changes within the meaning and equivalent scope recorded in the attached patent application scope. In addition, when the above several embodiments can be combined, the present invention includes the implementation of any combination.
(10):圖面 (11):圖框區域 (12):圖形區域 (20):圖框資訊辨識單元 (21):圖框圖片 (22):圖框資訊 (30):物件偵測單元 (31):物件圖片 (32):完整物件線框圖 (321):最外部物件邊框圖 (33,33’):物件 (34):物件名稱 (35):物件座標 (36):物件資訊 (40):物件參數偵測單元 (41):物件參數圖 42,42’):物件參數( (43):物件參數座標 (44):物件參數資訊 (50):箭頭起終點偵測單元 (51):箭頭圖 (52):箭頭起終點 (521):箭頭起點 (522):箭頭終點 (53):箭頭起終點座標 (54):箭頭起終點資訊 (60):偵測參數歸屬單元 (61):物件參數對應資訊 (70):生產輸出單元 S10~S70:步驟(10): Drawing (11): Frame area (12): Graphic area (20): Frame information identification unit (21): Frame image (22): Frame information (30): Object detection unit (31): Object image (32): Complete object wireframe (321): Outermost object frame (33,33’): Object (34): Object name (35): Object coordinates (36): Object information (40): Object parameter detection unit (41): Object parameter diagram 42,42’): Object parameters (43): Object parameter coordinates (44): Object parameter information (50): Arrow start and end point detection unit (51): Arrow diagram (52): Arrow start and end points (521): Arrow start point (522): Arrow end point (53): Arrow start and end point coordinates (54): Arrow start and end point information (60): Detection parameter belonging unit (61): Object parameter corresponding information (70): Production output unit S10~S70: Steps
本創作的實施方式將以下列簡單說明配合圖式來描述。 圖1是本創作一實施例之圖面之文字及圖元辨識系統的系統方塊圖。 圖2是本創作另一實施例之圖面之文字及圖元辨識系統的系統方塊圖。 圖3是本創作一實施例之圖面之文字及圖元辨識方法的方法流程圖。 圖4是本創作另一實施例之圖面之文字及圖元辨識方法的方法流程圖。 圖5是本創作一實施例之可處理的點陣式工程圖之一圖面示意圖。 圖6是本創作一實施例之圖面中圖框資訊辨識步驟之圖框圖片示意圖。 圖7是本創作一實施例之圖框資訊辨識步驟彙整之圖框資訊示意圖。 圖8是本創作一實施例之圖面中物件偵測步驟之完整物件線框圖之示意圖。 圖9是本創作一實施例之物件偵測步驟輸出之物件資訊片段示意圖。 圖10是本創作一實施例之圖面中物件參數偵測步驟之物件參數圖之示意圖。 圖11是本創作一實施例之物件參數偵測步驟彙整之物件參數資訊片段示意圖。 圖12是本創作一實施例之圖面中箭頭起終點偵測步驟之箭頭圖之示意圖。 圖13是本創作一實施例之箭頭起終點偵測步驟彙整之箭頭起終點資訊片段示意圖。 圖14是本創作實施例之圖面中偵測參數歸屬步驟之物件與對應之物件參數示意圖。 圖15是本創作實施例之偵測參數歸屬步驟彙整之物件參數對應資訊片段示意圖。 The implementation of this creation will be described in the following simple explanation with drawings. Figure 1 is a system block diagram of a text and graphic element recognition system for a drawing of an embodiment of this creation. Figure 2 is a system block diagram of a text and graphic element recognition system for a drawing of another embodiment of this creation. Figure 3 is a method flow chart of a method for text and graphic element recognition for a drawing of an embodiment of this creation. Figure 4 is a method flow chart of a method for text and graphic element recognition for a drawing of another embodiment of this creation. Figure 5 is a diagram of a processable dot matrix engineering drawing of an embodiment of this creation. Figure 6 is a diagram of a frame picture of a frame information recognition step in a drawing of an embodiment of this creation. Figure 7 is a schematic diagram of the frame information collected in the frame information recognition step of the first embodiment of the present invention. Figure 8 is a schematic diagram of the complete object wireframe diagram of the object detection step in the drawing of the first embodiment of the present invention. Figure 9 is a schematic diagram of the object information fragment output by the object detection step of the first embodiment of the present invention. Figure 10 is a schematic diagram of the object parameter diagram of the object parameter detection step in the drawing of the first embodiment of the present invention. Figure 11 is a schematic diagram of the object parameter information fragment collected in the object parameter detection step of the first embodiment of the present invention. Figure 12 is a schematic diagram of the arrow diagram of the arrow start and end point detection step in the drawing of the first embodiment of the present invention. FIG. 13 is a schematic diagram of the arrow start and end point information fragments summarized in the arrow start and end point detection step of the first embodiment of the present invention. FIG. 14 is a schematic diagram of the objects and corresponding object parameters in the detection parameter attribution step in the drawing of the present invention. FIG. 15 is a schematic diagram of the object parameter corresponding information fragments summarized in the detection parameter attribution step of the present invention.
(10):圖面 (10): Drawing
(11):圖框區域 (11): Frame area
(12):圖形區域 (12): Graphic area
(20):圖框資訊辨識單元 (20): Frame information recognition unit
(21):圖框圖片 (21):Frame image
(22):圖框資訊 (22):Frame information
(30):物件偵測單元 (30): Object detection unit
(31):物件圖片 (31):Object image
(32):完整物件線框圖 (32): Complete object wireframe
(321):最外部物件邊框圖 (321): Outermost object border image
(33):物件 (33): Objects
(34):物件名稱 (34): Object name
(35):物件座標 (35): Object coordinates
(36):物件資訊 (36): Object information
(40):物件參數偵測單元 (40): Object parameter detection unit
(41):物件參數圖 (41): Object parameter diagram
(42):物件參數 (42): Object parameters
(43):物件參數座標 (43): Object parameter coordinates
(44):物件參數資訊 (44): Object parameter information
(50):箭頭起終點偵測單元 (50): Arrow start and end point detection unit
(51):箭頭圖 (51): Arrow diagram
(52):箭頭起終點 (52): Arrow start and end points
(53):箭頭起終點座標 (53): Arrow start and end point coordinates
(54):箭頭起終點資訊 (54): Arrow start and end point information
(60):偵測參數歸屬單元 (60): Detection parameter belonging to unit
(61):物件參數對應資訊 (61): Object parameter corresponding information
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW113109316A TWI863841B (en) | 2024-03-13 | 2024-03-13 | Text and graphic element recognition system and method for engineering drawings |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW113109316A TWI863841B (en) | 2024-03-13 | 2024-03-13 | Text and graphic element recognition system and method for engineering drawings |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI863841B true TWI863841B (en) | 2024-11-21 |
| TW202536812A TW202536812A (en) | 2025-09-16 |
Family
ID=94380233
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW113109316A TWI863841B (en) | 2024-03-13 | 2024-03-13 | Text and graphic element recognition system and method for engineering drawings |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI863841B (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101147174B (en) * | 2004-10-15 | 2011-06-08 | 微软公司 | System and method for managing communication and/or storage of image data |
| TWI760916B (en) * | 2019-11-06 | 2022-04-11 | 美商奈米創尼克影像公司 | Manufacturing system for automatic production line in factory |
| US20230084639A1 (en) * | 2021-09-09 | 2023-03-16 | Vectra Automation, Inc. | System and Method for Engineering Drawing Extrapolation and Feature Automation |
| TW202333014A (en) * | 2020-03-09 | 2023-08-16 | 美商奈米創尼克影像公司 | Systems and methods for manufacturing processes |
| TW202409748A (en) * | 2019-11-01 | 2024-03-01 | 荷蘭商Asml荷蘭公司 | Computer readable medium for machine learning based image generation for model based alignments |
-
2024
- 2024-03-13 TW TW113109316A patent/TWI863841B/en active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101147174B (en) * | 2004-10-15 | 2011-06-08 | 微软公司 | System and method for managing communication and/or storage of image data |
| TW202409748A (en) * | 2019-11-01 | 2024-03-01 | 荷蘭商Asml荷蘭公司 | Computer readable medium for machine learning based image generation for model based alignments |
| TWI760916B (en) * | 2019-11-06 | 2022-04-11 | 美商奈米創尼克影像公司 | Manufacturing system for automatic production line in factory |
| TW202333014A (en) * | 2020-03-09 | 2023-08-16 | 美商奈米創尼克影像公司 | Systems and methods for manufacturing processes |
| US20230084639A1 (en) * | 2021-09-09 | 2023-03-16 | Vectra Automation, Inc. | System and Method for Engineering Drawing Extrapolation and Feature Automation |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202536812A (en) | 2025-09-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN111814722B (en) | A form recognition method, device, electronic device and storage medium in an image | |
| US8000529B2 (en) | System and method for creating an editable template from a document image | |
| JP6139396B2 (en) | Method and program for compressing binary image representing document | |
| JP2940936B2 (en) | Tablespace identification method | |
| CN103034848B (en) | A kind of recognition methods of form types | |
| CN104966051B (en) | A kind of Layout Recognition method of file and picture | |
| CN107247950A (en) | A kind of ID Card Image text recognition method based on machine learning | |
| CN110598566A (en) | Image processing method, device, terminal and computer readable storage medium | |
| CN105528614A (en) | Cartoon image layout recognition method and automatic recognition system | |
| TWI751426B (en) | Image processing system, image processing method and program product | |
| TWI725465B (en) | Image processing system, image processing method and program product | |
| CN106169080A (en) | A kind of combustion gas index automatic identifying method based on image | |
| JPH01253077A (en) | Detection of string | |
| CN118430000A (en) | Bill OCR recognition method and system based on deep learning | |
| EP2223265A1 (en) | A method for resolving contradicting output data from an optical character recognition (ocr) system, wherein the output data comprises more than one recognition alternative for an image of a character | |
| JP3728224B2 (en) | Document processing apparatus and method | |
| CN116959019A (en) | A method for anti-counterfeiting of multispectral images of certificates and licenses | |
| TWI863841B (en) | Text and graphic element recognition system and method for engineering drawings | |
| JP4208520B2 (en) | Image processing apparatus, image processing method, program, and storage medium | |
| CN110516592A (en) | Identification method based on handwritten digital characters | |
| CN113780293A (en) | Interface text recognition method | |
| WO2022082431A1 (en) | Systems and methods for extracting information from paper media based on depth information | |
| Machhale et al. | Implementation of number recognition using adaptive template matching and feature extraction method | |
| CN102332088B (en) | Vote symbolic machine visual identification method based on run length feature | |
| CN117711004A (en) | Form document information extraction method based on image recognition |