[go: up one dir, main page]

TWI861690B - Sepsis Care Feedback System - Google Patents

Sepsis Care Feedback System Download PDF

Info

Publication number
TWI861690B
TWI861690B TW112102688A TW112102688A TWI861690B TW I861690 B TWI861690 B TW I861690B TW 112102688 A TW112102688 A TW 112102688A TW 112102688 A TW112102688 A TW 112102688A TW I861690 B TWI861690 B TW I861690B
Authority
TW
Taiwan
Prior art keywords
sepsis
care
message
processing module
medication
Prior art date
Application number
TW112102688A
Other languages
Chinese (zh)
Other versions
TW202431273A (en
Inventor
黃偉春
莊旺川
洪宛廷
郭書宏
高志翔
張芳誠
曾安秝
許嘉容
時建揚
Original Assignee
高雄榮民總醫院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高雄榮民總醫院 filed Critical 高雄榮民總醫院
Priority to TW112102688A priority Critical patent/TWI861690B/en
Publication of TW202431273A publication Critical patent/TW202431273A/en
Application granted granted Critical
Publication of TWI861690B publication Critical patent/TWI861690B/en

Links

Images

Landscapes

  • Accommodation For Nursing Or Treatment Tables (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

本發明包括電連接一處理模組的一資料庫、一顯示模組和一人機互動模組;該資料庫存有複數病患資料和一敗血症檢測模型;各該病患資料包括一生理資訊,且該敗血症檢測模型為人工智能模型;當該處理模組透過該敗血症檢測模型判斷其中一該病患資料的該生理資訊符合敗血症檢測標準時,該處理模組透過該敗血症檢測模型計算一預測機率,並且透過該顯示模組顯示一可能確診訊息和一確認畫面,且該顯示模組顯示該預測機率和一敗血症參考藥單訊息;本發明可提供具參考性的敗血病風險評測和該敗血症參考藥單訊息,以利急診室更有效率的處置敗血症病患。The invention comprises a database, a display module and a human-computer interaction module electrically connected to a processing module; the database stores a plurality of patient data and a sepsis detection model; each of the patient data comprises a physiological information, and the sepsis detection model is an artificial intelligence model; when the processing module determines through the sepsis detection model that the physiological information of one of the patient data meets the sepsis detection criteria, Under normal circumstances, the processing module calculates a prediction probability through the sepsis detection model, and displays a possible diagnosis message and a confirmation screen through the display module, and the display module displays the prediction probability and a sepsis reference drug order message; the present invention can provide a reference sepsis risk assessment and the sepsis reference drug order message, so as to facilitate the emergency room to treat sepsis patients more efficiently.

Description

敗血症照護回饋系統Sepsis Care Feedback System

一種醫療照護回饋系統,尤指一種敗血症照護回饋系統。A medical care feedback system, especially a sepsis care feedback system.

急診室內分秒必爭,每一位送入醫院急診室中的病患都有可能因為不同程度的病痛而進入加護病房(Intensive Care Unit;ICU)進行搶救。然而,在醫療團隊醫護病患較為顯眼的傷痛時,病患得到敗血症(Sepsis)的可能性卻容易受到忽略。Every second counts in the emergency room. Every patient sent to the hospital emergency room may be admitted to the Intensive Care Unit (ICU) for treatment due to varying degrees of pain. However, when the medical team is treating the patient's more obvious injuries, the possibility of the patient getting sepsis is easily overlooked.

得到敗血症的病患一開始通常無法由外表表現出直觀的症狀,因此醫師們有可能較晚才發覺應該對病患進行敗血症的檢測,進而較晚才發現病患得到敗血症和較晚才提供病患敗血症相關的醫療照顧。然而,敗血症乃越早受到醫療處置越好的病症,當相關處置較晚才施行時,敗血症的病患將難以樂觀改善病情。Patients with sepsis usually do not show any obvious symptoms at first, so doctors may not realize that they should be tested for sepsis until later, which leads to later detection of sepsis and later provision of sepsis-related medical care. However, sepsis is a disease that is better treated earlier. When relevant treatment is delayed, it is difficult for patients with sepsis to improve their condition.

目前ICU中的醫師僅能倚賴其診療的經驗去判定一病患是否有需要做敗血症相關的檢測,然而醫師也是人,而人較容易具有主觀的判定思維。當ICU中的醫師僅仰賴經驗判斷每一病人是否需檢測敗血症時,主觀的思維較容易缺乏統一的評斷標準而影響此一決定判斷的結果。在較糟的情形下,醫師有可能誤判病人無需檢測敗血症,而使得實際上患有敗血症的病人病情惡化。Currently, doctors in the ICU can only rely on their diagnostic experience to determine whether a patient needs to undergo sepsis-related tests. However, doctors are also human beings, and humans are more likely to have subjective judgments. When doctors in the ICU rely solely on experience to determine whether each patient needs to be tested for sepsis, subjective thinking is more likely to lack a unified evaluation standard and affect the results of this decision. In the worst case, doctors may misjudge that patients do not need to be tested for sepsis, which may worsen the condition of patients who actually have sepsis.

再者,當醫院ICU中的病患較多時,醫師與醫護人員需要有效率的診斷每一個病人是否有患有敗血症的可能性。此一過程需花費龐大的人力資源和時間,而在有限的時間和精神之下,醫師與醫護人員也有可能在診斷敗血症上出現失誤。進而導致敗血病人無法即早地受到妥善的治療,亦可能導致病情的惡化。Furthermore, when there are many patients in the ICU of a hospital, doctors and medical staff need to efficiently diagnose whether each patient has the possibility of sepsis. This process requires a huge amount of human resources and time. With limited time and energy, doctors and medical staff may also make mistakes in diagnosing sepsis. This will result in sepsis patients not being able to receive proper treatment early, and may also lead to worsening of their condition.

有鑑於上述的問題,本發明提供一種敗血症照護回饋系統,能自動根據一病患的生理資訊判斷該病患是否較有可能患有敗血症,並且產生和呈現此一資訊供急診室中的醫療團隊知悉。急診室中的醫療團隊即可根據此一具參考價值的資訊更有效率的決定和診斷該病人是否確實有高風險患有敗血症。In view of the above problems, the present invention provides a sepsis care feedback system that can automatically determine whether a patient is more likely to have sepsis based on the patient's physiological information, and generate and present this information for the medical team in the emergency room to know. The medical team in the emergency room can more efficiently decide and diagnose whether the patient is indeed at high risk of sepsis based on this information with reference value.

該敗血症照護回饋系統,包括: 一資料庫,存有複數病患資料、一敗血症檢測模型、複數敗血症分類選項和一敗血症用藥表;其中各該病患資料包括一生理資訊;其中該敗血症檢測模型為一人工智能模型; 一處理模組,電連接該資料庫,透過該敗血症檢測模型判斷各該病患資料的該生理資訊是否符合一敗血症檢測標準; 一顯示模組,電連接該處理模組; 一人機互動模組,電連接該處理模組; 其中,當該處理模組透過該敗血症檢測模型判斷其中一該病患資料的該生理資訊符合該敗血症檢測標準時,該處理模組透過該敗血症檢測模型計算一預測機率,並且透過該顯示模組顯示一可能確診訊息和一確認畫面; 其中,當該處理模組自該人機互動模組接收一確認敗血症訊號時,該處理模組透過該顯示模組顯示該預測機率和該些敗血症分類選項; 其中,當該處理模組自該人機互動模組接收一敗血症類型資料時,該處理模組根據該敗血症類型資料比對該敗血症用藥表產生一敗血症參考藥單訊息,並且根據透過該顯示模組顯示該敗血症參考藥單訊息。 The sepsis care feedback system includes: A database storing a plurality of patient data, a sepsis detection model, a plurality of sepsis classification options and a sepsis medication table; wherein each of the patient data includes a physiological information; wherein the sepsis detection model is an artificial intelligence model; A processing module electrically connected to the database, and judging whether the physiological information of each of the patient data meets a sepsis detection standard through the sepsis detection model; A display module electrically connected to the processing module; A human-computer interaction module electrically connected to the processing module; Wherein, when the processing module determines that the physiological information of one of the patient data meets the sepsis detection standard through the sepsis detection model, the processing module calculates a prediction probability through the sepsis detection model, and displays a possible diagnosis message and a confirmation screen through the display module; Wherein, when the processing module receives a sepsis confirmation signal from the human-computer interaction module, the processing module displays the prediction probability and the sepsis classification options through the display module; When the processing module receives a sepsis type data from the human-computer interaction module, the processing module generates a sepsis reference drug list message according to the sepsis type data and compares the sepsis medication list, and displays the sepsis reference drug list message through the display module.

如此,該醫療團隊可以從該顯示模組看到本發明顯示患者可能具有敗血症的提示而做出適當的醫療處置,並且在該醫療團隊透過該人機互動模組確認患者確實具有敗血症時,該醫療團隊可進一步從該顯示模組觀看該些敗血症分類選項,並且操作該人機互動模組以利輸入患者的敗血症類型,以利本案根據該敗血症用藥表所設定的用藥邏輯產生該敗血症參考藥單訊息。因此,本發明不只可以協助急診室中的醫療團隊更有效率的判斷一病患是否較有可能患有敗血症,也可以更有效率的提供具參考性的藥單供該醫療團隊參考,提升該醫療團隊決定敗血症病人用藥種類的速度。In this way, the medical team can see the prompt of the present invention indicating that the patient may have sepsis from the display module and make appropriate medical treatment. When the medical team confirms through the human-computer interaction module that the patient does have sepsis, the medical team can further view the sepsis classification options from the display module and operate the human-computer interaction module to input the patient's sepsis type, so as to generate the sepsis reference medication order information according to the medication logic set in the sepsis medication table. Therefore, the present invention can not only assist the medical team in the emergency room to more efficiently determine whether a patient is more likely to suffer from sepsis, but also more efficiently provide a reference medicine list for the medical team to refer to, thereby increasing the speed at which the medical team determines the type of medicine to be used for sepsis patients.

請參閱圖1所示,本發明為一種敗血症照護回饋系統。該敗血症照護回饋系統包括一資料庫10、一處理模組20、一顯示模組30和一人機互動模組40。該處理模組20分別電連接該資料庫10、該顯示模組30和該人機互動模組40。Please refer to FIG. 1 , the present invention is a sepsis care feedback system. The sepsis care feedback system includes a database 10, a processing module 20, a display module 30 and a human-machine interaction module 40. The processing module 20 is electrically connected to the database 10, the display module 30 and the human-machine interaction module 40 respectively.

該資料庫10存有複數病患資料、一敗血症檢測模型、複數敗血症分類選項和一敗血症用藥表。各該病患資料包括一生理資訊。該敗血症檢測模型為一人工智能(Artificial Intelligence;AI)模型,且該處理模組20透過該敗血症檢測模型判斷各該病患資料的該生理資訊是否符合一敗血症檢測標準。The database 10 stores a plurality of patient data, a sepsis detection model, a plurality of sepsis classification options, and a sepsis medication table. Each of the patient data includes physiological information. The sepsis detection model is an artificial intelligence (AI) model, and the processing module 20 determines whether the physiological information of each of the patient data meets a sepsis detection standard through the sepsis detection model.

在本發明的一實施例中,該敗血症檢測模型係已訓練成熟的AI模型,可以協助準確的計算一病患患有敗血症的風險高低以提供具參考性的資訊給醫護人員參考。在準確的計算前,該處理模組20係透過該敗血症檢測模型先搜尋、收集、過濾和整合該資料庫10中的其中一該病患資料的資訊,以利該敗血症檢測模型取得計算所需的所有資訊。接著,當該敗血症檢測模型計算後,該處理模組20再使用該敗血症檢測模型判斷其中一該病患資料的該生理資訊是否符合該敗血症檢測標準。該敗血症檢測標準可以被理解為多項病患的生理數值的閾值範圍。進一步而言,該敗血症檢測模型係利用文字辨識、詞句辨識、代碼辨識的方式自該資料庫10中搜尋和收集相關於其中一該病患資料的資訊,再過濾和敗血症非相關的資訊,再將剩下與敗血症相關的資訊予以整合。該敗血症檢測模型所利用的文字辨識、詞句辨識、代碼辨識方式可為現有AI領域所使用的辨識技術,故在此不做贅述。In one embodiment of the present invention, the sepsis detection model is a mature AI model that can help accurately calculate the risk of a patient suffering from sepsis to provide reference information for medical staff. Before accurate calculation, the processing module 20 first searches, collects, filters and integrates the information of one of the patient data in the database 10 through the sepsis detection model, so that the sepsis detection model can obtain all the information required for calculation. Then, after the sepsis detection model is calculated, the processing module 20 uses the sepsis detection model to determine whether the physiological information of one of the patient data meets the sepsis detection standard. The sepsis detection standard can be understood as a threshold range of multiple patient physiological values. Furthermore, the sepsis detection model uses text recognition, phrase recognition, and code recognition to search and collect information related to one of the patient data from the database 10, then filters out information not related to sepsis, and then integrates the remaining information related to sepsis. The text recognition, phrase recognition, and code recognition methods used by the sepsis detection model can be recognition technologies used in the existing AI field, so they are not elaborated here.

當該處理模組20透過該敗血症檢測模型判斷其中一該病患資料的該生理資訊符合該敗血症檢測標準時,該處理模組20透過該敗血症檢測模型計算一預測機率和產生一可能確診訊息。反之,當該處理模組20透過該敗血症檢測模型判斷其中一該病患資料的該生理資訊未符合該敗血症檢測標準時,該處理模組20則未透過該敗血症檢測模型計算該預測機率和產生該可能確診訊息。該預測機率的計算係該處理模組20使用該敗血症檢測模型所做預測敗血症確診的機率。此機率會受到患者生理數值的不同而改變。When the processing module 20 determines that the physiological information of one of the patient data meets the sepsis detection standard through the sepsis detection model, the processing module 20 calculates a prediction probability through the sepsis detection model and generates a possible diagnosis message. On the contrary, when the processing module 20 determines that the physiological information of one of the patient data does not meet the sepsis detection standard through the sepsis detection model, the processing module 20 does not calculate the prediction probability through the sepsis detection model and generate the possible diagnosis message. The calculation of the prediction probability is the probability of the processing module 20 predicting the diagnosis of sepsis using the sepsis detection model. This probability will change due to different physiological values of the patient.

請參閱圖2所示,該處理模組20進一步產生一概況畫面100,且該處理模組20透過該顯示模組30顯示該概況畫面100。該概況畫面100中顯示了該資料庫10存有的該些病患資料,也就是一醫院加護病房(Intensive Care Unit;ICU)的電腦系統中所有患者的基本資料。如圖2所示,在本實施例中,該些病患資料包括了姓名、年齡、性別、病床資料、緊急檢查次數、照X光次數等資訊。另外,該處理模組20也透過該顯示模組30於該概況畫面100中一併顯示對應部分該些病患資料的該可能確診訊息101。舉例來說,根據圖2的例子,ICU中的王先生和王小姐兩人經該處理模組20透過該敗血症檢測模型的判斷,認為有可能患有敗血症,而其餘ICU中的病患未患有敗血症的風險。該可能確診訊息101可供一使用者,也就是所謂ICU中的醫療團隊,透過操作該人機互動模組40做選取。Please refer to FIG. 2 , the processing module 20 further generates an overview screen 100, and the processing module 20 displays the overview screen 100 through the display module 30. The overview screen 100 displays the patient data stored in the database 10, that is, the basic data of all patients in the computer system of an intensive care unit (ICU) of a hospital. As shown in FIG. 2 , in this embodiment, the patient data includes information such as name, age, gender, bed data, number of emergency examinations, number of X-rays, etc. In addition, the processing module 20 also displays the possible diagnosis information 101 corresponding to the corresponding part of the patient data in the overview screen 100 through the display module 30. For example, according to the example of FIG. 2 , Mr. Wang and Ms. Wang in the ICU are considered to be likely to have sepsis through the judgment of the sepsis detection model by the processing module 20, while the other patients in the ICU are not at risk of sepsis. The possible diagnosis information 101 can be provided to a user, that is, the medical team in the ICU, to make a selection by operating the human-computer interaction module 40.

在本實施例中,該處理模組20為一處理器,該顯示模組30為一螢幕,而該人機互動模組40為一滑鼠和一鍵盤。在其他實施例中,該處理模組20為一網路伺服器,而該顯示模組30和該人機互動模組40為一智慧型行動裝置的觸控面板。該智慧型行動裝置例如是一平板電腦或是一智慧型手機,且該智慧型行動裝置可透過無線網路連接該網路伺服器。In this embodiment, the processing module 20 is a processor, the display module 30 is a screen, and the human-machine interaction module 40 is a mouse and a keyboard. In other embodiments, the processing module 20 is a network server, and the display module 30 and the human-machine interaction module 40 are a touch panel of a smart mobile device. The smart mobile device is, for example, a tablet computer or a smart phone, and the smart mobile device can be connected to the network server via a wireless network.

請參閱圖3所示,當該可能確診訊息101受到選取時,該處理模組20進一步產生一確認畫面110,且該處理模組20透過該顯示模組30顯示該確認畫面110。該確認畫面110包括一非敗血症選項111、一可能為敗血症選項112和一確認為敗血症選項113。當該使用者透過操作該人機互動模組40選取該非敗血症選項111或是該可能為敗血症選項112時,即代表該使用者已經人工確認病患未達患有敗血症的風險。如此,該人機互動模組40即產生一未達敗血症訊號至該處理模組20,使該處理模組20透過該顯示模組30跳回顯示該概況畫面100並且取消顯示受到選取的該可能確診訊息101。而當該使用者透過操作該人機互動模組40選取該確認為敗血症選項113時,即代表該使用者已經人工進一步確認病患有達到患有敗血症的風險。如此,該人機互動模組40即產生一確認敗血症訊號至該處理模組20。當該處理模組20自該人機互動模組40接收該確認敗血症訊號時,該處理模組20透過該顯示模組30顯示該預測機率114。Referring to FIG. 3 , when the possible diagnosis message 101 is selected, the processing module 20 further generates a confirmation screen 110, and the processing module 20 displays the confirmation screen 110 through the display module 30. The confirmation screen 110 includes a non-septicemia option 111, a possible sepsis option 112, and a confirmed sepsis option 113. When the user selects the non-septicemia option 111 or the possible sepsis option 112 by operating the human-computer interaction module 40, it means that the user has manually confirmed that the patient does not have the risk of having sepsis. In this way, the human-machine interaction module 40 generates a non-septicemia signal to the processing module 20, so that the processing module 20 jumps back to display the overview screen 100 through the display module 30 and cancels the display of the selected possible diagnosis message 101. When the user selects the confirmed sepsis option 113 by operating the human-machine interaction module 40, it means that the user has manually further confirmed that the patient has reached the risk of having sepsis. In this way, the human-machine interaction module 40 generates a confirmed sepsis signal to the processing module 20. When the processing module 20 receives the confirmed sepsis signal from the human-machine interaction module 40, the processing module 20 displays the predicted probability 114 through the display module 30.

請參閱圖4所示,該處理模組20進一步透過該顯示模組30顯示一分類畫面120,且該分類畫面120顯示該些敗血症分類選項供選取。該些敗血症分類選項乃根據嚴重敗血症病人(ABC Model;ABC)的部分內容所建置。其中,ABC的A代表八大感染部位,B代表七大器官的衰竭,而C代表嚴重敗血症。該分類畫面120所顯示供選取的該些敗血症分類選項包括一八大感染部位種類和一患有敗血症的區域種類。該八大感染部位種類包括一中樞神經系統感染選項121、一呼吸系統感染選項122、一泌尿系統感染選項123、一肝膽腸胃系統感染選項124、一骨關節系統感染選項125、一軟組織系統感染選項126、一心血管系統感染選項127及一原發不明系統感染選項128。一患有敗血症的區域種類包括一社區選項129A和一醫療照顧中心選項129B。Please refer to FIG. 4 , the processing module 20 further displays a classification screen 120 through the display module 30, and the classification screen 120 displays the sepsis classification options for selection. The sepsis classification options are established based on part of the content of severe sepsis patients (ABC Model; ABC). Among them, A of ABC represents eight major infection sites, B represents failure of seven major organs, and C represents severe sepsis. The sepsis classification options displayed for selection on the classification screen 120 include eight major infection site types and a regional type of sepsis. The eight infection site categories include a central nervous system infection option 121, a respiratory system infection option 122, a urinary system infection option 123, a hepatobiliary gastrointestinal system infection option 124, a bone and joint system infection option 125, a soft tissue system infection option 126, a cardiovascular system infection option 127, and a primary unknown system infection option 128. A sepsis-stricken area category includes a community option 129A and a medical care center option 129B.

在圖4的例子中,該使用者透過該人機互動模組40選取了該肝膽腸胃系統感染選項124和該醫療照顧中心選項129B,而該人機互動模組40則對應產生一敗血症類型資料為具有肝膽腸胃系統受到感染和感染於醫療照顧中心,並且以此類推。In the example of FIG. 4 , the user selects the hepatobiliary gastrointestinal infection option 124 and the medical care center option 129B through the human-computer interaction module 40, and the human-computer interaction module 40 generates sepsis type data corresponding to hepatobiliary gastrointestinal infection and infection in a medical care center, and so on.

請參閱圖5所示,當該處理模組20自該人機互動模組40接收該敗血症類型資料時,該處理模組20根據該敗血症類型資料比對該敗血症用藥表產生一敗血症參考藥單訊息130,並且根據透過該顯示模組30顯示該敗血症參考藥單訊息130。該敗血症參考藥單訊息130包括一敗血症建議用藥資訊131。該敗血症類型資料和該敗血症建議用藥資訊131之間的關係由該敗血症用藥表所制定,而該敗血症用藥表所制定的比對關係由下表一所示:    社區 醫療照顧中心 中樞神經系統受到感染 頭孢曲松 (Ceftriaxone) 萬古黴素 (Vancomycin) 頭孢吡肟 (Cefepime) 萬古黴素 (Vancomycin) 呼吸系統受到感染 頭孢曲松 (Ceftriaxone) 左氧氟沙星 (Levofloxacin) 頭孢吡肟 (Cefepime) 左氧氟沙星 (Levofloxacin) 萬古黴素 (Vancomycin) 泌尿系統受到感染 頭孢曲松 (Ceftriaxone) 頭孢吡肟 (Cefepime) 肝膽腸胃系統受到感染 厄他培南 (Ertapenem) 美羅培南 (Meropenem) 骨關節系統受到感染 苯唑西林 (Oxacillin) 萬古黴素 (Vancomycin) 軟組織系統受到感染 頭孢曲松 (Ceftriaxone) 環丙沙星 (Ciprofloxacin) 克林黴素 (Clindamycin) 萬古黴素 (Vancomycin) 頭孢吡肟 (Cefepime) 心血管系統受到感染 苯唑西林 (Oxacillin) 慶大黴素 (Gentamicin;GM) 萬古黴素 (Vancomycin) 頭孢吡肟 (Cefepime) 原發不明系統受到感染 頭孢曲松 (Ceftriaxone) Cefepime 萬古黴素 (Vancomycin) 表一 As shown in FIG. 5 , when the processing module 20 receives the sepsis type data from the human-machine interaction module 40, the processing module 20 generates a sepsis reference medication order message 130 by comparing the sepsis type data with the sepsis medication table, and displays the sepsis reference medication order message 130 through the display module 30. The sepsis reference medication order message 130 includes sepsis recommended medication information 131. The relationship between the sepsis type data and the sepsis recommended medication information 131 is established by the sepsis medication table, and the comparison relationship established by the sepsis medication table is shown in Table 1 below: Community Medical Care Center Central nervous system infection Ceftriaxone Vancomycin Cefepime Vancomycin Respiratory system infection Ceftriaxone Levofloxacin Cefepime Levofloxacin Vancomycin Urinary tract infection Ceftriaxone Cefepime Infection of the liver, gallbladder, and gastrointestinal system Ertapenem Meropenem Infection of the bone and joint system Oxacillin Vancomycin Software infection Ceftriaxone Ciprofloxacin Clindamycin Vancomycin Cefepime Cardiovascular system infection Oxacillin Gentamicin (GM) Vancomycin Cefepime Unknown origin system infected Ceftriaxone Cefepime Vancomycin Table 1

根據表一,可見前述該敗血症類型資料為具有肝膽腸胃系統受到感染和感染於醫療照顧中心的例子係經該處理模組20表一比對後建議使用為頭孢曲松(Ceftriaxone)的該敗血症建議用藥資訊131。另外,根據該敗血症類型資料,該處理模組20也可透過該顯示模組30於該敗血症參考藥單訊息130中顯示病患所需使用的一點滴資訊132和一升壓注射藥物資訊133。該點滴資訊132和該升壓注射藥物資訊133各為可產開示的選項,當受點選而展開時則可以條列呈現該點滴資訊132和該升壓注射藥物資訊133的資訊細節。According to Table 1, the aforementioned example of the sepsis type data of hepatobiliary gastrointestinal system infection and infection in a medical care center is that the processing module 20 compares the data with Table 1 and recommends the use of ceftriaxone as the sepsis recommended medication information 131. In addition, according to the sepsis type data, the processing module 20 can also display a bit of information 132 and a booster injection drug information 133 that the patient needs to use in the sepsis reference medication message 130 through the display module 30. The drip information 132 and the booster injection drug information 133 are options that can be disclosed. When clicked and expanded, the information details of the drip information 132 and the booster injection drug information 133 can be presented in list form.

如圖1所示,在本實施例中,該處理模組20進一步包括一急重症檢驗單元21、一異常抽血追蹤提醒單元22、一敗血症抗生素自動導引單元23、一血流動力監測儀評估單元24、一輸液提醒單元25、一投藥提醒單元26和一個人化回饋監控單元27。其中,該急重症檢驗單元21、該異常抽血追蹤提醒單元22、該敗血症抗生素自動導引單元23、該血流動力監測儀評估單元24、該輸液提醒單元25、該投藥提醒單元26和該個人化回饋監控單元27分別電連接該資料庫10和該顯示模組20,並且該輸液提醒單元25、該投藥提醒單元26和該個人化回饋監控單元27又分別電連接該人機互動模組40。As shown in FIG1 , in the present embodiment, the processing module 20 further includes an emergency and critical care testing unit 21, an abnormal blood draw tracking reminder unit 22, a sepsis antibiotic automatic guidance unit 23, a hemodynamic monitor evaluation unit 24, an infusion reminder unit 25, a medication reminder unit 26 and a personalized feedback monitoring unit 27. Among them, the emergency and critical illness testing unit 21, the abnormal blood drawing tracking reminder unit 22, the sepsis antibiotic automatic guidance unit 23, the hemodynamic monitor evaluation unit 24, the infusion reminder unit 25, the medication reminder unit 26 and the personalized feedback monitoring unit 27 are respectively electrically connected to the database 10 and the display module 20, and the infusion reminder unit 25, the medication reminder unit 26 and the personalized feedback monitoring unit 27 are also respectively electrically connected to the human-computer interaction module 40.

該資料庫10進一步存有一現在時間、一第一時段、一第二時段、一照護時間、一輸液時間閾值、一投藥時間閾值、複數照護備註訊息、複數照護注意訊息、一乳酸值閾值、一心輸出量閾值和一水份酸值閾值。The database 10 further stores a present time, a first time period, a second time period, a care time, an infusion time threshold, a medication time threshold, a plurality of care note messages, a plurality of care attention messages, a lactate value threshold, a cardiac output threshold and a water acid value threshold.

請參閱圖6所示,當該處理模組20接收該確認敗血症訊號時,該急重症檢驗單元21產生對應該現在時間的一重症檢驗表140,且透過該顯示模組30顯示該重症檢驗表140。並且,每經過該第一時段一次,該急重症檢驗單元重新產生該重症檢驗表140。在本實施例中,該第一時段為24小時之時段,故如圖6所示,該重症檢驗表140除了於該現在時間產生之外,也於24小時後、48小時後和72小時後更新產生。換言之,該重症檢驗表140包括可展開式的選項,且此一些選項以每24小時之該第一時段做為間隔區分。如圖6所示,該現在時間所產生的該重症檢驗表140受到點選而展開,展開後顯示的內容包括複數必檢項目141與可供選取的複數選檢項目142。該使用者可以透過該人機互動模組40選取或是取消選取該些選檢項目142。在本實施例中,該資料庫10也可進一步存有其他之時限,以利於其他時段給予提醒,例如於從該現在時間起算一週後所更新產生的該重症檢驗表140。Please refer to FIG6 . When the processing module 20 receives the confirmed sepsis signal, the emergency and critical care test unit 21 generates a critical care test table 140 corresponding to the current time, and displays the critical care test table 140 through the display module 30. Moreover, the emergency and critical care test unit regenerates the critical care test table 140 every time the first time period passes. In the present embodiment, the first time period is a 24-hour time period, so as shown in FIG6 , the critical care test table 140 is not only generated at the current time, but also updated and generated after 24 hours, 48 hours, and 72 hours. In other words, the critical care test table 140 includes expandable options, and some of these options are divided into intervals with the first time period of every 24 hours. As shown in FIG6 , the critical examination table 140 generated at the current time is clicked and expanded, and the contents displayed after expansion include a plurality of required examination items 141 and a plurality of optional examination items 142 for selection. The user can select or deselect the optional examination items 142 through the human-machine interaction module 40. In this embodiment, the database 10 may further store other time limits to facilitate reminders at other time periods, such as the critical examination table 140 updated and generated one week from the current time.

請參閱圖7所示,當該處理模組20產生該敗血症參考藥單訊息130後,且每經過該輸液時間閾值時,該輸液提醒單元25產生一輸液提醒訊息150,且透過該顯示模組30顯示該輸液提醒訊息150。並且,當該處理模組20產生該敗血症參考藥單訊息130後,且每經過該投藥時間閾值時,該投藥提醒單元26產生一投藥提醒訊息160,且透過該顯示模組30顯示該投藥提醒訊息160。其中,該輸液提醒訊息150包括一輸液量151和一輸液時限152,以利該使用者知曉應參考給予患者輸液的急迫性和輸液多寡。在其他實施例中,該投藥提醒訊息160也可包括一投藥量161和一投藥時限,以利該使用者知曉給予患者施藥的急迫性和劑量多寡。舉例來說,在圖7的例子中,該輸液時限152為3小時之時限。Please refer to FIG. 7 , after the processing module 20 generates the sepsis reference prescription message 130, and each time the infusion time threshold is passed, the infusion reminder unit 25 generates an infusion reminder message 150, and displays the infusion reminder message 150 through the display module 30. Moreover, after the processing module 20 generates the sepsis reference prescription message 130, and each time the medication time threshold is passed, the medication reminder unit 26 generates a medication reminder message 160, and displays the medication reminder message 160 through the display module 30. The infusion reminder message 150 includes an infusion volume 151 and an infusion time limit 152, so that the user can know the urgency of infusion and the amount of infusion given to the patient. In other embodiments, the medication reminder message 160 may also include a dosage 161 and a medication time limit, so that the user knows the urgency and dosage of medication to be administered to the patient. For example, in the example of Fig. 7, the infusion time limit 152 is a time limit of 3 hours.

請參閱圖8所示,該顯示模組30進一步顯示一執行投藥時間欄位170。該使用者可透過操作該人機互動模組40於該投藥時間欄位170中填寫實際投藥之時間。當該投藥提醒單元26自該人機互動模組40接收到輸入於該執行投藥時間欄位170的一執行投藥時間時,該投藥提醒單元26即從該執行投藥時間起算每經過該投藥時間閾值時才產生和顯示該投藥提醒訊息160。As shown in FIG8 , the display module 30 further displays a dosing time field 170. The user can fill in the actual dosing time in the dosing time field 170 by operating the human-machine interaction module 40. When the dosing reminder unit 26 receives a dosing time input into the dosing time field 170 from the human-machine interaction module 40, the dosing reminder unit 26 generates and displays the dosing reminder message 160 every time the dosing time threshold is passed starting from the dosing time.

請參閱圖9所示,當該處理模組20產生該敗血症參考藥單訊息130後,該個人化回饋監控單元27開始計時一急診室滯留時間181,且產生一組合式照護表180,並透過該顯示模組30顯示該組合式照護表180和該急診室滯留時間181。該組合式照護表180包含根據該敗血症參考藥單訊息130產生每間隔該第二時段時所需執行的至少一照護動作。在本實施例中,該第二時段為一個小時之時段,故如圖9所示,該組合式照護表180顯示於該現在時間起算每經過一小時需執行的至少一照護動作。例如,於從該現在時間起算第一小時提醒需執行抽血以驗血檢測一第一乳酸值(1st lactate)、做細胞培養(culture)、開立抗生素(antibiotics)和開立升壓劑(pressors),而於從該現在時間起算第二小時提醒需給予輸液(fluids)。在本實施例中,該資料庫10也可進一步存有其他之時限,以利於其他時段給予提醒,例如於從該現在時間起算第四小時提醒需執行第二次抽血以驗血檢測一第二乳酸值(2nd lactate)。Please refer to FIG9 , when the processing module 20 generates the sepsis reference prescription message 130, the personalized feedback monitoring unit 27 starts to count an emergency room retention time 181, and generates a combined care table 180, and displays the combined care table 180 and the emergency room retention time 181 through the display module 30. The combined care table 180 includes at least one care action to be performed at each interval of the second time period generated according to the sepsis reference prescription message 130. In this embodiment, the second time period is a one-hour period, so as shown in FIG9 , the combined care table 180 displays at least one care action to be performed every hour starting from the current time. For example, at the first hour from the current time, a reminder is given to draw blood for a blood test to detect a first lactate value, perform cell culture, prescribe antibiotics, and prescribe pressors, and at the second hour from the current time, a reminder is given to administer fluids. In this embodiment, the database 10 may further store other time limits to facilitate giving reminders at other time periods, such as at the fourth hour from the current time, a reminder is given to draw blood for a second blood test to detect a second lactate value.

針對上述該組合式照護表180所提醒該使用者的該至少一照護動作,在該使用者履行照護動作時,該使用者可透過該人機互動模組40產生一已執行照護訊息。當該個人化回饋監控單元27自該人機互動模組40接收到該已執行照護訊息時,該個人化回饋監控單元27產生一已照護訊息,並且透過該顯示模組顯示該已照護訊息。該已照護訊息可分為至少一已執行訊息182和至少一已開立訊息183。該至少一已執行訊息182對應已經驗血檢測乳酸值或是做細胞培養的動作,而該至少一已開立訊息183對應已經開立抗生素或是開立升壓劑的動作。With respect to the at least one care action that the user is reminded of by the combined care table 180, when the user performs the care action, the user can generate a completed care message through the human-machine interaction module 40. When the personalized feedback monitoring unit 27 receives the completed care message from the human-machine interaction module 40, the personalized feedback monitoring unit 27 generates a completed care message and displays the completed care message through the display module. The completed care message can be divided into at least one completed message 182 and at least one opened message 183. The at least one executed message 182 corresponds to an action of performing a blood test to measure lactate value or performing cell culture, and the at least one prescribed message 183 corresponds to an action of prescribing antibiotics or prescribing pressors.

並且,每間隔該第二時段時,該個人化回饋監控單元27倒數計時該照護時間184。該照護時間184可提醒該使用者處置病患的時限,以利督促該使用者準時處置病患。另外,各該至少一照護動作都具有前述的該輸液時限152或是該投藥時限。Furthermore, at each interval of the second time period, the personalized feedback monitoring unit 27 counts down the care time 184. The care time 184 can remind the user of the time limit for treating the patient, so as to urge the user to treat the patient on time. In addition, each of the at least one care actions has the aforementioned infusion time limit 152 or the medication time limit.

當倒數計時該照護時間184歸零前,該個人化回饋監控單元27皆未自該人機互動模組40接收到該已執行照護訊息時,該個人化回饋監控單元27產生一超時訊息185,並且透過該顯示模組30顯示該超時訊息185。就圖9的例子來說,雖該使用者已完成細胞培養,但因為超時,該照護時間184倒數歸零後又經過了一段時間,而所以該顯示模組30上還是顯示著對應的該超時訊息185。並且,該使用者超時且尚未開立升壓劑,故該顯示模組30上顯示對應的該超時訊息185。When the personalized feedback monitoring unit 27 does not receive the executed care message from the human-machine interaction module 40 before the care time 184 countdown returns to zero, the personalized feedback monitoring unit 27 generates a timeout message 185 and displays the timeout message 185 through the display module 30. For example, in FIG9 , although the user has completed the cell culture, due to the timeout, a period of time has passed after the care time 184 countdown returns to zero, and the corresponding timeout message 185 is still displayed on the display module 30. In addition, the user has timed out and has not yet opened the booster, so the corresponding timeout message 185 is displayed on the display module 30.

另外,當該個人化回饋監控單元27自該人機互動模組40尚未接收到該已執行照護訊息時,該個人化回饋監控單元27產生一尚未照護訊息。該尚未照護訊息可分為至少一尚未執行訊息和至少一尚未開立訊息186。並且,該資料庫10所存有的該些照護備註訊息照護備註訊息對應該至少一照護動作。當該個人化回饋監控單元27自該人機互動模組40接收到一選取該至少一照護動作訊號時,該個人化回饋監控單元27透過該顯示模組30顯示對應該至少一照護動作的其中一該照護備註訊息187。In addition, when the personalized feedback monitoring unit 27 has not received the executed care message from the human-machine interaction module 40, the personalized feedback monitoring unit 27 generates a not yet care message. The not yet care message can be divided into at least one not yet executed message and at least one not yet opened message 186. In addition, the care note messages stored in the database 10 correspond to the at least one care action. When the personalized feedback monitoring unit 27 receives a signal for selecting the at least one care action from the human-machine interaction module 40, the personalized feedback monitoring unit 27 displays one of the care note messages 187 corresponding to the at least one care action through the display module 30.

進一步,當該至少一照護動作為一第N次抽血時,且該異常抽血追蹤提醒單元22判斷一血液中的一乳酸值高於該乳酸值閾值時,該異常抽血追蹤提醒單元22通知該個人化回饋監控單元27透過該顯示模組30顯示對應一第(N+1)次抽血的該至少一照護動作的其中一該照護注意訊息188。其中,N為正整數,而所謂的第(N+1)次的抽血意旨第N次的下一次抽血之時。在圖9的例子中,因為第一次抽血時患者的乳酸值高於該乳酸值閾值,故該顯示模組30顯示其中一該照護注意訊息188於第二次抽血的敘述旁,以利該使用者注意到患者上一次的抽血時乳酸值過高的異常情形。Furthermore, when the at least one care action is an Nth blood drawing, and the abnormal blood drawing tracking reminder unit 22 determines that a lactate value in the blood is higher than the lactate value threshold, the abnormal blood drawing tracking reminder unit 22 notifies the personalized feedback monitoring unit 27 to display one of the care attention messages 188 corresponding to the at least one care action of an (N+1)th blood drawing through the display module 30. Wherein, N is a positive integer, and the so-called (N+1)th blood drawing means the next blood drawing after the Nth time. In the example of FIG. 9 , because the patient's lactate value during the first blood draw was higher than the lactate value threshold, the display module 30 displays one of the care notice messages 188 next to the description of the second blood draw to help the user notice the abnormal situation that the patient's lactate value was too high during the last blood draw.

另外,各該病患資料的該生理資訊另包括一心輸出量和一水份酸值。當該血流動力監測儀評估單元24判斷其中一該病患資料的該心輸出量小於該心輸出量閾值或是判斷其中一該病患資料的該水份酸值大於該水份酸值閾值時,該血流動力監測儀評估單元24即產生一血流動力異常訊息,且透過該顯示模組顯示該血流動力異常訊息(未示)。如此,該使用者注意即可注意到患者該血流動力異常的情形。In addition, the physiological information of each patient data further includes a cardiac output and a water acid value. When the hemodynamic monitor evaluation unit 24 determines that the cardiac output of one of the patient data is less than the cardiac output threshold or determines that the water acid value of one of the patient data is greater than the water acid value threshold, the hemodynamic monitor evaluation unit 24 generates a hemodynamic abnormality message and displays the hemodynamic abnormality message through the display module (not shown). In this way, the user can notice the abnormal hemodynamic condition of the patient.

使用本發明的該使用者,也就是該醫療團隊,可以從該顯示模組30看到本發明顯示患者可能具有敗血症的提示而做出適當的醫療處置,並且在該醫療團隊透過該人機互動模組40確認患者確實具有敗血症時,該醫療團隊可進一步從該顯示模組30觀看該些敗血症分類選項。該醫療團隊可進一步操作該人機互動模組40以利輸入患者的敗血症類型,以利本案根據該敗血症用藥表所設定的用藥邏輯產生該敗血症參考藥單訊息130。因此,本發明不只可以協助急診室中的醫療團隊更有效率的判斷一病患是否較有可能患有敗血症,也可以更有效率的提供具參考性的藥單供該醫療團隊參考,提升該醫療團隊決定敗血症病人用藥種類的速度。本發明也可進一步協助該醫療團隊持續監控病人的生體狀況,和監控該醫療團隊是否有定時的給予病人適當的醫療處置,以利病人於最短的時間自敗血病中痊癒康復。The user of the present invention, that is, the medical team, can see the prompt that the patient may have sepsis from the display module 30 and make appropriate medical treatment. When the medical team confirms that the patient does have sepsis through the human-machine interaction module 40, the medical team can further view the sepsis classification options from the display module 30. The medical team can further operate the human-machine interaction module 40 to input the patient's sepsis type, so that the sepsis reference medication order message 130 is generated according to the medication logic set in the sepsis medication table. Therefore, the present invention can not only assist the medical team in the emergency room to more efficiently determine whether a patient is more likely to have sepsis, but also more efficiently provide a reference list of medicines for the medical team to refer to, thereby increasing the speed at which the medical team determines the type of medicine to be used for septic patients. The present invention can also further assist the medical team to continuously monitor the patient's biological condition and monitor whether the medical team has given the patient appropriate medical treatment in a timely manner, so as to help the patient recover from sepsis in the shortest possible time.

10:資料庫 20:處理模組 21:急重症檢驗單元 22:異常抽血追蹤提醒單元 23:敗血症抗生素自動導引單元 24:血流動力監測儀評估單元 25:輸液提醒單元 26:投藥提醒單元 27:個人化回饋監控單元 30:顯示模組 40:人機互動模組 100:概況畫面 101:可能確診訊息 110:確認畫面 111:非敗血症選項 112:可能為敗血症選項 113:確認為敗血症選項 114:預測機率 120:分類畫面 121:中樞神經系統感染選項 122:呼吸系統感染選項 123:泌尿系統感染選項 124:肝膽腸胃系統感染選項 125:骨關節系統感染選項 126:軟組織系統感染選項 127:心血管系統感染選項 128:原發不明系統感染選項 129A:社區選項 129B:醫療照顧中心選項 130:敗血症參考藥單訊息 131:敗血症建議用藥資訊 132:點滴資訊 133:升壓注射藥物資訊 141:必檢項目 142:選檢項目 151:輸液量 152:輸液時限 161:投藥量 170:執行投藥時間欄位 180:組合式照護表 181:急診室滯留時間 182:已執行訊息 183:已開立訊息 184:照護時間 185:超時訊息 186:尚未開立訊息 187:照護備註訊息 188:照護注意訊息 10: Database 20: Processing module 21: Emergency and critical care testing unit 22: Abnormal blood draw tracking reminder unit 23: Antibiotic automatic guidance unit for sepsis 24: Hemodynamic monitor evaluation unit 25: Infusion reminder unit 26: Medication reminder unit 27: Personalized feedback monitoring unit 30: Display module 40: Human-computer interaction module 100: Overview screen 101: Possible diagnosis message 110: Confirmation screen 111: Non-septicemia option 112: Possible sepsis option 113: Confirmed sepsis option 114: Prediction probability 120: Classification screen 121: Central nervous system infection options 122: Respiratory system infection options 123: Urinary system infection options 124: Hepatobiliary and gastrointestinal system infection options 125: Osteoarthritis system infection options 126: Soft tissue system infection options 127: Cardiovascular system infection options 128: Primary unknown system infection options 129A: Community options 129B: Medical care center options 130: Sepsis reference drug list information 131: Sepsis recommended medication information 132: Intravenous drip information 133: Boost injection drug information 141: Mandatory inspection items 142: Optional inspection items 151: Infusion volume 152: Infusion time limit 161: Dosage 170: Execution time field 180: Combined care table 181: Emergency room stay time 182: Executed message 183: Issued message 184: Care time 185: Timeout message 186: Not yet issued message 187: Care notes message 188: Care attention message

圖1為本發明一敗血症照護回饋系統的系統方塊圖。 圖2為本發明該敗血症照護回饋系統的一顯示模組顯示一概況畫面的示意圖。 圖3為本發明該敗血症照護回饋系統的該顯示模組顯示一確認畫面的示意圖。 圖4為本發明該敗血症照護回饋系統的該顯示模組顯示一分類畫面的示意圖。 圖5為本發明該敗血症照護回饋系統的該顯示模組顯示一敗血症參考藥單訊息的示意圖。 圖6為本發明該敗血症照護回饋系統的該顯示模組顯示一重症檢驗表的示意圖。 圖7為本發明該敗血症照護回饋系統的該顯示模組顯示一輸液提醒訊息和一投藥提醒訊息的示意圖。 圖8為本發明該敗血症照護回饋系統的該顯示模組顯示一投藥時間欄位的示意圖。 圖9為本發明該敗血症照護回饋系統的該顯示模組顯示一組合式照護表的示意圖。 FIG. 1 is a system block diagram of a sepsis care feedback system of the present invention. FIG. 2 is a schematic diagram of a display module of the sepsis care feedback system of the present invention displaying an overview screen. FIG. 3 is a schematic diagram of the display module of the sepsis care feedback system of the present invention displaying a confirmation screen. FIG. 4 is a schematic diagram of the display module of the sepsis care feedback system of the present invention displaying a classification screen. FIG. 5 is a schematic diagram of the display module of the sepsis care feedback system of the present invention displaying a sepsis reference drug list message. FIG. 6 is a schematic diagram of the display module of the sepsis care feedback system of the present invention displaying a critical examination table. FIG7 is a schematic diagram of the display module of the sepsis care feedback system of the present invention displaying an infusion reminder message and a medication reminder message. FIG8 is a schematic diagram of the display module of the sepsis care feedback system of the present invention displaying a medication time field. FIG9 is a schematic diagram of the display module of the sepsis care feedback system of the present invention displaying a combined care table.

10:資料庫 10: Database

20:處理模組 20: Processing module

21:急重症檢驗單元 21: Emergency and critical care testing unit

22:異常抽血追蹤提醒單元 22: Abnormal blood draw tracking reminder unit

23:敗血症抗生素自動導引單元 23: Septicemia antibiotic automatic guidance unit

24:血流動力監測儀評估單元 24: Hemodynamic monitor evaluation unit

25:輸液提醒單元 25: Infusion reminder unit

26:投藥提醒單元 26: Medication reminder unit

27:個人化回饋監控單元 27: Personalized feedback monitoring unit

30:顯示模組 30: Display module

40:人機互動模組 40: Human-computer interaction module

Claims (10)

一種敗血症照護回饋系統,包括: 一資料庫,存有複數病患資料、一敗血症檢測模型、複數敗血症分類選項和一敗血症用藥表;其中各該病患資料包括一生理資訊;其中該敗血症檢測模型為一人工智能模型; 一處理模組,電連接該資料庫,透過該敗血症檢測模型判斷各該病患資料的該生理資訊是否符合一敗血症檢測標準; 一顯示模組,電連接該處理模組; 一人機互動模組,電連接該處理模組; 其中,當該處理模組透過該敗血症檢測模型判斷其中一該病患資料的該生理資訊符合該敗血症檢測標準時,該處理模組透過該敗血症檢測模型計算一預測機率,並且透過該顯示模組顯示一可能確診訊息和一確認畫面; 其中,當該處理模組自該人機互動模組接收一確認敗血症訊號時,該處理模組透過該顯示模組顯示該預測機率和該些敗血症分類選項; 其中,當該處理模組自該人機互動模組接收一敗血症類型資料時,該處理模組根據該敗血症類型資料比對該敗血症用藥表產生一敗血症參考藥單訊息,並且根據透過該顯示模組顯示該敗血症參考藥單訊息。 A sepsis care feedback system includes: A database storing a plurality of patient data, a sepsis detection model, a plurality of sepsis classification options and a sepsis medication table; wherein each of the patient data includes physiological information; wherein the sepsis detection model is an artificial intelligence model; A processing module electrically connected to the database, and judging whether the physiological information of each of the patient data meets a sepsis detection standard through the sepsis detection model; A display module electrically connected to the processing module; A human-computer interaction module electrically connected to the processing module; Wherein, when the processing module determines that the physiological information of one of the patient data meets the sepsis detection standard through the sepsis detection model, the processing module calculates a prediction probability through the sepsis detection model, and displays a possible diagnosis message and a confirmation screen through the display module; Wherein, when the processing module receives a sepsis confirmation signal from the human-computer interaction module, the processing module displays the prediction probability and the sepsis classification options through the display module; When the processing module receives a sepsis type data from the human-computer interaction module, the processing module generates a sepsis reference drug list message according to the sepsis type data and compares the sepsis medication list, and displays the sepsis reference drug list message through the display module. 如請求項1所述之敗血症照護回饋系統,其中該資料庫存有一現在時間和一第一時段; 其中,該處理模組進一步包括一急重症檢驗單元;當該處理模組接收該確認敗血症訊號時,該急重症檢驗單元產生對應該現在時間的一重症檢驗表,且透過該顯示模組顯示該重症檢驗表,並且,每經過該第一時段一次,該急重症檢驗單元重新產生該重症檢驗表; 其中,該重症檢驗表具有複數必檢項目與可供選取的複數選檢項目。 A sepsis care feedback system as described in claim 1, wherein the database stores a current time and a first time period; wherein the processing module further includes an emergency and critical care test unit; when the processing module receives the confirmed sepsis signal, the emergency and critical care test unit generates a critical care test table corresponding to the current time, and displays the critical care test table through the display module, and, each time the first time period passes, the emergency and critical care test unit regenerates the critical care test table; wherein the critical care test table has a plurality of mandatory test items and a plurality of optional test items for selection. 如請求項1所述之敗血症照護回饋系統,其中該資料庫存有一輸液時間閾值和一投藥時間閾值,且該處理模組進一步包括一輸液提醒單元和一投藥提醒單元; 其中,當該處理模組產生該敗血症參考藥單訊息後,且每經過該輸液時間閾值時,該輸液提醒單元產生一輸液提醒訊息,且透過該顯示模組顯示該輸液提醒訊息; 其中,當該處理模組產生該敗血症參考藥單訊息後,且每經過該投藥時間閾值時,該投藥提醒單元產生一投藥提醒訊息,且透過該顯示模組顯示該投藥提醒訊息。 A sepsis care feedback system as described in claim 1, wherein the database stores an infusion time threshold and a medication time threshold, and the processing module further includes an infusion reminder unit and a medication reminder unit; wherein, after the processing module generates the sepsis reference medication order message, and each time the infusion time threshold is passed, the infusion reminder unit generates an infusion reminder message, and displays the infusion reminder message through the display module; wherein, after the processing module generates the sepsis reference medication order message, and each time the medication time threshold is passed, the medication reminder unit generates a medication reminder message, and displays the medication reminder message through the display module. 如請求項3所述之敗血症照護回饋系統,其中該顯示模組進一步顯示一執行投藥時間欄位; 其中,當該投藥提醒單元自該人機互動模組接收到輸入於該執行投藥時間欄位的一執行投藥時間時,該投藥提醒單元即從該執行投藥時間起算每經過該投藥時間閾值時才產生和顯示該投藥提醒訊息。 The sepsis care feedback system as described in claim 3, wherein the display module further displays a medication execution time field; wherein, when the medication reminder unit receives a medication execution time input into the medication execution time field from the human-machine interaction module, the medication reminder unit generates and displays the medication reminder message every time the medication execution time threshold is passed, starting from the medication execution time. 如請求項1所述之敗血症照護回饋系統,其中該資料庫存有一現在時間和一第二時段,且該處理模組進一步包括一個人化回饋監控單元; 其中,當該處理模組產生該敗血症參考藥單訊息後,該個人化回饋監控單元開始計時一急診室滯留時間,且產生一組合式照護表,並透過該顯示模組顯示該組合式照護表和該急診室滯留時間; 其中,該組合式照護表包含根據該敗血症參考藥單訊息產生每間隔該第二時段時所需執行的至少一照護動作; 其中當該個人化回饋監控單元自該人機互動模組接收到一已執行照護訊息時,該個人化回饋監控單元產生一已照護訊息,並且透過該顯示模組顯示該已照護訊息。 A sepsis care feedback system as described in claim 1, wherein the database stores a current time and a second time period, and the processing module further includes a personalized feedback monitoring unit; wherein, after the processing module generates the sepsis reference medication order message, the personalized feedback monitoring unit starts to count an emergency room retention time, and generates a combined care table, and displays the combined care table and the emergency room retention time through the display module; wherein, the combined care table includes at least one care action to be performed at each interval of the second time period generated according to the sepsis reference medication order message; When the personalized feedback monitoring unit receives a completed care message from the human-machine interaction module, the personalized feedback monitoring unit generates a completed care message, and displays the completed care message through the display module. 如請求項5所述之敗血症照護回饋系統,其中該資料庫存有一照護時間; 其中,每間隔該第二時段時,該個人化回饋監控單元倒數計時該照護時間; 其中,當倒數計時該照護時間歸零前,該個人化回饋監控單元皆未自該人機互動模組接收到該已執行照護訊息時,該個人化回饋監控單元產生一超時訊息,並且透過該顯示模組顯示該超時訊息。 A sepsis care feedback system as described in claim 5, wherein the database stores a care time; wherein, at each interval of the second time period, the personalized feedback monitoring unit counts down the care time; wherein, before the countdown of the care time returns to zero, if the personalized feedback monitoring unit does not receive the executed care message from the human-machine interaction module, the personalized feedback monitoring unit generates a timeout message, and displays the timeout message through the display module. 如請求項5所述之敗血症照護回饋系統,其中該資料庫存有複數照護備註訊息,且該些照護備註訊息對應該至少一照護動作; 其中,當該個人化回饋監控單元自該人機互動模組接收到一選取該至少一照護動作訊號時,該個人化回饋監控單元透過該顯示模組顯示對應該至少一照護動作的其中一該照護備註訊息。 A sepsis care feedback system as described in claim 5, wherein the database stores a plurality of care note messages, and the care note messages correspond to the at least one care action; wherein, when the personalized feedback monitoring unit receives a signal for selecting the at least one care action from the human-machine interaction module, the personalized feedback monitoring unit displays one of the care note messages corresponding to the at least one care action through the display module. 如請求項7所述之敗血症照護回饋系統,其中該資料庫存有一乳酸值閾值和複數照護注意訊息,且該處理模組進一步包括一異常抽血追蹤提醒單元; 其中,當該至少一照護動作為一第一次抽血,且該異常抽血追蹤提醒單元判斷一血液中的一乳酸值高於該乳酸值閾值時,該異常抽血追蹤提醒單元通知該個人化回饋監控單元透過該顯示模組顯示對應一第二次抽血的該至少一照護動作的其中一該照護注意訊息。 A sepsis care feedback system as described in claim 7, wherein the database stores a lactate value threshold and a plurality of care attention messages, and the processing module further includes an abnormal blood draw tracking reminder unit; Wherein, when the at least one care action is a first blood draw, and the abnormal blood draw tracking reminder unit determines that a lactate value in the blood is higher than the lactate value threshold, the abnormal blood draw tracking reminder unit notifies the personalized feedback monitoring unit to display one of the care attention messages corresponding to the at least one care action of a second blood draw through the display module. 如請求項1所述之敗血症照護回饋系統,其中該資料庫存有一心輸出量閾值或一水份酸值閾值,且該處理模組進一步包括一血流動力監測儀評估單元,該生理資訊包括一心輸出量或一水份酸值; 其中,當該血流動力監測儀評估單元判斷其中一該病患資料的該心輸出量小於該心輸出量閾值或是其中一該病患資料的該水份酸值大於該水份酸值閾值時,該血流動力監測儀評估單元產生一血流動力異常訊息,且透過該顯示模組顯示該血流動力異常訊息。 A sepsis care feedback system as described in claim 1, wherein the database stores a cardiac output threshold or a water-acid value threshold, and the processing module further includes a hemodynamic monitor evaluation unit, and the physiological information includes a cardiac output or a water-acid value; Wherein, when the hemodynamic monitor evaluation unit determines that the cardiac output of one of the patient data is less than the cardiac output threshold or the water-acid value of one of the patient data is greater than the water-acid value threshold, the hemodynamic monitor evaluation unit generates a hemodynamic abnormality message, and displays the hemodynamic abnormality message through the display module. 如請求項1所述之敗血症照護回饋系統,其中該處理模組係透過該敗血症檢測模型先搜尋、收集、過濾和整合其中一該病患資料的資訊,再使用該敗血症檢測模型判斷其中一該病患資料的該生理資訊是否符合該敗血症檢測標準; 其中,該敗血症檢測模型係利用文字辨識、詞句辨識、代碼辨識的方式自該資料庫中搜尋和收集相關於其中一該病患資料的資訊,再過濾和敗血症非相關的資訊,再將剩下與敗血症相關的資訊予以整合。 The sepsis care feedback system as described in claim 1, wherein the processing module first searches, collects, filters and integrates the information of one of the patient data through the sepsis detection model, and then uses the sepsis detection model to determine whether the physiological information of one of the patient data meets the sepsis detection standard; wherein the sepsis detection model uses text recognition, phrase recognition, and code recognition to search and collect information related to one of the patient data from the database, then filters information not related to sepsis, and then integrates the remaining information related to sepsis.
TW112102688A 2023-01-19 2023-01-19 Sepsis Care Feedback System TWI861690B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112102688A TWI861690B (en) 2023-01-19 2023-01-19 Sepsis Care Feedback System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112102688A TWI861690B (en) 2023-01-19 2023-01-19 Sepsis Care Feedback System

Publications (2)

Publication Number Publication Date
TW202431273A TW202431273A (en) 2024-08-01
TWI861690B true TWI861690B (en) 2024-11-11

Family

ID=93260230

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112102688A TWI861690B (en) 2023-01-19 2023-01-19 Sepsis Care Feedback System

Country Status (1)

Country Link
TW (1) TWI861690B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200113503A1 (en) * 2018-10-10 2020-04-16 Altrics Co., Ltd. Method For Predicting Of Mortality Risk Or Sepsis Risk And Device For Predicting Of Mortality Risk Or Sepsis Risk Using The Same
CN113409945A (en) * 2021-07-02 2021-09-17 上海市第一人民医院 Model capable of predicting acute kidney injury caused by sepsis
US20210315511A1 (en) * 2020-03-21 2021-10-14 Tata Consultancy Services Limited Discriminating features based sepsis prediction
CN115295151A (en) * 2022-09-01 2022-11-04 中山大学附属第三医院 Sepsis prediction system, prediction model construction method and system, kit
US20220409122A1 (en) * 2021-06-28 2022-12-29 China Medical University Artificial Intelligence Assisted Medical Diagnosis Method For Sepsis And System Thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200113503A1 (en) * 2018-10-10 2020-04-16 Altrics Co., Ltd. Method For Predicting Of Mortality Risk Or Sepsis Risk And Device For Predicting Of Mortality Risk Or Sepsis Risk Using The Same
US20210315511A1 (en) * 2020-03-21 2021-10-14 Tata Consultancy Services Limited Discriminating features based sepsis prediction
US20220409122A1 (en) * 2021-06-28 2022-12-29 China Medical University Artificial Intelligence Assisted Medical Diagnosis Method For Sepsis And System Thereof
TW202301377A (en) * 2021-06-28 2023-01-01 中國醫藥大學 Artificial intelligence assisted medical diagnosis method for sepsis and system thereof
CN113409945A (en) * 2021-07-02 2021-09-17 上海市第一人民医院 Model capable of predicting acute kidney injury caused by sepsis
CN115295151A (en) * 2022-09-01 2022-11-04 中山大学附属第三医院 Sepsis prediction system, prediction model construction method and system, kit

Also Published As

Publication number Publication date
TW202431273A (en) 2024-08-01

Similar Documents

Publication Publication Date Title
Lam et al. Randomized controlled trials of artificial intelligence in clinical practice: systematic review
US12300393B2 (en) Device and methods for machine learning-driven diagnostic testing
US20220330823A1 (en) Systems and devices for telemetry monitoring management
Wong et al. Effects of a nurse-led telehealth self-care promotion program on the quality of life of community-dwelling older adults: systematic review and meta-analysis
Bonafide et al. Video analysis of factors associated with response time to physiologic monitor alarms in a children’s hospital
Johnson et al. Reliability of self-reported blood pressure measurements
US11322263B2 (en) Systems and methods for collaborative notifications
Zhen et al. Impact of digital health monitoring in the management of inflammatory bowel disease
Shever The impact of nursing surveillance on failure to rescue
US20220059238A1 (en) Systems and methods for generating data quality indices for patients
US20100063845A1 (en) Systems and Methods for Allowing Patient Access to a Patient Electronic Health Records
CN112820369A (en) Anorectal surgery information management system based on big data
CN111210890A (en) Anticoagulation pharmacy monitoring management method based on clinical data
WO2016105552A1 (en) A system, apparatus, method, and graphical user interface for screening
CN112005315B (en) Systems and methods for determining patient hospitalization risk and treating patients
Gordon et al. Experiences of complex patients with telemonitoring in a nurse-led model of care: multimethod feasibility study
AU2014249087A1 (en) System and methods for proving medical care algorithms to a user
CN108269614A (en) A kind of artificial intelligence assists interrogation system
Keim-Malpass et al. Predictive monitoring–impact in acute care cardiology trial (PM-IMPACCT): protocol for a randomized controlled trial
US20210065865A1 (en) Pharmaceutical dispensing system
TWI861690B (en) Sepsis Care Feedback System
Dagnew et al. Level of medication adherence and its determinants of cardiovascular disease patients attending at specialized teaching hospitals of Amhara regional state, Ethiopia: a multicenter cross-sectional study
CN113963773A (en) Diagnostic report display method and device, electronic equipment and storage medium
CN114902346A (en) System and method for triggering actions based on severity of disease or emotional state of subject
Jordan et al. Generation and evaluation of intraoperative inferences for automated health care briefings on patient status after bypass surgery