TWI860071B - Parameter optimization system for additive manufacturing of product and operational method thereof - Google Patents
Parameter optimization system for additive manufacturing of product and operational method thereof Download PDFInfo
- Publication number
- TWI860071B TWI860071B TW112132891A TW112132891A TWI860071B TW I860071 B TWI860071 B TW I860071B TW 112132891 A TW112132891 A TW 112132891A TW 112132891 A TW112132891 A TW 112132891A TW I860071 B TWI860071 B TW I860071B
- Authority
- TW
- Taiwan
- Prior art keywords
- controllable parameters
- product
- optimization system
- property data
- parameter optimization
- Prior art date
Links
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Coating With Molten Metal (AREA)
- Laminated Bodies (AREA)
Abstract
Description
本發明係關於一種參數最佳化系統及其操作方法,特別是關於一種用於積層製造一產品之參數最佳化系統及其操作方法。 The present invention relates to a parameter optimization system and an operating method thereof, and in particular to a parameter optimization system and an operating method thereof for layered manufacturing of a product.
近年來,金屬積層製造技術已經被引入工業領域中。金屬積層製造技術是一種用大功率雷射器將金屬粉末或金屬絲的匯聚流局部熔融到基底上的工藝。通過這種方式,可以將材料添加到下層零件上。該方法適於受控材料構造,而且雷射產生零件的特徵是通常無孔的緻密微結構。 Metal additive manufacturing has been introduced into industry in recent years. Metal additive manufacturing is a process in which a concentrated flow of metal powder or wire is locally melted onto a substrate using a high-power laser. In this way, material can be added to the underlying part. The method is suitable for controlled material structuring, and the laser-generated parts are characterized by a dense microstructure that is usually free of pores.
隨著電器/電子零件性能的提高,以及絕緣軟磁性金屬粉末透過積層製造用於成形電機磁心、環形磁心等的增加,已要求減少鐵損,並且增加磁導率。為了增強磁導率,要求減少絕緣層的厚度,以便使軟磁性金屬粉末粒子之間的空間變窄。鐵損通常由磁滯損耗和渦流損耗組成,並且磁滯損耗隨著軟磁性材料的種類、雜質濃度、加工應力等而變化。渦流損耗隨著軟磁性材料的電阻率和絕緣膜的完整程度而變化。但減少絕緣層的厚度會使得電子零件的機械強度受到影響。 With the improvement of the performance of electrical/electronic parts and the increase of insulating soft magnetic metal powder for forming motor cores, toroidal cores, etc. through lamination manufacturing, it has been required to reduce iron loss and increase magnetic permeability. In order to enhance the magnetic permeability, it is required to reduce the thickness of the insulating layer so as to narrow the space between the soft magnetic metal powder particles. Iron loss is generally composed of hysteresis loss and eddy current loss, and hysteresis loss varies with the type of soft magnetic material, impurity concentration, processing stress, etc. Eddy current loss varies with the resistivity of the soft magnetic material and the completeness of the insulating film. However, reducing the thickness of the insulating layer will affect the mechanical strength of electronic components.
因此,為克服現有技術中的缺點和不足,本發明有必要提供改良的一種用於積層製造一產品之參數最佳化系統及其操作方法,以解決上述習用技術所存在的問題。 Therefore, in order to overcome the shortcomings and deficiencies in the prior art, the present invention needs to provide an improved parameter optimization system and its operation method for laminated manufacturing of a product to solve the problems existing in the above-mentioned conventional technology.
本發明之主要目的在於提供一種用於積層製造一產品之參數最佳化系統及其操作方法,利用一磁性分析儀及一拉伸試驗機進行多組有效的實驗來建立機器學習模型,能夠提升金屬積層製造的效率。 The main purpose of the present invention is to provide a parameter optimization system and its operation method for lamination manufacturing of a product, using a magnetic analyzer and a tensile testing machine to conduct multiple sets of effective experiments to establish a machine learning model, which can improve the efficiency of metal lamination manufacturing.
為達上述之目的,本發明提供一種用於積層製造一產品之參數最佳化系統的操作方法,該操作方法包括一參數選定步驟、一磁特性量測步驟、一機械拉伸量測步驟、一模型建立步驟及一模型執行步驟,在該參數選定步驟中,利用一選定模組選定多個可控參數,該等可控參數包含熔融腔室氧濃度、雷射功率、雷射掃描速度以及掃描線間距;在該磁特性量測步驟中,利用一磁性分析儀根據該等可控參數對多個第一試片進行實驗,以獲得一磁特性數據資料,其中該磁特性數據包含一磁導率及一鐵損;在該機械拉伸量測步驟中,利用一拉伸試驗機根據該等可控參數對多個第二試片進行實驗,以獲得一拉伸特性數據資料,其中該拉伸特性數據資料包含一最大拉伸應力;在該模型建立步驟中,利用一機器學習模組對該拉伸特性數據資料及該磁特性數據資料進行處理,以產生一訓練模型;在該模型執行步驟中,將該等可控參數輸入至該訓練模型中,經該訓練模型處理並輸出該產品的多個特性預估值。 To achieve the above-mentioned purpose, the present invention provides an operating method of a parameter optimization system for lamination manufacturing a product, the operating method comprising a parameter selection step, a magnetic property measurement step, a mechanical stretching measurement step, a model building step and a model execution step. In the parameter selection step, a selection module is used to select a plurality of controllable parameters, the controllable parameters including melting chamber oxygen concentration, laser power, laser scanning speed and scanning line spacing; in the magnetic property measurement step, a magnetic analyzer is used to conduct experiments on a plurality of first test pieces according to the controllable parameters to obtain a magnetic property data. material, wherein the magnetic property data includes a magnetic permeability and an iron loss; in the mechanical tensile measurement step, a tensile testing machine is used to conduct experiments on multiple second test pieces according to the controllable parameters to obtain a tensile property data, wherein the tensile property data includes a maximum tensile stress; in the model establishment step, a machine learning module is used to process the tensile property data and the magnetic property data to generate a training model; in the model execution step, the controllable parameters are input into the training model, and the training model processes and outputs multiple property estimation values of the product.
在本發明之一實施例中,在該參數選定步驟中,該選定模組透過一田口方法調整該等可控參數,並將該等可控參數排列在一直交表中。 In one embodiment of the present invention, in the parameter selection step, the selection module adjusts the controllable parameters through a Taguchi method and arranges the controllable parameters in a straight line table.
在本發明之一實施例中,在該磁特性量測步驟中,該等第一試片是根據該直交表中的該等可控參數進行實驗,每一第一試片包含一環狀本體、一激磁繞組、一量測繞組,該激磁繞組及該量測繞組固定在該環狀本體上且彼此相對。 In one embodiment of the present invention, in the magnetic property measurement step, the first test pieces are tested according to the controllable parameters in the orthogonal table, and each first test piece includes an annular body, an excitation winding, and a measuring winding. The excitation winding and the measuring winding are fixed on the annular body and face each other.
在本發明之一實施例中,在該磁特性量測步驟中,該等第一試片以多個頻率進行實驗,該等頻率具有50Hz、200Hz、400Hz及800Hz。 In one embodiment of the present invention, in the magnetic property measurement step, the first test pieces are tested at multiple frequencies, including 50 Hz, 200 Hz, 400 Hz and 800 Hz.
在本發明之一實施例中,在該機械拉伸量測步驟中,該等第二試片是根據該直交表中的該等可控參數進行實驗,每一第二試片包含一中間段及二固定段,該等固定段位於該中間段的二相對側,而且該等固定段的一橫向截面積大於該中間段的一橫向截面積。 In one embodiment of the present invention, in the mechanical tensile measurement step, the second test pieces are tested according to the controllable parameters in the orthogonal table, and each second test piece includes a middle section and two fixed sections, the fixed sections are located on two opposite sides of the middle section, and a transverse cross-sectional area of the fixed sections is larger than a transverse cross-sectional area of the middle section.
在本發明之一實施例中,該拉伸試驗機以等速2μm/s對該第二試片的該等固定段進行拉伸。 In one embodiment of the present invention, the tensile testing machine stretches the fixed sections of the second test piece at a constant speed of 2 μm/s.
在本發明之一實施例中,在該模型建立步驟中,該機器學習模組引入一隨機搜索法來尋找最佳的一超參數,並依據該超參數建立該訓練模型。 In one embodiment of the present invention, in the model building step, the machine learning module introduces a random search method to find the best hyperparameter, and builds the training model based on the hyperparameter.
在本發明之一實施例中,在該模型執行步驟中,該訓練模型透過一非凌越排序基因演算法以輸入的該等可控參數以及輸出的該等特性預估值為基準,獲得最佳的該等特性預估值。 In one embodiment of the present invention, in the model execution step, the training model obtains the best estimated values of the characteristics based on the input controllable parameters and the output estimated values of the characteristics through a non-climbing sorting genetic algorithm.
在本發明之一實施例中,其中該機器學習模組是採用梯度提升決策樹進行演算。 In one embodiment of the present invention, the machine learning module uses a gradient boosting decision tree for calculation.
為達上述之目的,本發明提供一種用於積層製造一產品之參數最佳化系統,該參數最佳化系統包括一選定模組、一磁性分析儀、一拉伸試驗機及一機器學習模組;該選定模組配置為選定多個可控參數,該等可控參數包含熔融腔室氧濃度、雷射功率、雷射掃描速度以及掃描線間距;該磁性分析儀配置為接收該等可控參數,並且根據該等可控參數對多個第一試片進行實驗,以獲得一磁特性數據資料,其中該磁特性數據包含一磁導率及一鐵損;該拉伸試驗機配置為接收該等可控參數,並且根據該等可控參數對多個第二試片進行實驗,以獲得一拉伸特性數據資料,其中該拉伸特性數據資料包含一最大拉伸應力;該機器學習模組配置為接收對該拉伸特性數據資料及該磁特性數據資料,並且對該拉伸特性數據資料及該磁特性數據資料進行處理,以產生一訓練模型;其中將該等可控參數輸入至該訓練模型中,經該訓練模型處理並輸出該產品的多個特性預估值。 To achieve the above-mentioned purpose, the present invention provides a parameter optimization system for lamination manufacturing of a product, the parameter optimization system comprising a selection module, a magnetic analyzer, a tensile testing machine and a machine learning module; the selection module is configured to select a plurality of controllable parameters, the controllable parameters including melting chamber oxygen concentration, laser power, laser scanning speed and scanning line spacing; the magnetic analyzer is configured to receive the controllable parameters, and conduct experiments on a plurality of first test pieces according to the controllable parameters to obtain a magnetic property data, wherein the magnetic property data includes a magnetic permeability and an iron loss; the tensile testing machine is configured to receive the controllable parameters, and conduct experiments on multiple second test pieces according to the controllable parameters to obtain a tensile property data, wherein the tensile property data includes a maximum tensile stress; the machine learning module is configured to receive the tensile property data and the magnetic property data, and process the tensile property data and the magnetic property data to generate a training model; wherein the controllable parameters are input into the training model, and the training model processes and outputs multiple property estimates of the product.
如上所述,本發明用於積層製造一產品之參數最佳化系統分別透過該磁性分析儀及該拉伸試驗機進行多組有效的實驗,並且根據逐批實驗的結果討論製程參數分別對於產品特性的影響,接著在累積一定量數據之後建立機器學習模型進行材料特性預測,藉此透過製程參數的設定來推斷產品特性表現,進而能夠提升金屬積層製造列印的效率,減少冗餘實驗,並且能夠驗證該訓練模型的準確性,以達到參數最佳化的要求。 As described above, the parameter optimization system for lamination manufacturing of a product of the present invention conducts multiple effective experiments through the magnetic analyzer and the tensile testing machine, and discusses the influence of process parameters on product characteristics according to the results of batch experiments, and then establishes a machine learning model to predict material characteristics after accumulating a certain amount of data, thereby inferring product characteristics through the setting of process parameters, thereby improving the efficiency of metal lamination manufacturing printing, reducing redundant experiments, and verifying the accuracy of the training model to achieve the requirements of parameter optimization.
為了讓本發明之上述及其他目的、特徵、優點能更明顯易懂,下文將特舉本發明實施例,並配合所附圖式,作詳細說明如下。再者,本發明所提到的方向用語,例如上、下、頂、底、前、後、左、右、內、外、側面、周圍、中央、水平、橫向、垂直、縱向、軸向、徑向、最上層或最下層等,僅是參考附加圖式的方向。因此,使用的方向用語是用以說明及理解本發明,而非用以限制本發明。 In order to make the above and other purposes, features and advantages of the present invention more clearly understandable, the following will specifically cite the embodiments of the present invention and provide a detailed description in conjunction with the attached drawings. Furthermore, the directional terms mentioned in the present invention, such as top, bottom, top, bottom, front, back, left, right, inside, outside, side, periphery, center, horizontal, transverse, vertical, longitudinal, axial, radial, topmost or bottommost, etc., are only referenced to the directions of the attached drawings. Therefore, the directional terms used are used to explain and understand the present invention, not to limit the present invention.
請參照圖1所示,為根據本發明一實施例的一種用於積層製造一產品之參數最佳化系統,其中利用一機台進行選擇性雷射熔融積層製造來形成該產品,該參數最佳化系統包括一選定模組2、一磁性分析儀3、一拉伸試驗機4及一機器學習模組5,本發明將於下文詳細說明各元件的細部構造、組裝關係及其運作原理。 Please refer to FIG. 1, which is a parameter optimization system for lamination manufacturing of a product according to an embodiment of the present invention, wherein a machine is used for selective laser melting lamination manufacturing to form the product. The parameter optimization system includes a selection module 2, a magnetic analyzer 3, a tensile testing machine 4 and a machine learning module 5. The present invention will describe in detail the detailed structure, assembly relationship and operation principle of each component below.
續參照圖1所示,該選定模組2配置為選定多個可控參數,其中該等可控參數包含熔融腔室氧濃度、雷射功率、雷射掃描速度以及掃描線間距。在本實施例中,該選定模組2透過一田口方法調整該等可控參數,並將該等可控參數排列在一直交表中。例如下表所示,將參數A、B、C、D分別代表四個製程參數因子(如熔融腔室氧濃度、雷射功率、雷射 掃描速度以及掃描線間距),以此進行多組有效的實驗並根據逐批實驗的結果討論四種製程參數分別對於產品特性的影響,並在此過程中累積機器學習所需的資料。 Continuing with reference to FIG. 1 , the selection module 2 is configured to select a plurality of controllable parameters, wherein the controllable parameters include melting chamber oxygen concentration, laser power, laser scanning speed, and scanning line spacing. In this embodiment, the selection module 2 adjusts the controllable parameters through a Taguchi method and arranges the controllable parameters in a straight line table. For example, as shown in the following table, the parameters A, B, C, and D represent four process parameter factors (such as melting chamber oxygen concentration, laser power, laser scanning speed, and scanning line spacing), so as to conduct multiple effective experiments and discuss the effects of the four process parameters on product characteristics according to the results of batch experiments, and accumulate the data required for machine learning in this process.
續參照圖1所示,該磁性分析儀3電性連接該選定模組2,該磁性分析儀3配置為接收該等可控參數,並且根據該等可控參數對多個第一試片6進行實驗,以獲得一磁特性數據資料,其中該磁特性數據包含一磁導率及一鐵損。 Continuing with reference to FIG. 1 , the magnetic analyzer 3 is electrically connected to the selected module 2, and the magnetic analyzer 3 is configured to receive the controllable parameters and perform experiments on a plurality of first test pieces 6 according to the controllable parameters to obtain a magnetic property data, wherein the magnetic property data includes a magnetic permeability and an iron loss.
如圖2所示,在本實施例中,由於軟磁材料之磁特性與操作頻率有關,由軟磁材料製成之產品特性在不同的應用場景有不同的操作頻率,本發明選用四種頻率(50Hz、200Hz、400Hz、800Hz),即該等第一試片6以多個頻率進行實驗,其中該等頻率具有50Hz、200Hz、400Hz及800Hz,而且該等第一試片6是根據該直交表中的該等可控參數進行實驗,具體來說,每一第一試片6包含一環狀本體61、一激磁繞組62、一量測繞組63,該激磁繞組62及該量測繞組63固定在該環狀本體61上且彼此相對。示例地,該激磁繞組62設置為20圈一次繞組,該量測繞組63設置為5圈二次繞組。 As shown in FIG. 2 , in this embodiment, since the magnetic properties of soft magnetic materials are related to the operating frequency, the characteristics of products made of soft magnetic materials have different operating frequencies in different application scenarios. The present invention selects four frequencies (50 Hz, 200 Hz, 400 Hz, and 800 Hz), that is, the first test pieces 6 are tested at multiple frequencies, wherein the frequencies are 50 Hz, 200 Hz, 400 Hz, and 800 Hz, and the first test pieces 6 are tested according to the controllable parameters in the orthogonal table. Specifically, each first test piece 6 includes an annular body 61, an excitation winding 62, and a measuring winding 63, and the excitation winding 62 and the measuring winding 63 are fixed on the annular body 61 and are opposite to each other. For example, the excitation winding 62 is set as a 20-turn primary winding, and the measuring winding 63 is set as a 5-turn secondary winding.
請參照圖1所示,該拉伸試驗機4電性連接該選定模組2,該拉伸試驗機4配置為接收該等可控參數,並且根據該等可控參數對多個第二試片7進行實驗,以獲得一拉伸特性數據資料,其中該拉伸特性數據資料包含一最大拉伸應力。 As shown in FIG. 1 , the tensile testing machine 4 is electrically connected to the selected module 2, and the tensile testing machine 4 is configured to receive the controllable parameters and perform experiments on a plurality of second test pieces 7 according to the controllable parameters to obtain a tensile property data, wherein the tensile property data includes a maximum tensile stress.
如圖3所示,在本實施例中,該等第二試片7是根據該直交表中的該等可控參數進行實驗,其中每一第二試片7包含一中間段71及二固定段72,該等固定段72位於該中間段71的二相對側,而且該等固定段 72的一橫向截面積大於該中間段71的一橫向截面積。示例地,該拉伸試驗機4是以等速2μm/s對該第二試片7的該等固定段72往反方向進行拉伸。 As shown in FIG. 3 , in this embodiment, the second test pieces 7 are tested according to the controllable parameters in the orthogonal table, wherein each second test piece 7 comprises a middle section 71 and two fixed sections 72, the fixed sections 72 are located at two opposite sides of the middle section 71, and a transverse cross-sectional area of the fixed sections 72 is larger than a transverse cross-sectional area of the middle section 71. For example, the tensile testing machine 4 stretches the fixed sections 72 of the second test piece 7 in the opposite direction at a constant speed of 2 μm/s.
請參照圖1所示,該機器學習模組5電性連接該磁性分析儀3及該拉伸試驗機4,該機器學習模組5配置為接收對該拉伸特性數據資料及該磁特性數據資料,並且對該拉伸特性數據資料及該磁特性數據資料進行處理,以產生一訓練模型。在本實施例中,該機器學習模組5可以透過演算法KNN(Nearest Neighbors)進行演算,或者是採用梯度提升決策樹進行演算,例如SVM(support vector machine)、XGBoost(eXtreme Gradient Boosting)、CatBoost(categorical boosting)及LightGBM(Light Gradient Boosting Machine),而且該機器學習模組5引入一隨機搜索法來尋找最佳的一超參數,並依據該超參數建立該訓練模型。 As shown in FIG1 , the machine learning module 5 is electrically connected to the magnetic analyzer 3 and the tensile testing machine 4, and the machine learning module 5 is configured to receive the tensile characteristic data and the magnetic characteristic data, and process the tensile characteristic data and the magnetic characteristic data to generate a training model. In this embodiment, the machine learning module 5 can be calculated by the KNN (Nearest Neighbors) algorithm, or by using a gradient boosting decision tree, such as SVM (support vector machine), XGBoost (eXtreme Gradient Boosting), CatBoost (categorical boosting) and LightGBM (Light Gradient Boosting Machine), and the machine learning module 5 introduces a random search method to find the best hyperparameter, and establishes the training model based on the hyperparameter.
在本實施例中,將該等可控參數透過使用者介面101(見圖5)輸入至該訓練模型中,經該訓練模型處理並輸出該產品的多個特性預估值,而且該訓練模型透過一非凌越排序基因演算法以輸入的該等可控參數以及輸出的該等特性預估值為基準,獲得最佳的該等特性預估值。也就是說,該訓練模型可以根據輸入的參數,獲得產品特性的預估,進而能夠在實際印製產品之前,透過製程參數的設定來推斷產品特性表現。 In this embodiment, the controllable parameters are input into the training model through the user interface 101 (see FIG. 5 ), and the training model processes and outputs multiple property estimates of the product, and the training model obtains the best property estimates based on the input controllable parameters and the output property estimates through a non-overlapping genetic algorithm. In other words, the training model can obtain an estimate of the product characteristics based on the input parameters, and can infer the product characteristics through the setting of process parameters before the actual printing of the product.
如上所述,本發明用於積層製造一產品之參數最佳化系統分別透過該磁性分析儀3及該拉伸試驗機4進行多組有效的實驗,並且根據逐批實驗的結果討論製程參數分別對於產品特性的影響,接著在累積一定量數據之後建立機器學習模型進行材料特性預測,藉此透過製程參數的設定來推斷產品特性表現,進而能夠提升金屬積層製造列印的效率,減少冗餘實驗,並且能夠驗證該訓練模型的準確性,以達到參數最佳化的要求,而獲得低鐵損、高磁導率及高機械強度的產品特性。 As described above, the parameter optimization system for lamination manufacturing of a product of the present invention conducts multiple effective experiments through the magnetic analyzer 3 and the tensile testing machine 4, and discusses the influence of the process parameters on the product characteristics according to the results of the batch experiments, and then establishes a machine learning model to predict the material characteristics after accumulating a certain amount of data, thereby inferring the product characteristics through the setting of process parameters, thereby improving the efficiency of metal lamination manufacturing printing, reducing redundant experiments, and verifying the accuracy of the training model, so as to achieve the requirements of parameter optimization and obtain product characteristics of low iron loss, high magnetic permeability and high mechanical strength.
請參照圖4並配合圖1所示,為依據本發明一實施例的一種用於積層製造一產品之參數最佳化系統的操作方法,該操作方法是依據該參數最佳化系統進行操作,其中該操作方法包括一參數選定步驟S201、一 磁特性量測步驟S202、一機械拉伸量測步驟S203、一模型建立步驟S204及一模型執行步驟S205。本發明將於下文詳細說明各步驟的關係及其運作原理。 Please refer to FIG. 4 and FIG. 1 for an operation method of a parameter optimization system for lamination manufacturing a product according to an embodiment of the present invention. The operation method is operated according to the parameter optimization system, wherein the operation method includes a parameter selection step S201, a magnetic property measurement step S202, a mechanical stretching measurement step S203, a model establishment step S204 and a model execution step S205. The present invention will explain in detail the relationship between each step and its operating principle below.
續參照圖4並配合圖1所示,在該參數選定步驟S201中,利用一選定模組2選定多個可控參數,該等可控參數包含熔融腔室氧濃度、雷射功率、雷射掃描速度以及掃描線間距。在本實施例中,該選定模組2透過一田口方法調整該等可控參數,並將該等可控參數排列在一直交表中。 Continuing to refer to FIG. 4 and FIG. 1 , in the parameter selection step S201, a selection module 2 is used to select multiple controllable parameters, and the controllable parameters include melting chamber oxygen concentration, laser power, laser scanning speed, and scanning line spacing. In this embodiment, the selection module 2 adjusts the controllable parameters through a Taguchi method and arranges the controllable parameters in a straight table.
續參照圖4並配合圖1所示,在該磁特性量測步驟S202中,利用一磁性分析儀3根據該等可控參數對多個第一試片6進行實驗,以獲得一磁特性數據資料,其中該磁特性數據包含一磁導率及一鐵損。在本實施例中,由於軟磁材料之磁特性與操作頻率有關,由軟磁材料製成之產品特性在不同的應用場景有不同的操作頻率,本發明選用四種頻率,50Hz、200Hz、400Hz以及800Hz,即該等第一試片6以多個頻率進行實驗,其中該等頻率具有50Hz、200Hz、400Hz及800Hz,而且該等第一試片6是根據該直交表中的該等可控參數進行實驗,每一第一試片6包含一環狀本體61、一激磁繞組62、一量測繞組63,該激磁繞組62及該量測繞組63固定在該環狀本體61上且彼此相對。示例地,該激磁繞組62設置為20圈一次繞組,該量測繞組63設置為5圈二次繞組。 Continuing to refer to FIG. 4 and FIG. 1 , in the magnetic property measurement step S202, a magnetic analyzer 3 is used to perform experiments on a plurality of first test pieces 6 according to the controllable parameters to obtain magnetic property data, wherein the magnetic property data includes a magnetic permeability and an iron loss. In this embodiment, since the magnetic properties of soft magnetic materials are related to the operating frequency, the characteristics of products made of soft magnetic materials have different operating frequencies in different application scenarios. The present invention selects four frequencies, 50 Hz, 200 Hz, 400 Hz and 800 Hz, that is, the first test pieces 6 are tested at multiple frequencies, wherein the frequencies are 50 Hz, 200 Hz, 400 Hz and 800 Hz, and the first test pieces 6 are tested according to the controllable parameters in the orthogonal table. Each first test piece 6 includes an annular body 61, an excitation winding 62, and a measuring winding 63. The excitation winding 62 and the measuring winding 63 are fixed on the annular body 61 and are opposite to each other. For example, the excitation winding 62 is set as a 20-turn primary winding, and the measuring winding 63 is set as a 5-turn secondary winding.
續參照圖4並配合圖1所示,在該機械拉伸量測步驟S203中,利用一拉伸試驗機4根據該等可控參數對多個第二試片7進行實驗,以獲得一拉伸特性數據資料,其中該拉伸特性數據資料包含一最大拉伸應力。在本實施例中,該等第二試片7是根據該直交表中的該等可控參數進行實驗,其中每一第二試片7包含一中間段71及二固定段72,該等固定段72位於該中間段71的二相對側,而且該等固定段72的一橫向截面積大於該中間段71的一橫向截面積。示例地,該拉伸試驗機4以等速2μm/s對該第二試片7的該等固定段72往反方向進行拉伸。 Continuing to refer to FIG. 4 and FIG. 1 , in the mechanical stretching measurement step S203, a stretching tester 4 is used to test a plurality of second test pieces 7 according to the controllable parameters to obtain a stretching characteristic data, wherein the stretching characteristic data includes a maximum stretching stress. In this embodiment, the second test pieces 7 are tested according to the controllable parameters in the orthogonal table, wherein each second test piece 7 includes a middle section 71 and two fixed sections 72, the fixed sections 72 are located on two opposite sides of the middle section 71, and a transverse cross-sectional area of the fixed sections 72 is greater than a transverse cross-sectional area of the middle section 71. For example, the stretching tester 4 stretches the fixed sections 72 of the second test piece 7 in the opposite direction at a constant speed of 2μm/s.
續參照圖4並配合圖1所示,在該模型建立步驟S204中, 利用一機器學習模組5對該拉伸特性數據資料及該磁特性數據資料進行處理,以產生一訓練模型。在本實施例中,該機器學習模組5是採用梯度提升決策樹進行演算,而且該機器學習模組5引入一隨機搜索法來尋找最佳的一超參數,並依據該超參數建立該訓練模型。 Continuing to refer to FIG. 4 and FIG. 1 , in the model building step S204, a machine learning module 5 is used to process the tensile property data and the magnetic property data to generate a training model. In this embodiment, the machine learning module 5 uses a gradient boosting decision tree for calculation, and the machine learning module 5 introduces a random search method to find the best hyperparameter, and establishes the training model based on the hyperparameter.
續參照圖4並配合圖1所示,在該模型執行步驟S205中,將該等可控參數透過使用者介面101(見圖5)輸入至該訓練模型中,經該訓練模型處理並輸出該產品的多個特性預估值。在本實施例中,該訓練模型透過一非凌越排序基因演算法以輸入的該等可控參數以及輸出的該等特性預估值為基準,獲得最佳的該等特性預估值。 Continuing to refer to FIG. 4 and FIG. 1 , in the model execution step S205, the controllable parameters are input into the training model through the user interface 101 (see FIG. 5 ), and the training model processes and outputs multiple characteristic estimation values of the product. In this embodiment, the training model obtains the best characteristic estimation values based on the input controllable parameters and the output characteristic estimation values through a non-overlapping ranking genetic algorithm.
本發明結合基因演算法(Genetic Algorithm,GA)之一的非凌越基因演算法(Non-dominated Sorting Genetic Algorithm,NSGA-II),藉由指定產品特性進行製程參數的建議,首先根據前述已經建立好的模型(輸入製程參數,輸出產品特性)為基準,藉由不斷的進化、交配,得出最佳化的製程參數建議,其中作為判斷基準的客製化函數(objective function)就是上述建立好的訓練模型,即機器學習模型(Machine learning models)。 The present invention combines the Non-dominated Sorting Genetic Algorithm (NSGA-II), one of the genetic algorithms (GA), to recommend process parameters by specifying product characteristics. First, based on the previously established model (input process parameters, output product characteristics), the optimized process parameter recommendations are obtained through continuous evolution and mating. The objective function used as the judgment basis is the previously established training model, i.e., the machine learning model.
如上所述,本發明用於積層製造一產品之參數最佳化系統分別透過該磁性分析儀3及該拉伸試驗機4進行多組有效的實驗,並且根據逐批實驗的結果討論製程參數分別對於產品特性的影響,接著在累積一定量數據之後建立機器學習模型進行材料特性預測,藉此透過製程參數的設定來推斷產品特性表現,進而能夠提升金屬積層製造列印的效率,減少冗餘實驗,並且能夠驗證該訓練模型的準確性,以達到參數最佳化的要求,而獲得低鐵損、高磁導率及高機械強度的產品特性。 As described above, the parameter optimization system for lamination manufacturing of a product of the present invention conducts multiple effective experiments through the magnetic analyzer 3 and the tensile testing machine 4, and discusses the influence of the process parameters on the product characteristics according to the results of the batch experiments, and then establishes a machine learning model to predict the material characteristics after accumulating a certain amount of data, thereby inferring the product characteristics through the setting of process parameters, thereby improving the efficiency of metal lamination manufacturing printing, reducing redundant experiments, and verifying the accuracy of the training model, so as to achieve the requirements of parameter optimization and obtain product characteristics of low iron loss, high magnetic permeability and high mechanical strength.
儘管已經在系統的上下文中描述了一些態樣,但是應當理解的是,所述方面也表示對應方法的描述,因此,系統的方塊或結構元件也應被理解為相應的方法步驟或方法步驟的特徵。以此類推,已經在方法步驟的上下文中或作為方法步驟描述的方面也表示對相應設備的相應方塊或細節或特徵的描述。一些或所有的方法步驟可以在使用如微處理器、可編 程電腦或電子電路的硬體設備時執行。在一些實施例中,一些或幾個最重要的方法步驟可以由這樣的設備來執行。 Although some aspects have been described in the context of a system, it should be understood that the aspects also represent a description of a corresponding method, and therefore, a block or structural element of the system should also be understood as a corresponding method step or a feature of a method step. By analogy, aspects that have been described in the context of a method step or as a method step also represent a description of a corresponding block or detail or feature of a corresponding device. Some or all of the method steps can be performed using a hardware device such as a microprocessor, a programmable computer or an electronic circuit. In some embodiments, some or several of the most important method steps can be performed by such a device.
根據具體的實現需求,本發明的實施例可以用硬體實現,也可以用軟體實現。可以在使用數位儲存介質時實現實施,例如軟碟機、DVD、藍光磁碟機、CD、ROM、PROM、EPROM、EEPROM或FLASH儲存器、硬碟或任何其他磁或光學儲存器,其具有儲存在其中的電子可讀控制訊號,其可以與可編程電腦系統合作,或協作,使得相應的方法被執行。這就是為什麼數位儲存介質可以是電腦可讀的。因此,根據本發明的一些實施例包括數據載體,其包括能夠與可編程電腦系統協作,以便執行本文描述的任何方法的電子可讀控制訊號。通常,本發明的實施例可以實現為具有程序代碼的電腦程式產品,當電腦程式產品在電腦上運行時,程式代碼可有效執行任何方法。例如,程式代碼也可以儲存在機器可讀的載體上。其他實施例包括用於執行本文所述的任何方法的電腦程式,該電腦程式儲存在機器可讀載體上。換句話說,本發明方法的一個實施例是一種電腦程式,其具有用於執行本文描述的任何方法的程式代碼,當電腦程式在電腦上運行時。因此,本發明方法的另一個實施例是一種數據載體(或數位儲存介質或電腦可讀介質),其中記錄了用於執行此處描述的任何方法的電腦程式。數據載體、數位儲存介質或記錄介質通常是有形的或非易失性的。因此,本發明方法的另一個實施例是數據流或訊號序列,表示用於執行此處描述的任何方法的電腦程式。數據流或訊號序列可以被配置為例如經由數據通信鏈路傳輸,例如經由網路傳輸。進一步的實施例包括處理單元,例如電腦或可編程邏輯設備,配置為或適於執行本文描述的任何方法。進一步的實施例包括電腦,在電腦上安裝了用於執行本文描述的任何方法的電腦程式。 Depending on the specific implementation requirements, the embodiments of the present invention can be implemented in hardware or in software. The implementation can be implemented when using a digital storage medium, such as a floppy disk drive, DVD, Blu-ray disk drive, CD, ROM, PROM, EPROM, EEPROM or FLASH memory, a hard disk or any other magnetic or optical storage device, which has an electronically readable control signal stored therein, which can cooperate with a programmable computer system, or collaborate, so that the corresponding method is executed. This is why the digital storage medium can be computer readable. Therefore, some embodiments of the present invention include a data carrier, which includes an electronically readable control signal that can cooperate with a programmable computer system to execute any method described herein. Generally, embodiments of the present invention can be implemented as a computer program product having a program code, and when the computer program product is run on a computer, the program code can effectively execute any method. For example, the program code can also be stored on a machine-readable carrier. Other embodiments include a computer program for executing any method described herein, which is stored on a machine-readable carrier. In other words, one embodiment of the method of the present invention is a computer program having a program code for executing any method described herein, when the computer program is run on a computer. Therefore, another embodiment of the method of the present invention is a data carrier (or digital storage medium or computer-readable medium) in which a computer program for executing any method described herein is recorded. Data carriers, digital storage media or recording media are generally tangible or non-volatile. Therefore, another embodiment of the method of the invention is a data stream or signal sequence representing a computer program for executing any of the methods described herein. The data stream or signal sequence can be configured to be transmitted, for example, via a data communication link, such as via a network. Further embodiments include a processing unit, such as a computer or a programmable logic device, configured or suitable for executing any of the methods described herein. Further embodiments include a computer on which a computer program for executing any of the methods described herein is installed.
根據本發明的另一實施例包括一種裝置或系統,該裝置或系統被配置成將用於執行這裡描述的方法中的至少一個的電腦程式傳輸到接收器。例如,傳輸可以是電學的或光學的。例如,接收器可以是電腦、移動裝置、儲存裝置或類似裝置。例如,裝置或系統可以包括用於將電腦程 序傳輸到接收器的文件伺服器。在一些實施例中,可編程邏輯裝置(例如現場可編程門陣列,FPGA)可以用於執行本文描述的方法的一些或所有功能。在一些實施例中,現場可編程門陣列可以與微處理器協作以執行本文描述的任何方法。通常,在一些實施例中,這些方法由任何硬體設備執行。所述硬體設備可以是電腦處理器(CPU)等任何通用的硬體,也可以是ASIC等方法專用的硬體。 Another embodiment according to the invention includes a device or system configured to transmit a computer program for performing at least one of the methods described herein to a receiver. For example, the transmission may be electrical or optical. For example, the receiver may be a computer, a mobile device, a storage device, or the like. For example, the device or system may include a file server for transmitting the computer program to the receiver. In some embodiments, a programmable logic device (e.g., a field programmable gate array, FPGA) may be used to perform some or all of the functions of the methods described herein. In some embodiments, the field programmable gate array may cooperate with a microprocessor to perform any of the methods described herein. Generally, in some embodiments, the methods are performed by any hardware device. The hardware device may be any general-purpose hardware such as a computer processor (CPU), or method-specific hardware such as an ASIC.
雖然本發明已以實施例揭露,然其並非用以限制本發明,任何熟習此項技藝之人士,在不脫離本發明之精神和範圍內,當可作各種更動與修飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed by way of embodiments, it is not intended to limit the present invention. Anyone skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention shall be subject to the scope of the patent application attached hereto.
101:使用者介面 101: User Interface
2:選定模組 2: Select module
3:磁性分析儀 3: Magnetic analyzer
4:拉伸試驗機 4: Tensile testing machine
5:機器學習模組 5: Machine learning module
6:第一試片 6: First test piece
61:環狀本體 61: Ring-shaped body
62:激磁繞組 62: Excitation winding
63:量測繞組 63: Measurement winding
7:第二試片 7: Second test piece
71:中間段 71: Middle section
72:固定段 72: Fixed segment
S201:參數選定步驟 S201: Parameter selection step
S202:磁特性量測步驟 S202: Magnetic property measurement step
S203:機械拉伸量測步驟 S203: Mechanical tensile measurement step
S204:模型建立步驟 S204: Model building step
S205:模型執行步驟 S205: Model execution steps
圖1是依據本發明一實施例的一種用於積層製造一產品之參數最佳化系統的示意圖。 FIG1 is a schematic diagram of a parameter optimization system for layered manufacturing of a product according to an embodiment of the present invention.
圖2是依據本發明一實施例的一種用於積層製造一產品之參數最佳化系統的第一試片的示意圖。 FIG2 is a schematic diagram of a first test piece of a parameter optimization system for layered manufacturing of a product according to an embodiment of the present invention.
圖3是依據本發明一實施例的一種用於積層製造一產品之參數最佳化系統的第二試片的示意圖。 FIG3 is a schematic diagram of a second test piece of a parameter optimization system for layered manufacturing of a product according to an embodiment of the present invention.
圖4是依據本發明一實施例的一種用於積層製造一產品之參數最佳化系統的操作方法的流程圖。 FIG4 is a flow chart of an operation method of a parameter optimization system for layered manufacturing of a product according to an embodiment of the present invention.
圖5是依據本發明一實施例的一種用於積層製造一產品之參數最佳化系統的使用者介面的示意圖。 FIG5 is a schematic diagram of a user interface of a parameter optimization system for layered manufacturing of a product according to an embodiment of the present invention.
S201:參數選定步驟 S201: Parameter selection step
S202:磁特性量測步驟 S202: Magnetic property measurement step
S203:機械拉伸量測步驟 S203: Mechanical tensile measurement step
S204:模型建立步驟 S204: Model building step
S205:模型執行步驟 S205: Model execution steps
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW112132891A TWI860071B (en) | 2023-08-30 | 2023-08-30 | Parameter optimization system for additive manufacturing of product and operational method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW112132891A TWI860071B (en) | 2023-08-30 | 2023-08-30 | Parameter optimization system for additive manufacturing of product and operational method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI860071B true TWI860071B (en) | 2024-10-21 |
| TW202511087A TW202511087A (en) | 2025-03-16 |
Family
ID=94084070
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW112132891A TWI860071B (en) | 2023-08-30 | 2023-08-30 | Parameter optimization system for additive manufacturing of product and operational method thereof |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI860071B (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI701158B (en) * | 2015-01-14 | 2020-08-11 | 瑞典商數位金屬公司 | Additive manufacturing method, method of processing object data, data carrier, object data processor and manufactured additive object |
| US20200338813A1 (en) * | 2017-12-29 | 2020-10-29 | Evolve Additive Solutions, Inc. | Method of thermally transferring images in a selective deposition based additive manufacturing system |
| TWI747053B (en) * | 2018-10-03 | 2021-11-21 | 國立成功大學 | Additive manufacturing system and method and feature extraction method |
| US20230236552A1 (en) * | 2020-12-18 | 2023-07-27 | Strong Force Vcn Portfolio 2019, Llc | Digital-Twin-Enabled Artificial Intelligence System for Distributed Additive Manufacturing |
-
2023
- 2023-08-30 TW TW112132891A patent/TWI860071B/en active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI701158B (en) * | 2015-01-14 | 2020-08-11 | 瑞典商數位金屬公司 | Additive manufacturing method, method of processing object data, data carrier, object data processor and manufactured additive object |
| US20200338813A1 (en) * | 2017-12-29 | 2020-10-29 | Evolve Additive Solutions, Inc. | Method of thermally transferring images in a selective deposition based additive manufacturing system |
| TWI747053B (en) * | 2018-10-03 | 2021-11-21 | 國立成功大學 | Additive manufacturing system and method and feature extraction method |
| US20230236552A1 (en) * | 2020-12-18 | 2023-07-27 | Strong Force Vcn Portfolio 2019, Llc | Digital-Twin-Enabled Artificial Intelligence System for Distributed Additive Manufacturing |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202511087A (en) | 2025-03-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5733229B2 (en) | Classifier creation device, classifier creation method, and computer program | |
| CN114186589B (en) | A method for partial discharge pattern recognition of superconducting cables based on residual network Resnet50 | |
| CN107015875B (en) | A method and device for evaluating the storage life of an electronic complete machine | |
| CN108108829A (en) | A kind of job-shop scheduling method based on improvement drosophila algorithm | |
| Hwang et al. | A genetic algorithm for the optimization of fiber angles in composite laminates | |
| CN102254177A (en) | Bearing fault detection method for unbalanced data SVM (support vector machine) | |
| CN119199363B (en) | Corona-resistant life acceleration prediction method and device for electromagnetic wire insulating layer | |
| TWI860071B (en) | Parameter optimization system for additive manufacturing of product and operational method thereof | |
| CN113312726A (en) | GCr15 bearing surface layer performance optimization method based on particle swarm optimization and ultrasonic rolling | |
| CN112733458A (en) | Engineering structure signal processing method based on self-adaptive variational modal decomposition | |
| CN110929421A (en) | A relay optimization method considering permanent magnet degradation and manufacturing uncertainty | |
| CN120340694A (en) | Temperature control method and device for laser annealing | |
| CN105894111B (en) | Energy consumption prediction method and device based on complementary fuzzy neural network | |
| CN120444230B (en) | Control device and method for relay pump | |
| CN108594641B (en) | A Method of Suppressing Servo Resonance Based on Notch Filter with Asymmetric Center Frequency | |
| CN106558960B (en) | Rote learning device and coil electricity heater | |
| Han et al. | Hyperparameter optimization for multi-layer data input using genetic algorithm | |
| Liu et al. | A sphere-dominance based preference immune-inspired algorithm for dynamic multi-objective optimization | |
| CN101614799B (en) | Signal separation and selection method applied in current sensor angular difference on-line monitoring system | |
| JP5749041B2 (en) | Active feedback control device and program | |
| CN117013890B (en) | Improved ephemera algorithm for optimizing electromagnetic vibration noise of permanent magnet synchronous motor and its system | |
| Wulandhari et al. | Improvement of adaptive GAs and back propagation ANNs performance in condition diagnosis of multiple bearing system using grey relational analysis | |
| CN117272647A (en) | An optimization method for E-plane metal waveguide filters based on improved particle swarm algorithm | |
| JP5696469B2 (en) | Motor iron loss analysis method, motor core material selection method, and motor manufacturing method | |
| Rajan et al. | Real-Time Signal Processing in IoT-Based Embedded Systems Using Hybrid AI-Enhanced Edge Computing |