[go: up one dir, main page]

TWI853535B - Beverage quality prediction system during blending process - Google Patents

Beverage quality prediction system during blending process Download PDF

Info

Publication number
TWI853535B
TWI853535B TW112114753A TW112114753A TWI853535B TW I853535 B TWI853535 B TW I853535B TW 112114753 A TW112114753 A TW 112114753A TW 112114753 A TW112114753 A TW 112114753A TW I853535 B TWI853535 B TW I853535B
Authority
TW
Taiwan
Prior art keywords
quality
stirring
container
monitoring
analysis device
Prior art date
Application number
TW112114753A
Other languages
Chinese (zh)
Other versions
TW202443473A (en
Inventor
林淑莉
顧琪玫
楊子嫺
黃家德
黃世榮
Original Assignee
財團法人食品工業發展研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人食品工業發展研究所 filed Critical 財團法人食品工業發展研究所
Priority to TW112114753A priority Critical patent/TWI853535B/en
Application granted granted Critical
Publication of TWI853535B publication Critical patent/TWI853535B/en
Publication of TW202443473A publication Critical patent/TW202443473A/en

Links

Images

Landscapes

  • Accessories For Mixers (AREA)
  • Devices For Dispensing Beverages (AREA)

Abstract

提供一種飲品調製混合品質預測系統。該飲品調製混合品質預測系統包括一容器、一攪拌調控模組、一第一監控模組、一第二監控模組以及一控制單元。該容器用以盛裝一混合物料。該攪拌調控模組包括一攪拌件,該攪拌件伸入該容器中,用以攪拌該混合物料。該第一監控模組設置於該容器外之循環管道,用以即時監測該混合物料的品質。該第二監控模組之至少一部分設置於該容器中,用以監控該混合物料在混合過程中的品質變化。該控制單元電連接該攪拌調控模組、該第一監控模組及該第二監控模組,用以控制該攪拌調控模組及接收該第一監控模組與該第二監控模組的品質監測數據,並依據該等品質監測數據建立至少一物料混合品質預測模型。A beverage mixing quality prediction system is provided. The beverage mixing quality prediction system includes a container, a stirring control module, a first monitoring module, a second monitoring module and a control unit. The container is used to contain a mixed material. The stirring control module includes a stirring element, which extends into the container to stir the mixed material. The first monitoring module is arranged in a circulation pipeline outside the container to monitor the quality of the mixed material in real time. At least a part of the second monitoring module is arranged in the container to monitor the quality change of the mixed material during the mixing process. The control unit is electrically connected to the stirring control module, the first monitoring module and the second monitoring module, and is used to control the stirring control module and receive quality monitoring data from the first monitoring module and the second monitoring module, and establish at least one material mixing quality prediction model based on the quality monitoring data.

Description

飲品調製混合品質預測系統Beverage Mixing Quality Prediction System

本發明係關於一種品質預測系統,且更具體言之,係關於一種飲品調製混合品質預測系統。The present invention relates to a quality prediction system, and more particularly, to a beverage preparation mixing quality prediction system.

在食品工業中,物料混合為其不可缺少之製程步驟。而混合類型可以包括固態粉體分散溶解或者不可相溶之液體混合。In the food industry, material mixing is an indispensable process step. The mixing types can include dispersing and dissolving solid powders or mixing immiscible liquids.

目前食品工廠針對物料混合加工製程,多以人工目測取樣或經驗法則來判斷混合終點。且若桶槽使用不銹鋼材質,根本無法即時利用肉眼觀測物料的現況,例如粉體結塊或起泡程度等。因此,現有取樣及判斷方法除耗費人力外,亦可能因不同操作人員、批次作業、取樣點誤差或不同設備導致混合終點誤判。而混合終點誤判或無法即時得知混合現況,可能發生以下幾種情況:(1)過度混合,造成混合物料的品質劣化,以致物料無法使用而被迫浪費;(2)成分配比錯誤或充填物品質不穩定,造成終產品品質均一性不佳及穩定性差;及(3)管路阻塞,造成混合設備損壞。At present, food factories mostly use manual visual sampling or empirical rules to judge the end point of mixing for material mixing processes. And if the barrel is made of stainless steel, it is impossible to use the naked eye to observe the current state of the material, such as powder agglomeration or foaming degree. Therefore, the existing sampling and judgment methods are not only labor-intensive, but also may lead to misjudgment of the mixing end point due to different operators, batch operations, sampling point errors or different equipment. If the mixing endpoint is misjudged or the mixing status cannot be immediately known, the following situations may occur: (1) over-mixing, resulting in deterioration of the quality of the mixed material, which makes the material unusable and wasted; (2) incorrect ingredient ratio or unstable filler quality, resulting in poor uniformity and stability of the final product; and (3) pipeline blockage, resulting in damage to the mixing equipment.

在一些實施例中,一種飲品調製混合品質預測系統包括一容器、一攪拌調控模組、一第一監控模組、一第二監控模組以及一控制單元。該容器用以盛裝一混合物料。該攪拌調控模組包括一攪拌件,該攪拌件伸入該容器中,用以攪拌該混合物料。該第一監控模組設置於該容器外,用以即時監測該混合物料的品質。該第二監控模組之至少一部分設置於該容器中,用以監控該混合物料在混合過程中的品質變化。該控制單元電連接該攪拌調控模組、該第一監控模組及該第二監控模組,用以控制該攪拌調控模組及接收該第一監控模組與該第二監控模組的品質監測數據,並依據該等品質監測數據建立至少一物料混合品質預測模型。In some embodiments, a beverage preparation mixing quality prediction system includes a container, a stirring control module, a first monitoring module, a second monitoring module and a control unit. The container is used to contain a mixed material. The stirring control module includes a stirring member, which extends into the container to stir the mixed material. The first monitoring module is arranged outside the container to monitor the quality of the mixed material in real time. At least a part of the second monitoring module is arranged in the container to monitor the quality change of the mixed material during the mixing process. The control unit is electrically connected to the stirring control module, the first monitoring module and the second monitoring module, and is used to control the stirring control module and receive quality monitoring data from the first monitoring module and the second monitoring module, and establish at least one material mixing quality prediction model based on the quality monitoring data.

在一些實施例中,一種飲品調製混合品質預測系統包括一容器、一攪拌調控模組、一品質分析裝置以及一控制單元。該容器用以盛裝一混合物料。該攪拌調控模組包括一攪拌件,該攪拌件伸入該容器中,用以攪拌該混合物料。該品質分析裝置設置於該容器之一側,用以分析從該容器中取出之該混合物料的品質。該控制單元電連接該攪拌調控模組及該品質分析裝置,用以控制該攪拌調控模組及接收該品質分析裝置的品質分析數據,並依據該等品質分析數據建立至少一物料混合品質預測模型。In some embodiments, a beverage preparation and mixing quality prediction system includes a container, a stirring and controlling module, a quality analysis device, and a control unit. The container is used to contain a mixed material. The stirring and controlling module includes a stirring member, which extends into the container to stir the mixed material. The quality analysis device is disposed on one side of the container to analyze the quality of the mixed material taken out of the container. The control unit is electrically connected to the stirring and controlling module and the quality analysis device to control the stirring and controlling module and receive quality analysis data from the quality analysis device, and establish at least one material mixing quality prediction model based on the quality analysis data.

參閱圖1,其係顯示根據本發明的一些實施例的飲品調製混合品質預測系統1的架構圖。本發明之飲品調製混合品質預測系統1包括一容器100、一攪拌調控模組200、一循環泵300、一循環管道400、一品質分析裝置500、一第一監控模組600、一第二監控模組700、一備料容器810、一入料調控模組A、一輸入/輸出模塊B以及一控制單元C。Referring to FIG. 1 , it is a schematic diagram showing a beverage preparation and mixing quality prediction system 1 according to some embodiments of the present invention. The beverage preparation and mixing quality prediction system 1 of the present invention comprises a container 100, a stirring control module 200, a circulation pump 300, a circulation pipeline 400, a quality analysis device 500, a first monitoring module 600, a second monitoring module 700, a material preparation container 810, a material feeding control module A, an input/output module B, and a control unit C.

該容器100用以盛裝一混合物料M。在一些實施例中,該容器100可為一豎直圓筒型容器,且其不侷限於封閉容器,亦可包括開放容器。該容器100可為透明材質或不透明材質。在一些實施例中,如圖1所示,該容器100可包括一上部101、一下部102及一排料閥103。該下部102相對於該上部101。該排料閥103設置於該下部102,用以將該混合物料M排出。The container 100 is used to contain a mixed material M. In some embodiments, the container 100 may be a vertical cylindrical container, and it is not limited to a closed container, and may also include an open container. The container 100 may be a transparent material or an opaque material. In some embodiments, as shown in FIG. 1 , the container 100 may include an upper portion 101, a lower portion 102, and a discharge valve 103. The lower portion 102 is opposite to the upper portion 101. The discharge valve 103 is disposed at the lower portion 102 to discharge the mixed material M.

該攪拌調控模組200可包括一攪拌件230、一驅動馬達210及一扭力感測元件220。該攪拌件230可伸入該容器100中,用以攪拌該混合物料M。在一些實施例中,該攪拌件230可依需求做更換,且可視物料或產品特性而不侷限於單一型式。例如,在一些實施例中,該攪拌件230可為葉片型式,包括但不限於推進式葉片、槳式葉片或渦輪式葉片。在一些實施例中,該攪拌件230可為破碎剪切型式,包括但不限於齒型、槽型或圓孔型刀具。該驅動馬達210用以驅動該攪拌件230。在一些實施例中,如圖1所示,該驅動馬達210可通過該扭力感測元件220連接該攪拌件230。該扭力感測元件220可用於監測攪拌過程中之扭矩變化,進而換算出該混合物料M之黏度值。在一些實施例中,該驅動馬達210可配置變頻器,用於調整該驅動馬達210之轉速。The stirring control module 200 may include a stirring member 230, a driving motor 210 and a torque sensing element 220. The stirring member 230 may extend into the container 100 to stir the mixed material M. In some embodiments, the stirring member 230 may be replaced as needed, and may be visually material or product characteristics and is not limited to a single type. For example, in some embodiments, the stirring member 230 may be a blade type, including but not limited to a propeller blade, a paddle blade or a turbine blade. In some embodiments, the stirring member 230 may be a crushing shear type, including but not limited to a toothed, grooved or round hole type tool. The driving motor 210 is used to drive the stirring member 230. In some embodiments, as shown in FIG. 1 , the drive motor 210 may be connected to the stirring member 230 via the torque sensing element 220 . The torque sensing element 220 may be used to monitor the torque change during the stirring process, and then convert the viscosity value of the mixed material M. In some embodiments, the drive motor 210 may be equipped with a frequency converter to adjust the rotation speed of the drive motor 210 .

該循環管道400可連通該容器100之該上部101及該下部102,用以引導該混合物料M出入該容器100。該循環泵300可設置於該循環管道400上,用以循環輸送該混合物料M出入該容器100。在一些實施例中,該循環管道400可供設置監測設備進行監測操作或設置剪切裝置進行均質操作。在一些實施例中,該循環管道400可為不銹鋼材質或塑膠材質。在一些實施例中,該循環泵300可包括但不限於隔膜泵、離心泵、轉子泵、蠕動泵、電磁泵或剪切泵。其中,該剪切泵可提供剪切力,以協助進行該混合物料M之均質操作。The circulation pipeline 400 can be connected to the upper part 101 and the lower part 102 of the container 100 to guide the mixed material M in and out of the container 100. The circulation pump 300 can be arranged on the circulation pipeline 400 to circulate and transport the mixed material M in and out of the container 100. In some embodiments, the circulation pipeline 400 can be provided with a monitoring device for monitoring operation or a shearing device for homogenization operation. In some embodiments, the circulation pipeline 400 can be made of stainless steel or plastic. In some embodiments, the circulation pump 300 can include but is not limited to a diaphragm pump, a centrifugal pump, a rotor pump, a peristaltic pump, an electromagnetic pump or a shear pump. Among them, the shear pump can provide shear force to assist in the homogenization operation of the mixed material M.

該品質分析裝置500可設置於該容器100之一側,用以分析從該容器100中取出之該混合物料M的品質。在一些實施例中,該品質分析裝置500可為經由取樣檢測品質的離線(非線上)分析裝置,例如實驗室分析裝置。該品質分析裝置500可不限於特定設備,凡是可以表徵該混合物料M的品質者,皆可使用。在一些實施例中,該品質分析裝置500可包括但不限於如下的一個或多個:流體流變分析裝置510、粒徑分析裝置520及電動電位分析裝置530。The quality analysis device 500 may be disposed on one side of the container 100 to analyze the quality of the mixed material M taken out of the container 100. In some embodiments, the quality analysis device 500 may be an off-line (non-online) analysis device that detects quality by sampling, such as a laboratory analysis device. The quality analysis device 500 may not be limited to a specific device, and any device that can characterize the quality of the mixed material M may be used. In some embodiments, the quality analysis device 500 may include but is not limited to one or more of the following: a fluid rheology analysis device 510, a particle size analysis device 520, and an electrokinetic potential analysis device 530.

該第一監控模組600可設置於該容器100外之循環管道上,用以即時監測該混合物料M的品質。也就是說,該第一監控模組600為線上監控模組。在一些實施例中,如圖1所示,該第一監控模組600可設置於該循環管道400上。該第一監控模組600可依據該混合物料M之不同混合模式(包括例如:溶解分散或乳化均質),選擇適用的監測元件,且使用的監測元件之數量可為一個或多個。在一些實施例中,該第一監控模組600可包括但不限於如下的一個或多個:黏度感測元件610、粒徑感測元件620、總懸浮物感測元件631、近紅外光度計632、濁度計633、可溶性固形物感測元件634、電導率感測元件640、流量感測元件650及分散穩定性分析裝置660。在一些實施例中,如圖1所示,該分散穩定性分析裝置660的設置位置可不同於其它監測元件(包括例如:該黏度感測元件610、該粒徑感測元件620、該總懸浮物感測元件631、該近紅外光度計632、該濁度計633、該可溶性固形物感測元件634、該電導率感測元件640及該流量感測元件650)的設置位置。The first monitoring module 600 can be disposed on the circulation pipeline outside the container 100 to monitor the quality of the mixed material M in real time. In other words, the first monitoring module 600 is an online monitoring module. In some embodiments, as shown in FIG1 , the first monitoring module 600 can be disposed on the circulation pipeline 400. The first monitoring module 600 can select an appropriate monitoring element according to different mixing modes of the mixed material M (including, for example, dissolution, dispersion or emulsification and homogenization), and the number of monitoring elements used can be one or more. In some embodiments, the first monitoring module 600 may include but is not limited to one or more of the following: a viscosity sensor 610, a particle size sensor 620, a total suspended matter sensor 631, a near-infrared photometer 632, a turbidity meter 633, a soluble solid sensor 634, a conductivity sensor 640, a flow sensor 650 and a dispersion stability analysis device 660. In some embodiments, as shown in FIG. 1 , the setting position of the dispersion stability analysis device 660 may be different from the setting positions of other monitoring elements (including, for example, the viscosity sensing element 610, the particle size sensing element 620, the total suspended matter sensing element 631, the near-infrared photometer 632, the turbidity meter 633, the soluble solids sensing element 634, the conductivity sensing element 640, and the flow sensing element 650).

該第二監控模組700之至少一部分可設置於該容器100中,用以監控該混合物料M在混合過程中的品質變化。也就是說,該第二監控模組700為線上監控模組。該第二監控模組700可依據不同目的或該混合物料M之不同表徵,選擇適用的監測元件,且使用的監測元件之數量可為一個或多個。在一些實施例中,該第二監控模組700可包括但不限於如下的一個或多個:比重感測元件710、離子感測元件720、流速感測元件730、溫度感測元件740、液位感測元件750及荷重元760。在一些實施例中,如圖1所示,該荷重元760的設置位置可不同於其它監測元件(包括例如:該比重感測元件710、該離子感測元件720、該流速感測元件730、該溫度感測元件740及該液位感測元件750)的設置位置。At least a portion of the second monitoring module 700 may be disposed in the container 100 to monitor the quality change of the mixed material M during the mixing process. In other words, the second monitoring module 700 is an online monitoring module. The second monitoring module 700 may select suitable monitoring elements according to different purposes or different characteristics of the mixed material M, and the number of monitoring elements used may be one or more. In some embodiments, the second monitoring module 700 may include but is not limited to one or more of the following: a specific gravity sensor 710, an ion sensor 720, a flow rate sensor 730, a temperature sensor 740, a liquid level sensor 750, and a load cell 760. In some embodiments, as shown in FIG. 1 , the placement position of the load cell 760 may be different from the placement positions of other monitoring elements (including, for example, the specific gravity sensing element 710 , the ion sensing element 720 , the flow rate sensing element 730 , the temperature sensing element 740 , and the liquid level sensing element 750 ).

該控制單元C可電連接該攪拌調控模組200、該品質分析裝置500、該第一監控模組600及該第二監控模組700,用以控制該攪拌調控模組200、接收該品質分析裝置500的品質分析數據及接收該第一監控模組600與該第二監控模組700的品質監測數據,並依據該等品質分析數據及該等品質監測數據建立至少一物料混合品質預測模型。在一些實施例中,該控制單元C可包括電腦、可程式邏輯控制器或其組合。The control unit C can be electrically connected to the stirring control module 200, the quality analysis device 500, the first monitoring module 600 and the second monitoring module 700 to control the stirring control module 200, receive the quality analysis data of the quality analysis device 500 and receive the quality monitoring data of the first monitoring module 600 and the second monitoring module 700, and establish at least one material mixing quality prediction model based on the quality analysis data and the quality monitoring data. In some embodiments, the control unit C may include a computer, a programmable logic controller or a combination thereof.

在一些實施例中,該至少一物料混合品質預測模型係可以人工神經網路(Artificial Neural Network,ANN)對該等品質分析數據及該等品質監測數據進行深度學習後建立。在一些實施例中,該品質分析裝置500的該等品質分析數據係可作為深度學習預測模型的輸出值,該第一監控模組600與該第二監控模組700的該等品質監測數據係可作為深度學習預測模型的輸入值,通過反向傳播演算法(Backpropagation Algorithm)對人工神經網路模型進行訓練及修正(包括調整神經元權重),即可建立該至少一物料混合品質預測模型。在一些實施例中,該至少一物料混合品質預測模型的輸入值亦可為物料種類、配方和/或製程設備的操作參數。在一些實施例中,該人工神經網路模型可由該控制單元C內軟體建立,並可用於:a) 得到各製程參數和/或物料配方資訊,輸入以獲得預測值並可與設定值作比較分析;b) 得到各監控模組之監測數據後,輸入以獲得預測值並與設定值作比較分析;c) 依據分析結果計算出製程終點之混合品質調校參數。In some embodiments, the at least one material mixture quality prediction model can be established by deep learning the quality analysis data and the quality monitoring data using an artificial neural network (ANN). In some embodiments, the quality analysis data of the quality analysis device 500 can be used as the output value of the deep learning prediction model, and the quality monitoring data of the first monitoring module 600 and the second monitoring module 700 can be used as the input value of the deep learning prediction model. The artificial neural network model is trained and modified (including adjusting the weight of the neuron) by a backpropagation algorithm to establish the at least one material mixture quality prediction model. In some embodiments, the input value of the at least one material mixing quality prediction model may also be the material type, formula and/or operating parameters of the process equipment. In some embodiments, the artificial neural network model may be established by the software in the control unit C and may be used to: a) obtain each process parameter and/or material formula information, input to obtain the prediction value and compare and analyze with the set value; b) obtain the monitoring data of each monitoring module, input to obtain the prediction value and compare and analyze with the set value; c) calculate the mixing quality adjustment parameters at the end of the process based on the analysis results.

在一些實施例中,利用均方根誤差(Root Mean Squared Error, RMSE)和/或相關係數(Correlation Coefficient, R 2)對該至少一物料混合品質預測模型進行可適性評估,並進一步執行預測模型的驗證。其中,當預測值與所對應之實際值不符時,可依據結果調整預測模型參數,提高預測模型相關係數。 In some embodiments, the adaptability of the at least one material mixing quality prediction model is evaluated using the root mean square error (RMSE) and/or the correlation coefficient (R 2 ), and the prediction model is further validated. When the predicted value does not match the corresponding actual value, the prediction model parameters can be adjusted according to the result to improve the prediction model correlation coefficient.

該入料調控模組A電連接該控制單元C(包括例如:電腦及可程式邏輯控制器),並依據該控制單元C之一指令進行入料調控動作。在一些實施例中,當電腦接收到各感測元件之數據值時,通過其內部軟體計算,以協助將原物料之進料量和進料順序等資訊傳送至可程式邏輯控制器,並透過其下達指令給該入料調控模組A進行入料調控動作。在一些實施例中,如圖1所示,該入料調控模組A可與該備料容器810配合,進行入料調控動作。The feed control module A is electrically connected to the control unit C (including, for example, a computer and a programmable logic controller), and performs feed control actions according to an instruction of the control unit C. In some embodiments, when the computer receives the data values of each sensing element, it calculates through its internal software to assist in transmitting information such as the feed amount and feed sequence of the raw materials to the programmable logic controller, and issues instructions to the feed control module A through the programmable logic controller to perform feed control actions. In some embodiments, as shown in FIG1 , the feed control module A can cooperate with the material preparation container 810 to perform feed control actions.

該輸入/輸出模塊B電連接該第一監控模組600、該第二監控模組700及該控制單元C,用以一次性匯集該等品質監測數據及輸出該等品質監測數據至該控制單元C,進行數據分析或顯示等。The input/output module B is electrically connected to the first monitoring module 600, the second monitoring module 700 and the control unit C, and is used to collect the quality monitoring data at one time and output the quality monitoring data to the control unit C for data analysis or display.

通過上述說明可知,該控制單元C之功能包括接收上述各監控模組之監測數據及匯集數據,其電腦裝有分析軟體得以進行數據分析、模型預測及後續參數調整設計。該至少一物料混合品質預測模型以ANN建立,透過調整神經元權重驗證模型,並進一步利用已受訓練模型來預測混合物料的品質,亦可更進一步對不符合目標設定值之物料計算出相對應之修正設計,回饋至該攪拌調控模組200或該入料調控模組A。From the above description, it can be known that the functions of the control unit C include receiving the monitoring data and aggregating the data of the above monitoring modules. The computer is equipped with analysis software to perform data analysis, model prediction and subsequent parameter adjustment design. The at least one material mixing quality prediction model is established with ANN, and the model is verified by adjusting the neural weights, and the trained model is further used to predict the quality of the mixed material. The corresponding correction design can also be further calculated for the material that does not meet the target setting value, and fed back to the stirring control module 200 or the feeding control module A.

本發明之飲品調製混合品質預測系統1通過線上監控模組(包括例如:該第一監控模組600及該第二監控模組700)及離線分析裝置(包括例如:該品質分析裝置500)獲取該混合物料M在混合過程中的品質監測數據及品質分析數據,並依據該等品質監測數據及該等品質分析數據結合人工神經網路(ANN)及反向傳播演算法,建立至少一物料混合品質預測模型。通過該至少一物料混合品質預測模型,可預測不同的物料配方或製程設備參數下之該混合物料M的品質。且經由線上即時監控,可減少不必要之過度攪拌所帶來的物料劣變、結塊和/或變性等現象,進而提高該混合物料M的品質和調製效率,並能縮短產品研發時程和協助工廠建立製備標準化程序,大幅提高製程品質。The beverage preparation and mixing quality prediction system 1 of the present invention obtains the quality monitoring data and quality analysis data of the mixed material M during the mixing process through an online monitoring module (including, for example, the first monitoring module 600 and the second monitoring module 700) and an offline analysis device (including, for example, the quality analysis device 500), and establishes at least one material mixing quality prediction model based on the quality monitoring data and the quality analysis data combined with an artificial neural network (ANN) and a back propagation algorithm. Through the at least one material mixing quality prediction model, the quality of the mixed material M under different material formulas or process equipment parameters can be predicted. And through online real-time monitoring, material deterioration, agglomeration and/or denaturation caused by unnecessary over-mixing can be reduced, thereby improving the quality and preparation efficiency of the mixed material M, shortening the product development schedule and assisting factories in establishing standardized preparation procedures, thereby significantly improving process quality.

參閱圖2,其係顯示根據本發明的一些實施例的飲品調製混合品質預測系統1a的架構圖。圖2為圖1所建立之預測模型的應用情境之一。圖2之飲品調製混合品質預測系統1a具有和圖1之飲品調製混合品質預測系統1相似的架構,其不同處僅在於:圖2之該飲品調製混合品質預測系統1a省略圖1之該品質分析裝置500。Refer to FIG. 2, which is a diagram showing the architecture of a beverage preparation mixed quality prediction system 1a according to some embodiments of the present invention. FIG. 2 is one of the application scenarios of the prediction model established in FIG. The beverage preparation mixed quality prediction system 1a in FIG. 2 has a similar architecture to the beverage preparation mixed quality prediction system 1 in FIG. 1, and the only difference is that the beverage preparation mixed quality prediction system 1a in FIG. 2 omits the quality analysis device 500 in FIG. 1.

在一些實施例中,如圖2所示,該控制單元C可僅依據該第一監控模組600與該第二監控模組700的該等品質監測數據的輸入,透過已建立之預測模型,間接獲得相似於儀器裝置測定之混合品質,以了解現階段混合物料的攪拌狀態。在一些實施例中,亦可將物料配方和/或製程參數條件帶入已建立之預測模型,以預測攪拌的目標品質。In some embodiments, as shown in FIG2 , the control unit C can indirectly obtain the mixing quality similar to that measured by the instrument through the established prediction model based only on the input of the quality monitoring data of the first monitoring module 600 and the second monitoring module 700, so as to understand the stirring state of the mixed material at the current stage. In some embodiments, the material formula and/or process parameter conditions can also be brought into the established prediction model to predict the target quality of the mixing.

參閱圖3,其係顯示根據本發明的一些實施例的飲品調製混合品質預測系統1b的架構圖。圖3為圖1所建立之預測模型的應用情境之一。圖3之飲品調製混合品質預測系統1b具有和圖1之飲品調製混合品質預測系統1相似的架構,其不同處僅在於:圖3之該飲品調製混合品質預測系統1b省略圖1之該第一監控模組600、該第二監控模組700及該輸入/輸出模塊B,且圖3之該控制單元C可包括電腦C1及可程式邏輯控制器C2。Refer to FIG3, which is a block diagram of a beverage preparation mixed quality prediction system 1b according to some embodiments of the present invention. FIG3 is one of the application scenarios of the prediction model established in FIG1. The beverage preparation mixed quality prediction system 1b of FIG3 has a similar structure to the beverage preparation mixed quality prediction system 1 of FIG1, and the only difference is that the beverage preparation mixed quality prediction system 1b of FIG3 omits the first monitoring module 600, the second monitoring module 700 and the input/output module B of FIG1, and the control unit C of FIG3 may include a computer C1 and a programmable logic controller C2.

在一些實施例中,如圖3所示,可將物料配方和/或製程參數條件輸入至已建立之預測模型,預測混合品質以作為目標設定值,於混合製程中,該電腦C1內軟體可僅依據該品質分析裝置500的該等品質分析數據與目標設定值分析比較,依據差異性計算修正參數,可以為轉速、配方或者操作溫度的調整等,並進一步透過該可程式邏輯控制器C2控制該攪拌調控模組200進行調控,以達到設定之品質目標。In some embodiments, as shown in FIG. 3 , the material formula and/or process parameter conditions can be input into the established prediction model to predict the mixing quality as the target setting value. In the mixing process, the software in the computer C1 can only analyze and compare the quality analysis data of the quality analysis device 500 with the target setting value, and calculate the correction parameters based on the difference, which can be the adjustment of the rotation speed, formula or operating temperature, etc., and further control the stirring control module 200 through the programmable logic controller C2 to achieve the set quality target.

參閱圖4,其係顯示根據本發明的一些實施例的飲品調製混合品質預測系統1c的架構圖。圖4為圖1所建立之預測模型的應用情境之一。圖4之飲品調製混合品質預測系統1c具有和圖1之飲品調製混合品質預測系統1相似的架構,其不同處僅在於:圖4之該飲品調製混合品質預測系統1c省略圖1之該品質分析裝置500,且圖4之該控制單元C可包括電腦C1及可程式邏輯控制器C2。Refer to FIG. 4, which is a diagram showing the architecture of a beverage preparation mixed quality prediction system 1c according to some embodiments of the present invention. FIG. 4 is one of the application scenarios of the prediction model established in FIG. The beverage preparation mixed quality prediction system 1c of FIG. 4 has a similar architecture to the beverage preparation mixed quality prediction system 1 of FIG. 1, and the only difference is that the beverage preparation mixed quality prediction system 1c of FIG. 4 omits the quality analysis device 500 of FIG. 1, and the control unit C of FIG. 4 may include a computer C1 and a programmable logic controller C2.

在一些實施例中,如圖4所示,該控制單元C可僅依據物料配方和/或製程參數條件輸入以預測品質,作為混合目標之設定值,當於調配過程中,透過該第一監控模組600與該第二監控模組700的該等品質監測數據輸入至已建立之模型,經計算獲得相似於儀器裝置測定之混合品質,並透過該電腦C1內軟體與目標設定值分析比較,依據差異性計算修正參數,可以為轉速、配方或者操作溫度的調整等,並進一步透過該可程式邏輯控制器C2控制該攪拌調控模組200,以達到設定之品質目標。In some embodiments, as shown in FIG. 4 , the control unit C may only predict the quality based on the material formula and/or process parameter condition input as the setting value of the mixing target. During the mixing process, the quality monitoring data of the first monitoring module 600 and the second monitoring module 700 are input into the established model, and the mixed quality similar to that measured by the instrument is obtained through calculation. The mixed quality is analyzed and compared with the target setting value through the software in the computer C1, and the correction parameters are calculated based on the difference, which may be the adjustment of the rotation speed, formula or operating temperature, etc., and the stirring control module 200 is further controlled through the programmable logic controller C2 to achieve the set quality target.

茲以下列實例予以詳細說明本發明,唯並不意謂本發明僅侷限於此等實例所揭示之內容。The present invention is described in detail with the following examples, but it is not intended that the present invention is limited to the contents disclosed in these examples.

適用於本發明之混合調配模式可包括但不限於固-液體之粉體分散、固體物質溶解、相溶液體溶液混合以及兩相不相溶液體乳化等。此外,本發明所提供之系統適用原物料型態可包括但不限於固體粉末、液體及凝膠體等,且不限應用於單一種物料,亦可為多種物料的組合。The mixing and blending modes applicable to the present invention may include but are not limited to solid-liquid powder dispersion, solid material dissolution, compatibilizing liquid-solution mixing, and two-phase immiscible liquid emulsification, etc. In addition, the system provided by the present invention may include but is not limited to solid powder, liquid, and gel, etc., and is not limited to a single material, but may also be a combination of multiple materials.

[[ 發明例Invention Example 1]1]

以大豆蛋白粉溶液的製備為例,利用Pro-Fam ®646大豆分離蛋白粉為原料,以水作為溶劑,於不同製備溫度(包括例如:30°C、50°C、70°C及90°C)和酸鹼值(pH3-7)環境,分別配製不同濃度(5-10%)之蛋白質溶液。 Taking the preparation of soy protein powder solution as an example, Pro-Fam ® 646 soy protein powder is used as the raw material and water is used as the solvent. Protein solutions of different concentrations (5-10%) are prepared at different preparation temperatures (including, for example, 30°C, 50°C, 70°C and 90°C) and pH values (pH3-7).

配合參閱圖1,於發明例1中,該攪拌調控模組200可包括該攪拌件230、該驅動馬達210及該扭力感測元件220。其中該攪拌件230以推進式攪拌葉片為例,並透過調控該驅動馬達210來帶動該攪拌件230,以進行粉體物料的分散溶解製程。Referring to FIG. 1 , in the first embodiment of the invention, the stirring control module 200 may include the stirring element 230, the driving motor 210 and the torque sensing element 220. The stirring element 230 is a propulsion stirring blade, and the driving motor 210 is controlled to drive the stirring element 230 to perform a dispersion and dissolution process of the powder material.

於發明例1中,該品質分析裝置500可為該流體流變分析裝置510,透過取樣測定不同條件製備之大豆蛋白溶液黏度值,並以此作為預測模型建立之輸出值。In the invention example 1, the quality analysis device 500 can be the fluid rheology analysis device 510, which measures the viscosity of the soy protein solution prepared under different conditions by sampling, and uses it as the output value for establishing the prediction model.

於發明例1中,該第一監控模組600可包括該可溶性固形物感測元件634及該電導率感測元件640,將該可溶性固形物感測元件634及該電導率感測元件640置於該循環管道400內,分別針對攪拌混合過程物料之可溶性固形物、電導率變化進行監測。此外,該第一監控模組600可另包括該分散穩定性分析裝置660,該分散穩定性分析裝置660可連接該循環管道400,並透過該循環泵300(發明例1採用蠕動泵)以低速、穩定且無紊流產生狀態下,輸送該容器100中之混合物料至分析裝置中的樣品槽,且樣品槽中之混合物料保持滿管狀態,再透過光學原理分析物料混合特性,例如體積分率。In Invention Example 1, the first monitoring module 600 may include the soluble solid sensing element 634 and the conductivity sensing element 640. The soluble solid sensing element 634 and the conductivity sensing element 640 are placed in the circulation pipeline 400 to monitor the soluble solid and conductivity changes of the materials in the stirring and mixing process respectively. In addition, the first monitoring module 600 may further include the dispersion stability analysis device 660, which can be connected to the circulation pipeline 400, and through the circulation pump 300 (invention example 1 uses a peristaltic pump) at a low speed, stable and turbulent state, the mixed material in the container 100 is transported to the sample tank in the analysis device, and the mixed material in the sample tank is kept full of the tube, and then the material mixing characteristics, such as volume fraction, are analyzed by optical principles.

於發明例1中,該第二監控模組700可包括該離子感測元件720及該流速感測元件730,將該離子感測元件720及該流速感測元件730插入至該容器100中,以該離子感測元件720量測混合容器100內死角處(流動性差區域)循環狀況,以該流速感測元件730量測混合過程中該容器100之壁面的流速。In Invention Example 1, the second monitoring module 700 may include the ion sensor 720 and the flow rate sensor 730, which are inserted into the container 100, and the ion sensor 720 is used to measure the circulation condition of the dead corner (poor fluidity area) in the mixing container 100, and the flow rate sensor 730 is used to measure the flow rate of the wall of the container 100 during the mixing process.

於發明例1中,該第一監控模組600可進一步包括該流量感測元件650,而該第二監控模組700可進一步包括該溫度感測元件740,用於監控循環和混合過程環境的變化,以確保量測數據的準確性、優化調配或清洗消毒製程。In Invention Example 1, the first monitoring module 600 may further include the flow sensor 650, and the second monitoring module 700 may further include the temperature sensor 740, for monitoring changes in the circulation and mixing process environment to ensure the accuracy of the measurement data and optimize the mixing or cleaning and sterilization process.

於發明例1中,因配方中具有多種原物料組合,此時可使用該液位感測元件750或進一步包括該荷重元760的監測值,協助控制各個原物料之入料量,確認是否已達到配方容量和/或總重量設定值,以使該容器100內之混合物料能維持正確配比。In Invention Example 1, since the formula contains a variety of raw material combinations, the liquid level sensor 750 or further includes the monitoring value of the load cell 760 to assist in controlling the input amount of each raw material and confirm whether the formula capacity and/or total weight setting value has been reached, so that the mixed material in the container 100 can maintain the correct ratio.

之後,將該第一監控模組600及該第二監控模組700連接至該輸入/輸出模塊B,以進行品質監測數據彙整,並進一步將該品質監測數據傳送至該控制單元C,以作為預測模型建立的輸入值。Afterwards, the first monitoring module 600 and the second monitoring module 700 are connected to the input/output module B to aggregate the quality monitoring data, and further transmit the quality monitoring data to the control unit C as an input value for establishing a prediction model.

於發明例1中,參閱圖1建立ANN預測模型,該ANN預測模型的建立可包括:(1)使用不同物料和/或製程條件資訊作為預測模型建立的輸入值,使用該流體流變分析裝置510之量測值作為預測模型建立的輸出值,以建立可預測不同調配製程下目標品質指標;及(2)使用該扭力感測元件220和/或該流速感測元件730之訊號值作為預測模型建立的輸入值,使用該流體流變分析裝置510取樣量測之黏度值作為預測模型建立的輸出值,透過所建立的預測模型,可於混合過程中將上述線上感測元件之訊號輸入,以預測混合過程中混合物料之黏度值,故可即時確認該容器100內之混合物料的混合情形。In Invention Example 1, an ANN prediction model is established with reference to FIG. 1. The establishment of the ANN prediction model may include: (1) using different materials and/or process condition information as input values for establishing the prediction model, and using the measured value of the fluid rheology analysis device 510 as the output value for establishing the prediction model, so as to establish a target quality index that can be predicted under different formulation processes; and (2) using the signal value of the torque sensing element 220 and/or the flow rate sensing element 730 as the input value for establishing the prediction model, and using the viscosity value sampled and measured by the fluid rheology analysis device 510 as the output value for establishing the prediction model. Through the established prediction model, the signal of the above-mentioned online sensing element can be input during the mixing process to predict the viscosity value of the mixed material during the mixing process, so that the mixing status of the mixed material in the container 100 can be confirmed in real time.

上述ANN預測模型的建立步驟可包括:將不同處理組之資訊或數據整理並輸入至軟體進行處理,以人工神經網路系統,透過調整層數、神經元數量和/或激勵函數,並利用反向傳播演算法訓練預測模型;以及將未用於訓練預測模型的驗證數據套入已訓練的預測模型,比較預測值與實際值之差異,透過驗證數據來進行預測模型的參數修正,以提高預測模型的相關係數(>0.8)。The steps of establishing the above-mentioned ANN prediction model may include: organizing the information or data of different processing groups and inputting them into the software for processing, using the artificial neural network system to train the prediction model by adjusting the number of layers, the number of neurons and/or the excitation function, and using the back propagation algorithm; and inserting the verification data that is not used to train the prediction model into the trained prediction model, comparing the difference between the predicted value and the actual value, and modifying the parameters of the prediction model through the verification data to improve the correlation coefficient of the prediction model (>0.8).

此外,可針對圖2的應用情境,對大豆蛋白粉進行攪拌調配程序,將該扭力感測元件220和/或該流速感測元件730之即時監測訊號值輸入至模型,間接獲得相似於儀器裝置測定品質。另針對圖3及4情境,使用上述已訓練的預測模型,預測分散溶解品質及即時監控並計算校正參數。當欲配製含10%之中性大豆蛋白質分散溶液時,可先行通過預測模型預測於特定製程條件下(中性pH7、調配溫度50°C)為達分散完全之目標設定值(黏度值250.0±23.0 cP),之後,對大豆蛋白粉進行攪拌調配程序。針對圖3的應用,可透過該品質分析裝置量測當前品質,若符合預測結果,即表示已達到分散目標;若當品質不符合預測結果(約為100 cP),可推判尚未達到完全分散溶解,此時圖3之電腦C1可根據預測模型設計一套調校參數,並透過圖3之可程式邏輯控制器C2傳送指令至相關設備,進行例如調高驅動軸轉速、調配溫度及延長攪拌時間等操作,以達到預期之目標品質。針對圖4的應用,可透過該第一監控模組及該第二監控模組訊號間接分析品質,若符合預測結果,即表示已達到均質目標;若當攪拌過程品質與目標設定值不符(約於100 cP),可推判尚未達到完全分散溶解,此時圖4之電腦C1可根據預測模型設計一套調校參數,並透過圖4之可程式邏輯控制器C2傳送指令至相關設備,進行例如調高驅動軸轉速、調配溫度及延長攪拌時間等操作,以達到期望之目標品質。In addition, for the application scenario of Figure 2, the soy protein powder can be subjected to a stirring and blending process, and the real-time monitoring signal value of the torque sensing element 220 and/or the flow rate sensing element 730 is input into the model, and the quality measurement similar to that of the instrument is indirectly obtained. For the scenarios of Figures 3 and 4, the above-mentioned trained prediction model is used to predict the dispersion and dissolution quality and real-time monitoring and calculation of correction parameters. When a 10% neutral soy protein dispersion solution is to be prepared, the prediction model can be used to first predict the target setting value (viscosity value 250.0±23.0 cP) for achieving complete dispersion under specific process conditions (neutral pH 7, blending temperature 50°C), and then the soy protein powder can be subjected to a stirring and blending process. For the application of FIG. 3 , the quality analysis device can be used to measure the current quality. If it meets the predicted results, it means that the dispersion target has been achieved. If the quality does not meet the predicted results (about 100 cP), it can be inferred that complete dispersion and dissolution have not been achieved. At this time, the computer C1 of FIG. 3 can design a set of adjustment parameters based on the prediction model, and send instructions to related equipment through the programmable logic controller C2 of FIG. 3 to perform operations such as increasing the drive shaft speed, adjusting the temperature, and extending the stirring time to achieve the expected target quality. For the application of FIG. 4 , the quality can be indirectly analyzed through the signals of the first monitoring module and the second monitoring module. If the predicted result is met, it means that the homogenization target has been achieved. If the quality of the stirring process does not meet the target setting value (about 100 cP), it can be inferred that complete dispersion and dissolution have not been achieved. At this time, the computer C1 of FIG. 4 can design a set of adjustment parameters according to the prediction model, and send instructions to related equipment through the programmable logic controller C2 of FIG. 4 to perform operations such as increasing the drive shaft speed, adjusting the temperature and extending the stirring time to achieve the desired target quality.

[[ 發明例Invention Example 22 ]]

以蛋白質溶液與液態油脂均質混合為例,所提之蛋白質可包括動物性蛋白之乳清蛋白、酪蛋白及其組合,或植物性蛋白之大豆蛋白、豌豆蛋白、芝麻蛋白、鷹嘴豆蛋白及其組合。發明例2採用SUPRO ®120 IP大豆分離蛋白。 Taking the homogenization of protein solution and liquid fat as an example, the protein mentioned may include whey protein, casein and combinations thereof of animal proteins, or soy protein, pea protein, sesame protein, chickpea protein and combinations thereof of plant proteins. Invention Example 2 uses SUPRO ® 120 IP soy protein isolate.

所述液態油脂可為植物性材料或動物性油脂,包括例如大豆油、葵花油、芥花油、中碳鏈脂肪、魚油及其組合等。發明例2採用中碳鏈脂肪。The liquid oil can be a plant material or an animal oil, including, for example, soybean oil, sunflower oil, canola oil, medium-chain fat, fish oil, and combinations thereof. Invention Example 2 uses medium-chain fat.

發明例2係以不同油脂及蛋白質比例(0.1-2)於不同製備溫度(30-80°C)或驅動軸轉速(2,000-10,000 rpm)下配製含油植物蛋白混合液。Inventive Example 2, different oil and protein ratios (0.1-2) were used to prepare oil-containing vegetable protein mixtures at different preparation temperatures (30-80° C.) or drive shaft speeds (2,000-10,000 rpm).

配合參閱圖1,於發明例2中,該攪拌件230可為齒型轉-定子刀具,並透過調控該驅動馬達210來帶動該攪拌件230,以進行物料的均質乳化製程。With reference to FIG. 1 , in the second embodiment of the invention, the stirring element 230 may be a toothed rotor-stator cutter, and the driving motor 210 is controlled to drive the stirring element 230 to perform a homogenization and emulsification process of the material.

於發明例2中,該品質分析裝置500可包括該粒徑分析裝置520和該電動電位分析裝置530,透過取樣分別測定不同均質參數或配方條件下物料的粒徑尺寸、粒徑分佈及δ-電動勢,以建立混合均質品質指標。In Invention Example 2, the quality analysis device 500 may include the particle size analysis device 520 and the electrokinetic potential analysis device 530, which respectively measures the particle size, particle size distribution and delta-electromotive force of the material under different homogenization parameters or formulation conditions by sampling to establish a mixed homogenization quality index.

於發明例2中,該第一監控模組600可包括該濁度計633、該電導率感測元件640及該流量感測元件650,將該濁度計633、該電導率感測元件640及該流量感測元件650置於該循環管道400內,分別間接監測均質程度以及該容器100內部物料混合狀態。此外,該第一監控模組600可另包括該分散穩定性分析裝置660,該分散穩定性分析裝置660可連接該循環管道400,並透過該循環泵300(發明例2採用蠕動泵)以低速、穩定且無紊流產生狀態下,輸送該容器100中之混合物料至分析裝置中的樣品槽,且樣品槽中之混合物料保持滿管狀態,再透過光學原理分析物料特性,例如粒徑尺寸或背向光散射率。In Invention Example 2, the first monitoring module 600 may include the turbidity meter 633, the conductivity sensing element 640 and the flow sensing element 650. The turbidity meter 633, the conductivity sensing element 640 and the flow sensing element 650 are placed in the circulation pipeline 400 to indirectly monitor the homogeneity degree and the mixing state of the materials in the container 100 respectively. In addition, the first monitoring module 600 may further include the dispersion stability analysis device 660, which can be connected to the circulation pipeline 400, and through the circulation pump 300 (invention example 2 uses a peristaltic pump) at a low speed, stable and turbulent state, the mixed material in the container 100 is transported to the sample tank in the analysis device, and the mixed material in the sample tank is kept full of the tube, and then the material properties, such as particle size or backscattering rate, are analyzed by optical principles.

於發明例2中,該第二監控模組700可包括該溫度感測元件740及該液位感測元件750,將該溫度感測元件740及該液位感測元件750插入至該容器100中,以該溫度感測元件740監控均質過程中物料之溫度變化,而該液位感測元件750可用於即時判斷物料入料量或均質過程中泡沬形成程度,以提高調配過程的可控制性及準確性。In Invention Example 2, the second monitoring module 700 may include the temperature sensing element 740 and the liquid level sensing element 750, which are inserted into the container 100, so that the temperature sensing element 740 monitors the temperature change of the material during the homogenization process, and the liquid level sensing element 750 can be used to instantly determine the material input amount or the degree of bubble formation during the homogenization process, so as to improve the controllability and accuracy of the preparation process.

上述線上感測元件之數據值可直接用作監測混合之品質指標,亦可透過監測之數據與離線裝置之量測值間模型建立,間接獲得相對品質。The data values of the above-mentioned online sensing elements can be directly used as quality indicators for monitoring the mixture, and the relative quality can also be indirectly obtained by establishing a model between the monitored data and the measurement values of the offline device.

於發明例2中,建立ANN預測模型,其輸入值可包括物料配方、製程參數條件及感測元件之感測值(包括例如:濁度值或光散射率)等,而輸出值可包括該粒徑分析裝置520和/或該分散穩定性分析裝置660之量測值。將不同製程處理組參數及數據等資訊彙整並輸入至該控制單元C,透過其內部軟體以人工神經網路系統及反向傳播演算法訓練預測模型;再將未用於訓練預測模型的驗證數據套入建立的預測模型,比較預測值與實際值之差異,透過驗證數據來進行預測模型的參數修正,以提高預測模型的相關係數(>0.8)。In Invention Example 2, an ANN prediction model is established, and its input values may include material formula, process parameter conditions and sensing values of sensing elements (including, for example, turbidity value or light scattering rate), and the output values may include the measured values of the particle size analysis device 520 and/or the dispersion stability analysis device 660. The information such as parameters and data of different process processing groups is aggregated and input to the control unit C, and the prediction model is trained by the artificial neural network system and the back propagation algorithm through its internal software; the verification data not used for training the prediction model is then inserted into the established prediction model, and the difference between the prediction value and the actual value is compared. The parameters of the prediction model are corrected through the verification data to improve the correlation coefficient of the prediction model (>0.8).

將上述預測模型應用於圖4的應用情境,當欲配製含10%中碳鏈脂肪之5%大豆蛋白混合液時,可通過上述已建立之預測模型,預測於所設定之製程條件下(調配溫度80°C、刀具轉速7000 rpm、均質時間10 分鐘)可獲得之乳化液目標粒徑範圍約5~8 μm(設定值)。之後,於均質製程中,可藉由上述感測元件所得即時監測值,透過該輸入/輸出模塊B進行彙整,再傳送至該控制單元C預測當前之品質,若符合預測結果落在5~8 μm之間,即表示已達到均質目標;若尚未到達設定值,則圖4之電腦C1會依據預測模型中各神經元權重設計調校參數,並透過圖4之可程式邏輯控制器C2傳送指令至相關設備,進行例如調高驅動軸轉速、調配溫度及延長攪拌時間等操作,以達到期望之目標品質。Applying the above prediction model to the application scenario of Figure 4, when preparing a 5% soy protein mixture containing 10% medium-chain fat, the above established prediction model can be used to predict that the target particle size range of the emulsion that can be obtained under the set process conditions (mixing temperature 80°C, tool speed 7000 rpm, homogenization time 10 minutes) is about 5~8 μm (set value). Afterwards, during the homogenization process, the real-time monitoring values obtained by the above-mentioned sensing elements can be aggregated through the input/output module B and then transmitted to the control unit C to predict the current quality. If the predicted result falls between 5 and 8 μm, it means that the homogenization target has been achieved. If the set value has not yet been reached, the computer C1 in Figure 4 will design the adjustment parameters based on the weights of each neuron in the prediction model, and send instructions to related equipment through the programmable logic controller C2 in Figure 4 to perform operations such as increasing the drive shaft speed, adjusting the temperature, and extending the stirring time to achieve the desired target quality.

通過上述發明例1及發明例2之說明,本發明之飲品調製混合品質預測系統可確保混合物料達到所需品質之要求,減少製程上人為誤判或過度攪拌帶來之品質劣變,亦可即時確保物料/介質於混合加工過程中的品質變化,進一步提升產品品質的一致性。此外,本發明之飲品調製混合品質預測系統可自動化調控參數達到目標品質,以減少人為經驗判斷造成的誤差與成本損失。Through the description of the above invention examples 1 and 2, the beverage preparation and mixing quality prediction system of the present invention can ensure that the mixed materials meet the required quality requirements, reduce the quality deterioration caused by human misjudgment or excessive stirring in the process, and can also ensure the quality change of materials/mediums in the mixing process in real time, further improving the consistency of product quality. In addition, the beverage preparation and mixing quality prediction system of the present invention can automatically adjust parameters to achieve the target quality, so as to reduce the errors and cost losses caused by human experience judgment.

除非另外定義,在此使用的全部用語(包括技術及科學用語)具有與此篇揭露所屬之一般技藝者所通常理解的相同涵義。能理解的是這些用語,例如在通常使用的字典中定義的用語,應被解讀成具有一與相關技術及本揭露的背景或上下文一致的意思,而不應以一理想化或過度正式的方式解讀,除非在此特別定義。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It is understood that these terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning consistent with the background or context of the relevant technology and this disclosure, and should not be interpreted in an idealized or overly formal manner unless specifically defined herein.

上述實施例僅為說明本發明之原理及其功效,而非限制本發明。習於此技術之人士對上述實施例所做之修改及變化仍不違背本發明之精神。本發明之權利範圍應如後述之申請專利範圍所列。The above embodiments are only for illustrating the principle and effect of the present invention, but not for limiting the present invention. The modification and changes made by the persons skilled in the art to the above embodiments still do not violate the spirit of the present invention. The scope of the rights of the present invention shall be as listed in the scope of the patent application described below.

1:飲品調製混合品質預測系統 1a:飲品調製混合品質預測系統 1b:飲品調製混合品質預測系統 1c:飲品調製混合品質預測系統 100:容器 101:上部 102:下部 103:排料閥 200:攪拌調控模組 210:驅動馬達 220:扭力感測元件 230:攪拌件 300:循環泵 400:循環管道 500:品質分析裝置 510:流體流變分析裝置 520:粒徑分析裝置 530:電動電位分析裝置 600:第一監控模組 610:黏度感測元件 620:粒徑感測元件 631:總懸浮物感測元件 632:近紅外光度計 633:濁度計 634:可溶性固形物感測元件 640:電導率感測元件 650:流量感測元件 660:分散穩定性分析裝置 700:第二監控模組 710:比重感測元件 720:離子感測元件 730:流速感測元件 740:溫度感測元件 750:液位感測元件 760:荷重元 810:備料容器 A:入料調控模組 B:輸入/輸出模塊 C:控制單元 C1:電腦 C2:可程式邏輯控制器 M:混合物料1: Beverage preparation and mixing quality prediction system 1a: Beverage preparation and mixing quality prediction system 1b: Beverage preparation and mixing quality prediction system 1c: Beverage preparation and mixing quality prediction system 100: Container 101: Upper part 102: Lower part 103: Discharge valve 200: Stirring control module 210: Driving motor 220: Torque sensor 230: Stirring element 300: Circulation pump 400: Circulation pipeline 500: Quality analysis device 510: Fluid rheology analysis device 520: Particle size analysis device 530: Electrokinetic potential analysis device 600: First monitoring module 610: Viscosity sensor 620: Particle size sensor 631: Total suspended matter sensor 632: Near infrared photometer 633: Turbidity meter 634: Soluble solids sensor 640: Conductivity sensor 650: Flow sensor 660: Dispersion stability analysis device 700: Second monitoring module 710: Specific gravity sensor 720: Ion sensor 730: Flow rate sensor 740: Temperature sensor 750: Liquid level sensor 760: Load cell 810: Material preparation container A: Feed control module B: Input/output module C: Control unit C1: Computer C2: Programmable logic controller M: Mixing material

當結合附圖閱讀時,自以下詳細描述易於理解本發明之一些實施例的態樣。應注意,各種結構可能未按比例繪製,且各種結構之尺寸可出於論述清晰起見任意增大或減小。When read in conjunction with the accompanying drawings, it is easy to understand the aspects of some embodiments of the present invention from the following detailed description. It should be noted that various structures may not be drawn to scale, and the size of various structures may be arbitrarily increased or reduced for the sake of clarity of discussion.

圖1顯示根據本發明的一些實施例的飲品調製混合品質預測系統的架構圖。FIG. 1 shows an architecture diagram of a beverage preparation mixing quality prediction system according to some embodiments of the present invention.

圖2顯示根據本發明的一些實施例的飲品調製混合品質預測系統的架構圖。FIG. 2 shows an architecture diagram of a beverage preparation mixing quality prediction system according to some embodiments of the present invention.

圖3顯示根據本發明的一些實施例的飲品調製混合品質預測系統的架構圖。FIG3 shows an architecture diagram of a beverage preparation mixing quality prediction system according to some embodiments of the present invention.

圖4顯示根據本發明的一些實施例的飲品調製混合品質預測系統的架構圖。FIG4 shows an architecture diagram of a beverage preparation mixing quality prediction system according to some embodiments of the present invention.

1:飲品調製混合品質預測系統 1: Beverage preparation and mixing quality prediction system

100:容器 100:Container

101:上部 101: Upper part

102:下部 102: Lower part

103:排料閥 103: Discharge valve

200:攪拌調控模組 200: Stirring control module

210:驅動馬達 210: Driving motor

220:扭力感測元件 220: Torque sensing element

230:攪拌件 230: Stirring parts

300:循環泵 300: Circulation pump

400:循環管道 400: Circulation pipeline

500:品質分析裝置 500: Quality analysis device

510:流體流變分析裝置 510: Fluid rheology analysis device

520:粒徑分析裝置 520: Particle size analysis device

530:電動電位分析裝置 530: Electropotential analysis device

600:第一監控模組 600: First monitoring module

610:黏度感測元件 610: Viscosity sensing element

620:粒徑感測元件 620: Particle size sensor element

631:總懸浮物感測元件 631: Total suspended object sensing element

632:近紅外光度計 632:Near infrared photometer

633:濁度計 633: Turbidity meter

634:可溶性固形物感測元件 634: Soluble solids sensor element

640:電導率感測元件 640: Conductivity sensor element

650:流量感測元件 650: Flow sensor element

660:分散穩定性分析裝置 660: Dispersion stability analysis device

700:第二監控模組 700: Second monitoring module

710:比重感測元件 710: Gravity sensing element

720:離子感測元件 720: Ion sensor element

730:流速感測元件 730: Flow rate sensing element

740:溫度感測元件 740: Temperature sensing element

750:液位感測元件 750: Liquid level sensing element

760:荷重元 760: Load element

810:備料容器 810: Material preparation container

A:入料調控模組 A: Feeding control module

B:輸入/輸出模塊 B: Input/output module

C:控制單元 C: Control unit

M:混合物料 M: Mixed materials

Claims (16)

一種飲品調製混合品質預測系統,其包括:一容器,其用以盛裝一混合物料;一攪拌調控模組,其包括一攪拌件,該攪拌件伸入該容器中,用以攪拌該混合物料;一第一監控模組,其設置於該容器外,用以即時監測該混合物料的品質,且該第一監控模組依據該混合物料之不同混合模式,選擇適用的監測元件;一第二監控模組,其至少一部分設置於該容器中,用以監控該混合物料在混合過程中的品質變化,且該第二監控模組依據不同目的或該混合物料之不同表徵,選擇適用的監測元件;以及一控制單元,其電連接該攪拌調控模組、該第一監控模組及該第二監控模組,用以控制該攪拌調控模組及接收該第一監控模組與該第二監控模組的品質監測數據,並依據該等品質監測數據建立至少一物料混合品質預測模型;其中該至少一物料混合品質預測模型係以人工神經網路對該等品質監測數據進行深度學習後建立,且該第一監控模組與該第二監控模組的該等品質監測數據係作為深度學習預測模型的輸入值,並通過反向傳播演算法對人工神經網路模型進行訓練及修正,以建立該至少一物料混合品質預測模型;其中該至少一物料混合品質預測模型對不符合目標設定值之物料計算出相對應之修正設計,並回饋至該攪拌調控模組。 A beverage preparation and mixing quality prediction system comprises: a container for containing a mixed material; a stirring control module comprising a stirring element, the stirring element extending into the container for stirring the mixed material; a first monitoring module arranged outside the container for real-time monitoring of the quality of the mixed material, and the first monitoring module selects an appropriate monitoring element according to different mixing modes of the mixed material; a second monitoring module, at least a part of which is arranged in the container, for monitoring the quality change of the mixed material during the mixing process, and the second monitoring module selects an appropriate monitoring element according to different purposes or different characteristics of the mixed material; and a control unit, which is electrically connected to the stirring control module, the first monitoring module and the second monitoring module. Module, used to control the stirring control module and receive the quality monitoring data of the first monitoring module and the second monitoring module, and establish at least one material mixing quality prediction model according to the quality monitoring data; wherein the at least one material mixing quality prediction model is established after deep learning the quality monitoring data by artificial neural network, and the quality monitoring data of the first monitoring module and the second monitoring module are used as input values of the deep learning prediction model, and the artificial neural network model is trained and corrected by the back propagation algorithm to establish the at least one material mixing quality prediction model; wherein the at least one material mixing quality prediction model calculates the corresponding correction design for the material that does not meet the target setting value, and feeds back to the stirring control module. 如請求項1之飲品調製混合品質預測系統,其中該攪拌調控模組另包括一驅動馬達及一扭力感測元件,該驅動馬達通過該扭力感測元件連接該攪拌件。 As in claim 1, the beverage preparation and mixing quality prediction system, wherein the stirring control module further includes a driving motor and a torque sensing element, and the driving motor is connected to the stirring element through the torque sensing element. 如請求項1之飲品調製混合品質預測系統,另包括:一循環管道,其連通該容器之一上部及一下部,用以引導該混合物料出入該容器;及一循環泵,其設置於該循環管道上,用以循環輸送該混合物料出入該容器。 The beverage preparation and mixing quality prediction system of claim 1 further includes: a circulation pipeline, which is connected to an upper part and a lower part of the container, for guiding the mixed material into and out of the container; and a circulation pump, which is arranged on the circulation pipeline, for circulating and transporting the mixed material into and out of the container. 如請求項3之飲品調製混合品質預測系統,其中該第一監控模組設置於該循環管道上。 As in claim 3, the beverage preparation and mixing quality prediction system, wherein the first monitoring module is disposed on the circulation pipeline. 如請求項1之飲品調製混合品質預測系統,其中該第一監控模組包括如下的一個或多個:黏度感測元件、粒徑感測元件、總懸浮物感測元件、近紅外光度計、濁度計、可溶性固形物感測元件、電導率感測元件、流量感測元件及分散穩定性分析裝置。 As in claim 1, the beverage preparation and mixing quality prediction system, wherein the first monitoring module includes one or more of the following: a viscosity sensor, a particle size sensor, a total suspended matter sensor, a near-infrared photometer, a turbidity meter, a soluble solids sensor, a conductivity sensor, a flow sensor, and a dispersion stability analysis device. 如請求項1之飲品調製混合品質預測系統,其中該第二監控模組包括如下的一個或多個:比重感測元件、離子感測元件、流速感測元件、溫度感測元件、液位感測元件及荷重元。 As in claim 1, the beverage mixing quality prediction system, wherein the second monitoring module includes one or more of the following: a specific gravity sensor, an ion sensor, a flow rate sensor, a temperature sensor, a liquid level sensor, and a load cell. 如請求項1之飲品調製混合品質預測系統,另包括:一品質分析裝置,其設置於該容器之一側,用以分析從該容器中取出之該混合物料的品質。 The beverage preparation mixed quality prediction system of claim 1 further comprises: a quality analysis device, which is arranged on one side of the container and is used to analyze the quality of the mixed material taken out from the container. 如請求項7之飲品調製混合品質預測系統,其中該品質分析裝置包括如下的一個或多個:流體流變分析裝置、粒徑分析裝置及電動電位分析裝置。 As in claim 7, the beverage preparation and mixing quality prediction system, wherein the quality analysis device includes one or more of the following: a fluid rheology analysis device, a particle size analysis device, and an electrokinetic potential analysis device. 如請求項7之飲品調製混合品質預測系統,其中該控制單元係接收該品質分析裝置的品質分析數據,並依據該等品質分析數據建立該至少一物料混合品質預測模型。 As in claim 7, the beverage mixing quality prediction system, wherein the control unit receives the quality analysis data from the quality analysis device and establishes the at least one material mixing quality prediction model based on the quality analysis data. 如請求項1之飲品調製混合品質預測系統,另包括:一入料調控模組,其電連接該控制單元,並依據該控制單元之一指令進行入料調控動作。 The beverage mixing quality prediction system of claim 1 further includes: a feed control module, which is electrically connected to the control unit and performs feed control actions according to an instruction of the control unit. 如請求項1之飲品調製混合品質預測系統,另包括:一輸入/輸出模塊,其電連接該第一監控模組、該第二監控模組及該控制單元,用以一次性匯集該等品質監測數據及輸出該等品質監測數據至該控制單元。 The beverage mixing quality prediction system of claim 1 further includes: an input/output module electrically connected to the first monitoring module, the second monitoring module and the control unit, for collecting the quality monitoring data at one time and outputting the quality monitoring data to the control unit. 如請求項1之飲品調製混合品質預測系統,其中該控制單元包括電腦、可程式邏輯控制器或其組合。 As in claim 1, the beverage preparation and mixing quality prediction system, wherein the control unit includes a computer, a programmable logic controller or a combination thereof. 一種飲品調製混合品質預測系統,包括:一容器,其用以盛裝一混合物料;一攪拌調控模組,其包括一攪拌件,該攪拌件伸入該容器中,用以攪拌該混合物料;一品質分析裝置,其設置於該容器之一側,用以分析從該容器中取出之該混合物料的品質;以及一控制單元,其電連接該攪拌調控模組及該品質分析裝置,用以控制該攪拌調控模組及接收該品質分析裝置的品質分析數據,並依據該等品質分析數據建立至少一物料混合品質預測模型;其中該至少一物料混合品質預測模型係以人工神經網路對該等品質分析數據進行深度學習後建立,且該品質分析裝置的該等品質分析數據係作為深度學習預測模型的輸出值,並通過反向傳播演算法對人工神經網路模型進行訓練及修正,以建立該至少一物料混合品質預測模型;其中該至少一物料混合品質預測模型對不符合目標設定值之物料計算出相對應之修正設計,並回饋至該攪拌調控模組。 A beverage preparation mixed quality prediction system includes: a container for containing a mixed material; a stirring control module including a stirring element, the stirring element extending into the container for stirring the mixed material; a quality analysis device disposed on one side of the container for analyzing the quality of the mixed material taken out of the container; and a control unit electrically connected to the stirring control module and the quality analysis device for controlling the stirring control module and receiving quality analysis data from the quality analysis device, and establishing at least one physical property according to the quality analysis data. The at least one material mixing quality prediction model is established after deep learning the quality analysis data using an artificial neural network, and the quality analysis data of the quality analysis device are used as the output value of the deep learning prediction model, and the artificial neural network model is trained and corrected by a back propagation algorithm to establish the at least one material mixing quality prediction model; wherein the at least one material mixing quality prediction model calculates the corresponding correction design for the material that does not meet the target setting value, and feeds back to the stirring control module. 如請求項13之飲品調製混合品質預測系統,其中該攪拌調控模組另包括一驅動馬達及一扭力感測元件,該驅動馬達通過該扭力感測元件連接該攪拌件。 As in claim 13, the beverage preparation and mixing quality prediction system, wherein the stirring control module further includes a driving motor and a torque sensing element, and the driving motor is connected to the stirring element through the torque sensing element. 如請求項13之飲品調製混合品質預測系統,其中該品質分析裝置包 括如下的一個或多個:流體流變分析裝置、粒徑分析裝置及電動電位分析裝置。 As in claim 13, the beverage preparation and mixing quality prediction system, wherein the quality analysis device includes one or more of the following: a fluid rheology analysis device, a particle size analysis device, and an electrokinetic potential analysis device. 如請求項13之飲品調製混合品質預測系統,另包括:一入料調控模組,其電連接該控制單元,並依據該控制單元之一指令進行入料調控動作。 The beverage mixing quality prediction system of claim 13 further includes: a feed control module, which is electrically connected to the control unit and performs feed control actions according to an instruction of the control unit.
TW112114753A 2023-04-20 2023-04-20 Beverage quality prediction system during blending process TWI853535B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112114753A TWI853535B (en) 2023-04-20 2023-04-20 Beverage quality prediction system during blending process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112114753A TWI853535B (en) 2023-04-20 2023-04-20 Beverage quality prediction system during blending process

Publications (2)

Publication Number Publication Date
TWI853535B true TWI853535B (en) 2024-08-21
TW202443473A TW202443473A (en) 2024-11-01

Family

ID=93284342

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112114753A TWI853535B (en) 2023-04-20 2023-04-20 Beverage quality prediction system during blending process

Country Status (1)

Country Link
TW (1) TWI853535B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102869291A (en) * 2010-03-19 2013-01-09 康克迪亚咖啡有限公司 Method and apparatus for controlling brewed beverage quality
CN107369254A (en) * 2010-12-16 2017-11-21 布里格有限公司 The apparatus and method made for modulating drink and concentrated coffee drink
JP2018018354A (en) * 2016-07-28 2018-02-01 高砂香料工業株式会社 Food and beverage quality prediction method using deep learning and food and beverage
TWM643875U (en) * 2023-04-20 2023-07-11 財團法人食品工業發展研究所 Beverage quality prediction system during blending process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102869291A (en) * 2010-03-19 2013-01-09 康克迪亚咖啡有限公司 Method and apparatus for controlling brewed beverage quality
CN107369254A (en) * 2010-12-16 2017-11-21 布里格有限公司 The apparatus and method made for modulating drink and concentrated coffee drink
JP2018018354A (en) * 2016-07-28 2018-02-01 高砂香料工業株式会社 Food and beverage quality prediction method using deep learning and food and beverage
TWM643875U (en) * 2023-04-20 2023-07-11 財團法人食品工業發展研究所 Beverage quality prediction system during blending process

Also Published As

Publication number Publication date
TW202443473A (en) 2024-11-01

Similar Documents

Publication Publication Date Title
RU2731588C1 (en) Method and a mixing plant for dosed batch-based preparation of a fluid cover material
Coutouly et al. Effect of heat treatment, final pH of acidification, and homogenization pressure on the texture properties of cream cheese
CN111263589A (en) Real-time quality monitoring of beverage batch production using densitometry
US10816479B2 (en) Optical characterization system for a process plant
TWM643875U (en) Beverage quality prediction system during blending process
TWI853535B (en) Beverage quality prediction system during blending process
US11940364B2 (en) Viscosity measuring system
CN110479146A (en) Pulp of lithium ion battery viscosity monitors adjustment equipment and its application method on-line
CN113406274A (en) Mixing uniformity analysis method based on viscosity on-line detection and mixing device
CN206911162U (en) Utilize the control device of stir current control leather Polyurethane resin slurry viscosity
US20240226832A9 (en) Full-Electric Drive Cementing Control System
CN120295404B (en) Yogurt viscosity control method and device based on reinforcement learning
CN221580257U (en) Material melting device and dairy product production system
CN201173921Y (en) Sulfitation intensity automatic detection device
CN118527043A (en) Automatic control system and control method for adding liquid raw materials into TMR stirring tank
CN110274849A (en) One kind automatically adding water speed regulation farinograph and method
JP2010025643A (en) Dispersion analysis method and device, as well as dispersion stability evaluation method and device
CN112697645B (en) Method for testing wall sticking temperature of crude oil and crude oil wall sticking simulation device
CN209076592U (en) Homogenizer
CN218474027U (en) Stuffing manufacturing equipment
CN113740208A (en) Full tailing paste stirring experimental device and using method
EP1121973B1 (en) Intelligent quality measurement and supervision system
CN107188994A (en) A kind of natural rubber system of processing and processing technology
CN115243558A (en) Real-time quality monitoring of beverage batch preparation using densitometrics
CN206610554U (en) A kind of emulsified cosmetics teaching, training device