TWI853535B - Beverage quality prediction system during blending process - Google Patents
Beverage quality prediction system during blending process Download PDFInfo
- Publication number
- TWI853535B TWI853535B TW112114753A TW112114753A TWI853535B TW I853535 B TWI853535 B TW I853535B TW 112114753 A TW112114753 A TW 112114753A TW 112114753 A TW112114753 A TW 112114753A TW I853535 B TWI853535 B TW I853535B
- Authority
- TW
- Taiwan
- Prior art keywords
- quality
- stirring
- container
- monitoring
- analysis device
- Prior art date
Links
- 238000002156 mixing Methods 0.000 title claims abstract description 95
- 235000013361 beverage Nutrition 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 43
- 230000008569 process Effects 0.000 title claims abstract description 40
- 238000012544 monitoring process Methods 0.000 claims abstract description 121
- 239000000463 material Substances 0.000 claims abstract description 105
- 238000003756 stirring Methods 0.000 claims abstract description 72
- 230000008859 change Effects 0.000 claims abstract description 7
- 238000004458 analytical method Methods 0.000 claims description 72
- 238000002360 preparation method Methods 0.000 claims description 50
- 238000013528 artificial neural network Methods 0.000 claims description 17
- 239000006185 dispersion Substances 0.000 claims description 17
- 239000007788 liquid Substances 0.000 claims description 14
- 239000007787 solid Substances 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 9
- 239000012530 fluid Substances 0.000 claims description 8
- 238000000518 rheometry Methods 0.000 claims description 8
- 238000013135 deep learning Methods 0.000 claims description 7
- 238000013461 design Methods 0.000 claims description 7
- 238000003921 particle size analysis Methods 0.000 claims description 7
- 238000012937 correction Methods 0.000 claims description 6
- 230000005484 gravity Effects 0.000 claims description 5
- 230000000704 physical effect Effects 0.000 claims 1
- 238000000265 homogenisation Methods 0.000 description 13
- 239000000843 powder Substances 0.000 description 9
- 108010073771 Soybean Proteins Proteins 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 229940001941 soy protein Drugs 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 6
- 238000004090 dissolution Methods 0.000 description 6
- 238000005070 sampling Methods 0.000 description 6
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 5
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000012795 verification Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 238000004945 emulsification Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 230000002572 peristaltic effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000012460 protein solution Substances 0.000 description 3
- 235000018102 proteins Nutrition 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 108010082495 Dietary Plant Proteins Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 108010084695 Pea Proteins Proteins 0.000 description 1
- 108010064851 Plant Proteins Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 238000012356 Product development Methods 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 235000003434 Sesamum indicum Nutrition 0.000 description 1
- 244000000231 Sesamum indicum Species 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 108010046377 Whey Proteins Proteins 0.000 description 1
- 102000007544 Whey Proteins Human genes 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 235000021120 animal protein Nutrition 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000828 canola oil Substances 0.000 description 1
- 235000019519 canola oil Nutrition 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 235000019705 chickpea protein Nutrition 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 235000021323 fish oil Nutrition 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 235000019702 pea protein Nutrition 0.000 description 1
- 235000021118 plant-derived protein Nutrition 0.000 description 1
- VXPLXMJHHKHSOA-UHFFFAOYSA-N propham Chemical compound CC(C)OC(=O)NC1=CC=CC=C1 VXPLXMJHHKHSOA-UHFFFAOYSA-N 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229940071440 soy protein isolate Drugs 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 235000021119 whey protein Nutrition 0.000 description 1
Images
Landscapes
- Accessories For Mixers (AREA)
- Devices For Dispensing Beverages (AREA)
Abstract
提供一種飲品調製混合品質預測系統。該飲品調製混合品質預測系統包括一容器、一攪拌調控模組、一第一監控模組、一第二監控模組以及一控制單元。該容器用以盛裝一混合物料。該攪拌調控模組包括一攪拌件,該攪拌件伸入該容器中,用以攪拌該混合物料。該第一監控模組設置於該容器外之循環管道,用以即時監測該混合物料的品質。該第二監控模組之至少一部分設置於該容器中,用以監控該混合物料在混合過程中的品質變化。該控制單元電連接該攪拌調控模組、該第一監控模組及該第二監控模組,用以控制該攪拌調控模組及接收該第一監控模組與該第二監控模組的品質監測數據,並依據該等品質監測數據建立至少一物料混合品質預測模型。A beverage mixing quality prediction system is provided. The beverage mixing quality prediction system includes a container, a stirring control module, a first monitoring module, a second monitoring module and a control unit. The container is used to contain a mixed material. The stirring control module includes a stirring element, which extends into the container to stir the mixed material. The first monitoring module is arranged in a circulation pipeline outside the container to monitor the quality of the mixed material in real time. At least a part of the second monitoring module is arranged in the container to monitor the quality change of the mixed material during the mixing process. The control unit is electrically connected to the stirring control module, the first monitoring module and the second monitoring module, and is used to control the stirring control module and receive quality monitoring data from the first monitoring module and the second monitoring module, and establish at least one material mixing quality prediction model based on the quality monitoring data.
Description
本發明係關於一種品質預測系統,且更具體言之,係關於一種飲品調製混合品質預測系統。The present invention relates to a quality prediction system, and more particularly, to a beverage preparation mixing quality prediction system.
在食品工業中,物料混合為其不可缺少之製程步驟。而混合類型可以包括固態粉體分散溶解或者不可相溶之液體混合。In the food industry, material mixing is an indispensable process step. The mixing types can include dispersing and dissolving solid powders or mixing immiscible liquids.
目前食品工廠針對物料混合加工製程,多以人工目測取樣或經驗法則來判斷混合終點。且若桶槽使用不銹鋼材質,根本無法即時利用肉眼觀測物料的現況,例如粉體結塊或起泡程度等。因此,現有取樣及判斷方法除耗費人力外,亦可能因不同操作人員、批次作業、取樣點誤差或不同設備導致混合終點誤判。而混合終點誤判或無法即時得知混合現況,可能發生以下幾種情況:(1)過度混合,造成混合物料的品質劣化,以致物料無法使用而被迫浪費;(2)成分配比錯誤或充填物品質不穩定,造成終產品品質均一性不佳及穩定性差;及(3)管路阻塞,造成混合設備損壞。At present, food factories mostly use manual visual sampling or empirical rules to judge the end point of mixing for material mixing processes. And if the barrel is made of stainless steel, it is impossible to use the naked eye to observe the current state of the material, such as powder agglomeration or foaming degree. Therefore, the existing sampling and judgment methods are not only labor-intensive, but also may lead to misjudgment of the mixing end point due to different operators, batch operations, sampling point errors or different equipment. If the mixing endpoint is misjudged or the mixing status cannot be immediately known, the following situations may occur: (1) over-mixing, resulting in deterioration of the quality of the mixed material, which makes the material unusable and wasted; (2) incorrect ingredient ratio or unstable filler quality, resulting in poor uniformity and stability of the final product; and (3) pipeline blockage, resulting in damage to the mixing equipment.
在一些實施例中,一種飲品調製混合品質預測系統包括一容器、一攪拌調控模組、一第一監控模組、一第二監控模組以及一控制單元。該容器用以盛裝一混合物料。該攪拌調控模組包括一攪拌件,該攪拌件伸入該容器中,用以攪拌該混合物料。該第一監控模組設置於該容器外,用以即時監測該混合物料的品質。該第二監控模組之至少一部分設置於該容器中,用以監控該混合物料在混合過程中的品質變化。該控制單元電連接該攪拌調控模組、該第一監控模組及該第二監控模組,用以控制該攪拌調控模組及接收該第一監控模組與該第二監控模組的品質監測數據,並依據該等品質監測數據建立至少一物料混合品質預測模型。In some embodiments, a beverage preparation mixing quality prediction system includes a container, a stirring control module, a first monitoring module, a second monitoring module and a control unit. The container is used to contain a mixed material. The stirring control module includes a stirring member, which extends into the container to stir the mixed material. The first monitoring module is arranged outside the container to monitor the quality of the mixed material in real time. At least a part of the second monitoring module is arranged in the container to monitor the quality change of the mixed material during the mixing process. The control unit is electrically connected to the stirring control module, the first monitoring module and the second monitoring module, and is used to control the stirring control module and receive quality monitoring data from the first monitoring module and the second monitoring module, and establish at least one material mixing quality prediction model based on the quality monitoring data.
在一些實施例中,一種飲品調製混合品質預測系統包括一容器、一攪拌調控模組、一品質分析裝置以及一控制單元。該容器用以盛裝一混合物料。該攪拌調控模組包括一攪拌件,該攪拌件伸入該容器中,用以攪拌該混合物料。該品質分析裝置設置於該容器之一側,用以分析從該容器中取出之該混合物料的品質。該控制單元電連接該攪拌調控模組及該品質分析裝置,用以控制該攪拌調控模組及接收該品質分析裝置的品質分析數據,並依據該等品質分析數據建立至少一物料混合品質預測模型。In some embodiments, a beverage preparation and mixing quality prediction system includes a container, a stirring and controlling module, a quality analysis device, and a control unit. The container is used to contain a mixed material. The stirring and controlling module includes a stirring member, which extends into the container to stir the mixed material. The quality analysis device is disposed on one side of the container to analyze the quality of the mixed material taken out of the container. The control unit is electrically connected to the stirring and controlling module and the quality analysis device to control the stirring and controlling module and receive quality analysis data from the quality analysis device, and establish at least one material mixing quality prediction model based on the quality analysis data.
參閱圖1,其係顯示根據本發明的一些實施例的飲品調製混合品質預測系統1的架構圖。本發明之飲品調製混合品質預測系統1包括一容器100、一攪拌調控模組200、一循環泵300、一循環管道400、一品質分析裝置500、一第一監控模組600、一第二監控模組700、一備料容器810、一入料調控模組A、一輸入/輸出模塊B以及一控制單元C。Referring to FIG. 1 , it is a schematic diagram showing a beverage preparation and mixing
該容器100用以盛裝一混合物料M。在一些實施例中,該容器100可為一豎直圓筒型容器,且其不侷限於封閉容器,亦可包括開放容器。該容器100可為透明材質或不透明材質。在一些實施例中,如圖1所示,該容器100可包括一上部101、一下部102及一排料閥103。該下部102相對於該上部101。該排料閥103設置於該下部102,用以將該混合物料M排出。The
該攪拌調控模組200可包括一攪拌件230、一驅動馬達210及一扭力感測元件220。該攪拌件230可伸入該容器100中,用以攪拌該混合物料M。在一些實施例中,該攪拌件230可依需求做更換,且可視物料或產品特性而不侷限於單一型式。例如,在一些實施例中,該攪拌件230可為葉片型式,包括但不限於推進式葉片、槳式葉片或渦輪式葉片。在一些實施例中,該攪拌件230可為破碎剪切型式,包括但不限於齒型、槽型或圓孔型刀具。該驅動馬達210用以驅動該攪拌件230。在一些實施例中,如圖1所示,該驅動馬達210可通過該扭力感測元件220連接該攪拌件230。該扭力感測元件220可用於監測攪拌過程中之扭矩變化,進而換算出該混合物料M之黏度值。在一些實施例中,該驅動馬達210可配置變頻器,用於調整該驅動馬達210之轉速。The
該循環管道400可連通該容器100之該上部101及該下部102,用以引導該混合物料M出入該容器100。該循環泵300可設置於該循環管道400上,用以循環輸送該混合物料M出入該容器100。在一些實施例中,該循環管道400可供設置監測設備進行監測操作或設置剪切裝置進行均質操作。在一些實施例中,該循環管道400可為不銹鋼材質或塑膠材質。在一些實施例中,該循環泵300可包括但不限於隔膜泵、離心泵、轉子泵、蠕動泵、電磁泵或剪切泵。其中,該剪切泵可提供剪切力,以協助進行該混合物料M之均質操作。The
該品質分析裝置500可設置於該容器100之一側,用以分析從該容器100中取出之該混合物料M的品質。在一些實施例中,該品質分析裝置500可為經由取樣檢測品質的離線(非線上)分析裝置,例如實驗室分析裝置。該品質分析裝置500可不限於特定設備,凡是可以表徵該混合物料M的品質者,皆可使用。在一些實施例中,該品質分析裝置500可包括但不限於如下的一個或多個:流體流變分析裝置510、粒徑分析裝置520及電動電位分析裝置530。The
該第一監控模組600可設置於該容器100外之循環管道上,用以即時監測該混合物料M的品質。也就是說,該第一監控模組600為線上監控模組。在一些實施例中,如圖1所示,該第一監控模組600可設置於該循環管道400上。該第一監控模組600可依據該混合物料M之不同混合模式(包括例如:溶解分散或乳化均質),選擇適用的監測元件,且使用的監測元件之數量可為一個或多個。在一些實施例中,該第一監控模組600可包括但不限於如下的一個或多個:黏度感測元件610、粒徑感測元件620、總懸浮物感測元件631、近紅外光度計632、濁度計633、可溶性固形物感測元件634、電導率感測元件640、流量感測元件650及分散穩定性分析裝置660。在一些實施例中,如圖1所示,該分散穩定性分析裝置660的設置位置可不同於其它監測元件(包括例如:該黏度感測元件610、該粒徑感測元件620、該總懸浮物感測元件631、該近紅外光度計632、該濁度計633、該可溶性固形物感測元件634、該電導率感測元件640及該流量感測元件650)的設置位置。The
該第二監控模組700之至少一部分可設置於該容器100中,用以監控該混合物料M在混合過程中的品質變化。也就是說,該第二監控模組700為線上監控模組。該第二監控模組700可依據不同目的或該混合物料M之不同表徵,選擇適用的監測元件,且使用的監測元件之數量可為一個或多個。在一些實施例中,該第二監控模組700可包括但不限於如下的一個或多個:比重感測元件710、離子感測元件720、流速感測元件730、溫度感測元件740、液位感測元件750及荷重元760。在一些實施例中,如圖1所示,該荷重元760的設置位置可不同於其它監測元件(包括例如:該比重感測元件710、該離子感測元件720、該流速感測元件730、該溫度感測元件740及該液位感測元件750)的設置位置。At least a portion of the
該控制單元C可電連接該攪拌調控模組200、該品質分析裝置500、該第一監控模組600及該第二監控模組700,用以控制該攪拌調控模組200、接收該品質分析裝置500的品質分析數據及接收該第一監控模組600與該第二監控模組700的品質監測數據,並依據該等品質分析數據及該等品質監測數據建立至少一物料混合品質預測模型。在一些實施例中,該控制單元C可包括電腦、可程式邏輯控制器或其組合。The control unit C can be electrically connected to the
在一些實施例中,該至少一物料混合品質預測模型係可以人工神經網路(Artificial Neural Network,ANN)對該等品質分析數據及該等品質監測數據進行深度學習後建立。在一些實施例中,該品質分析裝置500的該等品質分析數據係可作為深度學習預測模型的輸出值,該第一監控模組600與該第二監控模組700的該等品質監測數據係可作為深度學習預測模型的輸入值,通過反向傳播演算法(Backpropagation Algorithm)對人工神經網路模型進行訓練及修正(包括調整神經元權重),即可建立該至少一物料混合品質預測模型。在一些實施例中,該至少一物料混合品質預測模型的輸入值亦可為物料種類、配方和/或製程設備的操作參數。在一些實施例中,該人工神經網路模型可由該控制單元C內軟體建立,並可用於:a) 得到各製程參數和/或物料配方資訊,輸入以獲得預測值並可與設定值作比較分析;b) 得到各監控模組之監測數據後,輸入以獲得預測值並與設定值作比較分析;c) 依據分析結果計算出製程終點之混合品質調校參數。In some embodiments, the at least one material mixture quality prediction model can be established by deep learning the quality analysis data and the quality monitoring data using an artificial neural network (ANN). In some embodiments, the quality analysis data of the
在一些實施例中,利用均方根誤差(Root Mean Squared Error, RMSE)和/或相關係數(Correlation Coefficient, R 2)對該至少一物料混合品質預測模型進行可適性評估,並進一步執行預測模型的驗證。其中,當預測值與所對應之實際值不符時,可依據結果調整預測模型參數,提高預測模型相關係數。 In some embodiments, the adaptability of the at least one material mixing quality prediction model is evaluated using the root mean square error (RMSE) and/or the correlation coefficient (R 2 ), and the prediction model is further validated. When the predicted value does not match the corresponding actual value, the prediction model parameters can be adjusted according to the result to improve the prediction model correlation coefficient.
該入料調控模組A電連接該控制單元C(包括例如:電腦及可程式邏輯控制器),並依據該控制單元C之一指令進行入料調控動作。在一些實施例中,當電腦接收到各感測元件之數據值時,通過其內部軟體計算,以協助將原物料之進料量和進料順序等資訊傳送至可程式邏輯控制器,並透過其下達指令給該入料調控模組A進行入料調控動作。在一些實施例中,如圖1所示,該入料調控模組A可與該備料容器810配合,進行入料調控動作。The feed control module A is electrically connected to the control unit C (including, for example, a computer and a programmable logic controller), and performs feed control actions according to an instruction of the control unit C. In some embodiments, when the computer receives the data values of each sensing element, it calculates through its internal software to assist in transmitting information such as the feed amount and feed sequence of the raw materials to the programmable logic controller, and issues instructions to the feed control module A through the programmable logic controller to perform feed control actions. In some embodiments, as shown in FIG1 , the feed control module A can cooperate with the
該輸入/輸出模塊B電連接該第一監控模組600、該第二監控模組700及該控制單元C,用以一次性匯集該等品質監測數據及輸出該等品質監測數據至該控制單元C,進行數據分析或顯示等。The input/output module B is electrically connected to the
通過上述說明可知,該控制單元C之功能包括接收上述各監控模組之監測數據及匯集數據,其電腦裝有分析軟體得以進行數據分析、模型預測及後續參數調整設計。該至少一物料混合品質預測模型以ANN建立,透過調整神經元權重驗證模型,並進一步利用已受訓練模型來預測混合物料的品質,亦可更進一步對不符合目標設定值之物料計算出相對應之修正設計,回饋至該攪拌調控模組200或該入料調控模組A。From the above description, it can be known that the functions of the control unit C include receiving the monitoring data and aggregating the data of the above monitoring modules. The computer is equipped with analysis software to perform data analysis, model prediction and subsequent parameter adjustment design. The at least one material mixing quality prediction model is established with ANN, and the model is verified by adjusting the neural weights, and the trained model is further used to predict the quality of the mixed material. The corresponding correction design can also be further calculated for the material that does not meet the target setting value, and fed back to the stirring
本發明之飲品調製混合品質預測系統1通過線上監控模組(包括例如:該第一監控模組600及該第二監控模組700)及離線分析裝置(包括例如:該品質分析裝置500)獲取該混合物料M在混合過程中的品質監測數據及品質分析數據,並依據該等品質監測數據及該等品質分析數據結合人工神經網路(ANN)及反向傳播演算法,建立至少一物料混合品質預測模型。通過該至少一物料混合品質預測模型,可預測不同的物料配方或製程設備參數下之該混合物料M的品質。且經由線上即時監控,可減少不必要之過度攪拌所帶來的物料劣變、結塊和/或變性等現象,進而提高該混合物料M的品質和調製效率,並能縮短產品研發時程和協助工廠建立製備標準化程序,大幅提高製程品質。The beverage preparation and mixing
參閱圖2,其係顯示根據本發明的一些實施例的飲品調製混合品質預測系統1a的架構圖。圖2為圖1所建立之預測模型的應用情境之一。圖2之飲品調製混合品質預測系統1a具有和圖1之飲品調製混合品質預測系統1相似的架構,其不同處僅在於:圖2之該飲品調製混合品質預測系統1a省略圖1之該品質分析裝置500。Refer to FIG. 2, which is a diagram showing the architecture of a beverage preparation mixed
在一些實施例中,如圖2所示,該控制單元C可僅依據該第一監控模組600與該第二監控模組700的該等品質監測數據的輸入,透過已建立之預測模型,間接獲得相似於儀器裝置測定之混合品質,以了解現階段混合物料的攪拌狀態。在一些實施例中,亦可將物料配方和/或製程參數條件帶入已建立之預測模型,以預測攪拌的目標品質。In some embodiments, as shown in FIG2 , the control unit C can indirectly obtain the mixing quality similar to that measured by the instrument through the established prediction model based only on the input of the quality monitoring data of the
參閱圖3,其係顯示根據本發明的一些實施例的飲品調製混合品質預測系統1b的架構圖。圖3為圖1所建立之預測模型的應用情境之一。圖3之飲品調製混合品質預測系統1b具有和圖1之飲品調製混合品質預測系統1相似的架構,其不同處僅在於:圖3之該飲品調製混合品質預測系統1b省略圖1之該第一監控模組600、該第二監控模組700及該輸入/輸出模塊B,且圖3之該控制單元C可包括電腦C1及可程式邏輯控制器C2。Refer to FIG3, which is a block diagram of a beverage preparation mixed
在一些實施例中,如圖3所示,可將物料配方和/或製程參數條件輸入至已建立之預測模型,預測混合品質以作為目標設定值,於混合製程中,該電腦C1內軟體可僅依據該品質分析裝置500的該等品質分析數據與目標設定值分析比較,依據差異性計算修正參數,可以為轉速、配方或者操作溫度的調整等,並進一步透過該可程式邏輯控制器C2控制該攪拌調控模組200進行調控,以達到設定之品質目標。In some embodiments, as shown in FIG. 3 , the material formula and/or process parameter conditions can be input into the established prediction model to predict the mixing quality as the target setting value. In the mixing process, the software in the computer C1 can only analyze and compare the quality analysis data of the
參閱圖4,其係顯示根據本發明的一些實施例的飲品調製混合品質預測系統1c的架構圖。圖4為圖1所建立之預測模型的應用情境之一。圖4之飲品調製混合品質預測系統1c具有和圖1之飲品調製混合品質預測系統1相似的架構,其不同處僅在於:圖4之該飲品調製混合品質預測系統1c省略圖1之該品質分析裝置500,且圖4之該控制單元C可包括電腦C1及可程式邏輯控制器C2。Refer to FIG. 4, which is a diagram showing the architecture of a beverage preparation mixed
在一些實施例中,如圖4所示,該控制單元C可僅依據物料配方和/或製程參數條件輸入以預測品質,作為混合目標之設定值,當於調配過程中,透過該第一監控模組600與該第二監控模組700的該等品質監測數據輸入至已建立之模型,經計算獲得相似於儀器裝置測定之混合品質,並透過該電腦C1內軟體與目標設定值分析比較,依據差異性計算修正參數,可以為轉速、配方或者操作溫度的調整等,並進一步透過該可程式邏輯控制器C2控制該攪拌調控模組200,以達到設定之品質目標。In some embodiments, as shown in FIG. 4 , the control unit C may only predict the quality based on the material formula and/or process parameter condition input as the setting value of the mixing target. During the mixing process, the quality monitoring data of the
茲以下列實例予以詳細說明本發明,唯並不意謂本發明僅侷限於此等實例所揭示之內容。The present invention is described in detail with the following examples, but it is not intended that the present invention is limited to the contents disclosed in these examples.
適用於本發明之混合調配模式可包括但不限於固-液體之粉體分散、固體物質溶解、相溶液體溶液混合以及兩相不相溶液體乳化等。此外,本發明所提供之系統適用原物料型態可包括但不限於固體粉末、液體及凝膠體等,且不限應用於單一種物料,亦可為多種物料的組合。The mixing and blending modes applicable to the present invention may include but are not limited to solid-liquid powder dispersion, solid material dissolution, compatibilizing liquid-solution mixing, and two-phase immiscible liquid emulsification, etc. In addition, the system provided by the present invention may include but is not limited to solid powder, liquid, and gel, etc., and is not limited to a single material, but may also be a combination of multiple materials.
[[ 發明例Invention Example 1]1]
以大豆蛋白粉溶液的製備為例,利用Pro-Fam ®646大豆分離蛋白粉為原料,以水作為溶劑,於不同製備溫度(包括例如:30°C、50°C、70°C及90°C)和酸鹼值(pH3-7)環境,分別配製不同濃度(5-10%)之蛋白質溶液。 Taking the preparation of soy protein powder solution as an example, Pro-Fam ® 646 soy protein powder is used as the raw material and water is used as the solvent. Protein solutions of different concentrations (5-10%) are prepared at different preparation temperatures (including, for example, 30°C, 50°C, 70°C and 90°C) and pH values (pH3-7).
配合參閱圖1,於發明例1中,該攪拌調控模組200可包括該攪拌件230、該驅動馬達210及該扭力感測元件220。其中該攪拌件230以推進式攪拌葉片為例,並透過調控該驅動馬達210來帶動該攪拌件230,以進行粉體物料的分散溶解製程。Referring to FIG. 1 , in the first embodiment of the invention, the stirring
於發明例1中,該品質分析裝置500可為該流體流變分析裝置510,透過取樣測定不同條件製備之大豆蛋白溶液黏度值,並以此作為預測模型建立之輸出值。In the invention example 1, the
於發明例1中,該第一監控模組600可包括該可溶性固形物感測元件634及該電導率感測元件640,將該可溶性固形物感測元件634及該電導率感測元件640置於該循環管道400內,分別針對攪拌混合過程物料之可溶性固形物、電導率變化進行監測。此外,該第一監控模組600可另包括該分散穩定性分析裝置660,該分散穩定性分析裝置660可連接該循環管道400,並透過該循環泵300(發明例1採用蠕動泵)以低速、穩定且無紊流產生狀態下,輸送該容器100中之混合物料至分析裝置中的樣品槽,且樣品槽中之混合物料保持滿管狀態,再透過光學原理分析物料混合特性,例如體積分率。In Invention Example 1, the
於發明例1中,該第二監控模組700可包括該離子感測元件720及該流速感測元件730,將該離子感測元件720及該流速感測元件730插入至該容器100中,以該離子感測元件720量測混合容器100內死角處(流動性差區域)循環狀況,以該流速感測元件730量測混合過程中該容器100之壁面的流速。In Invention Example 1, the
於發明例1中,該第一監控模組600可進一步包括該流量感測元件650,而該第二監控模組700可進一步包括該溫度感測元件740,用於監控循環和混合過程環境的變化,以確保量測數據的準確性、優化調配或清洗消毒製程。In Invention Example 1, the
於發明例1中,因配方中具有多種原物料組合,此時可使用該液位感測元件750或進一步包括該荷重元760的監測值,協助控制各個原物料之入料量,確認是否已達到配方容量和/或總重量設定值,以使該容器100內之混合物料能維持正確配比。In Invention Example 1, since the formula contains a variety of raw material combinations, the
之後,將該第一監控模組600及該第二監控模組700連接至該輸入/輸出模塊B,以進行品質監測數據彙整,並進一步將該品質監測數據傳送至該控制單元C,以作為預測模型建立的輸入值。Afterwards, the
於發明例1中,參閱圖1建立ANN預測模型,該ANN預測模型的建立可包括:(1)使用不同物料和/或製程條件資訊作為預測模型建立的輸入值,使用該流體流變分析裝置510之量測值作為預測模型建立的輸出值,以建立可預測不同調配製程下目標品質指標;及(2)使用該扭力感測元件220和/或該流速感測元件730之訊號值作為預測模型建立的輸入值,使用該流體流變分析裝置510取樣量測之黏度值作為預測模型建立的輸出值,透過所建立的預測模型,可於混合過程中將上述線上感測元件之訊號輸入,以預測混合過程中混合物料之黏度值,故可即時確認該容器100內之混合物料的混合情形。In Invention Example 1, an ANN prediction model is established with reference to FIG. 1. The establishment of the ANN prediction model may include: (1) using different materials and/or process condition information as input values for establishing the prediction model, and using the measured value of the fluid
上述ANN預測模型的建立步驟可包括:將不同處理組之資訊或數據整理並輸入至軟體進行處理,以人工神經網路系統,透過調整層數、神經元數量和/或激勵函數,並利用反向傳播演算法訓練預測模型;以及將未用於訓練預測模型的驗證數據套入已訓練的預測模型,比較預測值與實際值之差異,透過驗證數據來進行預測模型的參數修正,以提高預測模型的相關係數(>0.8)。The steps of establishing the above-mentioned ANN prediction model may include: organizing the information or data of different processing groups and inputting them into the software for processing, using the artificial neural network system to train the prediction model by adjusting the number of layers, the number of neurons and/or the excitation function, and using the back propagation algorithm; and inserting the verification data that is not used to train the prediction model into the trained prediction model, comparing the difference between the predicted value and the actual value, and modifying the parameters of the prediction model through the verification data to improve the correlation coefficient of the prediction model (>0.8).
此外,可針對圖2的應用情境,對大豆蛋白粉進行攪拌調配程序,將該扭力感測元件220和/或該流速感測元件730之即時監測訊號值輸入至模型,間接獲得相似於儀器裝置測定品質。另針對圖3及4情境,使用上述已訓練的預測模型,預測分散溶解品質及即時監控並計算校正參數。當欲配製含10%之中性大豆蛋白質分散溶液時,可先行通過預測模型預測於特定製程條件下(中性pH7、調配溫度50°C)為達分散完全之目標設定值(黏度值250.0±23.0 cP),之後,對大豆蛋白粉進行攪拌調配程序。針對圖3的應用,可透過該品質分析裝置量測當前品質,若符合預測結果,即表示已達到分散目標;若當品質不符合預測結果(約為100 cP),可推判尚未達到完全分散溶解,此時圖3之電腦C1可根據預測模型設計一套調校參數,並透過圖3之可程式邏輯控制器C2傳送指令至相關設備,進行例如調高驅動軸轉速、調配溫度及延長攪拌時間等操作,以達到預期之目標品質。針對圖4的應用,可透過該第一監控模組及該第二監控模組訊號間接分析品質,若符合預測結果,即表示已達到均質目標;若當攪拌過程品質與目標設定值不符(約於100 cP),可推判尚未達到完全分散溶解,此時圖4之電腦C1可根據預測模型設計一套調校參數,並透過圖4之可程式邏輯控制器C2傳送指令至相關設備,進行例如調高驅動軸轉速、調配溫度及延長攪拌時間等操作,以達到期望之目標品質。In addition, for the application scenario of Figure 2, the soy protein powder can be subjected to a stirring and blending process, and the real-time monitoring signal value of the
[[ 發明例Invention Example 22 ]]
以蛋白質溶液與液態油脂均質混合為例,所提之蛋白質可包括動物性蛋白之乳清蛋白、酪蛋白及其組合,或植物性蛋白之大豆蛋白、豌豆蛋白、芝麻蛋白、鷹嘴豆蛋白及其組合。發明例2採用SUPRO ®120 IP大豆分離蛋白。 Taking the homogenization of protein solution and liquid fat as an example, the protein mentioned may include whey protein, casein and combinations thereof of animal proteins, or soy protein, pea protein, sesame protein, chickpea protein and combinations thereof of plant proteins. Invention Example 2 uses SUPRO ® 120 IP soy protein isolate.
所述液態油脂可為植物性材料或動物性油脂,包括例如大豆油、葵花油、芥花油、中碳鏈脂肪、魚油及其組合等。發明例2採用中碳鏈脂肪。The liquid oil can be a plant material or an animal oil, including, for example, soybean oil, sunflower oil, canola oil, medium-chain fat, fish oil, and combinations thereof. Invention Example 2 uses medium-chain fat.
發明例2係以不同油脂及蛋白質比例(0.1-2)於不同製備溫度(30-80°C)或驅動軸轉速(2,000-10,000 rpm)下配製含油植物蛋白混合液。Inventive Example 2, different oil and protein ratios (0.1-2) were used to prepare oil-containing vegetable protein mixtures at different preparation temperatures (30-80° C.) or drive shaft speeds (2,000-10,000 rpm).
配合參閱圖1,於發明例2中,該攪拌件230可為齒型轉-定子刀具,並透過調控該驅動馬達210來帶動該攪拌件230,以進行物料的均質乳化製程。With reference to FIG. 1 , in the second embodiment of the invention, the stirring
於發明例2中,該品質分析裝置500可包括該粒徑分析裝置520和該電動電位分析裝置530,透過取樣分別測定不同均質參數或配方條件下物料的粒徑尺寸、粒徑分佈及δ-電動勢,以建立混合均質品質指標。In Invention Example 2, the
於發明例2中,該第一監控模組600可包括該濁度計633、該電導率感測元件640及該流量感測元件650,將該濁度計633、該電導率感測元件640及該流量感測元件650置於該循環管道400內,分別間接監測均質程度以及該容器100內部物料混合狀態。此外,該第一監控模組600可另包括該分散穩定性分析裝置660,該分散穩定性分析裝置660可連接該循環管道400,並透過該循環泵300(發明例2採用蠕動泵)以低速、穩定且無紊流產生狀態下,輸送該容器100中之混合物料至分析裝置中的樣品槽,且樣品槽中之混合物料保持滿管狀態,再透過光學原理分析物料特性,例如粒徑尺寸或背向光散射率。In Invention Example 2, the
於發明例2中,該第二監控模組700可包括該溫度感測元件740及該液位感測元件750,將該溫度感測元件740及該液位感測元件750插入至該容器100中,以該溫度感測元件740監控均質過程中物料之溫度變化,而該液位感測元件750可用於即時判斷物料入料量或均質過程中泡沬形成程度,以提高調配過程的可控制性及準確性。In Invention Example 2, the
上述線上感測元件之數據值可直接用作監測混合之品質指標,亦可透過監測之數據與離線裝置之量測值間模型建立,間接獲得相對品質。The data values of the above-mentioned online sensing elements can be directly used as quality indicators for monitoring the mixture, and the relative quality can also be indirectly obtained by establishing a model between the monitored data and the measurement values of the offline device.
於發明例2中,建立ANN預測模型,其輸入值可包括物料配方、製程參數條件及感測元件之感測值(包括例如:濁度值或光散射率)等,而輸出值可包括該粒徑分析裝置520和/或該分散穩定性分析裝置660之量測值。將不同製程處理組參數及數據等資訊彙整並輸入至該控制單元C,透過其內部軟體以人工神經網路系統及反向傳播演算法訓練預測模型;再將未用於訓練預測模型的驗證數據套入建立的預測模型,比較預測值與實際值之差異,透過驗證數據來進行預測模型的參數修正,以提高預測模型的相關係數(>0.8)。In Invention Example 2, an ANN prediction model is established, and its input values may include material formula, process parameter conditions and sensing values of sensing elements (including, for example, turbidity value or light scattering rate), and the output values may include the measured values of the particle
將上述預測模型應用於圖4的應用情境,當欲配製含10%中碳鏈脂肪之5%大豆蛋白混合液時,可通過上述已建立之預測模型,預測於所設定之製程條件下(調配溫度80°C、刀具轉速7000 rpm、均質時間10 分鐘)可獲得之乳化液目標粒徑範圍約5~8 μm(設定值)。之後,於均質製程中,可藉由上述感測元件所得即時監測值,透過該輸入/輸出模塊B進行彙整,再傳送至該控制單元C預測當前之品質,若符合預測結果落在5~8 μm之間,即表示已達到均質目標;若尚未到達設定值,則圖4之電腦C1會依據預測模型中各神經元權重設計調校參數,並透過圖4之可程式邏輯控制器C2傳送指令至相關設備,進行例如調高驅動軸轉速、調配溫度及延長攪拌時間等操作,以達到期望之目標品質。Applying the above prediction model to the application scenario of Figure 4, when preparing a 5% soy protein mixture containing 10% medium-chain fat, the above established prediction model can be used to predict that the target particle size range of the emulsion that can be obtained under the set process conditions (mixing temperature 80°C, tool speed 7000 rpm, homogenization time 10 minutes) is about 5~8 μm (set value). Afterwards, during the homogenization process, the real-time monitoring values obtained by the above-mentioned sensing elements can be aggregated through the input/output module B and then transmitted to the control unit C to predict the current quality. If the predicted result falls between 5 and 8 μm, it means that the homogenization target has been achieved. If the set value has not yet been reached, the computer C1 in Figure 4 will design the adjustment parameters based on the weights of each neuron in the prediction model, and send instructions to related equipment through the programmable logic controller C2 in Figure 4 to perform operations such as increasing the drive shaft speed, adjusting the temperature, and extending the stirring time to achieve the desired target quality.
通過上述發明例1及發明例2之說明,本發明之飲品調製混合品質預測系統可確保混合物料達到所需品質之要求,減少製程上人為誤判或過度攪拌帶來之品質劣變,亦可即時確保物料/介質於混合加工過程中的品質變化,進一步提升產品品質的一致性。此外,本發明之飲品調製混合品質預測系統可自動化調控參數達到目標品質,以減少人為經驗判斷造成的誤差與成本損失。Through the description of the above invention examples 1 and 2, the beverage preparation and mixing quality prediction system of the present invention can ensure that the mixed materials meet the required quality requirements, reduce the quality deterioration caused by human misjudgment or excessive stirring in the process, and can also ensure the quality change of materials/mediums in the mixing process in real time, further improving the consistency of product quality. In addition, the beverage preparation and mixing quality prediction system of the present invention can automatically adjust parameters to achieve the target quality, so as to reduce the errors and cost losses caused by human experience judgment.
除非另外定義,在此使用的全部用語(包括技術及科學用語)具有與此篇揭露所屬之一般技藝者所通常理解的相同涵義。能理解的是這些用語,例如在通常使用的字典中定義的用語,應被解讀成具有一與相關技術及本揭露的背景或上下文一致的意思,而不應以一理想化或過度正式的方式解讀,除非在此特別定義。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It is understood that these terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning consistent with the background or context of the relevant technology and this disclosure, and should not be interpreted in an idealized or overly formal manner unless specifically defined herein.
上述實施例僅為說明本發明之原理及其功效,而非限制本發明。習於此技術之人士對上述實施例所做之修改及變化仍不違背本發明之精神。本發明之權利範圍應如後述之申請專利範圍所列。The above embodiments are only for illustrating the principle and effect of the present invention, but not for limiting the present invention. The modification and changes made by the persons skilled in the art to the above embodiments still do not violate the spirit of the present invention. The scope of the rights of the present invention shall be as listed in the scope of the patent application described below.
1:飲品調製混合品質預測系統
1a:飲品調製混合品質預測系統
1b:飲品調製混合品質預測系統
1c:飲品調製混合品質預測系統
100:容器
101:上部
102:下部
103:排料閥
200:攪拌調控模組
210:驅動馬達
220:扭力感測元件
230:攪拌件
300:循環泵
400:循環管道
500:品質分析裝置
510:流體流變分析裝置
520:粒徑分析裝置
530:電動電位分析裝置
600:第一監控模組
610:黏度感測元件
620:粒徑感測元件
631:總懸浮物感測元件
632:近紅外光度計
633:濁度計
634:可溶性固形物感測元件
640:電導率感測元件
650:流量感測元件
660:分散穩定性分析裝置
700:第二監控模組
710:比重感測元件
720:離子感測元件
730:流速感測元件
740:溫度感測元件
750:液位感測元件
760:荷重元
810:備料容器
A:入料調控模組
B:輸入/輸出模塊
C:控制單元
C1:電腦
C2:可程式邏輯控制器
M:混合物料1: Beverage preparation and mixing
當結合附圖閱讀時,自以下詳細描述易於理解本發明之一些實施例的態樣。應注意,各種結構可能未按比例繪製,且各種結構之尺寸可出於論述清晰起見任意增大或減小。When read in conjunction with the accompanying drawings, it is easy to understand the aspects of some embodiments of the present invention from the following detailed description. It should be noted that various structures may not be drawn to scale, and the size of various structures may be arbitrarily increased or reduced for the sake of clarity of discussion.
圖1顯示根據本發明的一些實施例的飲品調製混合品質預測系統的架構圖。FIG. 1 shows an architecture diagram of a beverage preparation mixing quality prediction system according to some embodiments of the present invention.
圖2顯示根據本發明的一些實施例的飲品調製混合品質預測系統的架構圖。FIG. 2 shows an architecture diagram of a beverage preparation mixing quality prediction system according to some embodiments of the present invention.
圖3顯示根據本發明的一些實施例的飲品調製混合品質預測系統的架構圖。FIG3 shows an architecture diagram of a beverage preparation mixing quality prediction system according to some embodiments of the present invention.
圖4顯示根據本發明的一些實施例的飲品調製混合品質預測系統的架構圖。FIG4 shows an architecture diagram of a beverage preparation mixing quality prediction system according to some embodiments of the present invention.
1:飲品調製混合品質預測系統 1: Beverage preparation and mixing quality prediction system
100:容器 100:Container
101:上部 101: Upper part
102:下部 102: Lower part
103:排料閥 103: Discharge valve
200:攪拌調控模組 200: Stirring control module
210:驅動馬達 210: Driving motor
220:扭力感測元件 220: Torque sensing element
230:攪拌件 230: Stirring parts
300:循環泵 300: Circulation pump
400:循環管道 400: Circulation pipeline
500:品質分析裝置 500: Quality analysis device
510:流體流變分析裝置 510: Fluid rheology analysis device
520:粒徑分析裝置 520: Particle size analysis device
530:電動電位分析裝置 530: Electropotential analysis device
600:第一監控模組 600: First monitoring module
610:黏度感測元件 610: Viscosity sensing element
620:粒徑感測元件 620: Particle size sensor element
631:總懸浮物感測元件 631: Total suspended object sensing element
632:近紅外光度計 632:Near infrared photometer
633:濁度計 633: Turbidity meter
634:可溶性固形物感測元件 634: Soluble solids sensor element
640:電導率感測元件 640: Conductivity sensor element
650:流量感測元件 650: Flow sensor element
660:分散穩定性分析裝置 660: Dispersion stability analysis device
700:第二監控模組 700: Second monitoring module
710:比重感測元件 710: Gravity sensing element
720:離子感測元件 720: Ion sensor element
730:流速感測元件 730: Flow rate sensing element
740:溫度感測元件 740: Temperature sensing element
750:液位感測元件 750: Liquid level sensing element
760:荷重元 760: Load element
810:備料容器 810: Material preparation container
A:入料調控模組 A: Feeding control module
B:輸入/輸出模塊 B: Input/output module
C:控制單元 C: Control unit
M:混合物料 M: Mixed materials
Claims (16)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW112114753A TWI853535B (en) | 2023-04-20 | 2023-04-20 | Beverage quality prediction system during blending process |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW112114753A TWI853535B (en) | 2023-04-20 | 2023-04-20 | Beverage quality prediction system during blending process |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI853535B true TWI853535B (en) | 2024-08-21 |
| TW202443473A TW202443473A (en) | 2024-11-01 |
Family
ID=93284342
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW112114753A TWI853535B (en) | 2023-04-20 | 2023-04-20 | Beverage quality prediction system during blending process |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI853535B (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102869291A (en) * | 2010-03-19 | 2013-01-09 | 康克迪亚咖啡有限公司 | Method and apparatus for controlling brewed beverage quality |
| CN107369254A (en) * | 2010-12-16 | 2017-11-21 | 布里格有限公司 | The apparatus and method made for modulating drink and concentrated coffee drink |
| JP2018018354A (en) * | 2016-07-28 | 2018-02-01 | 高砂香料工業株式会社 | Food and beverage quality prediction method using deep learning and food and beverage |
| TWM643875U (en) * | 2023-04-20 | 2023-07-11 | 財團法人食品工業發展研究所 | Beverage quality prediction system during blending process |
-
2023
- 2023-04-20 TW TW112114753A patent/TWI853535B/en active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102869291A (en) * | 2010-03-19 | 2013-01-09 | 康克迪亚咖啡有限公司 | Method and apparatus for controlling brewed beverage quality |
| CN107369254A (en) * | 2010-12-16 | 2017-11-21 | 布里格有限公司 | The apparatus and method made for modulating drink and concentrated coffee drink |
| JP2018018354A (en) * | 2016-07-28 | 2018-02-01 | 高砂香料工業株式会社 | Food and beverage quality prediction method using deep learning and food and beverage |
| TWM643875U (en) * | 2023-04-20 | 2023-07-11 | 財團法人食品工業發展研究所 | Beverage quality prediction system during blending process |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202443473A (en) | 2024-11-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| RU2731588C1 (en) | Method and a mixing plant for dosed batch-based preparation of a fluid cover material | |
| Coutouly et al. | Effect of heat treatment, final pH of acidification, and homogenization pressure on the texture properties of cream cheese | |
| CN111263589A (en) | Real-time quality monitoring of beverage batch production using densitometry | |
| US10816479B2 (en) | Optical characterization system for a process plant | |
| TWM643875U (en) | Beverage quality prediction system during blending process | |
| TWI853535B (en) | Beverage quality prediction system during blending process | |
| US11940364B2 (en) | Viscosity measuring system | |
| CN110479146A (en) | Pulp of lithium ion battery viscosity monitors adjustment equipment and its application method on-line | |
| CN113406274A (en) | Mixing uniformity analysis method based on viscosity on-line detection and mixing device | |
| CN206911162U (en) | Utilize the control device of stir current control leather Polyurethane resin slurry viscosity | |
| US20240226832A9 (en) | Full-Electric Drive Cementing Control System | |
| CN120295404B (en) | Yogurt viscosity control method and device based on reinforcement learning | |
| CN221580257U (en) | Material melting device and dairy product production system | |
| CN201173921Y (en) | Sulfitation intensity automatic detection device | |
| CN118527043A (en) | Automatic control system and control method for adding liquid raw materials into TMR stirring tank | |
| CN110274849A (en) | One kind automatically adding water speed regulation farinograph and method | |
| JP2010025643A (en) | Dispersion analysis method and device, as well as dispersion stability evaluation method and device | |
| CN112697645B (en) | Method for testing wall sticking temperature of crude oil and crude oil wall sticking simulation device | |
| CN209076592U (en) | Homogenizer | |
| CN218474027U (en) | Stuffing manufacturing equipment | |
| CN113740208A (en) | Full tailing paste stirring experimental device and using method | |
| EP1121973B1 (en) | Intelligent quality measurement and supervision system | |
| CN107188994A (en) | A kind of natural rubber system of processing and processing technology | |
| CN115243558A (en) | Real-time quality monitoring of beverage batch preparation using densitometrics | |
| CN206610554U (en) | A kind of emulsified cosmetics teaching, training device |