[go: up one dir, main page]

TWI849732B - Hyperdimension computing device - Google Patents

Hyperdimension computing device Download PDF

Info

Publication number
TWI849732B
TWI849732B TW112104503A TW112104503A TWI849732B TW I849732 B TWI849732 B TW I849732B TW 112104503 A TW112104503 A TW 112104503A TW 112104503 A TW112104503 A TW 112104503A TW I849732 B TWI849732 B TW I849732B
Authority
TW
Taiwan
Prior art keywords
memory cell
ultra
computing device
high dimensional
cell array
Prior art date
Application number
TW112104503A
Other languages
Chinese (zh)
Other versions
TW202433315A (en
Inventor
林榆瑄
曾柏皓
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW112104503A priority Critical patent/TWI849732B/en
Application granted granted Critical
Publication of TWI849732B publication Critical patent/TWI849732B/en
Publication of TW202433315A publication Critical patent/TW202433315A/en

Links

Images

Landscapes

  • Image Processing (AREA)
  • Semiconductor Memories (AREA)

Abstract

A hyper-dimensional computation device includes a non-volatile memory cell array and a first operation circuit. The non-volatile memory cell array is coupled to a plurality of first word lines. The non-volatile memory cell array has a plurality of memory cell groups, a plurality of first memory cells of each of the memory cell groups are coupled to a same first word line, and the memory cell groups respectively store a plurality of data vectors. The first operation circuit receive at least one of the data vectors, and generates a bundled data vector according to the at least one of the data vectors.

Description

超高維度計算裝置Ultra-high dimensional computing device

本發明是有關於一種超高維度計算裝置,特別是一種有關於應用非揮發式記憶體來實現的超高維度計算裝置。The present invention relates to an ultra-high dimensional computing device, and in particular to an ultra-high dimensional computing device implemented by using a non-volatile memory.

超高維度計算是指維度數以千計的時候所進行的運算動作。在進行資料轉換動作時,超高維度計算可針對資料進行相加、相乘以及移位等動作。其中,在超高維度計算中,資料的相加動作可透過多數決的機制來執行,資料的相乘動作則透過資料進行互斥運算來進行,資料的移位動作則是針對資料執行一定位元數的移位動作。超高維度計算針對超高維度的資料向量進行計算,經由訓練,並可被分類被儲存在聯想記憶體中。在習知技術中,可透過大量的邏輯電路來執行超高維度計算。這樣的超高維度計算器常需要複雜的電路架構,並在工作中,需要大量的電力消耗。Ultra-high dimensional computing refers to the operations performed when the dimensions are in the thousands. When performing data conversion operations, ultra-high dimensional computing can perform operations such as addition, multiplication, and shifting on the data. Among them, in ultra-high dimensional computing, the addition of data can be performed through the majority decision mechanism, the multiplication of data is performed through the exclusive operation of data, and the shift of data is to perform a certain number of bit shifts on the data. Ultra-high dimensional computing is performed on ultra-high dimensional data vectors, which can be classified and stored in associative memory after training. In cognitive technology, ultra-high dimensional computing can be performed through a large number of logic circuits. Such ultra-high-dimensional calculators often require complex circuit architectures and consume a lot of power during operation.

本發明提供一種應用快閃記憶體來實施的超高維度計算裝置。The present invention provides an ultra-high dimensional computing device implemented by using a flash memory.

本發明的超高維度計算裝置包括記憶胞陣列以及第一運算電路。記憶胞陣列耦接多條第一字元線。記憶胞陣列具有多個記憶胞群組,各記憶胞群組中的多個第一記憶胞耦接至相同的第一字元線,記憶胞群組分別儲存多個資料向量。第一運算電路耦接至記憶胞陣列的多條第一位元線,透過位元線以接收資料向量的至少其中之一,根據所接收的資料向量的至少其中之一來產生資料向量集。The ultra-high dimensional computing device of the present invention includes a memory cell array and a first operation circuit. The memory cell array is coupled to a plurality of first word lines. The memory cell array has a plurality of memory cell groups, a plurality of first memory cells in each memory cell group are coupled to the same first word line, and the memory cell groups respectively store a plurality of data vectors. The first operation circuit is coupled to a plurality of first bit lines of the memory cell array, receives at least one of the data vectors through the bit lines, and generates a data vector set according to at least one of the received data vectors.

基於上述,本發明的超高維度計算裝置中,透過非揮發性記憶胞陣列的多個記憶胞群組來儲存多個資料向量。並透過提供多個資料向量的至少其中之一至運算電路,來產生對應的資料向量集。本發明的超高維度計算裝置透過記憶體內運算以及記憶體內搜尋的機制,來進行超高維度計算並產生資料向量集,可有效減低電路元件的需求,降低功率消耗,並提升超高維度計算的效能。Based on the above, in the ultra-high dimensional computing device of the present invention, multiple data vectors are stored through multiple memory cell groups of a non-volatile memory cell array. And by providing at least one of the multiple data vectors to the computing circuit, a corresponding data vector set is generated. The ultra-high dimensional computing device of the present invention performs ultra-high dimensional computing and generates a data vector set through the mechanism of in-memory computing and in-memory searching, which can effectively reduce the demand for circuit components, reduce power consumption, and improve the performance of ultra-high dimensional computing.

請參照圖1,圖1繪示本發明一實施例的超高維度計算裝置的示意圖。超高維度計算裝置100包括非揮發性記憶胞陣列110以及運算電路120。非揮發性記憶胞陣列110以及運算電路120相互耦接。非揮發性記憶胞陣列110耦接多條字元線WL1~WLN以及多條位元線BL1~BLM。非揮發性記憶胞陣列110具有多個記憶胞群組111~11N。記憶胞群組111~11N分別耦接字元線WL1~WLN。記憶胞群組111~11N的每一者中可具有多個記憶胞。其中,記憶胞群組111~11N的每一者可儲存一資料向量。Please refer to FIG. 1 , which shows a schematic diagram of an ultra-high dimensional computing device of an embodiment of the present invention. The ultra-high dimensional computing device 100 includes a non-volatile memory cell array 110 and an operation circuit 120. The non-volatile memory cell array 110 and the operation circuit 120 are coupled to each other. The non-volatile memory cell array 110 is coupled to a plurality of word lines WL1 to WLN and a plurality of bit lines BL1 to BLM. The non-volatile memory cell array 110 has a plurality of memory cell groups 111 to 11N. The memory cell groups 111 to 11N are respectively coupled to the word lines WL1 to WLN. Each of the memory cell groups 111 to 11N may have a plurality of memory cells. Each of the memory cell groups 111 - 11N can store a data vector.

運算電路120耦接至非揮發性記憶胞陣列110的多條位元線BL1~BLM。運算電路120透過位元線BL1~BLM來接收記憶胞群組111~11N的至少其中之一所提供的資料向量。運算電路120可根據整合所接收的一個或多個資料向量,以產生資料向量集(bundled vector)BHV。The operation circuit 120 is coupled to a plurality of bit lines BL1-BLM of the non-volatile memory cell array 110. The operation circuit 120 receives a data vector provided by at least one of the memory cell groups 111-11N via the bit lines BL1-BLM. The operation circuit 120 can generate a bundled vector BHV by integrating one or more received data vectors.

在本實施例中,記憶胞群組111~11N的每一者所儲存的資料向量可以為一多元語法(n-gram)向量。記憶胞群組111~11N所分別記錄的多個資料向量,則可以組成多個字元的所有可能的排列組合。具體來說明,以每一資料向量具有三個英文字母的字元為範例,記憶胞群組111~11N所分別記錄的多個資料向量可以分別為:aaa、aab、aac、…、zzz等26的三次方個。當然,在本發明其他實施中,每一資料向量可不僅包括英文字母的字元,還可包括特殊字元(例如空格、底線、標點符號)及/或數字字元等。沒有特定的限制。每一資料向量所記錄的字元個數可以由使用者自行決定,也不限定為3個。In the present embodiment, the data vector stored in each of the memory cell groups 111~11N can be a multi-n-gram vector. The multiple data vectors respectively recorded by the memory cell groups 111~11N can form all possible permutations and combinations of multiple characters. Specifically, taking each data vector having three English alphabet characters as an example, the multiple data vectors respectively recorded by the memory cell groups 111~11N can be: aaa, aab, aac, ..., zzz, etc. 26 cubed. Of course, in other embodiments of the present invention, each data vector may include not only English alphabet characters, but also special characters (such as spaces, underscores, punctuation marks) and/or numeric characters, etc. There is no specific limitation. The number of characters recorded in each data vector can be determined by the user and is not limited to 3.

在本發明其他實施例中,記憶胞群組111~11N所分別記錄的多個資料向量也可以是多個資料,以及分別對應資料的多個位置。這些資料以及分別對應的位置用以形成一圖像。其中,資料可用以指示圖像中,對應此資料的位置上的畫素的灰階資訊。In other embodiments of the present invention, the multiple data vectors respectively recorded by the memory cell groups 111-11N may also be multiple data and multiple positions respectively corresponding to the data. These data and the positions respectively corresponding to the data are used to form an image. The data may be used to indicate the grayscale information of the pixel at the position corresponding to the data in the image.

附帶一提的,在本實施例中,當要產生資料向量集BHV時,多個字元線WL1~WLN中的至少其中之一可以被選中。超高維度計算裝置100可使被選中的字元線逐一的被開啟,或同步一起被開啟。如此一來,運算電路120可根據選中字元線對應的記憶胞群組所提供的至少一資料向量,來產生資料向量集BHV。Incidentally, in this embodiment, when generating a data vector set BHV, at least one of the multiple word lines WL1-WLN may be selected. The ultra-high dimensional computing device 100 may enable the selected word lines one by one, or enable them all at once. In this way, the operation circuit 120 may generate a data vector set BHV according to at least one data vector provided by the memory cell group corresponding to the selected word line.

附帶一提的,在本實施例中,記憶胞群組111~11N中的記憶胞均為非揮發性記憶胞,例如快閃記憶胞、鐵電記憶體(Ferroelectric RAM, FeRAM)的記憶胞、電阻式記憶胞(Resistive memory cell)、相位轉換記憶體(Phase Change Memory, PCM)的記憶胞或導電橋式記憶體(conductive-bridging RAM, CBRAM)的記憶胞。快閃記憶胞則可以是浮動閘極式(floating gate)、氮化矽式(SONOS)或是浮點式(floating dot)快閃記憶胞,沒有特定的限制。此外,非揮發性記憶胞陣列110可以為二維或三維堆疊的記憶胞陣列,同樣沒有特定的限制。Incidentally, in the present embodiment, the memory cells in the memory cell groups 111-11N are all non-volatile memory cells, such as flash memory cells, ferroelectric RAM (FeRAM) memory cells, resistive memory cells, phase change memory (PCM) memory cells or conductive-bridging RAM (CBRAM) memory cells. The flash memory cells can be floating gate, SONOS or floating dot flash memory cells without any specific limitation. In addition, the non-volatile memory cell array 110 can be a two-dimensional or three-dimensional stacked memory cell array, and there is no specific limitation.

以下請參照圖2,圖2繪示本發明另一實施例的超高維度計算裝置的示意圖。超高維度計算裝置200包括非揮發性記憶胞陣列210以及運算電路220。非揮發性記憶胞陣列210以及運算電路220相互耦接。非揮發性記憶胞陣列210耦接多條字元線WL1~WLN以及多條位元線BL1~BLM。非揮發性記憶胞陣列210具有多個記憶胞群組211-1~21N-2。與圖1實施例不相同的,在本實施例中,對應一字元線的記憶胞列可以區分為多個記憶胞群組。例如,對應字元線WL1的記憶胞列可以區分為記憶胞群組211-1、211-2;對應字元線WL2的記憶胞列可以區分為記憶胞群組212-1、212-2;…;對應字元線WLN的記憶胞列則可以區分為記憶胞群組21N-1、21N-2。其中,記憶胞群組211-1~21N-2的每一者可儲存一資料向量。Please refer to FIG. 2 below, which is a schematic diagram of an ultra-high dimensional computing device of another embodiment of the present invention. The ultra-high dimensional computing device 200 includes a non-volatile memory cell array 210 and an operation circuit 220. The non-volatile memory cell array 210 and the operation circuit 220 are coupled to each other. The non-volatile memory cell array 210 is coupled to a plurality of word lines WL1~WLN and a plurality of bit lines BL1~BLM. The non-volatile memory cell array 210 has a plurality of memory cell groups 211-1~21N-2. Different from the embodiment of FIG. 1, in this embodiment, the memory cell row corresponding to a word line can be divided into a plurality of memory cell groups. For example, the memory cell rows corresponding to the word line WL1 can be divided into memory cell groups 211-1 and 211-2; the memory cell rows corresponding to the word line WL2 can be divided into memory cell groups 212-1 and 212-2; ...; the memory cell rows corresponding to the word line WLN can be divided into memory cell groups 21N-1 and 21N-2. Each of the memory cell groups 211-1 to 21N-2 can store a data vector.

運算電路220透過位元線BL1~BLA以耦接至記憶胞群組211-1~21N-1,運算電路220並透過位元線BLA+1~BLM以耦接至記憶胞群組211-2~21N-2。運算電路220可透過位元線BL1~BLA以接收記憶胞群組211-1~21N-1的至少其中之一所記錄的資料向量,透過位元線BLA+1~BLM以接收記憶胞群組211-2~21N-2的至少其中之一所記錄的資料向量,並藉以產生資料向量集BHV。The operation circuit 220 is coupled to the memory cell groups 211-1 to 21N-1 through the bit lines BL1 to BLA, and is also coupled to the memory cell groups 211-2 to 21N-2 through the bit lines BLA+1 to BLM. The operation circuit 220 can receive a data vector recorded by at least one of the memory cell groups 211-1 to 21N-1 through the bit lines BL1 to BLA, and receive a data vector recorded by at least one of the memory cell groups 211-2 to 21N-2 through the bit lines BLA+1 to BLM, and thereby generate a data vector set BHV.

請參照圖3,圖3繪示本發明另一實施例的超高維度計算裝置的示意圖。超高維度計算裝置300包括非揮發性記憶胞陣列310、運算電路320以及編碼器330。非揮發性記憶胞陣列310耦接多條字元線WL1~WLN,並耦接至運算電路320。非揮發性記憶胞陣列310對應字元線WL1~WLN,包括多的記憶胞群組311~31N,其中各個記憶胞群組311~31N包括多個反及式(NAND)快閃記憶胞,並用以儲存一資料向量。Please refer to FIG3 , which is a schematic diagram of an ultra-high dimensional computing device of another embodiment of the present invention. The ultra-high dimensional computing device 300 includes a non-volatile memory cell array 310, an operation circuit 320, and an encoder 330. The non-volatile memory cell array 310 is coupled to a plurality of word lines WL1 to WLN, and is coupled to the operation circuit 320. The non-volatile memory cell array 310 corresponds to the word lines WL1 to WLN, and includes a plurality of memory cell groups 311 to 31N, wherein each memory cell group 311 to 31N includes a plurality of NAND flash memory cells, and is used to store a data vector.

運算電路320透過多條位元線以耦接至非揮發性記憶胞陣列310。運算電路320透過位元線以接收資料向量的至少其中之一,並根據所接收的資料向量的至少其中之一來產生資料向量集BHV。The operation circuit 320 is coupled to the non-volatile memory cell array 310 through a plurality of bit lines. The operation circuit 320 receives at least one of the data vectors through the bit lines, and generates a data vector set BHV according to at least one of the received data vectors.

在本發明一實施例中,在關於字串處理的應用中,編碼器330可用以產生多個多元語法向量,並分別儲存所產生的多元語法向量至記憶胞群組311~31N中。編碼器330可根據排列組合的方式,產生對應多個字元的多元語法向量所有可能的組合,並將這些所有可能的組合分別儲存至記憶胞群組311~31N中。In an embodiment of the present invention, in an application related to string processing, the encoder 330 can be used to generate a plurality of multi-element syntax vectors, and store the generated multi-element syntax vectors in memory cell groups 311-31N respectively. The encoder 330 can generate all possible combinations of multi-element syntax vectors corresponding to a plurality of characters according to the arrangement and combination method, and store all possible combinations in memory cell groups 311-31N respectively.

在本發明另一實施例中,在關於圖像處理的應用中,編碼器330可解析一圖像的多個位置,並將圖像中對應所有位置的的所有可能成分資訊以及對應的位置資訊,分別儲存在記憶胞群組311~31N中。上述的可能成分資訊,可以為圖像中該位置上的畫素的灰階資訊。其中,單一可能成分資訊以及對應的位置資訊可記錄在相同的一記憶胞群組311~31N中。In another embodiment of the present invention, in an application related to image processing, the encoder 330 can analyze multiple positions of an image, and store all possible component information corresponding to all positions in the image and the corresponding position information in the memory cell groups 311-31N respectively. The above-mentioned possible component information can be the grayscale information of the pixel at the position in the image. Among them, a single possible component information and the corresponding position information can be recorded in the same memory cell group 311-31N.

請參照圖4,圖4繪示本發明另一實施例的超高維度計算裝置的示意圖。超高維度計算裝置400包括非揮發性記憶胞陣列410、運算電路420以及編碼器430。非揮發性記憶胞陣列410耦接多條字元線WL1~WLN,並耦接至運算電路420。非揮發性記憶胞陣列410對應字元線WL1~WLN,包括多的記憶胞群組411~41N。相較於圖3的實施例,超高維度計算裝置400中,非揮發性記憶胞陣列410的各個記憶胞群組411~41N包括多個反或式(NOR)快閃記憶胞,並用以儲存一資料向量。Please refer to FIG4 , which is a schematic diagram of an ultra-high dimensional computing device of another embodiment of the present invention. The ultra-high dimensional computing device 400 includes a non-volatile memory cell array 410, an operation circuit 420, and an encoder 430. The non-volatile memory cell array 410 is coupled to a plurality of word lines WL1 to WLN, and is coupled to the operation circuit 420. The non-volatile memory cell array 410 corresponds to the word lines WL1 to WLN, and includes a plurality of memory cell groups 411 to 41N. Compared to the embodiment of FIG. 3 , in the ultra-high dimensional computing device 400 , each memory cell group 411 ˜ 41N of the non-volatile memory cell array 410 includes a plurality of NOR flash memory cells and is used to store a data vector.

在本實施例中,編碼器430可用以執行與編碼器330相同的動作,在此恕不多贅述。In this embodiment, the encoder 430 can be used to perform the same operations as the encoder 330, which will not be described in detail here.

以下請參照圖5A至圖5C,圖5A至圖5C繪示本發明實施例的超高維度計算裝置的動作示意圖。在圖5A中,超高維度計算裝置500包括非揮發性記憶胞陣列510以及運算電路520。非揮發性記憶胞陣列510包括分別對應多條字元線WL1~WLN的記憶胞群組511~51N。記憶胞群組511~51N分別記錄多個三元語法(trigram)向量,例如:aaa、aab、aac、… zzz。記憶胞群組511~51N所分別記錄的三元語法向量包括三個字元的英文子母以及空格所可以產生的全部的排列組合。Please refer to Figures 5A to 5C below, which are schematic diagrams of the operation of the ultra-high dimensional computing device of an embodiment of the present invention. In Figure 5A, the ultra-high dimensional computing device 500 includes a non-volatile memory cell array 510 and an operation circuit 520. The non-volatile memory cell array 510 includes memory cell groups 511 to 51N corresponding to a plurality of word lines WL1 to WLN, respectively. The memory cell groups 511 to 51N respectively record a plurality of trigram vectors, such as: aaa, aab, aac, ... zzz. The trigram vectors respectively recorded by the memory cell groups 511 to 51N include all permutations and combinations that can be generated by the English letters and spaces of three characters.

在圖5B中,超高維度計算裝置500更包括字元線驅動器540,且運算電路520可應用計數器520’來實施。當要超高維度計算裝置500要產生資料向量集BHV時,字元驅動器540可根據一輸入資料來產生一個或多個選中字元線,並透過啟動選中字元線,來使記憶胞群組511~51N的至少其中之一提供所記錄的資料向量至計數器520’。計數器520’並可根據所接收的至少一資料向量來產生資料向量集BHV。In FIG. 5B , the ultra-high dimensional computing device 500 further includes a word line driver 540, and the operation circuit 520 can be implemented using a counter 520′. When the ultra-high dimensional computing device 500 is to generate a data vector set BHV, the word driver 540 can generate one or more selected word lines according to an input data, and enable at least one of the memory cell groups 511-51N to provide the recorded data vector to the counter 520′ by activating the selected word line. The counter 520′ can also generate the data vector set BHV according to at least one received data vector.

舉例來說明,假設輸入資料為字串“how are you”等十一個(k=11)字元,字元驅動器540可根據輸入資料來產生多個選中字元線,其中選中字元線的數量可大於k/2。接著,字元驅動器540可依序的逐一啟動上述的選中字元線,例如先啟動為選中字元線的字元線WLA,並使對應的記憶胞群組51A輸出等於“how”的資料向量至計數器520’。計數器520’並可對應使計數值增加1(計數值的初始值可以等於0)。接著,字元驅動器540可啟動下一個啟動為選中字元線的字元線WLB,並使對應的記憶胞群組51B輸出等於“ow ”的資料向量至計數器520’,計數器520’並可對應使計數值等於2。依此類推,字元驅動器540可依序啟動至少5條選中字元線,計數器520’可根據依序接收的資料向量以及對應的計數值,建立出對應輸入資料的資料向量集BHV。For example, assuming that the input data is a string of eleven (k=11) characters such as "how are you", the character driver 540 can generate multiple selected word lines according to the input data, wherein the number of selected word lines can be greater than k/2. Then, the character driver 540 can sequentially activate the selected word lines one by one, for example, first activate the word line WLA as the selected word line, and make the corresponding memory cell group 51A output a data vector equal to "how" to the counter 520'. The counter 520' can also correspondingly increase the count value by 1 (the initial value of the count value can be equal to 0). Then, the word driver 540 may activate the next word line WLB activated as the selected word line, and make the corresponding memory cell group 51B output a data vector equal to "ow" to the counter 520', and the counter 520' may correspondingly make the count value equal to 2. Similarly, the word driver 540 may sequentially activate at least 5 selected word lines, and the counter 520' may establish a data vector set BHV corresponding to the input data according to the sequentially received data vectors and the corresponding count values.

附帶一提的,在本實施例中,空格(“ ”)也是資料向量中的一個字元。因此,記憶胞群組511~51N可分別記錄27的三次方個資料向量。Incidentally, in this embodiment, a space (" ") is also a character in a data vector. Therefore, the memory cell groups 511-51N can respectively record 27 cubed data vectors.

在圖5C中,在本發明另一實施方式中,運算電路520可應用感測放大器520’’來實施。當要超高維度計算裝置500要產生資料向量集BHV時,字元驅動器540可根據輸入資料來產生一個或多個選中字元線,並透過同時啟動所有的選中字元線,來使對應選中字元線的記憶胞群組提供所記錄的至少一資料向量至感測放大器520’’。感測放大器520’’並可根據所接收的至少一資料向量來產生資料向量集BHV。In FIG. 5C , in another embodiment of the present invention, the operation circuit 520 may be implemented using a sense amplifier 520″. When the ultra-high dimensional computing device 500 is to generate a data vector set BHV, the word driver 540 may generate one or more selected word lines according to the input data, and by simultaneously activating all the selected word lines, the memory cell group corresponding to the selected word line provides at least one recorded data vector to the sense amplifier 520″. The sense amplifier 520″ may also generate a data vector set BHV according to at least one received data vector.

承續上述的實施例,假設輸入資料為字串“how are you”等十一個(k=11)字元,字元驅動器540可根據輸入資料來產生多個選中字元線,例如字元線WL1、WL3、WLA以及WLC。字元驅動器540並可同時啟動字元線WL1、WL3、WLA以及WLC。其中,對應字元線WL1的記憶胞群組511記錄的資料向量為”are”;對應字元線WL3的記憶胞群組513記錄的資料向量為”e  y”(e與y中間具有一空格);對應字元線WLA的記憶胞群組51A記錄的資料向量為”how”;對應字元線WLC的記憶胞群組51C記錄的資料向量為”you”。Continuing with the above embodiment, assuming that the input data is a string of eleven (k=11) characters such as "how are you", the character driver 540 can generate a plurality of selected word lines, such as word lines WL1, WL3, WLA and WLC, according to the input data. The character driver 540 can also activate the word lines WL1, WL3, WLA and WLC at the same time. Among them, the data vector recorded by the memory cell group 511 corresponding to the word line WL1 is "are"; the data vector recorded by the memory cell group 513 corresponding to the word line WL3 is "e y" (there is a space between e and y); the data vector recorded by the memory cell group 51A corresponding to the word line WLA is "how"; and the data vector recorded by the memory cell group 51C corresponding to the word line WLC is "you".

相對應的,感測放大器520’’可根據k值來設定電流閾值TH,其中電流閾值TH = k/2乘以記憶胞儲存資料為邏輯1所產生的讀出電流。感測放大器520’’並使電流閾值TH與對應選中字元線(字元線WL1、WL3、WLA以及WLC)的記憶胞群組511、513、51A以及51C所產生的電流的總值相比較,並藉以產生資料向量集BHV。Correspondingly, the sense amplifier 520'' can set the current threshold TH according to the k value, wherein the current threshold TH = k/2 multiplied by the read current generated by the memory cell storage data for logic 1. The sense amplifier 520'' also compares the current threshold TH with the total value of the current generated by the memory cell groups 511, 513, 51A and 51C corresponding to the selected word lines (word lines WL1, WL3, WLA and WLC), and thereby generates a data vector set BHV.

以下請參照圖6A至圖6C,圖6A至圖6C繪示本發明實施例的超高維度計算裝置的另一實施方式的動作示意圖。在本實施方式中,超高維度計算裝置600可針對如圖6A的圖像602進行運算。圖像602可區分為5個行C1~C5以及7個列R1~R7等35的分區。其中的每個分區具有對應的位置資訊。而隨著圖像602的內容,每個分區並具有對應的成分資訊。在本實施例中,成分資訊可以為對應分區的灰階資訊。Please refer to Figures 6A to 6C below, which are schematic diagrams of the actions of another embodiment of the ultra-high dimensional computing device of the present invention. In this embodiment, the ultra-high dimensional computing device 600 can perform operations on the image 602 as shown in Figure 6A. The image 602 can be divided into 35 partitions, namely 5 rows C1~C5 and 7 columns R1~R7. Each of the partitions has corresponding position information. And according to the content of the image 602, each partition has corresponding component information. In this embodiment, the component information can be the grayscale information of the corresponding partition.

在圖6B中,超高維度計算裝置600包括非揮發性記憶胞陣列610以及運算電路620。非揮發性記憶胞陣列610包括分別對應多條字元線WL1~WLN的記憶胞群組611~61N。記憶胞群組611~61N可用以記錄對應圖像602中的所有分區的位置資訊以及相對應的所有的可能成分資訊。以單色影像為範例,圖像602所有分區的灰階資訊可以是1以及0。因此,在本實施方式中,記憶胞群組611可記錄位置資訊R1C1以及對應的可能成分資訊0;記憶胞群組612可記錄位置資訊R1C1以及對應的可能成分資訊1;記憶胞群組613可記錄位置資訊R2C1以及對應的可能成分資訊0;記憶胞群組614則可記錄位置資訊R2C1以及對應的可能成分資訊1;…;記憶胞群組61N則可記錄位置資訊RyCx以及對應的可能成分資訊1。其餘的記憶胞群組所記錄的內容可依此類推。In FIG6B , the ultra-high dimensional computing device 600 includes a non-volatile memory cell array 610 and an operation circuit 620. The non-volatile memory cell array 610 includes memory cell groups 611-61N corresponding to a plurality of word lines WL1-WLN, respectively. The memory cell groups 611-61N can be used to record the position information of all partitions in the corresponding image 602 and all the corresponding possible component information. Taking a monochrome image as an example, the grayscale information of all partitions in the image 602 can be 1 and 0. Therefore, in this embodiment, the memory cell group 611 can record the position information R1C1 and the corresponding possible component information 0; the memory cell group 612 can record the position information R1C1 and the corresponding possible component information 1; the memory cell group 613 can record the position information R2C1 and the corresponding possible component information 0; the memory cell group 614 can record the position information R2C1 and the corresponding possible component information 1; ...; the memory cell group 61N can record the position information RyCx and the corresponding possible component information 1. The contents recorded by the remaining memory cell groups can be deduced in the same way.

接著在圖6C中,在執行運算動作時,超高維度計算裝置600中的字元線驅動器可根據輸入資料601來設定多個選中字元線,並透過啟動選中字元線來提供位置資訊以及對應的可能成分資訊至運算電路620。在本實施方式中,輸入資料601可以為自英文字元”A”的圖像。對應不同的位置資訊R1C1~R7C5,成分資訊可以為0或是1。Then, in FIG6C , when executing a computation, the word line driver in the ultra-high dimensional computing device 600 can set a plurality of selected word lines according to the input data 601, and provide position information and corresponding possible component information to the computation circuit 620 by activating the selected word lines. In this embodiment, the input data 601 can be an image of the English character "A". Corresponding to different position information R1C1~R7C5, the component information can be 0 or 1.

以位置資訊R1C1為範例,輸入資料601中對應位置資訊R1C1的成分資訊為1,因此,字元線WL2可以設定為選中字元線。再以位置資訊R2C1為範例,輸入資料601中對應位置資訊R2C1的成分資訊為1。因此,字元線WL4可以設定為選中字元線。其餘的選中字元線的設定方式可依此方式類推,不再逐一說明。Taking the position information R1C1 as an example, the component information corresponding to the position information R1C1 in the input data 601 is 1, so the word line WL2 can be set as the selected word line. Taking the position information R2C1 as another example, the component information corresponding to the position information R2C1 in the input data 601 is 1. Therefore, the word line WL4 can be set as the selected word line. The setting method of the remaining selected word lines can be deduced in this way, and will not be explained one by one.

透過啟動選中字元線,運算電路620可接收到對應每一位置資訊R1C1~R7C5的多個成分資訊。運算電路620將接收到對應每一位置資訊R1C1~R7C5的多個成分資訊結合以產生資料向量集BHV1。其中,運算電路620可根據成分資訊是否為1來決定是否針對每一位置資訊R1C1~R7C5進行移位動作,例如,成分資訊為0,代表對應的位置資訊不需移位,成分資訊為1代表對應的位置資訊需要移位。By activating the selected word line, the operation circuit 620 can receive a plurality of component information corresponding to each position information R1C1~R7C5. The operation circuit 620 combines the received plurality of component information corresponding to each position information R1C1~R7C5 to generate a data vector set BHV1. The operation circuit 620 can determine whether to perform a shift operation for each position information R1C1~R7C5 according to whether the component information is 1. For example, if the component information is 0, it means that the corresponding position information does not need to be shifted, and if the component information is 1, it means that the corresponding position information needs to be shifted.

在本實施方式中,為提升運算的正確度,運算電路620中可增加一多數決機制,並透過比較多次的資料向量集BHV1的運算結果,來取出發生最多次數的資料向量集BHV1以最為最終輸出的資料向量集BHV,可有效提升運算的正確性。In this embodiment, in order to improve the accuracy of the operation, a majority decision mechanism can be added to the operation circuit 620, and by comparing the operation results of the data vector set BHV1 multiple times, the data vector set BHV1 that occurs the most times is taken out as the final output data vector set BHV, which can effectively improve the accuracy of the operation.

請參照圖7,圖7繪示本發明另一實施例的超高維度計算裝置的示意圖。超高維度計算裝置700包括非揮發記憶胞陣列710、運算電路720、740以及聯想記憶胞陣列730。非揮發記憶胞陣列710以及運算電路720相互耦接。關於非揮發記憶胞陣列710以及運算電路720的實施細節,在前述多個實施例以及實施方式中已有詳細的說明,此處不多贅述。Please refer to FIG. 7, which shows a schematic diagram of an ultra-high dimensional computing device of another embodiment of the present invention. The ultra-high dimensional computing device 700 includes a non-volatile memory cell array 710, operation circuits 720, 740, and an associative memory cell array 730. The non-volatile memory cell array 710 and the operation circuit 720 are coupled to each other. The implementation details of the non-volatile memory cell array 710 and the operation circuit 720 have been described in detail in the aforementioned multiple embodiments and implementation methods, and will not be repeated here.

運算電路740以及聯想記憶胞陣列730相互耦接。聯想記憶胞陣列730具有多個記憶胞群組731~73M。各記憶胞群組731~73M具有多個記憶胞,各記憶胞群組731~73M並用以記錄分類資訊。聯想記憶胞陣列730用以接收非揮發記憶胞陣列710以及運算電路720所產生的資料向量集BHV並根據資料向量集BHV以執行記憶體內搜尋(In-Memory-Searching, IMS)動作來產生最佳相似結果CSA。The operation circuit 740 and the associative memory cell array 730 are coupled to each other. The associative memory cell array 730 has a plurality of memory cell groups 731-73M. Each memory cell group 731-73M has a plurality of memory cells, and each memory cell group 731-73M is used to record classification information. The associative memory cell array 730 is used to receive the data vector set BHV generated by the non-volatile memory cell array 710 and the operation circuit 720 and to perform an in-memory search (IMS) action according to the data vector set BHV to generate the best similarity result CSA.

關於聯想記憶胞陣列730的實施細節,可參照圖8A以及圖8B繪示的本發明實施例的超高維度計算裝置中的聯想記憶胞陣列的實施方式的示意圖。在圖8A中,聯想記憶胞陣列810與運算電路820相耦接。聯想記憶胞陣列810具有多個記憶胞群組811~81M。每一記憶胞群組811~81M具有多個記憶胞,且相同的記憶胞群組中的記憶胞共同耦接至相同的位元線。其中,記憶胞群組811~81M分別耦接至位元線BL1~BLM。此外,相同記憶胞群組811~81M中的多個記憶胞分別耦接至多條不相同的字元線WL1~WLP。其中,在本實施例中,記憶胞群組811~81M中的記憶胞為反及式快閃記憶胞。For the implementation details of the associative memory cell array 730, reference may be made to FIG. 8A and FIG. 8B , which are schematic diagrams of the implementation of the associative memory cell array in the ultra-high dimensional computing device of the embodiment of the present invention. In FIG. 8A , the associative memory cell array 810 is coupled to the operation circuit 820. The associative memory cell array 810 has a plurality of memory cell groups 811 to 81M. Each memory cell group 811 to 81M has a plurality of memory cells, and the memory cells in the same memory cell group are coupled to the same bit line. The memory cell groups 811 to 81M are coupled to the bit lines BL1 to BLM, respectively. In addition, a plurality of memory cells in the same memory cell group 811 ˜ 81M are respectively coupled to a plurality of different word lines WL1 ˜WLP. In this embodiment, the memory cells in the memory cell group 811 ˜ 81M are NAND flash memory cells.

對應圖7的實施例,聯想記憶胞陣列810使運算電路720所產生的資料向量集BHV與各個記憶胞群組811~81M中的分類資訊進行比較以執行記憶體內搜尋動作。運算電路820可根據上述的記憶體內搜尋動作來產生與資料向量集BHV最接近的最佳相似結果CSA。7 , the associative memory cell array 810 compares the data vector set BHV generated by the operation circuit 720 with the classification information in each memory cell group 811-81M to perform an in-memory search operation. The operation circuit 820 can generate the best similarity result CSA closest to the data vector set BHV according to the in-memory search operation.

在圖8B中,聯想記憶胞陣列830與運算電路840相耦接。聯想記憶胞陣列830具有多個記憶胞群組831~83M。每一記憶胞群組831~83M具有多個記憶胞,且相同的記憶胞群組中的記憶胞共同耦接至相同的位元線。其中,記憶胞群組831~83M分別耦接至位元線BL1~BLM。此外,相同記憶胞群組831~83M中的多個記憶胞分別耦接至多條不相同的字元線WL1~WLP。其中,在本實施例中,記憶胞群組831~83M中的記憶胞為反或式快閃記憶胞。In FIG8B , the associative memory cell array 830 is coupled to the operation circuit 840. The associative memory cell array 830 has a plurality of memory cell groups 831 to 83M. Each memory cell group 831 to 83M has a plurality of memory cells, and the memory cells in the same memory cell group are commonly coupled to the same bit line. The memory cell groups 831 to 83M are respectively coupled to the bit lines BL1 to BLM. In addition, the plurality of memory cells in the same memory cell group 831 to 83M are respectively coupled to a plurality of different word lines WL1 to WLP. In this embodiment, the memory cells in the memory cell groups 831 to 83M are NOR flash cells.

聯想記憶胞陣列840使運算電路720所產生的資料向量集BHV與各個記憶胞群組831~83M中的分類資訊進行比較以執行記憶體內搜尋動作。運算電路840可根據上述的記憶體內搜尋動作來產生與資料向量集BHV最接近的最佳相似結果CSA。The associative memory cell array 840 compares the data vector set BHV generated by the operation circuit 720 with the classification information in each memory cell group 831-83M to perform an in-memory search operation. The operation circuit 840 can generate the best similarity result CSA closest to the data vector set BHV according to the in-memory search operation.

關於上述實施例中,記憶體內搜尋動作的細節,可應用本領域具通常知識者所熟知的記憶體內搜尋動作來實施,沒有特定的限制。Regarding the details of the memory search action in the above-mentioned embodiment, the memory search action known to those skilled in the art can be applied to implement without any specific limitation.

綜上所述,本發明的超高維度計算裝置應用非揮發式記憶胞陣列來儲存運算過程中所有可能資料向量。並透過開啟所需要的字元線,透過運算電路來透過一個或結合多個資料向量以產生資料向量集。可有效簡化超高維度計算裝置的電路複雜度,並提升超高維度計算裝置的工作速度,有效提升系統的效能。In summary, the ultra-high dimensional computing device of the present invention uses a non-volatile memory cell array to store all possible data vectors in the computing process. By opening the required word lines, the computing circuit generates a data vector set by combining one or more data vectors. This can effectively simplify the circuit complexity of the ultra-high dimensional computing device, increase the working speed of the ultra-high dimensional computing device, and effectively improve the performance of the system.

100、200、300、400、500、600、700:超高維度計算裝置 110、210、310、410、510、610、710:非揮發性記憶胞陣列 111~11N、211-1~21N-2、311~31N、411~41N、511~51N、611~61N、811~81M:記憶胞群組 120、220、320、420、520、520’、620、720、740、820:運算電路 330、430:編碼器 520’’:感測放大器 540:字元驅動器 602:圖像 601:輸入資料 730、810:聯想記憶胞陣列 731~73M:記憶胞群組 BHV、BHV1:資料向量集 BL1~BLM:位元線 C1~C5:行 CSA:最佳相似結果 R1~R7:列 R1C1~R7C5、RyCx:位置資訊 WL1~WLN、WLA、WLA+1、WLB、WLC、WLP:字元線 100, 200, 300, 400, 500, 600, 700: Ultra-high dimensional computing devices 110, 210, 310, 410, 510, 610, 710: Non-volatile memory cell arrays 111~11N, 211-1~21N-2, 311~31N, 411~41N, 511~51N, 611~61N, 811~81M: Memory cell groups 120, 220, 320, 420, 520, 520', 620, 720, 740, 820: Computing circuits 330, 430: Encoders 520'': Sense amplifiers 540: Character drivers 602: Images 601: Input data 730, 810: Associative memory cell array 731~73M: Memory cell group BHV, BHV1: Data vector set BL1~BLM: Bit line C1~C5: Row CSA: Best similarity result R1~R7: Column R1C1~R7C5, RyCx: Position information WL1~WLN, WLA, WLA+1, WLB, WLC, WLP: Word line

圖1繪示本發明一實施例的超高維度計算裝置的示意圖。 圖2繪示本發明另一實施例的超高維度計算裝置的示意圖。 圖3繪示本發明另一實施例的超高維度計算裝置的示意圖。 圖4繪示本發明另一實施例的超高維度計算裝置的示意圖。 圖5A至圖5C繪示本發明實施例的超高維度計算裝置的動作示意圖。 圖6A至圖6C繪示本發明實施例的超高維度計算裝置的另一實施方式的動作示意圖。 圖7繪示本發明另一實施例的超高維度計算裝置的示意圖。 圖8A以及圖8B繪示本發明實施例的超高維度計算裝置中的聯想記憶胞陣列的實施方式的示意圖。 FIG1 is a schematic diagram of an ultra-high dimensional computing device of one embodiment of the present invention. FIG2 is a schematic diagram of an ultra-high dimensional computing device of another embodiment of the present invention. FIG3 is a schematic diagram of an ultra-high dimensional computing device of another embodiment of the present invention. FIG4 is a schematic diagram of an ultra-high dimensional computing device of another embodiment of the present invention. FIG5A to FIG5C are schematic diagrams of the ultra-high dimensional computing device of an embodiment of the present invention. FIG6A to FIG6C are schematic diagrams of the ultra-high dimensional computing device of another embodiment of the present invention. FIG7 is a schematic diagram of an ultra-high dimensional computing device of another embodiment of the present invention. FIG8A and FIG8B are schematic diagrams of an implementation of an associative memory cell array in an ultra-high dimensional computing device of an embodiment of the present invention.

100:超高維度計算裝置 100: Ultra-high dimensional computing device

110:非揮發性記憶胞陣列 110: Non-volatile memory cell array

111~11N:記憶胞群組 111~11N: memory cell group

120:運算電路 120: Operational circuit

BHV:資料向量集 BHV: Data Vector Set

BL1~BLM:位元線 BL1~BLM: bit line

WL1~WLN:字元線 WL1~WLN: character line

Claims (16)

一種超高維度計算裝置,包括:一非揮發性記憶胞陣列,耦接多條第一字元線,該記憶胞陣列具有多個第一記憶胞群組,各該第一記憶胞群組中的多個第一記憶胞耦接至相同的第一字元線,該些第一記憶胞群組分別儲存多個資料向量;一第一運算電路,耦接至該非揮發性記憶胞陣列的多條第一位元線,透過該些位元線以接收該些資料向量的至少其中之一,根據所接收的該些資料向量的至少其中之一來產生一資料向量集;以及一聯想記憶胞陣列,耦接至該運算電路,用以儲存多個分類向量,該聯想記憶胞陣列具有多個第二記憶胞群組,各該第二記憶胞群組的多個第二記憶胞分別耦接至多條第二字元線,該些第二記憶胞群組分別耦接至多條第二位元線,其中該聯想記憶胞陣列接收該資料向量集並根據該資料向量集以執行一記憶體內搜尋動作。 An ultra-high dimensional computing device includes: a non-volatile memory cell array coupled to a plurality of first word lines, the memory cell array having a plurality of first memory cell groups, a plurality of first memory cells in each of the first memory cell groups coupled to the same first word line, the first memory cell groups storing a plurality of data vectors respectively; a first operation circuit coupled to a plurality of first bit lines of the non-volatile memory cell array, receiving at least one of the data vectors through the bit lines, and performing a first operation circuit on the first memory cell group according to the received first word lines; At least one of the data vectors is used to generate a data vector set; and an associative memory cell array coupled to the operation circuit for storing multiple classification vectors, the associative memory cell array having multiple second memory cell groups, multiple second memory cells of each second memory cell group are respectively coupled to multiple second word lines, and the second memory cell groups are respectively coupled to multiple second bit lines, wherein the associative memory cell array receives the data vector set and performs an in-memory search action according to the data vector set. 如請求項1所述的超高維度計算裝置,其中各該資料向量為一多元語法向量。 An ultra-high dimensional computing device as described in claim 1, wherein each of the data vectors is a multi-element grammatical vector. 如請求項2所述的超高維度計算裝置,其中該些資料向量包括多個字元的所有排列組合。 An ultra-high dimensional computing device as described in claim 2, wherein the data vectors include all permutations and combinations of multiple characters. 如請求項3所述的超高維度計算裝置,更包括一編碼器,該編碼器產生該些多元語法向量,並分別儲存該些多元語法向量至該些第一記憶胞群組中。 The ultra-high dimensional computing device as described in claim 3 further includes an encoder that generates the multi-element grammatical vectors and stores the multi-element grammatical vectors in the first memory cell groups respectively. 如請求項1所述的超高維度計算裝置,更包括:一字元線驅動器,根據一輸入資料以啟動該些第一字元線中的多條選中字元線。 The ultra-high dimensional computing device as described in claim 1 further includes: a word line driver for activating a plurality of selected word lines among the first word lines according to an input data. 如請求項5所述的超高維度計算裝置,其中該字元線驅動器逐一啟動各該選中字元線。 An ultra-high dimensional computing device as described in claim 5, wherein the word line driver activates each selected word line one by one. 如請求項6所述的超高維度計算裝置,其中該運算電路為一計數器。 An ultra-high dimensional computing device as described in claim 6, wherein the computing circuit is a counter. 如請求項5所述的超高維度計算裝置,其中該字元線驅動器同步啟動該些選中字元線。 An ultra-high dimensional computing device as described in claim 5, wherein the word line driver synchronously activates the selected word lines. 如請求項8所述的超高維度計算裝置,其中該運算電路為一感測放大器。 An ultra-high dimensional computing device as described in claim 8, wherein the computing circuit is a sensing amplifier. 如請求項1所述的超高維度計算裝置,其中對應一圖像,該些資料向量分別包括多個可能成分資訊以及分別對應的多個位置資訊。 As described in claim 1, the ultra-high dimensional computing device, wherein corresponding to an image, the data vectors respectively include multiple possible component information and multiple corresponding position information. 如請求項10所述的超高維度計算裝置,其中該運算電路根據多個選中成分資訊以及分別對應的該些位置資訊來產生該資料向量集。 The ultra-high dimensional computing device as described in claim 10, wherein the computing circuit generates the data vector set based on multiple selected component information and the corresponding position information. 如請求項1所述的超高維度計算裝置,更包括: 一第二運算電路,耦接該聯想記憶胞陣列,根據該記憶體內搜尋動作以產生一最佳相似結果。 The ultra-high dimensional computing device as described in claim 1 further includes: A second operation circuit coupled to the associative memory cell array to generate a best similarity result based on the search action in the memory. 如請求項12所述的超高維度計算裝置,其中該第二運算電路根據各該第二字元線的電流值大小以產生該最佳相似結果。 The ultra-high dimensional computing device as described in claim 12, wherein the second computing circuit generates the best similarity result according to the current value of each second word line. 如請求項13所述的超高維度計算裝置,其中該第二運算電路根據該第二字元線中具有最大電流值者來產生該最佳相似結果。 An ultra-high dimensional computing device as described in claim 13, wherein the second computing circuit generates the best similarity result based on the second word line having the largest current value. 如請求項12所述的超高維度計算裝置,其中該聯想記憶胞陣列為反及式快閃記憶體或反或式快閃記憶體。 An ultra-high dimensional computing device as described in claim 12, wherein the associative memory cell array is an anti-AND flash memory or an anti-OR flash memory. 如請求項1所述的超高維度計算裝置,其中該非揮發性記憶胞陣列為反及式快閃記憶體或反或式快閃記憶體。 An ultra-high dimensional computing device as described in claim 1, wherein the non-volatile memory cell array is an anti-AND flash memory or an anti-OR flash memory.
TW112104503A 2023-02-09 2023-02-09 Hyperdimension computing device TWI849732B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112104503A TWI849732B (en) 2023-02-09 2023-02-09 Hyperdimension computing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112104503A TWI849732B (en) 2023-02-09 2023-02-09 Hyperdimension computing device

Publications (2)

Publication Number Publication Date
TWI849732B true TWI849732B (en) 2024-07-21
TW202433315A TW202433315A (en) 2024-08-16

Family

ID=92929621

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112104503A TWI849732B (en) 2023-02-09 2023-02-09 Hyperdimension computing device

Country Status (1)

Country Link
TW (1) TWI849732B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109213614A (en) * 2017-06-30 2019-01-15 群联电子股份有限公司 Decoding method, memory storage device and memory control circuit unit
US10460817B2 (en) * 2017-07-13 2019-10-29 Qualcomm Incorporated Multiple (multi-) level cell (MLC) non-volatile (NV) memory (NVM) matrix circuits for performing matrix computations with multi-bit input vectors
TWI718626B (en) * 2018-08-27 2021-02-11 美商超捷公司 Configurable analog neural memory system for deep learning neural network
TW202147311A (en) * 2020-01-15 2021-12-16 南韓商三星電子股份有限公司 Memory device performing parallel calculation processing and operating method thereof, and operating method of memory controller controlling the memory device
TW202211216A (en) * 2020-09-08 2022-03-16 旺宏電子股份有限公司 In-memory computing method and in-memory computing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109213614A (en) * 2017-06-30 2019-01-15 群联电子股份有限公司 Decoding method, memory storage device and memory control circuit unit
US10460817B2 (en) * 2017-07-13 2019-10-29 Qualcomm Incorporated Multiple (multi-) level cell (MLC) non-volatile (NV) memory (NVM) matrix circuits for performing matrix computations with multi-bit input vectors
TWI718626B (en) * 2018-08-27 2021-02-11 美商超捷公司 Configurable analog neural memory system for deep learning neural network
TW202147311A (en) * 2020-01-15 2021-12-16 南韓商三星電子股份有限公司 Memory device performing parallel calculation processing and operating method thereof, and operating method of memory controller controlling the memory device
TW202211216A (en) * 2020-09-08 2022-03-16 旺宏電子股份有限公司 In-memory computing method and in-memory computing apparatus

Also Published As

Publication number Publication date
TW202433315A (en) 2024-08-16

Similar Documents

Publication Publication Date Title
US11398275B2 (en) Memory computation circuit and method
US10153042B2 (en) In-memory computational device with bit line processors
KR102774724B1 (en) Compute in memory
KR101954502B1 (en) Apparatuses and methods for identifying an extremum value stored in an array of memory cells
KR101789611B1 (en) Sram multi-cell operations
US11966714B2 (en) Ternary in-memory accelerator
TWI815312B (en) Memory device, compute in memory device and method
US20250362871A1 (en) In-memory computation circuit and method
CN118471280A (en) Ultrahigh dimension computing device
CN114072876A (en) Memory processing unit and method for calculating dot product
US20250348277A1 (en) Using reduced read energy based on the partial-sum
US12009021B2 (en) Device and method for performing matrix operation
US11145365B2 (en) Data search systems and methods
KR20230026075A (en) Processing in memory device based on random access memory and processing in memory method based on random access memory
TWI849732B (en) Hyperdimension computing device
KR20220142875A (en) Semiconductor device for performing computation-in-memory and operation method thereof
US20230238037A1 (en) Content addressable memory device and method for data searching and comparing thereof
JP2024012076A (en) Storage for in-memory computing
US20240386958A1 (en) Memory apparatus and method for data searching and comparing thereof
US20250348553A1 (en) Single cycle binary matrix multiplication
US20240355394A1 (en) Memory device and operation method thereof
US20250094125A1 (en) Multi-mode compute-in-memory systems and methods for operating the same
US20250217107A1 (en) Designs for efficient near-memory-computing and digital computing-in-memory
US20250329374A1 (en) Neuromorphic device
US20240249769A1 (en) Reconfigurable Compute Memory Having Selection Logic to Control Compute Operations