TWI849732B - Hyperdimension computing device - Google Patents
Hyperdimension computing device Download PDFInfo
- Publication number
- TWI849732B TWI849732B TW112104503A TW112104503A TWI849732B TW I849732 B TWI849732 B TW I849732B TW 112104503 A TW112104503 A TW 112104503A TW 112104503 A TW112104503 A TW 112104503A TW I849732 B TWI849732 B TW I849732B
- Authority
- TW
- Taiwan
- Prior art keywords
- memory cell
- ultra
- computing device
- high dimensional
- cell array
- Prior art date
Links
- 239000013598 vector Substances 0.000 claims abstract description 90
- 230000003213 activating effect Effects 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 16
- 238000005192 partition Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 4
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
Images
Landscapes
- Image Processing (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
本發明是有關於一種超高維度計算裝置,特別是一種有關於應用非揮發式記憶體來實現的超高維度計算裝置。The present invention relates to an ultra-high dimensional computing device, and in particular to an ultra-high dimensional computing device implemented by using a non-volatile memory.
超高維度計算是指維度數以千計的時候所進行的運算動作。在進行資料轉換動作時,超高維度計算可針對資料進行相加、相乘以及移位等動作。其中,在超高維度計算中,資料的相加動作可透過多數決的機制來執行,資料的相乘動作則透過資料進行互斥運算來進行,資料的移位動作則是針對資料執行一定位元數的移位動作。超高維度計算針對超高維度的資料向量進行計算,經由訓練,並可被分類被儲存在聯想記憶體中。在習知技術中,可透過大量的邏輯電路來執行超高維度計算。這樣的超高維度計算器常需要複雜的電路架構,並在工作中,需要大量的電力消耗。Ultra-high dimensional computing refers to the operations performed when the dimensions are in the thousands. When performing data conversion operations, ultra-high dimensional computing can perform operations such as addition, multiplication, and shifting on the data. Among them, in ultra-high dimensional computing, the addition of data can be performed through the majority decision mechanism, the multiplication of data is performed through the exclusive operation of data, and the shift of data is to perform a certain number of bit shifts on the data. Ultra-high dimensional computing is performed on ultra-high dimensional data vectors, which can be classified and stored in associative memory after training. In cognitive technology, ultra-high dimensional computing can be performed through a large number of logic circuits. Such ultra-high-dimensional calculators often require complex circuit architectures and consume a lot of power during operation.
本發明提供一種應用快閃記憶體來實施的超高維度計算裝置。The present invention provides an ultra-high dimensional computing device implemented by using a flash memory.
本發明的超高維度計算裝置包括記憶胞陣列以及第一運算電路。記憶胞陣列耦接多條第一字元線。記憶胞陣列具有多個記憶胞群組,各記憶胞群組中的多個第一記憶胞耦接至相同的第一字元線,記憶胞群組分別儲存多個資料向量。第一運算電路耦接至記憶胞陣列的多條第一位元線,透過位元線以接收資料向量的至少其中之一,根據所接收的資料向量的至少其中之一來產生資料向量集。The ultra-high dimensional computing device of the present invention includes a memory cell array and a first operation circuit. The memory cell array is coupled to a plurality of first word lines. The memory cell array has a plurality of memory cell groups, a plurality of first memory cells in each memory cell group are coupled to the same first word line, and the memory cell groups respectively store a plurality of data vectors. The first operation circuit is coupled to a plurality of first bit lines of the memory cell array, receives at least one of the data vectors through the bit lines, and generates a data vector set according to at least one of the received data vectors.
基於上述,本發明的超高維度計算裝置中,透過非揮發性記憶胞陣列的多個記憶胞群組來儲存多個資料向量。並透過提供多個資料向量的至少其中之一至運算電路,來產生對應的資料向量集。本發明的超高維度計算裝置透過記憶體內運算以及記憶體內搜尋的機制,來進行超高維度計算並產生資料向量集,可有效減低電路元件的需求,降低功率消耗,並提升超高維度計算的效能。Based on the above, in the ultra-high dimensional computing device of the present invention, multiple data vectors are stored through multiple memory cell groups of a non-volatile memory cell array. And by providing at least one of the multiple data vectors to the computing circuit, a corresponding data vector set is generated. The ultra-high dimensional computing device of the present invention performs ultra-high dimensional computing and generates a data vector set through the mechanism of in-memory computing and in-memory searching, which can effectively reduce the demand for circuit components, reduce power consumption, and improve the performance of ultra-high dimensional computing.
請參照圖1,圖1繪示本發明一實施例的超高維度計算裝置的示意圖。超高維度計算裝置100包括非揮發性記憶胞陣列110以及運算電路120。非揮發性記憶胞陣列110以及運算電路120相互耦接。非揮發性記憶胞陣列110耦接多條字元線WL1~WLN以及多條位元線BL1~BLM。非揮發性記憶胞陣列110具有多個記憶胞群組111~11N。記憶胞群組111~11N分別耦接字元線WL1~WLN。記憶胞群組111~11N的每一者中可具有多個記憶胞。其中,記憶胞群組111~11N的每一者可儲存一資料向量。Please refer to FIG. 1 , which shows a schematic diagram of an ultra-high dimensional computing device of an embodiment of the present invention. The ultra-high
運算電路120耦接至非揮發性記憶胞陣列110的多條位元線BL1~BLM。運算電路120透過位元線BL1~BLM來接收記憶胞群組111~11N的至少其中之一所提供的資料向量。運算電路120可根據整合所接收的一個或多個資料向量,以產生資料向量集(bundled vector)BHV。The
在本實施例中,記憶胞群組111~11N的每一者所儲存的資料向量可以為一多元語法(n-gram)向量。記憶胞群組111~11N所分別記錄的多個資料向量,則可以組成多個字元的所有可能的排列組合。具體來說明,以每一資料向量具有三個英文字母的字元為範例,記憶胞群組111~11N所分別記錄的多個資料向量可以分別為:aaa、aab、aac、…、zzz等26的三次方個。當然,在本發明其他實施中,每一資料向量可不僅包括英文字母的字元,還可包括特殊字元(例如空格、底線、標點符號)及/或數字字元等。沒有特定的限制。每一資料向量所記錄的字元個數可以由使用者自行決定,也不限定為3個。In the present embodiment, the data vector stored in each of the
在本發明其他實施例中,記憶胞群組111~11N所分別記錄的多個資料向量也可以是多個資料,以及分別對應資料的多個位置。這些資料以及分別對應的位置用以形成一圖像。其中,資料可用以指示圖像中,對應此資料的位置上的畫素的灰階資訊。In other embodiments of the present invention, the multiple data vectors respectively recorded by the memory cell groups 111-11N may also be multiple data and multiple positions respectively corresponding to the data. These data and the positions respectively corresponding to the data are used to form an image. The data may be used to indicate the grayscale information of the pixel at the position corresponding to the data in the image.
附帶一提的,在本實施例中,當要產生資料向量集BHV時,多個字元線WL1~WLN中的至少其中之一可以被選中。超高維度計算裝置100可使被選中的字元線逐一的被開啟,或同步一起被開啟。如此一來,運算電路120可根據選中字元線對應的記憶胞群組所提供的至少一資料向量,來產生資料向量集BHV。Incidentally, in this embodiment, when generating a data vector set BHV, at least one of the multiple word lines WL1-WLN may be selected. The ultra-high
附帶一提的,在本實施例中,記憶胞群組111~11N中的記憶胞均為非揮發性記憶胞,例如快閃記憶胞、鐵電記憶體(Ferroelectric RAM, FeRAM)的記憶胞、電阻式記憶胞(Resistive memory cell)、相位轉換記憶體(Phase Change Memory, PCM)的記憶胞或導電橋式記憶體(conductive-bridging RAM, CBRAM)的記憶胞。快閃記憶胞則可以是浮動閘極式(floating gate)、氮化矽式(SONOS)或是浮點式(floating dot)快閃記憶胞,沒有特定的限制。此外,非揮發性記憶胞陣列110可以為二維或三維堆疊的記憶胞陣列,同樣沒有特定的限制。Incidentally, in the present embodiment, the memory cells in the memory cell groups 111-11N are all non-volatile memory cells, such as flash memory cells, ferroelectric RAM (FeRAM) memory cells, resistive memory cells, phase change memory (PCM) memory cells or conductive-bridging RAM (CBRAM) memory cells. The flash memory cells can be floating gate, SONOS or floating dot flash memory cells without any specific limitation. In addition, the non-volatile
以下請參照圖2,圖2繪示本發明另一實施例的超高維度計算裝置的示意圖。超高維度計算裝置200包括非揮發性記憶胞陣列210以及運算電路220。非揮發性記憶胞陣列210以及運算電路220相互耦接。非揮發性記憶胞陣列210耦接多條字元線WL1~WLN以及多條位元線BL1~BLM。非揮發性記憶胞陣列210具有多個記憶胞群組211-1~21N-2。與圖1實施例不相同的,在本實施例中,對應一字元線的記憶胞列可以區分為多個記憶胞群組。例如,對應字元線WL1的記憶胞列可以區分為記憶胞群組211-1、211-2;對應字元線WL2的記憶胞列可以區分為記憶胞群組212-1、212-2;…;對應字元線WLN的記憶胞列則可以區分為記憶胞群組21N-1、21N-2。其中,記憶胞群組211-1~21N-2的每一者可儲存一資料向量。Please refer to FIG. 2 below, which is a schematic diagram of an ultra-high dimensional computing device of another embodiment of the present invention. The ultra-high
運算電路220透過位元線BL1~BLA以耦接至記憶胞群組211-1~21N-1,運算電路220並透過位元線BLA+1~BLM以耦接至記憶胞群組211-2~21N-2。運算電路220可透過位元線BL1~BLA以接收記憶胞群組211-1~21N-1的至少其中之一所記錄的資料向量,透過位元線BLA+1~BLM以接收記憶胞群組211-2~21N-2的至少其中之一所記錄的資料向量,並藉以產生資料向量集BHV。The
請參照圖3,圖3繪示本發明另一實施例的超高維度計算裝置的示意圖。超高維度計算裝置300包括非揮發性記憶胞陣列310、運算電路320以及編碼器330。非揮發性記憶胞陣列310耦接多條字元線WL1~WLN,並耦接至運算電路320。非揮發性記憶胞陣列310對應字元線WL1~WLN,包括多的記憶胞群組311~31N,其中各個記憶胞群組311~31N包括多個反及式(NAND)快閃記憶胞,並用以儲存一資料向量。Please refer to FIG3 , which is a schematic diagram of an ultra-high dimensional computing device of another embodiment of the present invention. The ultra-high
運算電路320透過多條位元線以耦接至非揮發性記憶胞陣列310。運算電路320透過位元線以接收資料向量的至少其中之一,並根據所接收的資料向量的至少其中之一來產生資料向量集BHV。The
在本發明一實施例中,在關於字串處理的應用中,編碼器330可用以產生多個多元語法向量,並分別儲存所產生的多元語法向量至記憶胞群組311~31N中。編碼器330可根據排列組合的方式,產生對應多個字元的多元語法向量所有可能的組合,並將這些所有可能的組合分別儲存至記憶胞群組311~31N中。In an embodiment of the present invention, in an application related to string processing, the
在本發明另一實施例中,在關於圖像處理的應用中,編碼器330可解析一圖像的多個位置,並將圖像中對應所有位置的的所有可能成分資訊以及對應的位置資訊,分別儲存在記憶胞群組311~31N中。上述的可能成分資訊,可以為圖像中該位置上的畫素的灰階資訊。其中,單一可能成分資訊以及對應的位置資訊可記錄在相同的一記憶胞群組311~31N中。In another embodiment of the present invention, in an application related to image processing, the
請參照圖4,圖4繪示本發明另一實施例的超高維度計算裝置的示意圖。超高維度計算裝置400包括非揮發性記憶胞陣列410、運算電路420以及編碼器430。非揮發性記憶胞陣列410耦接多條字元線WL1~WLN,並耦接至運算電路420。非揮發性記憶胞陣列410對應字元線WL1~WLN,包括多的記憶胞群組411~41N。相較於圖3的實施例,超高維度計算裝置400中,非揮發性記憶胞陣列410的各個記憶胞群組411~41N包括多個反或式(NOR)快閃記憶胞,並用以儲存一資料向量。Please refer to FIG4 , which is a schematic diagram of an ultra-high dimensional computing device of another embodiment of the present invention. The ultra-high
在本實施例中,編碼器430可用以執行與編碼器330相同的動作,在此恕不多贅述。In this embodiment, the
以下請參照圖5A至圖5C,圖5A至圖5C繪示本發明實施例的超高維度計算裝置的動作示意圖。在圖5A中,超高維度計算裝置500包括非揮發性記憶胞陣列510以及運算電路520。非揮發性記憶胞陣列510包括分別對應多條字元線WL1~WLN的記憶胞群組511~51N。記憶胞群組511~51N分別記錄多個三元語法(trigram)向量,例如:aaa、aab、aac、… zzz。記憶胞群組511~51N所分別記錄的三元語法向量包括三個字元的英文子母以及空格所可以產生的全部的排列組合。Please refer to Figures 5A to 5C below, which are schematic diagrams of the operation of the ultra-high dimensional computing device of an embodiment of the present invention. In Figure 5A, the ultra-high
在圖5B中,超高維度計算裝置500更包括字元線驅動器540,且運算電路520可應用計數器520’來實施。當要超高維度計算裝置500要產生資料向量集BHV時,字元驅動器540可根據一輸入資料來產生一個或多個選中字元線,並透過啟動選中字元線,來使記憶胞群組511~51N的至少其中之一提供所記錄的資料向量至計數器520’。計數器520’並可根據所接收的至少一資料向量來產生資料向量集BHV。In FIG. 5B , the ultra-high
舉例來說明,假設輸入資料為字串“how are you”等十一個(k=11)字元,字元驅動器540可根據輸入資料來產生多個選中字元線,其中選中字元線的數量可大於k/2。接著,字元驅動器540可依序的逐一啟動上述的選中字元線,例如先啟動為選中字元線的字元線WLA,並使對應的記憶胞群組51A輸出等於“how”的資料向量至計數器520’。計數器520’並可對應使計數值增加1(計數值的初始值可以等於0)。接著,字元驅動器540可啟動下一個啟動為選中字元線的字元線WLB,並使對應的記憶胞群組51B輸出等於“ow ”的資料向量至計數器520’,計數器520’並可對應使計數值等於2。依此類推,字元驅動器540可依序啟動至少5條選中字元線,計數器520’可根據依序接收的資料向量以及對應的計數值,建立出對應輸入資料的資料向量集BHV。For example, assuming that the input data is a string of eleven (k=11) characters such as "how are you", the
附帶一提的,在本實施例中,空格(“ ”)也是資料向量中的一個字元。因此,記憶胞群組511~51N可分別記錄27的三次方個資料向量。Incidentally, in this embodiment, a space (" ") is also a character in a data vector. Therefore, the memory cell groups 511-51N can respectively record 27 cubed data vectors.
在圖5C中,在本發明另一實施方式中,運算電路520可應用感測放大器520’’來實施。當要超高維度計算裝置500要產生資料向量集BHV時,字元驅動器540可根據輸入資料來產生一個或多個選中字元線,並透過同時啟動所有的選中字元線,來使對應選中字元線的記憶胞群組提供所記錄的至少一資料向量至感測放大器520’’。感測放大器520’’並可根據所接收的至少一資料向量來產生資料向量集BHV。In FIG. 5C , in another embodiment of the present invention, the
承續上述的實施例,假設輸入資料為字串“how are you”等十一個(k=11)字元,字元驅動器540可根據輸入資料來產生多個選中字元線,例如字元線WL1、WL3、WLA以及WLC。字元驅動器540並可同時啟動字元線WL1、WL3、WLA以及WLC。其中,對應字元線WL1的記憶胞群組511記錄的資料向量為”are”;對應字元線WL3的記憶胞群組513記錄的資料向量為”e y”(e與y中間具有一空格);對應字元線WLA的記憶胞群組51A記錄的資料向量為”how”;對應字元線WLC的記憶胞群組51C記錄的資料向量為”you”。Continuing with the above embodiment, assuming that the input data is a string of eleven (k=11) characters such as "how are you", the
相對應的,感測放大器520’’可根據k值來設定電流閾值TH,其中電流閾值TH = k/2乘以記憶胞儲存資料為邏輯1所產生的讀出電流。感測放大器520’’並使電流閾值TH與對應選中字元線(字元線WL1、WL3、WLA以及WLC)的記憶胞群組511、513、51A以及51C所產生的電流的總值相比較,並藉以產生資料向量集BHV。Correspondingly, the sense amplifier 520'' can set the current threshold TH according to the k value, wherein the current threshold TH = k/2 multiplied by the read current generated by the memory cell storage data for
以下請參照圖6A至圖6C,圖6A至圖6C繪示本發明實施例的超高維度計算裝置的另一實施方式的動作示意圖。在本實施方式中,超高維度計算裝置600可針對如圖6A的圖像602進行運算。圖像602可區分為5個行C1~C5以及7個列R1~R7等35的分區。其中的每個分區具有對應的位置資訊。而隨著圖像602的內容,每個分區並具有對應的成分資訊。在本實施例中,成分資訊可以為對應分區的灰階資訊。Please refer to Figures 6A to 6C below, which are schematic diagrams of the actions of another embodiment of the ultra-high dimensional computing device of the present invention. In this embodiment, the ultra-high
在圖6B中,超高維度計算裝置600包括非揮發性記憶胞陣列610以及運算電路620。非揮發性記憶胞陣列610包括分別對應多條字元線WL1~WLN的記憶胞群組611~61N。記憶胞群組611~61N可用以記錄對應圖像602中的所有分區的位置資訊以及相對應的所有的可能成分資訊。以單色影像為範例,圖像602所有分區的灰階資訊可以是1以及0。因此,在本實施方式中,記憶胞群組611可記錄位置資訊R1C1以及對應的可能成分資訊0;記憶胞群組612可記錄位置資訊R1C1以及對應的可能成分資訊1;記憶胞群組613可記錄位置資訊R2C1以及對應的可能成分資訊0;記憶胞群組614則可記錄位置資訊R2C1以及對應的可能成分資訊1;…;記憶胞群組61N則可記錄位置資訊RyCx以及對應的可能成分資訊1。其餘的記憶胞群組所記錄的內容可依此類推。In FIG6B , the ultra-high
接著在圖6C中,在執行運算動作時,超高維度計算裝置600中的字元線驅動器可根據輸入資料601來設定多個選中字元線,並透過啟動選中字元線來提供位置資訊以及對應的可能成分資訊至運算電路620。在本實施方式中,輸入資料601可以為自英文字元”A”的圖像。對應不同的位置資訊R1C1~R7C5,成分資訊可以為0或是1。Then, in FIG6C , when executing a computation, the word line driver in the ultra-high
以位置資訊R1C1為範例,輸入資料601中對應位置資訊R1C1的成分資訊為1,因此,字元線WL2可以設定為選中字元線。再以位置資訊R2C1為範例,輸入資料601中對應位置資訊R2C1的成分資訊為1。因此,字元線WL4可以設定為選中字元線。其餘的選中字元線的設定方式可依此方式類推,不再逐一說明。Taking the position information R1C1 as an example, the component information corresponding to the position information R1C1 in the
透過啟動選中字元線,運算電路620可接收到對應每一位置資訊R1C1~R7C5的多個成分資訊。運算電路620將接收到對應每一位置資訊R1C1~R7C5的多個成分資訊結合以產生資料向量集BHV1。其中,運算電路620可根據成分資訊是否為1來決定是否針對每一位置資訊R1C1~R7C5進行移位動作,例如,成分資訊為0,代表對應的位置資訊不需移位,成分資訊為1代表對應的位置資訊需要移位。By activating the selected word line, the
在本實施方式中,為提升運算的正確度,運算電路620中可增加一多數決機制,並透過比較多次的資料向量集BHV1的運算結果,來取出發生最多次數的資料向量集BHV1以最為最終輸出的資料向量集BHV,可有效提升運算的正確性。In this embodiment, in order to improve the accuracy of the operation, a majority decision mechanism can be added to the
請參照圖7,圖7繪示本發明另一實施例的超高維度計算裝置的示意圖。超高維度計算裝置700包括非揮發記憶胞陣列710、運算電路720、740以及聯想記憶胞陣列730。非揮發記憶胞陣列710以及運算電路720相互耦接。關於非揮發記憶胞陣列710以及運算電路720的實施細節,在前述多個實施例以及實施方式中已有詳細的說明,此處不多贅述。Please refer to FIG. 7, which shows a schematic diagram of an ultra-high dimensional computing device of another embodiment of the present invention. The ultra-high
運算電路740以及聯想記憶胞陣列730相互耦接。聯想記憶胞陣列730具有多個記憶胞群組731~73M。各記憶胞群組731~73M具有多個記憶胞,各記憶胞群組731~73M並用以記錄分類資訊。聯想記憶胞陣列730用以接收非揮發記憶胞陣列710以及運算電路720所產生的資料向量集BHV並根據資料向量集BHV以執行記憶體內搜尋(In-Memory-Searching, IMS)動作來產生最佳相似結果CSA。The
關於聯想記憶胞陣列730的實施細節,可參照圖8A以及圖8B繪示的本發明實施例的超高維度計算裝置中的聯想記憶胞陣列的實施方式的示意圖。在圖8A中,聯想記憶胞陣列810與運算電路820相耦接。聯想記憶胞陣列810具有多個記憶胞群組811~81M。每一記憶胞群組811~81M具有多個記憶胞,且相同的記憶胞群組中的記憶胞共同耦接至相同的位元線。其中,記憶胞群組811~81M分別耦接至位元線BL1~BLM。此外,相同記憶胞群組811~81M中的多個記憶胞分別耦接至多條不相同的字元線WL1~WLP。其中,在本實施例中,記憶胞群組811~81M中的記憶胞為反及式快閃記憶胞。For the implementation details of the associative
對應圖7的實施例,聯想記憶胞陣列810使運算電路720所產生的資料向量集BHV與各個記憶胞群組811~81M中的分類資訊進行比較以執行記憶體內搜尋動作。運算電路820可根據上述的記憶體內搜尋動作來產生與資料向量集BHV最接近的最佳相似結果CSA。7 , the associative
在圖8B中,聯想記憶胞陣列830與運算電路840相耦接。聯想記憶胞陣列830具有多個記憶胞群組831~83M。每一記憶胞群組831~83M具有多個記憶胞,且相同的記憶胞群組中的記憶胞共同耦接至相同的位元線。其中,記憶胞群組831~83M分別耦接至位元線BL1~BLM。此外,相同記憶胞群組831~83M中的多個記憶胞分別耦接至多條不相同的字元線WL1~WLP。其中,在本實施例中,記憶胞群組831~83M中的記憶胞為反或式快閃記憶胞。In FIG8B , the associative
聯想記憶胞陣列840使運算電路720所產生的資料向量集BHV與各個記憶胞群組831~83M中的分類資訊進行比較以執行記憶體內搜尋動作。運算電路840可根據上述的記憶體內搜尋動作來產生與資料向量集BHV最接近的最佳相似結果CSA。The associative
關於上述實施例中,記憶體內搜尋動作的細節,可應用本領域具通常知識者所熟知的記憶體內搜尋動作來實施,沒有特定的限制。Regarding the details of the memory search action in the above-mentioned embodiment, the memory search action known to those skilled in the art can be applied to implement without any specific limitation.
綜上所述,本發明的超高維度計算裝置應用非揮發式記憶胞陣列來儲存運算過程中所有可能資料向量。並透過開啟所需要的字元線,透過運算電路來透過一個或結合多個資料向量以產生資料向量集。可有效簡化超高維度計算裝置的電路複雜度,並提升超高維度計算裝置的工作速度,有效提升系統的效能。In summary, the ultra-high dimensional computing device of the present invention uses a non-volatile memory cell array to store all possible data vectors in the computing process. By opening the required word lines, the computing circuit generates a data vector set by combining one or more data vectors. This can effectively simplify the circuit complexity of the ultra-high dimensional computing device, increase the working speed of the ultra-high dimensional computing device, and effectively improve the performance of the system.
100、200、300、400、500、600、700:超高維度計算裝置
110、210、310、410、510、610、710:非揮發性記憶胞陣列
111~11N、211-1~21N-2、311~31N、411~41N、511~51N、611~61N、811~81M:記憶胞群組
120、220、320、420、520、520’、620、720、740、820:運算電路
330、430:編碼器
520’’:感測放大器
540:字元驅動器
602:圖像
601:輸入資料
730、810:聯想記憶胞陣列
731~73M:記憶胞群組
BHV、BHV1:資料向量集
BL1~BLM:位元線
C1~C5:行
CSA:最佳相似結果
R1~R7:列
R1C1~R7C5、RyCx:位置資訊
WL1~WLN、WLA、WLA+1、WLB、WLC、WLP:字元線
100, 200, 300, 400, 500, 600, 700: Ultra-high
圖1繪示本發明一實施例的超高維度計算裝置的示意圖。 圖2繪示本發明另一實施例的超高維度計算裝置的示意圖。 圖3繪示本發明另一實施例的超高維度計算裝置的示意圖。 圖4繪示本發明另一實施例的超高維度計算裝置的示意圖。 圖5A至圖5C繪示本發明實施例的超高維度計算裝置的動作示意圖。 圖6A至圖6C繪示本發明實施例的超高維度計算裝置的另一實施方式的動作示意圖。 圖7繪示本發明另一實施例的超高維度計算裝置的示意圖。 圖8A以及圖8B繪示本發明實施例的超高維度計算裝置中的聯想記憶胞陣列的實施方式的示意圖。 FIG1 is a schematic diagram of an ultra-high dimensional computing device of one embodiment of the present invention. FIG2 is a schematic diagram of an ultra-high dimensional computing device of another embodiment of the present invention. FIG3 is a schematic diagram of an ultra-high dimensional computing device of another embodiment of the present invention. FIG4 is a schematic diagram of an ultra-high dimensional computing device of another embodiment of the present invention. FIG5A to FIG5C are schematic diagrams of the ultra-high dimensional computing device of an embodiment of the present invention. FIG6A to FIG6C are schematic diagrams of the ultra-high dimensional computing device of another embodiment of the present invention. FIG7 is a schematic diagram of an ultra-high dimensional computing device of another embodiment of the present invention. FIG8A and FIG8B are schematic diagrams of an implementation of an associative memory cell array in an ultra-high dimensional computing device of an embodiment of the present invention.
100:超高維度計算裝置 100: Ultra-high dimensional computing device
110:非揮發性記憶胞陣列 110: Non-volatile memory cell array
111~11N:記憶胞群組 111~11N: memory cell group
120:運算電路 120: Operational circuit
BHV:資料向量集 BHV: Data Vector Set
BL1~BLM:位元線 BL1~BLM: bit line
WL1~WLN:字元線 WL1~WLN: character line
Claims (16)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW112104503A TWI849732B (en) | 2023-02-09 | 2023-02-09 | Hyperdimension computing device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW112104503A TWI849732B (en) | 2023-02-09 | 2023-02-09 | Hyperdimension computing device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI849732B true TWI849732B (en) | 2024-07-21 |
| TW202433315A TW202433315A (en) | 2024-08-16 |
Family
ID=92929621
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW112104503A TWI849732B (en) | 2023-02-09 | 2023-02-09 | Hyperdimension computing device |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI849732B (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109213614A (en) * | 2017-06-30 | 2019-01-15 | 群联电子股份有限公司 | Decoding method, memory storage device and memory control circuit unit |
| US10460817B2 (en) * | 2017-07-13 | 2019-10-29 | Qualcomm Incorporated | Multiple (multi-) level cell (MLC) non-volatile (NV) memory (NVM) matrix circuits for performing matrix computations with multi-bit input vectors |
| TWI718626B (en) * | 2018-08-27 | 2021-02-11 | 美商超捷公司 | Configurable analog neural memory system for deep learning neural network |
| TW202147311A (en) * | 2020-01-15 | 2021-12-16 | 南韓商三星電子股份有限公司 | Memory device performing parallel calculation processing and operating method thereof, and operating method of memory controller controlling the memory device |
| TW202211216A (en) * | 2020-09-08 | 2022-03-16 | 旺宏電子股份有限公司 | In-memory computing method and in-memory computing apparatus |
-
2023
- 2023-02-09 TW TW112104503A patent/TWI849732B/en active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109213614A (en) * | 2017-06-30 | 2019-01-15 | 群联电子股份有限公司 | Decoding method, memory storage device and memory control circuit unit |
| US10460817B2 (en) * | 2017-07-13 | 2019-10-29 | Qualcomm Incorporated | Multiple (multi-) level cell (MLC) non-volatile (NV) memory (NVM) matrix circuits for performing matrix computations with multi-bit input vectors |
| TWI718626B (en) * | 2018-08-27 | 2021-02-11 | 美商超捷公司 | Configurable analog neural memory system for deep learning neural network |
| TW202147311A (en) * | 2020-01-15 | 2021-12-16 | 南韓商三星電子股份有限公司 | Memory device performing parallel calculation processing and operating method thereof, and operating method of memory controller controlling the memory device |
| TW202211216A (en) * | 2020-09-08 | 2022-03-16 | 旺宏電子股份有限公司 | In-memory computing method and in-memory computing apparatus |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202433315A (en) | 2024-08-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11398275B2 (en) | Memory computation circuit and method | |
| US10153042B2 (en) | In-memory computational device with bit line processors | |
| KR102774724B1 (en) | Compute in memory | |
| KR101954502B1 (en) | Apparatuses and methods for identifying an extremum value stored in an array of memory cells | |
| KR101789611B1 (en) | Sram multi-cell operations | |
| US11966714B2 (en) | Ternary in-memory accelerator | |
| TWI815312B (en) | Memory device, compute in memory device and method | |
| US20250362871A1 (en) | In-memory computation circuit and method | |
| CN118471280A (en) | Ultrahigh dimension computing device | |
| CN114072876A (en) | Memory processing unit and method for calculating dot product | |
| US20250348277A1 (en) | Using reduced read energy based on the partial-sum | |
| US12009021B2 (en) | Device and method for performing matrix operation | |
| US11145365B2 (en) | Data search systems and methods | |
| KR20230026075A (en) | Processing in memory device based on random access memory and processing in memory method based on random access memory | |
| TWI849732B (en) | Hyperdimension computing device | |
| KR20220142875A (en) | Semiconductor device for performing computation-in-memory and operation method thereof | |
| US20230238037A1 (en) | Content addressable memory device and method for data searching and comparing thereof | |
| JP2024012076A (en) | Storage for in-memory computing | |
| US20240386958A1 (en) | Memory apparatus and method for data searching and comparing thereof | |
| US20250348553A1 (en) | Single cycle binary matrix multiplication | |
| US20240355394A1 (en) | Memory device and operation method thereof | |
| US20250094125A1 (en) | Multi-mode compute-in-memory systems and methods for operating the same | |
| US20250217107A1 (en) | Designs for efficient near-memory-computing and digital computing-in-memory | |
| US20250329374A1 (en) | Neuromorphic device | |
| US20240249769A1 (en) | Reconfigurable Compute Memory Having Selection Logic to Control Compute Operations |