TWI849599B - Welding path generating system and welding path generating method - Google Patents
Welding path generating system and welding path generating method Download PDFInfo
- Publication number
- TWI849599B TWI849599B TW111145842A TW111145842A TWI849599B TW I849599 B TWI849599 B TW I849599B TW 111145842 A TW111145842 A TW 111145842A TW 111145842 A TW111145842 A TW 111145842A TW I849599 B TWI849599 B TW I849599B
- Authority
- TW
- Taiwan
- Prior art keywords
- welding
- processor
- path
- welding path
- module
- Prior art date
Links
- 238000003466 welding Methods 0.000 title claims abstract description 181
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000004458 analytical method Methods 0.000 claims abstract description 25
- 239000000463 material Substances 0.000 claims description 17
- 230000000007 visual effect Effects 0.000 claims description 16
- 230000011218 segmentation Effects 0.000 claims description 7
- 239000011324 bead Substances 0.000 abstract description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000015654 memory Effects 0.000 description 7
- 238000005476 soldering Methods 0.000 description 6
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 5
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 5
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 4
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 3
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Landscapes
- Image Processing (AREA)
- Manipulator (AREA)
Abstract
Description
本發明是有關於一種路徑估測技術,且特別是有關於一種銲接路徑生成系統以及銲接路徑生成方法。 The present invention relates to a path estimation technology, and in particular to a welding path generation system and a welding path generation method.
目前板材與板材之間的銲接是由使用者手動操作銲接設備來進行銲接操作,因此缺乏效率。特別是,當銲接的板材為厚板,而須透過多層道銲接的方式來實現兩個板材的銲接時,銲接操作將變得繁雜,並且容易發生人為疏失或未注意銲接程序規範及標準銲接範本而容易發生銲接失敗或撞機事件。 Currently, the welding between plates is performed by users manually operating welding equipment, which is inefficient. In particular, when the plates to be welded are thick plates and multiple layers of welding are required to achieve the welding of two plates, the welding operation will become complicated and prone to human error or failure to pay attention to welding procedure specifications and standard welding templates, resulting in welding failures or collisions.
本發明提供一種銲接路徑生成系統以及銲接路徑生成方法,可自動生成銲接路徑,以便進行自動銲接操作。 The present invention provides a welding path generation system and a welding path generation method, which can automatically generate welding paths to facilitate automatic welding operations.
本發明的銲接路徑生成系統包括影像感測器、儲存裝置以及處理器。影像感測器用以取得銲接目標的感測影像。儲存裝置用以儲存視覺分析模組、解析模組以及路徑規劃模組。處理器 耦接儲存裝置以及影像感測器。處理器執行視覺分析模組,以分析感測影像,並建立掃描數據。處理器執行解析模組,以根據掃描數據辨識銲道輪廓資訊。處理器執行路徑規劃模組,以根據銲道輪廓資訊生成銲接路徑資訊。 The welding path generation system of the present invention includes an image sensor, a storage device and a processor. The image sensor is used to obtain a sensing image of a welding target. The storage device is used to store a visual analysis module, a parsing module and a path planning module. The processor is coupled to the storage device and the image sensor. The processor executes the visual analysis module to analyze the sensing image and establish scan data. The processor executes the parsing module to identify the weld path profile information according to the scan data. The processor executes the path planning module to generate the welding path information according to the weld path profile information.
本發明的銲接路徑生成方法包括以下步驟:透過影像感測器取得銲接目標的感測影像;透過處理器分析感測影像,並建立掃描數據;透過處理器根據掃描數據辨識銲道輪廓資訊;以及透過處理器根據銲道輪廓資訊生成銲接路徑資訊。 The welding path generation method of the present invention includes the following steps: obtaining a sensing image of a welding target through an image sensor; analyzing the sensing image through a processor and establishing scanning data; identifying welding track contour information based on the scanning data through the processor; and generating welding path information based on the welding track contour information through the processor.
基於上述,本發明的銲接路徑生成系統以及銲接路徑生成方法可透過影像掃描的方式辨識銲道輪廓,並且可根據銲道輪廓資訊生成銲接路徑資訊。 Based on the above, the welding path generation system and welding path generation method of the present invention can identify the welding path contour by image scanning, and can generate welding path information based on the welding path contour information.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed as above by the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the scope defined by the attached patent application.
100:銲接路徑生成系統 100: Welding path generation system
110:處理器 110: Processor
120:儲存裝置 120: Storage device
121:視覺分析模組 121: Visual analysis module
122:解析模組 122:Analysis module
123:路徑規劃模組 123: Path planning module
130:影像感測器 130: Image sensor
140:機械手臂 140:Robotic arm
201:感測影像 201: Sensing images
202:掃描數據 202: Scan data
203:銲道形貌辨識結果 203: Welding path morphology recognition results
204:銲道母材分割點雲 204: Welding parent material segmentation point cloud
205:銲接路徑資訊 205: Welding path information
401、402:板材 401, 402: Plates
403:銲接區域 403: Welding area
404:銲接路徑 404: Solder path
410:基板 410: Substrate
710~719:銲材 710~719: Welding materials
S310~S340、S610~S660:步驟 S310~S340, S610~S660: Steps
X、Y、Z:軸 X, Y, Z: axis
圖1是本發明的一實施例的銲接路徑生成系統的示意圖。 FIG1 is a schematic diagram of a welding path generation system of an embodiment of the present invention.
圖2是本發明的一實施例的多個模組的示意圖。 Figure 2 is a schematic diagram of multiple modules of an embodiment of the present invention.
圖3是本發明的一實施例的銲接路徑生成方法的流程圖。 Figure 3 is a flow chart of a method for generating a welding path according to an embodiment of the present invention.
圖4是本發明的一實施例的銲接情境的示意圖。 FIG4 is a schematic diagram of a welding scenario of an embodiment of the present invention.
圖5是本發明的一實施例的掃描數據的示意圖。 Figure 5 is a schematic diagram of scan data of an embodiment of the present invention.
圖6是本發明的另一實施例的銲接路徑生成方法的流程圖。 Figure 6 is a flow chart of a welding path generation method of another embodiment of the present invention.
圖7是本發明的另一實施例的銲接結果的側視圖。 FIG7 is a side view of the welding result of another embodiment of the present invention.
為了使本發明之內容可以被更容易明瞭,以下特舉實施例做為本揭示確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。 In order to make the content of the present invention more understandable, the following embodiments are specifically cited as examples of how the present disclosure can be implemented. In addition, wherever possible, elements/components/steps with the same number in the drawings and embodiments represent the same or similar parts.
圖1是本發明的一實施例的銲接路徑生成系統的示意圖。參考圖1,銲接路徑生成系統100包括處理器110、儲存裝置120、影像感測器130以及機械手臂140。處理器110耦接儲存裝置120、影像感測器130以及機械手臂140。機械手臂140可搭載有相關銲接設備(例如包括用於銲接的加熱設備)。在本實施例中,處理器110可透過影像感測器130取得當前銲接情境,並且執行儲存在儲存裝置120中的相關模組(即軟體、程式或演算法等),以視覺分析的方式判斷當前銲接情境中的銲道輪廓,以使生成銲接路徑資訊。處理器110可根據銲接路徑資訊來控制機械手臂140,以實現自動銲接操作。 FIG1 is a schematic diagram of a welding path generation system according to an embodiment of the present invention. Referring to FIG1 , the welding path generation system 100 includes a processor 110, a storage device 120, an image sensor 130, and a robot arm 140. The processor 110 is coupled to the storage device 120, the image sensor 130, and the robot arm 140. The robot arm 140 may be equipped with relevant welding equipment (for example, a heating device for welding). In this embodiment, the processor 110 can obtain the current welding situation through the image sensor 130, and execute the relevant module (i.e., software, program or algorithm, etc.) stored in the storage device 120 to determine the welding track contour in the current welding situation by visual analysis to generate welding path information. The processor 110 can control the robot arm 140 according to the welding path information to realize automatic welding operation.
在本實施例中,處理器110可例如設置在個人電腦(Personal Computer,PC)、筆記型電腦(Notebook computer)、平板電腦(Tablet)、工業電腦(Industrial computer)、嵌入式電腦 (Embedded computer)或雲端伺服器(Cloud server)中等諸如此類的具有運算功能的電子設備中,但本發明並不加以限制。在本實施例中,儲存裝置120可包括記憶體,其中記憶體可例如是唯讀記憶體(Read Only Memory,ROM)、可抹除可編程唯讀記憶體(Erasable Programmable Read Only Memory,EPROM)等非揮發記憶體、隨機存取儲存器(Random Access Memory,RAM)等揮發記憶體、及硬碟驅動器(hard disc drive)、半導體記憶體等記憶體。儲存裝置120用於儲存本發明所提到的各種模組、影像、資訊、參數以及資料等,並且可供處理器110讀取並執行之,以實現本發明各實施例所述的影像分析、解析運算以及機械手臂140的控制功能。 In this embodiment, the processor 110 may be disposed in, for example, a personal computer (PC), a notebook computer, a tablet computer, an industrial computer, an embedded computer, or a cloud server, or other electronic devices having computing functions, but the present invention is not limited thereto. In this embodiment, the storage device 120 may include a memory, wherein the memory may be, for example, a non-volatile memory such as a read-only memory (ROM), an erasable programmable read-only memory (EPROM), a volatile memory such as a random access memory (RAM), a hard disk drive, a semiconductor memory, and other memories. The storage device 120 is used to store various modules, images, information, parameters, and data mentioned in the present invention, and can be read and executed by the processor 110 to realize the image analysis, analytical calculation, and control functions of the robot arm 140 described in each embodiment of the present invention.
在本實施例中,影像感測器130可為深度攝影機或結構光攝影機,以例如發出三維的結構光來掃描銲接目標。換言之,處理器110經由影像感測器130所取得的感測影像可為具有深度資訊的影像。在本實施例中,機械手臂140可例如包括多個關節軸,以例如實現具有空間六自由度的機械手臂,但本發明並不限於此。 In this embodiment, the image sensor 130 may be a depth camera or a structured light camera, for example, to emit three-dimensional structured light to scan the welding target. In other words, the sensing image obtained by the processor 110 through the image sensor 130 may be an image with depth information. In this embodiment, the robot arm 140 may include, for example, a plurality of joint axes, for example, to realize a robot arm with six degrees of freedom in space, but the present invention is not limited thereto.
圖2是本發明的一實施例的多個模組的示意圖。圖3是本發明的一實施例的銲接路徑生成方法的流程圖。圖4是本發明的一實施例的銲接情境的示意圖。圖5是本發明的一實施例的掃描數據的示意圖。參考圖1至圖5,儲存裝置120可儲存視覺分析模組121、解析模組122以及路徑規劃模組123。在本實施例中, 銲接路徑生成系統100可執行視覺分析模組121、解析模組122以及路徑規劃模組123,以進行如以下步驟S310~S340的操作來實現銲接路徑生成的功能。 FIG. 2 is a schematic diagram of multiple modules of an embodiment of the present invention. FIG. 3 is a flow chart of a welding path generation method of an embodiment of the present invention. FIG. 4 is a schematic diagram of a welding scenario of an embodiment of the present invention. FIG. 5 is a schematic diagram of scan data of an embodiment of the present invention. Referring to FIG. 1 to FIG. 5, the storage device 120 can store a visual analysis module 121, a parsing module 122, and a path planning module 123. In this embodiment, the welding path generation system 100 can execute the visual analysis module 121, the parsing module 122, and the path planning module 123 to perform operations such as the following steps S310~S340 to realize the function of welding path generation.
在步驟S310,處理器110可透過影像感測器130取得銲接目標的感測影像201。如圖4所示,板材401以及板材402可分別為金屬材料的厚板。板材401以及板材402可先放置或固定在基板410上,以使銲接路徑生成系統100可對板材401以及板材402之間的預設的銲接區域403進行銲接操作,而透過銲材(圖未示)將板材401以及板材402銲接在一起。板材401以及板材402可分別平行放置在由Y方向及X方向延伸的基板410的平面。在本實施例中,影像感測器130可例如是以朝與Z軸之間具有固定夾角的方向來拍攝板材401以及板材402,以取得具有深度資訊的感測影像201。 In step S310, the processor 110 can obtain the sensing image 201 of the welding target through the image sensor 130. As shown in FIG4, the plate 401 and the plate 402 can be thick plates of metal materials. The plate 401 and the plate 402 can be placed or fixed on the substrate 410 first, so that the welding path generation system 100 can perform welding operations on the preset welding area 403 between the plate 401 and the plate 402, and weld the plate 401 and the plate 402 together through the welding material (not shown). The plate 401 and the plate 402 can be placed parallel to the plane of the substrate 410 extending in the Y direction and the X direction. In this embodiment, the image sensor 130 may, for example, photograph the plate 401 and the plate 402 in a direction with a fixed angle with the Z axis to obtain a sensing image 201 with depth information.
在步驟S320,處理器110可分析感測影像201,並建立掃描數據202。在本實施例中,處理器110可執行視覺分析模組121,並輸入感測影像201至視覺分析模組121,以使視覺分析模組121分析感測影像201,並建立掃描數據202。掃描數據202可如圖5所示的立體的點雲資料。 In step S320, the processor 110 may analyze the sensing image 201 and create the scanning data 202. In this embodiment, the processor 110 may execute the visual analysis module 121 and input the sensing image 201 to the visual analysis module 121, so that the visual analysis module 121 analyzes the sensing image 201 and creates the scanning data 202. The scanning data 202 may be a three-dimensional point cloud data as shown in FIG5.
在步驟S330,處理器110可根據掃描數據202辨識銲道輪廓資訊。在本實施例中,解析模組122可包括經訓練後的深度點雲解析網路。深度點雲解析網路可為一種深度卷積神經網路(Convolutional Neural Network,CNN)。處理器110可執行解析模 組122以對點雲資料進行點雲特徵採樣,而擷取由深至淺的特徵。接著,解析模組122可進行銲道形貌辨識,以產生銲道形貌辨識結果203。銲道形貌辨識結果是指對於點雲資料中的多個點雲來定義對應於板材401、板材402以及銲材的形貌進行分類與判斷。解析模組122還可進行銲道母材分割,以分隔板材401、板材402以及銲材的區域的點雲資料,而產生銲道母材分割點雲204。因此,解析模組122可輸出包括銲接目標的銲道形貌辨識結果203以及銲道母材分割點雲204至路徑規劃模組123。 In step S330, the processor 110 may identify the bead contour information according to the scan data 202. In this embodiment, the parsing module 122 may include a trained deep point cloud parsing network. The deep point cloud parsing network may be a deep convolutional neural network (CNN). The processor 110 may execute the parsing module 122 to perform point cloud feature sampling on the point cloud data and extract features from deep to shallow. Then, the parsing module 122 may perform bead shape recognition to generate a bead shape recognition result 203. The weld bead morphology recognition result refers to the classification and judgment of the morphology corresponding to the plate 401, the plate 402 and the weld material for multiple point clouds in the point cloud data. The analysis module 122 can also perform weld bead parent material segmentation to separate the point cloud data of the plate 401, the plate 402 and the weld material area, and generate the weld bead parent material segmentation point cloud 204. Therefore, the analysis module 122 can output the weld bead morphology recognition result 203 including the welding target and the weld bead parent material segmentation point cloud 204 to the path planning module 123.
在步驟S340,處理器110可根據銲道輪廓資訊生成銲接路徑資訊。在本實施例中,處理器110可執行路徑規劃模組123,以使路徑規劃模組123可根據如圖5所示的點雲模型來擬合銲道形貌辨識結果203以及銲道母材分割點雲204,以生成銲接路徑資訊205。銲接路徑資訊205可指的是銲接區域403中的當前銲接道次的銲接路徑404的位置資訊(例如包括用於定義路徑的座標、向量等參數)。因此,銲接路徑生成系統100可視覺分析的方式來自動生成當前銲接道次的銲接路徑404。 In step S340, the processor 110 may generate welding path information according to the weld profile information. In this embodiment, the processor 110 may execute the path planning module 123 so that the path planning module 123 may fit the weld shape recognition result 203 and the weld parent material segmentation point cloud 204 according to the point cloud model shown in FIG. 5 to generate welding path information 205. The welding path information 205 may refer to the position information of the welding path 404 of the current welding pass in the welding area 403 (for example, including parameters such as coordinates and vectors used to define the path). Therefore, the welding path generation system 100 can automatically generate the welding path 404 of the current welding pass by visual analysis.
並且,在一實施例中,儲存裝置120還可儲存機械手臂操作模組。處理器110可執行機械手臂操作模組,以根據銲接路徑資訊205來透過機械手臂操作模組操作機械手臂140對銲接目標進行銲接操作。如圖4所示,處理器110可操作機械手臂140沿著銲接路徑404來對銲接區域403進行銲接操作。 Furthermore, in one embodiment, the storage device 120 can also store a robot arm operation module. The processor 110 can execute the robot arm operation module to operate the robot arm 140 to perform welding operations on the welding target through the robot arm operation module according to the welding path information 205. As shown in FIG. 4, the processor 110 can operate the robot arm 140 to perform welding operations on the welding area 403 along the welding path 404.
圖6是本發明的另一實施例的銲接路徑生成方法的流程 圖。參考圖1、圖2、圖4以及圖6,處理器110也可預先透過輸入銲接程序規範(Welding Procedure Specification,WPS)以及多層道銲接資料至深度點雲解析網路,以訓練深度點雲解析網路。如此一來,銲接路徑生成系統100可實現多層道銲接,以有效地透過多層的銲材將板材401以及板材402銲接在一起。並且,處理器110還可預先對深度點雲解析網路進行模型參數微調(fine-tune),以驗證深度點雲解析網路,以有效增進施作銲接的路徑的精度。甚至,處理器110還可預先輸入多個標準銲接範本(Golden sample)至深度點雲解析網路,以訓練深度點雲解析網路。標準銲接範本可例如是標準直銲範本、標準曲銲範本等,而本發明並不加以限制。對此,銲接路徑生成系統100可進行如以下步驟S610~S660來實現準確的銲接操作。 FIG6 is a flow chart of a welding path generation method of another embodiment of the present invention. Referring to FIG1, FIG2, FIG4 and FIG6, the processor 110 may also pre-train the deep point cloud parsing network by inputting a welding procedure specification (WPS) and multi-layer channel welding data to the deep point cloud parsing network. In this way, the welding path generation system 100 can implement multi-layer channel welding to effectively weld the plate 401 and the plate 402 together through multiple layers of welding materials. In addition, the processor 110 may also pre-fine-tune the model parameters of the deep point cloud parsing network to verify the deep point cloud parsing network to effectively improve the accuracy of the path for performing welding. Even, the processor 110 can also pre-input multiple standard welding templates (Golden samples) to the deep point cloud parsing network to train the deep point cloud parsing network. The standard welding template can be, for example, a standard straight welding template, a standard curved welding template, etc., and the present invention is not limited. In this regard, the welding path generation system 100 can perform the following steps S610~S660 to achieve accurate welding operations.
在步驟S610,處理器110可輸入點雲資料至解析模組122。在步驟S620,解析模組122可生成銲接路徑資訊。在步驟S630,路徑規劃模組123可先將銲接路徑資訊的銲接路徑擬合(多維度擬合)成機械手臂點位。機械手臂點位可以指的是機械手臂140的手臂末端的特徵點或輪廓沿著沿著銲接路徑404進行銲接操作而移動的多個連續位置點。在步驟S640,路徑規劃模組123可接著將機械手臂點位與銲接程序規範進行比對。銲接程序規範可例如定義有限制區域的銲接施作範圍。在步驟S650,處理器110可判斷機械手臂點位是否完全位於限制區域(立體空間區域)內。若否,則處理器110可再次執行解析模組122可生成新的調整後的 銲接路徑資訊。若是,在步驟S660,處理器110可操作機械手臂140對銲接目標進行銲接操作(沿著銲接路徑404來對銲接區域403進行銲接操作)。換言之,處理器110可根據經前述安全判斷後的銲接路徑資訊來操作機械手臂140對銲接目標進行安全且適當的銲接操作,而可有效避免機械手臂140在進行自動的銲接操作時發生撞機的情況(即機械手臂140與板材、機板或銲材發生未預期的碰撞)。 In step S610, the processor 110 may input point cloud data to the parsing module 122. In step S620, the parsing module 122 may generate welding path information. In step S630, the path planning module 123 may first fit (multi-dimensionally fit) the welding path of the welding path information into robot arm points. The robot arm points may refer to a plurality of continuous position points where a feature point or contour at the end of the arm of the robot arm 140 moves along the welding path 404 during a welding operation. In step S640, the path planning module 123 may then compare the robot arm points with the welding procedure specifications. The welding procedure specification may, for example, define a welding operation range with a restricted area. In step S650, the processor 110 may determine whether the robot arm position is completely within the restricted area (stereoscopic area). If not, the processor 110 may execute the parsing module 122 again to generate new adjusted welding path information. If yes, in step S660, the processor 110 may operate the robot arm 140 to perform welding operation on the welding target (perform welding operation on the welding area 403 along the welding path 404). In other words, the processor 110 can operate the robot arm 140 to perform safe and appropriate welding operations on the welding target according to the welding path information after the aforementioned safety judgment, and can effectively avoid the robot arm 140 from colliding during the automatic welding operation (i.e., the robot arm 140 and the plate, board or welding material have an unexpected collision).
圖7是本發明的另一實施例的銲接結果的側視圖。圖7可例如是對應於圖4的Y方向的示意圖。參考圖1、圖2以及圖7,在本實施例中,在機械手臂140對銲接目標(即銲接區域403)完成進行第一道銲接操作後,板材401與板材402之間可形成第一道銲材710。接著,影像感測器130可再次取得銲接目標(即銲接區域403)的下一感測影像。處理器110可再次執行如上述的銲接路徑生成方法。處理器110可執行視覺分析模組121,以分析下一感測影像,並建立下一掃描數據。處理器110可執行解析模組122,以根據下一掃描數據辨識下一銲道輪廓資訊。處理器110可執行路徑規劃模組123,以根據下一銲道輪廓資訊生成下一銲接路徑資訊。因此,處理器110可操作機械手臂140對銲接目標(即銲接區域403)進行第二道銲接操作。在機械手臂140對銲接目標(即銲接區域403)完成進行第二道銲接操作後,板材401與板材402之間可形成第二道銲材711。以此類推,處理器110反覆執行如上述的銲接路徑生成方法,以經由多層道銲接而在板材401與板材402 之間可形成多道銲材711~719。因此,板材401與板材402可經由銲材711~719而有效地銲接在一起。 FIG7 is a side view of the welding result of another embodiment of the present invention. FIG7 may, for example, be a schematic diagram corresponding to the Y direction of FIG4. Referring to FIG1, FIG2 and FIG7, in this embodiment, after the robot arm 140 completes the first welding operation on the welding target (i.e., the welding area 403), a first welding material 710 may be formed between the plate 401 and the plate 402. Then, the image sensor 130 may obtain the next sensing image of the welding target (i.e., the welding area 403) again. The processor 110 may execute the welding path generation method as described above again. The processor 110 may execute the visual analysis module 121 to analyze the next sensing image and establish the next scanning data. The processor 110 may execute the parsing module 122 to identify the next weld profile information according to the next scan data. The processor 110 may execute the path planning module 123 to generate the next welding path information according to the next weld profile information. Therefore, the processor 110 may operate the robot arm 140 to perform a second welding operation on the welding target (i.e., the welding area 403). After the robot arm 140 completes the second welding operation on the welding target (i.e., the welding area 403), a second welding material 711 may be formed between the plate 401 and the plate 402. By analogy, the processor 110 repeatedly executes the above-mentioned welding path generation method to form multiple welding materials 711~719 between the plate 401 and the plate 402 through multi-layer welding. Therefore, the plate 401 and the plate 402 can be effectively welded together through the welding materials 711~719.
綜上所述,本發明的銲接路徑生成系統以及銲接路徑生成方法,可透過視覺分析以及建立掃描資料的方式來建立模型,並可透過解析模型以及路徑規劃來自動生成銲接路徑,以實現自動銲接功能。在路徑規劃過程中,本發明的銲接路徑生成系統以及銲接路徑生成方法還可基於銲接程序規範及標準銲接範本來生成銲接路徑,以實現安全且可靠的銲接操作, 雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 In summary, the welding path generation system and welding path generation method of the present invention can establish a model through visual analysis and establishment of scan data, and can automatically generate welding paths through analytical models and path planning to achieve automatic welding function. During the path planning process, the soldering path generation system and soldering path generation method of the present invention can also generate soldering paths based on soldering procedure specifications and standard soldering templates to achieve safe and reliable soldering operations. Although the present invention has been disclosed as above by the embodiments, it is not intended to limit the present invention. Any person with ordinary knowledge in the relevant technical field can make some changes and modifications within the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the scope of the attached patent application.
S310~S340:步驟S310~S340: Steps
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW111145842A TWI849599B (en) | 2022-11-30 | 2022-11-30 | Welding path generating system and welding path generating method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW111145842A TWI849599B (en) | 2022-11-30 | 2022-11-30 | Welding path generating system and welding path generating method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW202424669A TW202424669A (en) | 2024-06-16 |
| TWI849599B true TWI849599B (en) | 2024-07-21 |
Family
ID=92539808
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW111145842A TWI849599B (en) | 2022-11-30 | 2022-11-30 | Welding path generating system and welding path generating method |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI849599B (en) |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW535473B (en) * | 2001-12-17 | 2003-06-01 | Agilent Technologies Inc | System and method for identifying solder joint defects |
| WO2005091090A2 (en) * | 2004-03-16 | 2005-09-29 | Abb Ab | Industrial robot system, method and computer program |
| TWI272395B (en) * | 2001-12-14 | 2007-02-01 | Agilent Technologies Inc | System and method for confirming electrical connection defects |
| WO2017019860A1 (en) * | 2015-07-29 | 2017-02-02 | Illinois Tool Works Inc. | System and method to facilitate welding software as a service |
| WO2019081661A1 (en) * | 2017-10-27 | 2019-05-02 | Creaholic S.A. | Method for operating a computer-based inventory of hardware modules of a robotic system |
| EP3481577B1 (en) * | 2016-07-08 | 2021-05-26 | Norsk Titanium AS | Method of providing a metal wire to a welding torch |
| TW202228000A (en) * | 2021-01-05 | 2022-07-16 | 新代科技股份有限公司 | Augmented reality processing auxiliary system and the usage method thereof |
| TW202232262A (en) * | 2021-02-05 | 2022-08-16 | 德制國際有限公司 | Automatic processing method and automatic processing system |
-
2022
- 2022-11-30 TW TW111145842A patent/TWI849599B/en active
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI272395B (en) * | 2001-12-14 | 2007-02-01 | Agilent Technologies Inc | System and method for confirming electrical connection defects |
| TW535473B (en) * | 2001-12-17 | 2003-06-01 | Agilent Technologies Inc | System and method for identifying solder joint defects |
| WO2005091090A2 (en) * | 2004-03-16 | 2005-09-29 | Abb Ab | Industrial robot system, method and computer program |
| WO2017019860A1 (en) * | 2015-07-29 | 2017-02-02 | Illinois Tool Works Inc. | System and method to facilitate welding software as a service |
| EP3481577B1 (en) * | 2016-07-08 | 2021-05-26 | Norsk Titanium AS | Method of providing a metal wire to a welding torch |
| WO2019081661A1 (en) * | 2017-10-27 | 2019-05-02 | Creaholic S.A. | Method for operating a computer-based inventory of hardware modules of a robotic system |
| TW202228000A (en) * | 2021-01-05 | 2022-07-16 | 新代科技股份有限公司 | Augmented reality processing auxiliary system and the usage method thereof |
| TW202232262A (en) * | 2021-02-05 | 2022-08-16 | 德制國際有限公司 | Automatic processing method and automatic processing system |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202424669A (en) | 2024-06-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11759958B2 (en) | Autonomous welding robots | |
| JP7082715B2 (en) | Detection of machining errors in laser machining systems using deep convolutional neural networks | |
| CN109175608B (en) | On-line measurement method of welding seam feature point position and automatic measurement system of welding seam track | |
| Diao et al. | A passive imaging system for geometry measurement for the plasma arc welding process | |
| JP2022509143A (en) | Monitoring of laser machining process using deep convolutional neural network | |
| CN112139683B (en) | Evaluation device, evaluation method, evaluation system, and recording medium | |
| CN107813310A (en) | One kind is based on the more gesture robot control methods of binocular vision | |
| US20240181648A1 (en) | Welding path generating system and welding path generating method | |
| JP2019089157A (en) | Holding method, holding system, and program | |
| CN113119122A (en) | Hybrid off-line programming method of robot welding system | |
| JP7161857B2 (en) | Information processing device, information processing method, and program | |
| CN110458828A (en) | A method and device for laser welding defect recognition based on multi-modal fusion network | |
| US20250128410A1 (en) | System and method for teaching a robot program | |
| US20240157568A1 (en) | System for welding at least a portion of a piece and related methods | |
| TWI849599B (en) | Welding path generating system and welding path generating method | |
| Al-Hussaini et al. | Seeking human help to manage plan failure risks in semi-autonomous mobile manipulation | |
| CN119035909B (en) | Flexible control method and system for automobile welding process | |
| JP7744262B2 (en) | Defect detection device and additive manufacturing system | |
| CN115707549A (en) | System, method and apparatus for arc welding process and quality monitoring | |
| JP2013148375A (en) | Calibration method, calibrator and program for use in three-dimensional shape measuring apparatus, and three-dimensional shape measuring apparatus | |
| Birk et al. | Autonomous rescue operations on the iub rugbot | |
| CN118559315B (en) | Multilayer welding process system suitable for cooperative robot | |
| CN119426787A (en) | Laser processing method and system based on Bezier curve surface mapping | |
| Ng et al. | Intuitive robot tool path teaching using laser and camera in augmented reality environment | |
| Dragun et al. | Assembly Automation Using an Industrial Robot |