[go: up one dir, main page]

TWI843662B - A similar user extension system, method and non-volatile computer-readable storage medium thereof based on target user group - Google Patents

A similar user extension system, method and non-volatile computer-readable storage medium thereof based on target user group Download PDF

Info

Publication number
TWI843662B
TWI843662B TW112138567A TW112138567A TWI843662B TW I843662 B TWI843662 B TW I843662B TW 112138567 A TW112138567 A TW 112138567A TW 112138567 A TW112138567 A TW 112138567A TW I843662 B TWI843662 B TW I843662B
Authority
TW
Taiwan
Prior art keywords
target
user
subgroups
preference
similar
Prior art date
Application number
TW112138567A
Other languages
Chinese (zh)
Other versions
TW202516430A (en
Inventor
蔡慶堂
Original Assignee
中華電信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中華電信股份有限公司 filed Critical 中華電信股份有限公司
Priority to TW112138567A priority Critical patent/TWI843662B/en
Application granted granted Critical
Publication of TWI843662B publication Critical patent/TWI843662B/en
Publication of TW202516430A publication Critical patent/TW202516430A/en

Links

Images

Landscapes

  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

The present invention provides a similar user extension system, method and non-volatile computer-readable storage medium thereof based on target user group, including a grouping module and a comparison module, wherein the grouping module uses the graphical representation of the SPO (Subject-Predicate-Object) triplet to transform the target user group into the first knowledge graph to group a plurality of first target subgroups, and then the comparison module uses the graphical representation of the SPO triples to transform the first target subgroups and candidate user groups into a second knowledge graph, so as to group a plurality of second target subgroups. Therefore, the present invention provides the user can promote the products they are interested in according to the preferences of each second target subgroup, and improve the expansion efficiency and scope.

Description

一種基於目標用戶群體之相似用戶擴展系統、方法及其非揮發性電腦可讀儲存媒介 A similar user expansion system based on a target user group, a method and a non-volatile computer-readable storage medium thereof

本發明係關於一種相似用戶擴展技術,尤其係指一種基於目標用戶群體之相似用戶擴展系統、方法及其非揮發性電腦可讀儲存媒介。 The present invention relates to a similar user expansion technology, and more particularly to a similar user expansion system, method and non-volatile computer-readable storage medium based on a target user group.

現有廣告平台上,為了提升品牌影響力,促進商品銷售,會採用類似受眾(Lookalike Audience)的方法,該方法是將有相同消費行為或瀏覽行為的既有用戶歸類成一群,並分析出該群用戶的輪廓,再根據此輪廓找出相似的用戶群體來推播廣告,其中,輪廓可以是年齡性別、興趣喜好、行為模式。 In order to enhance brand influence and promote product sales, existing advertising platforms use the Lookalike Audience method, which is to group existing users with the same consumption or browsing behavior into a group, analyze the profile of the group of users, and then find similar user groups based on the profile to push advertisements. The profile can be age, gender, interests, and behavior patterns.

上述方法找出來的相似用戶群體即為目標用戶群體,是行銷活動、廣告推播中所鎖定的對象,也是最有可能購買商品或服務的消費族群,所以找到的目標用戶群體的人數越多,行銷或推播的用戶範圍就越高,成效也會越好。 The similar user groups found by the above method are the target user groups, which are the targets of marketing activities and advertising push, and are also the consumer groups most likely to purchase goods or services. Therefore, the more target user groups found, the wider the user range of marketing or advertising push, and the better the results will be.

然而,現有類似受眾(Lookalike Audience)的方法常會因為分析上的誤差,例如:抽樣誤差、模型誤差等,而導致找出不合適的目標用戶,影響到行銷或推播的成效;或是,例如:用戶輪廓分析出35歲以上的男性有80%會購買高級家電,所以針對1000名35歲以上的男性推播廣告,但因為20%的分析誤差,最後實際有多達200名男性並未購買高級家電,推播成效有限。 However, existing methods such as Lookalike Audience often find inappropriate target users due to analytical errors, such as sampling errors and model errors, which affects the effectiveness of marketing or promotion. For example, user profile analysis shows that 80% of men over 35 will buy high-end home appliances, so ads are pushed to 1,000 men over 35, but due to a 20% analytical error, as many as 200 men actually did not buy high-end home appliances, and the promotion effect is limited.

因此,如何基於既有的目標用戶群體,過濾掉不合適的目標用戶,以更有效地找出更多相似的潛在用戶,藉此擴展目標用戶群體且能提高行銷或推播的成效,已成為本領域技術人員目前的重要課題。 Therefore, how to filter out inappropriate target users based on the existing target user groups, so as to more effectively find more similar potential users, thereby expanding the target user groups and improving the effectiveness of marketing or promotion has become an important topic for technical personnel in this field.

為解決上述問題,本發明提供一種基於目標用戶群體之相似用戶擴展系統,係包括:一分群模組,係蒐集一目標用戶群體中的各個目標用戶之複數喜好項目及其複數喜好程度值,且依據各該目標用戶之複數喜好程度值計算出相對應之綜合喜好程度值,以利用各該目標用戶之複數喜好項目及綜合喜好程度值產生一第一知識圖譜,俾依據該第一知識圖譜區分成複數第一目標子群組;以及一比對模組,係通訊或電性連接該分群模組,以接收該複數第一目標子群組,俾依據該複數第一目標子群組從一非目標用戶群體中篩選出一候選用戶群體,再依據該候選用戶群體中的各個候選用戶之複數喜好程度值計算出相對應之綜合喜好程度值,以利用該複數第一目標子群組及各該候選用戶之複數喜好項目及綜合喜好程度值產生一第二知識圖譜,其中,由該比對模組依據該第二知識圖譜計算出各該 第一目標子群組之群內相似度,以及計算出各該第一目標子群組中之各該目標用戶與各該候選用戶之間的相似度,藉此進行分群以形成經擴展之複數第二目標子群組。 In order to solve the above problems, the present invention provides a similar user expansion system based on a target user group, which includes: a grouping module, which collects multiple preference items and multiple preference values of each target user in a target user group, and calculates the corresponding comprehensive preference value according to the multiple preference values of each target user, so as to generate a first knowledge graph using the multiple preference items and the comprehensive preference values of each target user, so as to be divided into a plurality of first target subgroups according to the first knowledge graph; and a comparison module, which is connected to the grouping module by communication or electrical connection, so as to receive the plurality of first target subgroups, so as to be divided into a plurality of first target subgroups according to the plurality of first target subgroups. A target subgroup selects a candidate user group from a non-target user group, and then calculates the corresponding comprehensive preference value according to the multiple preference values of each candidate user in the candidate user group, so as to generate a second knowledge graph using the multiple first target subgroups and the multiple preference items and comprehensive preference values of each candidate user, wherein the comparison module calculates the intra-group similarity of each first target subgroup according to the second knowledge graph, and calculates the similarity between each target user and each candidate user in each first target subgroup, thereby performing grouping to form a plurality of expanded second target subgroups.

本發明復提供一種基於目標用戶群體之相似用戶擴展方法,係包括:由一分群模組蒐集一目標用戶群體中的各個目標用戶之複數喜好項目及其複數喜好程度值,以依據各該目標用戶之複數喜好程度值計算出相對應之綜合喜好程度值;由該分群模組利用各該目標用戶之複數喜好項目及綜合喜好程度值產生一第一知識圖譜,以依據該第一知識圖譜區分成複數第一目標子群組;由一比對模組依據該複數第一目標子群組從一非目標用戶群體中篩選出為一候選用戶群體,再依據該候選用戶群體中的各個候選用戶之複數喜好程度值計算出相對應之綜合喜好程度值;由該比對模組利用該複數第一目標子群組及各該候選用戶之複數喜好項目及綜合喜好程度值產生一第二知識圖譜;以及由該比對模組依據該第二知識圖譜計算出各該第一目標子群組之群內相似度,及計算出各該第一目標子群組中之各該目標用戶與各該候選用戶之間的相似度,藉此進行分群以形成經擴展之複數第二目標子群組。 The present invention further provides a similar user expansion method based on a target user group, comprising: a grouping module collects a plurality of preference items and a plurality of preference values of each target user in a target user group, and calculates a corresponding comprehensive preference value according to the plurality of preference values of each target user; the grouping module generates a first knowledge graph using the plurality of preference items and the comprehensive preference values of each target user, and divides the target user into a plurality of first target subgroups according to the first knowledge graph; a comparison module selects a plurality of first target subgroups from a non-target user group according to the plurality of first target subgroups; A candidate user group is selected, and then the corresponding comprehensive preference value is calculated according to the multiple preference values of each candidate user in the candidate user group; the comparison module generates a second knowledge graph using the multiple first target subgroups and the multiple preference items and comprehensive preference values of each candidate user; and the comparison module calculates the intra-group similarity of each first target subgroup according to the second knowledge graph, and calculates the similarity between each target user in each first target subgroup and each candidate user, thereby performing grouping to form a plurality of expanded second target subgroups.

前述實施例中,該分群模組將各該目標用戶之複數喜好程度值進行正規化後加總取平均,以得到各該目標用戶之綜合喜好程度值;以及該比對模組將各該候選用戶之複數喜好程度值進行正規化後加總取平均,以得到各該候選用戶之綜合喜好程度值。 In the aforementioned embodiment, the grouping module normalizes the multiple preference values of each target user and then adds them up and averages them to obtain the comprehensive preference value of each target user; and the matching module normalizes the multiple preference values of each candidate user and then adds them up and averages them to obtain the comprehensive preference value of each candidate user.

前述實施例中,該分群模組係依據各該目標用戶之該複數喜好項目及該綜合喜好程度值,以利用一SPO(Subject-Predicate-Object)三 元組的圖學表示法轉為該第一知識圖譜;以及該比對模組依據該複數第一目標子群組及各該候選用戶之複數喜好項目及綜合喜好程度值,以利用該SPO三元組的圖學表示法轉為該第二知識圖譜。 In the aforementioned embodiment, the grouping module converts the plurality of preference items and the comprehensive preference values of each target user into the first knowledge graph using a graphical representation of a SPO (Subject-Predicate-Object) triple; and the matching module converts the plurality of first target subgroups and the plurality of preference items and the comprehensive preference values of each candidate user into the second knowledge graph using a graphical representation of the SPO triple.

前述實施例中,該比對模組依據該非目標用戶群體之複數喜好項目及其複數喜好程度值,以篩選出與該複數第一目標子群組具有相同的該複數喜好項目之複數候選用戶,俾作為該候選用戶群體。 In the aforementioned embodiment, the comparison module selects a plurality of candidate users who have the same plurality of preference items as the plurality of first target subgroups based on the plurality of preference items of the non-target user group and their plurality of preference degree values, so as to serve as the candidate user group.

前述實施例中,該分群模組過濾該複數第一目標子群組中之異常群組。 In the aforementioned embodiment, the grouping module filters the abnormal groups in the plurality of first target subgroups.

前述實施例中,更包括一驗證模組,係通訊或電性連接該比對模組,以接收該第二目標子群組,且產生各該第二目標子群組之目標用戶興趣量表及相似用戶興趣量表,其中,若該複數第二目標子群組中之一者的該目標用戶興趣量表及該相似用戶興趣量表係為相似,則由該驗證模組將該複數第二目標子群組中之一者的該複數相似用戶列入最後擴展的範圍;反之,若為不相似,則由該驗證模組排除該複數第二目標子群組中之一者。 The aforementioned embodiment further includes a verification module, which is in communication or electrical connection with the comparison module to receive the second target subgroup and generate a target user interest scale and a similar user interest scale for each second target subgroup, wherein if the target user interest scale and the similar user interest scale of one of the plurality of second target subgroups are similar, the verification module includes the plurality of similar users of one of the plurality of second target subgroups in the final expanded range; otherwise, if they are not similar, the verification module excludes one of the plurality of second target subgroups.

由上述可知,本發明之基於目標用戶群體之相似用戶擴展系統、方法及其非揮發性電腦可讀儲存媒介,透過分群模組利用SPO三元組的圖學表示法將目標用戶群轉為第一知識圖譜,以分群出複數第一目標子群組,再由比對模組利用SPO三元組的圖學表示法將複數第一目標子群組及候選用戶群體轉為第二知識圖譜,藉此透過相似度計算方法分群出複數第二目標子群組,以供使用者能針對各個第二目標子群組之喜好,而推廣其感興趣之產品,俾提升擴展效率及擴展範圍。 From the above, it can be seen that the similar user expansion system, method and non-volatile computer-readable storage medium based on the target user group of the present invention converts the target user group into a first knowledge graph by using the graphical representation of SPO triples through the clustering module to cluster multiple first target subgroups, and then the matching module converts the multiple first target subgroups and the candidate user group into a second knowledge graph by using the graphical representation of SPO triples, thereby clustering multiple second target subgroups through the similarity calculation method, so that users can promote products of interest to each second target subgroup according to their preferences, so as to improve the expansion efficiency and expansion scope.

1:基於目標用戶群體之相似用戶擴展系統 1: Similar user expansion system based on target user group

11:分群模組 11: Grouping module

12:比對模組 12: Comparison module

13:驗證模組 13: Verification module

S21A至S25A:步驟 S21A to S25A: Steps

S21B至S25B:步驟 S21B to S25B: Steps

S21C至S22C:步驟 S21C to S22C: Steps

S31至S33:步驟 S31 to S33: Steps

圖1係為本發明之基於目標用戶群體之相似用戶擴展系統之架構示意圖。 Figure 1 is a schematic diagram of the architecture of the similar user expansion system based on the target user group of the present invention.

圖2A係為分群方法之流程示意圖。 Figure 2A is a schematic diagram of the clustering method process.

圖2B係為用戶相似度比對方法之流程示意圖。 Figure 2B is a schematic diagram of the process of the user similarity comparison method.

圖2C係為驗證方法之流程示意圖。 Figure 2C is a schematic diagram of the verification method process.

圖3係為本發明之基於目標用戶群體之相似用戶擴展方法之流程示意圖。 Figure 3 is a schematic diagram of the process of the similar user expansion method based on the target user group of the present invention.

圖4A及圖4B係為第一知識圖譜之示意圖。 Figure 4A and Figure 4B are schematic diagrams of the first knowledge spectrum.

圖5係為複數第一目標子群組之示意圖。 Figure 5 is a schematic diagram of multiple first target subgroups.

圖6係為相似度計算之示意圖。 Figure 6 is a schematic diagram of similarity calculation.

圖7A係為目標用戶之興趣量表之示意圖。 Figure 7A is a schematic diagram of the interest scale of the target user.

圖7B-1、圖7B-2及圖7B-3係為複數第二子群組之興趣量表之示意圖。 Figure 7B-1, Figure 7B-2 and Figure 7B-3 are schematic diagrams of interest scales for multiple second subgroups.

以下藉由特定的具體實施例說明本發明之實施方式,熟悉此技藝之人士可由本說明書所揭示之內容輕易地瞭解本發明之其他優點及功效。 The following is a specific and concrete example to illustrate the implementation of the present invention. People familiar with this technology can easily understand other advantages and effects of the present invention from the content disclosed in this manual.

須知,本說明書所附圖式所繪示之結構、比例、大小等,均僅用以配合說明書所揭示之內容,以供熟悉此技藝之人士之瞭解與閱讀,並 非用以限定本發明可實施之限定條件,故不具技術上之實質意義,任何結構之修飾、比例關係之改變或大小之調整,在不影響本發明所能產生之功效及所能達成之目的下,均應仍落在本發明所揭示之技術內容得能涵蓋之範圍內。同時,本說明書中所引用之如「一」、「第一」、「第二」、「上」及「下」等之用語,亦僅為便於敘述之明瞭,而非用以限定本發明可實施之範圍,其相對關係之改變或調整,在無實質變更技術內容下,當視為本發明可實施之範疇。 It should be noted that the structures, proportions, sizes, etc. depicted in the drawings attached to this manual are only used to match the contents disclosed in the manual for people familiar with this technology to understand and read, and are not used to limit the conditions under which the present invention can be implemented. Therefore, they have no substantial technical significance. Any modification of the structure, change of the proportion relationship or adjustment of the size should still fall within the scope of the technical content disclosed by the present invention without affecting the effects and purposes that can be achieved by the present invention. At the same time, the terms such as "one", "first", "second", "upper" and "lower" used in this specification are only used to facilitate the clarity of the description, and are not used to limit the scope of the implementation of the present invention. The changes or adjustments in their relative relationships shall be regarded as the scope of the implementation of the present invention without substantially changing the technical content.

圖1係為本發明之基於目標用戶群體之相似用戶擴展系統之架構示意圖。如圖1所示,該基於目標用戶群體之相似用戶擴展系統1係包括:一分群模組11、一比對模組12及一驗證模組13。 FIG1 is a schematic diagram of the structure of the similar user expansion system based on the target user group of the present invention. As shown in FIG1 , the similar user expansion system 1 based on the target user group includes: a grouping module 11, a comparison module 12 and a verification module 13.

具體而言,該基於目標用戶群體之相似用戶擴展系統1係可建立於相同(或不同)伺服器(如通用型伺服器、檔案型伺服器、儲存單元型伺服器等)及電腦等具有適當演算機制之電子設備中,其中,該基於目標用戶群體之相似用戶擴展系統1中之各個模組(如該分群模組11、該比對模組12及該驗證模組13)均可為軟體、硬體或韌體;若為硬體,則可為具有資料處理與運算能力之處理單元、處理器、電腦或伺服器;若為軟體或韌體,則可包括處理單元、處理器、電腦或伺服器可執行之指令,且可安裝於同一硬體裝置或分布於不同的複數硬體裝置。 Specifically, the similar user expansion system 1 based on the target user group can be established in the same (or different) servers (such as general-purpose servers, file servers, storage unit servers, etc.) and computers and other electronic devices with appropriate computing mechanisms, wherein each module in the similar user expansion system 1 based on the target user group (such as the grouping module 11, the matching module 12 and the verification module 13) can be software, hardware or firmware; if it is hardware, it can be a processing unit, processor, computer or server with data processing and computing capabilities; if it is software or firmware, it can include instructions that can be executed by a processing unit, processor, computer or server, and can be installed on the same hardware device or distributed on different multiple hardware devices.

首先,所述之分群模組11係針對一目標用戶群體進行自動分群。如圖2A所示,其為該分群模組11所執行之分群方法流程,其中,包括以下步驟S21A至S25A: First, the grouping module 11 automatically groups a target user group. As shown in FIG2A , it is a grouping method flow executed by the grouping module 11, which includes the following steps S21A to S25A:

於步驟S21A中,於一指定時段(如一個禮拜、一個月等)中,由該分群模組11蒐集一目標用戶群體中的各個目標用戶之複數喜好項目及其複數喜好程度值。例如:該複數喜好項目係可為影片或影片類型等,而該複數喜好程度值係可為觀看完成度或觀看時數等;該複數喜好項目係可為音樂或音樂類型等,而該複數喜好程度值係可為收聽完成度或收聽時數等;或是,該複數喜好項目係可為產品或產品類型,而該複數喜好程度值係購買人數或購買次數等。是以,本發明可依據需求應用於不同需要擴展用戶之場景中。 In step S21A, the grouping module 11 collects multiple preference items and multiple preference values of each target user in a target user group in a specified time period (such as a week, a month, etc.). For example, the multiple preference items may be videos or video types, etc., and the multiple preference values may be viewing completion or viewing hours, etc.; the multiple preference items may be music or music types, etc., and the multiple preference values may be listening completion or listening hours, etc.; or, the multiple preference items may be products or product types, and the multiple preference values may be the number of purchasers or the number of purchases, etc. Therefore, the present invention can be applied to different scenarios that require the expansion of users according to needs.

於步驟S22A中,由該分群模組11依據該目標用戶群體中的各該目標用戶之複數喜好程度值,以分別形成各該目標用戶之綜合喜好程度值。 In step S22A, the grouping module 11 forms a comprehensive preference value of each target user according to the multiple preference values of each target user in the target user group.

於步驟S23A中,由該分群模組11依據各個目標用戶之該複數喜好項目及該綜合喜好程度值,以利用一SPO(Subject-Predicate-Object)三元組的圖學表示法轉為一第一知識圖譜。 In step S23A, the clustering module 11 converts the multiple preference items and the comprehensive preference value of each target user into a first knowledge graph using a graphical representation of a SPO (Subject-Predicate-Object) triple.

於步驟S24A中,由該分群模組11利用一分群演算法(如Louvain,或其他類似或等效的分群方法或分析技術),以依據該第一知識圖譜進行分群,藉此自動區分成複數第一目標子群組,其中,各該第一目標子群組中之目標用戶彼此興趣相似。 In step S24A, the clustering module 11 uses a clustering algorithm (such as Louvain, or other similar or equivalent clustering methods or analysis techniques) to perform clustering based on the first knowledge graph, thereby automatically distinguishing into a plurality of first target subgroups, wherein the target users in each of the first target subgroups have similar interests.

於步驟S25A中,由該分群模組11過濾該複數第一目標子群組中之異常群組。舉例而言,用戶數太少的群組(如1人1群或小於n人之1群等,且n為正整數)可視為異常群組,並將其過濾之。 In step S25A, the grouping module 11 filters the abnormal groups in the plurality of first target subgroups. For example, a group with too few users (such as one group with one person or one group with less than n people, etc., where n is a positive integer) can be regarded as an abnormal group and filtered.

其次,所述之比對模組12係通訊或電性連接該分群模組11,以接收複數第一目標子群組,俾進行用戶相似度比對。如圖2B所示,其為該比對模組12所執行之相似度比對方法流程,其中,包括以下步驟S21B至S25B: Secondly, the matching module 12 is communicated or electrically connected to the grouping module 11 to receive a plurality of first target subgroups for user similarity matching. As shown in FIG. 2B , it is a similarity matching method flow executed by the matching module 12, which includes the following steps S21B to S25B:

於步驟S21B中,於一指定時段(如一個禮拜、一個月等)中,由該比對模組12蒐集一非目標用戶群體之複數喜好項目及其複數喜好程度值,以從該非目標用戶群體中篩選出與該目標用戶群體(即複數第一目標子群組)具有相同的該複數喜好項目之複數候選用戶,俾作為一候選用戶群體,藉此透過該候選用戶群體的挑選,而控制需進行相似度比對的用戶數量。 In step S21B, the comparison module 12 collects multiple preference items and multiple preference values of a non-target user group in a specified period of time (such as a week, a month, etc.), so as to screen out multiple candidate users with the same multiple preference items as the target user group (i.e., multiple first target subgroups) from the non-target user group as a candidate user group, thereby controlling the number of users to be compared for similarity through the selection of the candidate user group.

於步驟S22B中,由該比對模組12依據該候選用戶群體中的各該候選用戶之複數喜好程度值,以分別形成各該候選用戶之綜合喜好程度值。 In step S22B, the comparison module 12 forms a comprehensive preference value for each candidate user based on the multiple preference values of each candidate user in the candidate user group.

於步驟S23B中,由該比對模組12依據該複數第一目標子群組中之各該目標用戶之該複數喜好項目及該綜合喜好程度值,以及該候選用戶群體中之各該候選用戶之該複數喜好項目及該綜合喜好程度值,以利用該SPO三元組的圖學表示法轉為一第二知識圖譜。 In step S23B, the comparison module 12 converts the plurality of preference items and the comprehensive preference values of each target user in the plurality of first target subgroups, and the plurality of preference items and the comprehensive preference values of each candidate user in the candidate user group into a second knowledge graph using the graphical representation of the SPO triple.

於步驟S24B中,由該比對模組12依據該第二知識圖譜,以利用一相似度演算法(如Jaccard index,或其他類似或等效的相似度計算方法或分析技術)計算出各該第一目標子群組中之各該目標用戶之間的相似度,進而計算出各該第一目標子群組之群內相似度。 In step S24B, the comparison module 12 calculates the similarity between the target users in each of the first target subgroups based on the second knowledge graph using a similarity algorithm (such as Jaccard index, or other similar or equivalent similarity calculation methods or analysis techniques), and then calculates the intra-group similarity of each of the first target subgroups.

在一實施例中,由該比對模組12依據該第二知識圖譜,以計算出各該第一目標子群組中之目標用戶倆倆之間的相似度,再取用各該目標用戶與用戶之間的最高相似度,以進行加總取平均,最後再乘上一超參數α(α

Figure 112138567-A0101-12-0009-23
(0,10)),以作為各該第一目標子群組之群內相似度。是以,各該第一目標子群組皆具會有各自的群內相似度,且透過該超參數α的調校,能調整各該第一目標子群組之群內相似度,進而控制相似用戶的數量。 In one embodiment, the comparison module 12 calculates the similarity between the two target users in each of the first target subgroups based on the second knowledge graph, and then takes the highest similarity between each target user and the user to sum up and average, and finally multiplies it by a hyperparameter α (α
Figure 112138567-A0101-12-0009-23
(0,10)) as the intra-group similarity of each first target subgroup. Therefore, each first target subgroup has its own intra-group similarity, and by adjusting the hyperparameter α, the intra-group similarity of each first target subgroup can be adjusted to control the number of similar users.

於步驟S25B中,由該比對模組12以各該第一目標子群組作為比較基礎,以依據該第二知識圖譜且透過該相似度演算法或計算方法計算出各該第一目標子群組中之各該目標用戶與各該候選用戶之間的相似度,且於該複數候選用戶之一者與該複數目標用戶之一者之間的相似度大於該複數目標用戶之一者所屬之第一目標子群組之群內相似度時,該複數候選用戶之一者係作為該複數目標用戶之一者所屬之第一目標子群組的相似用戶,藉此將各該候選用戶作為相似用戶,而分配至各該第一目標子群組,以形成經擴展之複數第二目標子群組,其中,各該第二目標子群組包含複數目標用戶及複數相似用戶。 In step S25B, the comparison module 12 uses each of the first target subgroups as a comparison basis to calculate the similarity between each of the target users and each of the candidate users in each of the first target subgroups according to the second knowledge graph and through the similarity algorithm or calculation method, and the similarity between one of the plurality of candidate users and one of the plurality of target users is greater than the similarity between one of the plurality of target users. When the intra-group similarity of the first target subgroup to which the candidate belongs is determined, one of the plurality of candidate users is used as a similar user of the first target subgroup to which the candidate user belongs, thereby allocating each of the candidate users as a similar user to each of the first target subgroups to form an expanded plurality of second target subgroups, wherein each of the second target subgroups includes a plurality of target users and a plurality of similar users.

在一實施例中,當該複數候選用戶之一者係同時屬於該複數第一目標子群組的相似用戶時,由該比對模組12將該複數候選用戶之一者歸群於與其相似度值最高的第一目標子群組。 In one embodiment, when one of the plurality of candidate users is a similar user belonging to the plurality of first target subgroups at the same time, the matching module 12 groups the one of the plurality of candidate users into the first target subgroup with the highest similarity value.

在一實施例中,當該複數候選用戶之一者未能分配至該複數第一目標子群組之一者時,由該比對模組12排除該複數候選用戶之一者。 In one embodiment, when one of the plurality of candidate users cannot be assigned to one of the plurality of first target subgroups, the matching module 12 excludes one of the plurality of candidate users.

再者,所述之驗證模組13係通訊或電性連接比對模組12,以接收該第二目標子群組,俾進行興趣量表驗證。如圖2C所示,其為該驗證模組13所執行之驗證方法流程,其中,包括以下步驟S21C至S22C: Furthermore, the verification module 13 is communicated or electrically connected to the comparison module 12 to receive the second target subgroup for interest scale verification. As shown in FIG2C , it is a verification method flow executed by the verification module 13, which includes the following steps S21C to S22C:

於步驟S21C中,由該驗證模組13將各該第二目標子群組分開驗證,以產生各該第二目標子群組之目標用戶興趣量表及相似用戶興趣量表。 In step S21C, the verification module 13 verifies each of the second target subgroups separately to generate a target user interest scale and a similar user interest scale for each of the second target subgroups.

於步驟S22C中,由該驗證模組13驗證各該第二目標子群組之該目標用戶興趣量表及該相似用戶興趣量表之間是否為相似,其中,若該複數第二目標子群組中之一者的該目標用戶興趣量表及該相似用戶興趣量表係為相似,則由該驗證模組13將該複數第二目標子群組中之一者的該複數相似用戶列入最後擴展的範圍;反之,若為不相似,若該複數第二目標子群組中之一者的該目標用戶興趣量表及該相似用戶興趣量表係為不相似,則由該驗證模組13排除該複數第二目標子群組中之一者。 In step S22C, the verification module 13 verifies whether the target user interest scale and the similar user interest scale of each second target subgroup are similar. If the target user interest scale and the similar user interest scale of one of the plurality of second target subgroups are similar, the verification module 13 includes the plurality of similar users of one of the plurality of second target subgroups in the final expanded range; otherwise, if they are not similar, the verification module 13 excludes one of the plurality of second target subgroups.

在一實施例中,該目標用戶興趣量表及該相似用戶興趣量表係可為雷達圖,且各項指標可為該複數喜好項目,而各指標之數值可為複數喜好程度值。具言之,該目標用戶興趣量表及該相似用戶興趣量表係將該複數目標用戶及該相似用戶在指定時段的喜好與喜好程度可視化,以圖表的形式(如雷達圖或其他分析圖表)顯示不同興趣之間的占比。 In one embodiment, the target user interest scale and the similar user interest scale may be radar charts, and each indicator may be the plurality of preference items, and the value of each indicator may be a plurality of preference level values. Specifically, the target user interest scale and the similar user interest scale visualize the preferences and preference levels of the plurality of target users and the similar users in a specified time period, and display the proportions of different interests in the form of a chart (such as a radar chart or other analytical chart).

圖3係為本發明之基於目標用戶群體之相似用戶擴展方法之流程示意圖,如圖3所示,此方法與上述實施例所述之內容大致相同,故相同處不再贅述,其中,此方法包括以下步驟S31至S33: FIG3 is a schematic diagram of the process of the similar user expansion method based on the target user group of the present invention. As shown in FIG3, the content of this method is roughly the same as that of the above-mentioned embodiment, so the same parts are not repeated here. Among them, this method includes the following steps S31 to S33:

於步驟S31中,由一分群模組11針對一目標用戶群體進行自動分群,以得到複數第一目標子群組。 In step S31, a grouping module 11 automatically groups a target user group to obtain a plurality of first target subgroups.

於步驟S32中,由一比對模組12進行用戶相似度比對,以從非目標用戶群體中得到與該複數第一目標子群組類似之複數相似用戶,藉此將各該相似用戶分配至相對應之該複數第一目標子群組,並形成複數第二目標子群組。 In step S32, a comparison module 12 performs user similarity comparison to obtain a plurality of similar users similar to the plurality of first target subgroups from the non-target user group, thereby allocating each of the similar users to the corresponding plurality of first target subgroups to form a plurality of second target subgroups.

於步驟S33中,由一驗證模組13進行興趣量表驗證,以產生各該第二目標子群組之目標用戶興趣量表及相似用戶興趣量表,藉此進行驗證,以排除興趣量表不相似之第二目標子群組。 In step S33, a verification module 13 performs interest scale verification to generate the target user interest scale and similar user interest scale of each second target subgroup, thereby performing verification to exclude the second target subgroup with dissimilar interest scale.

此外,本發明還揭示一種非揮發性或非暫時性電腦可讀儲存媒介,係應用於具有處理器(例如,CPU、GPU等)及/或記憶體的計算裝置或電腦中,且儲存有指令,並可利用此計算裝置或電腦透過處理器及/或記憶體執行此非揮發性或非暫時性電腦可讀儲存媒介,以於執行此非揮發性或非暫時性電腦可讀儲存媒介時執行上述之方法及各步驟。 In addition, the present invention also discloses a non-volatile or non-transitory computer-readable storage medium, which is applied to a computing device or computer having a processor (e.g., CPU, GPU, etc.) and/or memory, and stores instructions, and can be used to execute this non-volatile or non-transitory computer-readable storage medium through the processor and/or memory to execute the above-mentioned method and each step when executing this non-volatile or non-transitory computer-readable storage medium.

下列係為本發明之基於目標用戶群體之相似用戶擴展系統1之舉例說明的具體實施例,且與上述實施例重複處不再贅述。 The following is a specific embodiment of the invention based on the similar user expansion system 1 of the target user group, and the repetitions with the above embodiments will not be repeated.

於本實施例中,係以在影視平台上找出有可能觀看「捍衛戰士:獨行俠」電影的潛在收視用戶(即上述之相似用戶)為例,且指定時段為1個月的收視行為紀錄作為資料基準,以及設定記錄之時間月份為2023/1,且此實施例包含以下三階段: In this embodiment, the potential viewing users (i.e. the similar users mentioned above) who may watch the movie "The End" are found on the video platform, and the viewing behavior records for a specified period of 1 month are used as the data basis, and the time month of the record is set as 2023/1, and this embodiment includes the following three stages:

第一階段為目標用戶群體自動分群: The first stage is to automatically group the target user groups:

以30位有在2023/1觀看過「捍衛戰士:獨行俠」影片之目標用戶作為一目標用戶群體進行說明,其中,複數喜好項目係包含但不限於影片及其影片類型等多項影片相關的資訊,而複數喜好程度值係包含但不限於觀看完成度及觀看時數等多項觀看行為數據。 The target user group is 30 users who have watched the video "Men: Mavericks" in January 2023. The multiple preference items include but are not limited to multiple video-related information such as the video and its video type, and the multiple preference level values include but are not limited to multiple viewing behavior data such as viewing completion and viewing time.

如下表1所示,由一分群模組11蒐集一目標用戶群體之用戶收視行為紀錄,其包含該目標用戶群體中之各個目標用戶之複數喜好項目(即收視影片及影片類型)及其複數喜好程度值(即觀看完成度、觀看時數)。具言之,該表1至少包含目標用戶、月份、收視影片、影片類型、觀看完成度、觀看時數等欄位。 As shown in Table 1 below, a grouping module 11 collects user viewing behavior records of a target user group, which includes multiple preference items (i.e., viewed videos and video types) and multiple preference values (i.e., viewing completion, viewing hours) of each target user in the target user group. Specifically, Table 1 at least includes fields such as target user, month, viewed videos, video types, viewing completion, and viewing hours.

表1:目標用戶之收視行為紀錄

Figure 112138567-A0101-12-0012-1
Table 1: Viewing behavior records of target users
Figure 112138567-A0101-12-0012-1

由該分群模組11依據各該目標用戶之觀看完成度及觀看時數之複數喜好程度值,以分別形成各該目標用戶之綜合喜好程度值。具體而言,不同數據往往會有不同單位、不同的數值範圍,例如觀看完成度是0~100%,觀看時數則是n小時(n≧0),為了讓不同數據之間可以互相比較或聚合,需要將數據進行正規化(Normalization)處理,由該分群模組11透 過正規化會將各該目標用戶之觀看完成度及觀看時數按比例縮放至[0,1]的區間中,且不改變原本的分佈情形,其中,該正規化之方法包含但不限於min-max、Z-score等,最後由該分群模組11將各該目標用戶正規化的觀看完成度及觀看時數(即複數喜好程度值)加總取平均,以得到單一綜合數據

Figure 112138567-A0101-12-0013-25
[0,1],即作為各該目標用戶之綜合喜好程度值。 The grouping module 11 forms a comprehensive preference value for each target user based on the multiple preference values of the viewing completion degree and viewing time of each target user. Specifically, different data often have different units and different value ranges. For example, the viewing completion is 0~100%, and the viewing time is n hours (n≧0). In order to compare or aggregate different data, the data needs to be normalized. The clustering module 11 will scale the viewing completion and viewing time of each target user to the interval [0,1] by normalization without changing the original distribution. The normalization method includes but is not limited to min-max, Z-score, etc. Finally, the clustering module 11 will add up and average the normalized viewing completion and viewing time (i.e., multiple preference values) of each target user to obtain a single comprehensive data.
Figure 112138567-A0101-12-0013-25
[0,1] is the comprehensive preference value of each target user.

舉例而言,以目標用戶A所觀看之影片1為例,由該分群模組11採用min-max進行正規化,其中,min-max=(原始數據-最小值)/(最大值-最小值)。對此,觀看完成度的min-max值=(24-0)/(100-0)=0.24,其中,觀看完成度最大值為100,最小值為0;以及觀看時數的min-max值=(3-0)/(10-0)=0.3,其中,觀看時數最大值是取所有用戶中觀看時數最多的數值為10(假設是用戶C),最小值為0,最後加總取平均得到該目標用戶A之綜合喜好程度值=(0.24+0.3)/2=0.27。藉此,新增該目標用戶A等用戶之綜合喜好程度值,如下表2所示: For example, taking the video 1 watched by the target user A as an example, the grouping module 11 uses min-max for normalization, where min-max=(original data-minimum value)/(maximum value-minimum value). For this, the min-max value of viewing completion=(24-0)/(100-0)=0.24, where the maximum viewing completion is 100 and the minimum is 0; and the min-max value of viewing time=(3-0)/(10-0)=0.3, where the maximum viewing time is 10 (assuming it is user C) with the most viewing time among all users, and the minimum is 0. Finally, the target user A's comprehensive preference value is obtained by adding the average value=(0.24+0.3)/2=0.27. In this way, the comprehensive preference values of the target user A and other users are added, as shown in Table 2 below:

表2:用戶收視行為紀錄(新增綜合喜好程度值)

Figure 112138567-A0101-12-0013-2
Table 2: User viewing behavior records (newly added comprehensive preference value)
Figure 112138567-A0101-12-0013-2

由該分群模組11利用SPO(Subject-Predicate-Object)三元組的圖學表示法,將表2中的各該目標用戶(如目標用戶A,B,C等)及收視影片(如影片1,2,3)分別轉換為Subject及Object,再將綜合喜好程度值及月份轉換為Predicate的關聯形式;以及將收視影片及影片類型分別轉換為Subject及Object,再將影片類型轉換為Predicate的關聯形式,同時存入圖譜資料庫中,其中,該SPO三元組的圖學表示法係指(Subject)-[Predicate]-(Object)的關聯形式表示,為知識圖譜內容的通常存在形式。是以,如圖4A所示,係為該目標用戶A轉換後之第一知識圖譜,而如圖4B所示,係為各該目標用戶轉換後之第一知識圖譜。 The clustering module 11 uses the graphical representation of SPO (Subject-Predicate-Object) triples to convert each target user (such as target users A, B, C, etc.) and viewed videos (such as videos 1, 2, 3) in Table 2 into Subject and Object respectively, and then convert the comprehensive preference value and month into the associated form of Predicate; and convert the viewed videos and video types into Subject and Object respectively, and then convert the video type into the associated form of Predicate, and store them in the graph database at the same time, wherein the graphical representation of the SPO triple refers to the associated form representation of (Subject)-[Predicate]-(Object), which is the usual existence form of knowledge graph content. Therefore, as shown in FIG. 4A, it is the first knowledge graph after the target user A is converted, and as shown in FIG. 4B, it is the first knowledge graph after the target user is converted.

再者,由該分群模組11利用由該分群模組11利用一分群演算法(如Louvain)或分群方法將該第一知識圖譜進行分群,藉此根據該第一知識圖譜上之用戶節點、影片節點、影片類型節點及其之間邊的權重(綜合喜好程度值)自動區分成複數第一目標子群組(如圖5所示)。 Furthermore, the clustering module 11 uses a clustering algorithm (such as Louvain) or a clustering method to cluster the first knowledge graph, thereby automatically distinguishing the user nodes, video nodes, video type nodes and the weights (comprehensive preference values) of the edges on the first knowledge graph into a plurality of first target subgroups (as shown in FIG. 5 ).

最後,由該分群模組11過濾該複數第一目標子群組中之異常群組,如下表3所示: Finally, the grouping module 11 filters the abnormal groups in the plurality of first target subgroups, as shown in Table 3 below:

表3:複數第一目標子群組

Figure 112138567-A0101-12-0014-3
Table 3: Multiple first target subgroups
Figure 112138567-A0101-12-0014-3

是以,由該分群模組11將用戶數太少的群組(1人1群或小於n人之1群等)的用戶G,H視為興趣差異較大的目標用戶,且將用戶G,H作為異常群組而排除,亦即刪除複數第一目標子群組中之群組編號4、5的第一目標子群組。 Therefore, the grouping module 11 regards users G and H in groups with too few users (one group of one person or one group of less than n people, etc.) as target users with relatively large interest differences, and excludes users G and H as abnormal groups, that is, deletes the first target subgroups with group numbers 4 and 5 in the plurality of first target subgroups.

第二階段為用戶相似度比對: The second stage is user similarity comparison:

由一比對模組12從一非目標用戶群體中找出與該目標用戶群體在2023/1有觀看同一部影片或同一種類型影片的1000名用戶,即相同具有複數喜好項目之用戶,以作為候選用戶群,其中,該候選用戶群中之候選用戶之數量可考量相似度比對的執行效能進行調整。 A comparison module 12 finds 1,000 users from a non-target user group who watched the same video or the same type of video as the target user group in 2023/1, i.e., users with multiple preferences, as candidate user groups. The number of candidate users in the candidate user group can be adjusted considering the performance of similarity comparison.

藉此,由該比對模組12取得該候選用戶群體之用戶收視行為紀錄,其包含該候選用戶群體中之各個候選用戶之複數喜好項目(即收視影片及影片類型)及其複數喜好程度值(即觀看完成度、觀看時數)。再者,該比對模組12執行如同該分群模組11所採用正規化之方式,同樣地依據該複數第一目標子群組中之各該目標用戶之該複數喜好項目及該綜合喜好程度值,以及該候選用戶群體中之各該候選用戶之該複數喜好項目及該綜合喜好程度值,以利用該SPO三元組的圖學表示法轉為一第二知識圖譜(圖中未示)。 Thus, the comparison module 12 obtains the user viewing behavior record of the candidate user group, which includes the multiple preference items (i.e., viewing videos and video types) and multiple preference values (i.e., viewing completion, viewing hours) of each candidate user in the candidate user group. Furthermore, the comparison module 12 is executed in the same regularized manner as the grouping module 11, and similarly, based on the multiple preference items and the comprehensive preference values of each target user in the multiple first target subgroups, and the multiple preference items and the comprehensive preference values of each candidate user in the candidate user group, the SPO triplet is used to convert the multiple preference items and the comprehensive preference values into a second knowledge graph (not shown in the figure).

由該比對模組12依據該第二知識圖譜,以利用一相似度演算法(如Jaccard index)或相似度計算方法計算出各該第一目標子群組中之各該目標用戶之間的相似度,進而計算出各該第一目標子群組之群內相似度。 The comparison module 12 calculates the similarity between the target users in each of the first target subgroups based on the second knowledge graph using a similarity algorithm (such as Jaccard index) or a similarity calculation method, and further calculates the intra-group similarity of each of the first target subgroups.

具體而言,如圖6所示,根據該第二知識圖譜上兩個用戶節點相鄰的影片、影片類型及其權重(即綜合喜好程度值),以計算出該第二知 識圖譜所有倆倆用戶之間的相似度,例如,目標用戶A與目標用戶B之相似度之計算方式,如下所示: Specifically, as shown in FIG6 , based on the videos, video types and weights (i.e., comprehensive preference values) of two user nodes adjacent to each other on the second knowledge graph, the similarity between all two users on the second knowledge graph is calculated. For example, the similarity between target user A and target user B is calculated as follows:

Figure 112138567-A0101-12-0016-5
Figure 112138567-A0101-12-0016-5

由該比對模組12依據該第二知識圖譜,以計算出各該第一目標子群組中之目標用戶倆倆之間的相似度,再取用各該目標用戶與用戶之間的最高相似度,以進行加總取平均,最後再乘上一超參數α=0.95(α

Figure 112138567-A0101-12-0016-26
(0,10)),以作為各該第一目標子群組之群內相似度。是以,各該第一目標子群組皆具會有各自的群內相似度,如下表4所示: The comparison module 12 calculates the similarity between the two target users in each of the first target subgroups according to the second knowledge graph, and then takes the highest similarity between each target user and the user to sum up and average, and finally multiplies it by a hyperparameter α=0.95 (α
Figure 112138567-A0101-12-0016-26
(0,10)) as the intra-group similarity of each first target subgroup. Therefore, each first target subgroup has its own intra-group similarity, as shown in Table 4 below:

表4:各個第一目標子群組之群內相似度

Figure 112138567-A0101-12-0016-4
Table 4: Intra-group similarity of each first target subgroup
Figure 112138567-A0101-12-0016-4

由該比對模組12計算出各該第一目標子群組中之各該目標用戶與各該候選用戶之間的相似度,且若該複數候選用戶之一者與該複數目標用戶之一者之間的相似度大於該複數目標用戶之一者所屬之第一目標子群組之群內相似度,則該複數候選用戶之一者係作為該複數目標用戶之一者所屬之第一目標子群組的相似用戶。再者,當該複數候選用戶之一者係同時屬於該複數第一目標子群組的相似用戶時,由該比對模組12將該複 數候選用戶之一者歸群於與其相似度值最高的第一目標子群組,如下表5所示: The matching module 12 calculates the similarity between each target user and each candidate user in each first target subgroup, and if the similarity between one of the plurality of candidate users and one of the plurality of target users is greater than the intra-group similarity of the first target subgroup to which the one of the plurality of target users belongs, then the one of the plurality of candidate users is a similar user of the first target subgroup to which the one of the plurality of target users belongs. Furthermore, when one of the plurality of candidate users is a similar user belonging to the plurality of first target subgroups at the same time, the matching module 12 groups the one of the plurality of candidate users into the first target subgroup with the highest similarity value, as shown in Table 5 below:

表5:候選用戶之歸群結果

Figure 112138567-A0101-12-0017-6
Table 5: Clustering results of candidate users
Figure 112138567-A0101-12-0017-6

是以,由該比對模組12將該候選用戶I,J作為相似用戶,而分配至各該第一目標子群組2,3,以形成複數第二目標子群組。 Therefore, the matching module 12 assigns the candidate users I, J as similar users to each of the first target subgroups 2, 3 to form a plurality of second target subgroups.

再者,由該比對模組12透過超參數α的調校,以調整各該第二目標子群組之群內相似度,進而控制相似用戶的數量,各該第二目標子群組之相似用戶統計結果,如下表6所示: Furthermore, the matching module 12 adjusts the intra-group similarity of each second target subgroup through the adjustment of the hyperparameter α, thereby controlling the number of similar users. The statistical results of similar users of each second target subgroup are shown in Table 6 below:

表6:各該第二目標子群組之相似用戶統計結果

Figure 112138567-A0101-12-0017-8
Table 6: Statistics of similar users of each second target subgroup
Figure 112138567-A0101-12-0017-8

第三階段為興趣量表驗證: The third stage is the validation of the interest scale:

由該驗證模組13將各該第二目標子群組1,2,3分開驗證,以產生各該第二目標子群組之目標用戶興趣量表及相似用戶興趣量表。具體而言,興趣量表是將用戶群在指定時段的喜好項目及喜好程度值可視化,以圖表的形式(雷達圖或其他分析圖表)顯示不同興趣之間的占比。 The verification module 13 verifies each of the second target subgroups 1, 2, and 3 separately to generate a target user interest scale and a similar user interest scale for each of the second target subgroups. Specifically, the interest scale visualizes the user group's favorite items and preference levels during a specified period of time, and displays the proportions of different interests in the form of a chart (radar chart or other analysis chart).

是以,如圖7A所示,由該驗證模組13根據該第二子群組1中之目標用戶群在2023/1的收視行為紀錄,計算出該群組在不同影片類型之間的觀看比例,並將其觀看比例可視化成興趣量表,其中,該觀看比例可由影片之觀看完成度、觀看時數或其結合所得到之,於此不限定該觀看比例之計算方式。 Therefore, as shown in FIG. 7A , the verification module 13 calculates the viewing ratio of the target user group in the second subgroup 1 between different video types based on the viewing behavior record in 2023/1, and visualizes the viewing ratio into an interest scale, wherein the viewing ratio can be obtained by the viewing completion degree, viewing hours or a combination thereof of the video, and the calculation method of the viewing ratio is not limited here.

據此,如圖7B-1、圖7B-2及圖7B-3所示,由該驗證模組13分別依據該第二子群組1,2,3中之目標用戶群及相似用戶群,以產生相對應之目標用戶興趣量表(雷達圖)及相似用戶興趣量表(雷達圖),再由該驗證模組13驗證各該第二目標子群組1,2,3之該目標用戶興趣量表及該相似用戶興趣量表之間是否為相似。對此,由圖7B-1、圖7B-2及圖7B-3可知,該第二子群組1,3係為係為相似之群組,而該第二子群組2係為不相似之群組,故可選擇將該第二子群組2排除,且後續可分別針對該第二子群組1,3進行客製化的影片推薦。 Accordingly, as shown in FIG. 7B-1, FIG. 7B-2 and FIG. 7B-3, the verification module 13 generates corresponding target user interest scales (radar graphs) and similar user interest scales (radar graphs) according to the target user groups and similar user groups in the second subgroups 1, 2, and 3, and then the verification module 13 verifies whether the target user interest scales and the similar user interest scales of each of the second target subgroups 1, 2, and 3 are similar. In this regard, it can be seen from FIG. 7B-1, FIG. 7B-2 and FIG. 7B-3 that the second subgroups 1 and 3 are similar groups, and the second subgroup 2 is a dissimilar group, so the second subgroup 2 can be excluded, and customized video recommendations can be made for the second subgroups 1 and 3 respectively in the subsequent.

綜上所述,本發明之基於目標用戶群體之相似用戶擴展系統、方法及其非揮發性電腦可讀儲存媒介,係藉由分群模組利用SPO(Subject-Predicate-Object)三元組的圖學表示法將目標用戶群轉為第一知識圖譜,以分群出複數第一目標子群組,再由比對模組利用SPO三元組的圖學表示 法將複數第一目標子群組及候選用戶群體轉為第二知識圖譜,藉此透過相似度計算方法分群出複數第二目標子群組,以供使用者能針對各個第二目標子群組之喜好,而推廣其感興趣之產品,俾提升擴展效率及擴展範圍。 In summary, the similar user expansion system, method and non-volatile computer-readable storage medium based on the target user group of the present invention uses the SPO (Subject-Predicate-Object) triples graphical representation method to convert the target user group into a first knowledge graph to group multiple first target subgroups, and then uses the SPO triples graphical representation method to convert the multiple first target subgroups and candidate user groups into a second knowledge graph, thereby grouping multiple second target subgroups through a similarity calculation method, so that users can promote products of interest to each second target subgroup according to their preferences, so as to improve the expansion efficiency and expansion scope.

再者,本發明之基於目標用戶群體之相似用戶擴展系統、方法及其非揮發性電腦可讀儲存媒介至少具有以下技術差異及其功效: Furthermore, the similar user expansion system, method and non-volatile computer-readable storage medium of the present invention based on the target user group have at least the following technical differences and their effects:

一、目標用戶群體自動分群:將目標用戶群體透過分群計算方法進行興趣分群,一方面取代費工且耗時的人工分群,另一方面可以挑選出興趣相似的目標用戶群組,且過濾掉興趣差異較大的目標用戶,藉此透過興趣相似的用戶群組,能更容易挑選出相似用戶,以達到精準擴展之目的。 1. Automatic grouping of target user groups: The target user groups are grouped by interest through grouping calculation methods. On the one hand, it replaces the laborious and time-consuming manual grouping. On the other hand, it can select target user groups with similar interests and filter out target users with large interest differences. Through user groups with similar interests, it is easier to select similar users to achieve the purpose of precise expansion.

二、用戶相似度比對:根據用戶之間的共同喜好與喜好程度,計算出相似度,便於判斷不同用戶之間的興趣是否相似,藉此更有效地將相似用戶歸屬至相對應之群組,以作為擴展之對象。 2. User similarity comparison: Based on the common preferences and degree of preferences among users, similarity is calculated to facilitate the determination of whether the interests of different users are similar, thereby more effectively assigning similar users to corresponding groups as targets for expansion.

三、興趣量表驗證:將用戶群的共同喜好與喜好程度可視化,產生興趣量表,藉此透過可視化之方式能更容易驗證不同用戶群的興趣差異,藉此提升推廣效率。 3. Interest scale verification: Visualize the common preferences and preference levels of user groups to generate an interest scale. This makes it easier to verify the differences in interests of different user groups through visualization, thereby improving promotion efficiency.

上述實施形態僅例示性說明本發明之原理及其功效,而非用於限制本發明。任何熟習此項技藝之人士均可在不違背本發明之精神及範疇下,對上述實施形態進行修飾與改變。因此,本發明之權利保護範圍應如申請專利範圍所列。 The above implementation forms are only illustrative of the principles and effects of the present invention, and are not intended to limit the present invention. Anyone familiar with this technology can modify and change the above implementation forms without violating the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be as listed in the scope of the patent application.

S31至S33:步驟 S31 to S33: Steps

Claims (13)

一種基於目標用戶群體之相似用戶擴展系統,係包括: A similar user expansion system based on a target user group includes: 一分群模組,係蒐集一目標用戶群體中的各個目標用戶之複數喜好項目及其複數喜好程度值,且依據各該目標用戶之複數喜好程度值計算出相對應之綜合喜好程度值,以利用各該目標用戶之複數喜好項目及綜合喜好程度值產生一第一知識圖譜,俾依據該第一知識圖譜區分成複數第一目標子群組;以及 A grouping module collects multiple preference items and multiple preference values of each target user in a target user group, and calculates the corresponding comprehensive preference value based on the multiple preference values of each target user, so as to generate a first knowledge graph using the multiple preference items and comprehensive preference values of each target user, so as to be divided into multiple first target subgroups according to the first knowledge graph; and 一比對模組,係通訊或電性連接該分群模組,以接收該複數第一目標子群組,俾依據該複數第一目標子群組從一非目標用戶群體中篩選出一候選用戶群體,再依據該候選用戶群體中的各個候選用戶之複數喜好程度值計算出相對應之綜合喜好程度值,以利用該複數第一目標子群組及各該候選用戶之複數喜好項目及綜合喜好程度值產生一第二知識圖譜, A comparison module is communicated or electrically connected to the grouping module to receive the plurality of first target subgroups, so as to screen a candidate user group from a non-target user group based on the plurality of first target subgroups, and then calculate the corresponding comprehensive preference value based on the plurality of preference values of each candidate user in the candidate user group, so as to generate a second knowledge graph using the plurality of first target subgroups and the plurality of preference items and comprehensive preference values of each candidate user, 其中,由該比對模組依據該第二知識圖譜計算出各該第一目標子群組之群內相似度,以及計算出各該第一目標子群組中之各該目標用戶與各該候選用戶之間的相似度,藉此進行分群以形成經擴展之複數第二目標子群組。 The comparison module calculates the intra-group similarity of each first target subgroup according to the second knowledge graph, and calculates the similarity between each target user and each candidate user in each first target subgroup, thereby performing grouping to form a plurality of expanded second target subgroups. 如請求項1所述之基於目標用戶群體之相似用戶擴展系統,其中,該分群模組將各該目標用戶之複數喜好程度值進行正規化後加總取平均,以得到各該目標用戶之綜合喜好程度值;以及該比對模組將各該候選用戶之複數喜好程度值進行正規化後加總取平均,以得到各該候選用戶之綜合喜好程度值。 As described in claim 1, the similar user expansion system based on the target user group, wherein the grouping module normalizes the multiple preference values of each target user and then adds them up and averages them to obtain the comprehensive preference value of each target user; and the matching module normalizes the multiple preference values of each candidate user and then adds them up and averages them to obtain the comprehensive preference value of each candidate user. 如請求項1所述之基於目標用戶群體之相似用戶擴展系統,其中,該分群模組係依據各該目標用戶之該複數喜好項目及該綜合喜好程度值,以利用一SPO(Subject-Predicate-Object)三元組的圖學表示法轉為該第一知識圖譜;以及該比對模組依據該複數第一目標子群組及各該候選用戶之複數喜好項目及綜合喜好程度值,以利用該SPO三元組的圖學表示法轉為該第二知識圖譜。 The similar user expansion system based on the target user group as described in claim 1, wherein the grouping module converts the plurality of preference items and the comprehensive preference value of each target user into the first knowledge graph using a graphical representation of a SPO (Subject-Predicate-Object) triple; and the matching module converts the plurality of first target subgroups and the plurality of preference items and the comprehensive preference value of each candidate user into the second knowledge graph using a graphical representation of the SPO triple. 如請求項1所述之基於目標用戶群體之相似用戶擴展系統,其中,該比對模組依據該非目標用戶群體之複數喜好項目及其複數喜好程度值,以篩選出與該複數第一目標子群組具有相同的該複數喜好項目之複數候選用戶,俾作為該候選用戶群體。 As described in claim 1, the similar user expansion system based on the target user group, wherein the comparison module selects a plurality of candidate users having the same plurality of preference items as the plurality of first target subgroups based on the plurality of preference items of the non-target user group and their plurality of preference degree values, so as to serve as the candidate user group. 如請求項1所述之基於目標用戶群體之相似用戶擴展系統,其中,該分群模組過濾該複數第一目標子群組中之異常群組。 A similar user expansion system based on a target user group as described in claim 1, wherein the grouping module filters abnormal groups in the plurality of first target subgroups. 如請求項1所述之基於目標用戶群體之相似用戶擴展系統,更包括一驗證模組,係通訊或電性連接該比對模組,以接收該第二目標子群組,且產生各該第二目標子群組之目標用戶興趣量表及相似用戶興趣量表,其中,若該複數第二目標子群組中之一者的該目標用戶興趣量表及該相似用戶興趣量表係為相似,則由該驗證模組將該複數第二目標子群組中之一者的該複數相似用戶列入最後擴展的範圍,而若為不相似,則由該驗證模組排除該複數第二目標子群組中之一者。 The similar user expansion system based on the target user group as described in claim 1 further includes a verification module, which is communicatively or electrically connected to the comparison module to receive the second target subgroup and generate a target user interest scale and a similar user interest scale for each second target subgroup, wherein if the target user interest scale and the similar user interest scale of one of the plurality of second target subgroups are similar, the verification module includes the plurality of similar users of one of the plurality of second target subgroups in the final expansion range, and if they are not similar, the verification module excludes one of the plurality of second target subgroups. 一種基於目標用戶群體之相似用戶擴展方法,係包括: A similar user expansion method based on a target user group includes: 由一分群模組蒐集一目標用戶群體中的各個目標用戶之複數喜好項目及其複數喜好程度值,以依據各該目標用戶之複數喜好程度值計算出相對應之綜合喜好程度值; A grouping module collects multiple preference items and multiple preference values of each target user in a target user group, and calculates the corresponding comprehensive preference value based on the multiple preference values of each target user; 由該分群模組利用各該目標用戶之複數喜好項目及綜合喜好程度值產生一第一知識圖譜,以依據該第一知識圖譜區分成複數第一目標子群組; The grouping module generates a first knowledge graph using the target user's multiple preference items and comprehensive preference values, and divides the target user into multiple first target subgroups according to the first knowledge graph; 由一比對模組依據該複數第一目標子群組從一非目標用戶群體中篩選出為一候選用戶群體,再依據該候選用戶群體中的各個候選用戶之複數喜好程度值計算出相對應之綜合喜好程度值; A comparison module selects a candidate user group from a non-target user group based on the plurality of first target subgroups, and then calculates the corresponding comprehensive preference value based on the plurality of preference values of each candidate user in the candidate user group; 由該比對模組利用該複數第一目標子群組及各該候選用戶之複數喜好項目及綜合喜好程度值產生一第二知識圖譜;以及 The comparison module generates a second knowledge graph using the plurality of first target subgroups and the plurality of preference items and comprehensive preference values of each candidate user; and 由該比對模組依據該第二知識圖譜計算出各該第一目標子群組之群內相似度,及計算出各該第一目標子群組中之各該目標用戶與各該候選用戶之間的相似度,藉此進行分群以形成經擴展之複數第二目標子群組。 The comparison module calculates the intra-group similarity of each of the first target subgroups based on the second knowledge graph, and calculates the similarity between each of the target users and each of the candidate users in each of the first target subgroups, thereby performing grouping to form a plurality of expanded second target subgroups. 如請求項7所述之基於目標用戶群體之相似用戶擴展方法,更包括由該分群模組將各該目標用戶之複數喜好程度值進行正規化後加總取平均,以得到各該目標用戶之綜合喜好程度值;以及由該比對模組將各該候選用戶之複數喜好程度值進行正規化後加總取平均,以得到各該候選用戶之綜合喜好程度值。 The similar user expansion method based on the target user group as described in claim 7 further includes the grouping module normalizing the multiple preference values of each target user and summing up and averaging them to obtain the comprehensive preference value of each target user; and the matching module normalizing the multiple preference values of each candidate user and summing up and averaging them to obtain the comprehensive preference value of each candidate user. 如請求項7所述之基於目標用戶群體之相似用戶擴展方法,更包括由該分群模組係依據各該目標用戶之該複數喜好項目及該綜合喜好程度值,以利用一SPO三元組的圖學表示法轉為該第一知識圖譜;以及由該比對模組依據該複數第一目標子群組及各該候選用戶之複數喜好項目及 綜合喜好程度值,以利用該SPO三元組的圖學表示法轉為該第二知識圖譜。 The similar user expansion method based on the target user group as described in claim 7 further includes the grouping module converting the plurality of preference items and the comprehensive preference values of each target user into the first knowledge graph using a graphical representation of an SPO triple; and the matching module converting the plurality of first target subgroups and the plurality of preference items and the comprehensive preference values of each candidate user into the second knowledge graph using a graphical representation of the SPO triple. 如請求項7所述之基於目標用戶群體之相似用戶擴展方法,更包括由該比對模組依據該非目標用戶群體之複數喜好項目及其複數喜好程度值,以篩選出與該複數第一目標子群組具有相同的該複數喜好項目之複數候選用戶,俾作為該候選用戶群體。 The similar user expansion method based on the target user group as described in claim 7 further includes the comparison module screening out a plurality of candidate users having the same plurality of preference items as the plurality of first target subgroups based on the plurality of preference items and the plurality of preference degree values of the non-target user group, so as to serve as the candidate user group. 如請求項7所述之基於目標用戶群體之相似用戶擴展方法,更包括由該分群模組過濾該複數第一目標子群組中之異常群組。 The similar user expansion method based on the target user group as described in claim 7 further includes filtering the abnormal groups in the plurality of first target subgroups by the grouping module. 如請求項7所述之基於目標用戶群體之相似用戶擴展方法,更包括由一驗證模組產生各該第二目標子群組之目標用戶興趣量表及相似用戶興趣量表,其中,若該複數第二目標子群組中之一者的該目標用戶興趣量表及該相似用戶興趣量表係為相似,則由該驗證模組將該複數第二目標子群組中之一者的該複數相似用戶列入最後擴展的範圍,而若為不相似,則由該驗證模組排除該複數第二目標子群組中之一者。 The similar user expansion method based on the target user group as described in claim 7 further includes generating a target user interest scale and a similar user interest scale of each second target subgroup by a verification module, wherein if the target user interest scale and the similar user interest scale of one of the plurality of second target subgroups are similar, the verification module includes the plurality of similar users of one of the plurality of second target subgroups in the final expansion range, and if they are not similar, the verification module excludes one of the plurality of second target subgroups. 一種非揮發性電腦可讀儲存媒介,應用於計算裝置或電腦中,係儲存有指令,以執行如請求項7至12之任一者所述之基於目標用戶群體之相似用戶擴展方法。 A non-volatile computer-readable storage medium, used in a computing device or a computer, stores instructions for executing a similar user expansion method based on a target user group as described in any one of claims 7 to 12.
TW112138567A 2023-10-06 2023-10-06 A similar user extension system, method and non-volatile computer-readable storage medium thereof based on target user group TWI843662B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112138567A TWI843662B (en) 2023-10-06 2023-10-06 A similar user extension system, method and non-volatile computer-readable storage medium thereof based on target user group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112138567A TWI843662B (en) 2023-10-06 2023-10-06 A similar user extension system, method and non-volatile computer-readable storage medium thereof based on target user group

Publications (2)

Publication Number Publication Date
TWI843662B true TWI843662B (en) 2024-05-21
TW202516430A TW202516430A (en) 2025-04-16

Family

ID=92077225

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112138567A TWI843662B (en) 2023-10-06 2023-10-06 A similar user extension system, method and non-volatile computer-readable storage medium thereof based on target user group

Country Status (1)

Country Link
TW (1) TWI843662B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI518614B (en) * 2011-08-16 2016-01-21 Alibaba Group Holding Ltd Method and Device for E - commerce Information Based on User Behavior
US9349099B2 (en) * 2007-11-02 2016-05-24 Ebay Inc. Inferring user preferences from an internet based social interactive construct
CN112950321A (en) * 2021-03-10 2021-06-11 北京汇钧科技有限公司 Article recommendation method and device
CN115168744A (en) * 2022-08-09 2022-10-11 舟山广播电视总台 Radio and television technology knowledge recommendation method based on user portrait and knowledge graph

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9349099B2 (en) * 2007-11-02 2016-05-24 Ebay Inc. Inferring user preferences from an internet based social interactive construct
TWI518614B (en) * 2011-08-16 2016-01-21 Alibaba Group Holding Ltd Method and Device for E - commerce Information Based on User Behavior
CN112950321A (en) * 2021-03-10 2021-06-11 北京汇钧科技有限公司 Article recommendation method and device
CN115168744A (en) * 2022-08-09 2022-10-11 舟山广播电视总台 Radio and television technology knowledge recommendation method based on user portrait and knowledge graph

Also Published As

Publication number Publication date
TW202516430A (en) 2025-04-16

Similar Documents

Publication Publication Date Title
CN102880688B (en) A kind of method for webpage is estimated, device and equipment
CN105531691B (en) Method and apparatus for identifying privacy-relevant correlations between data values
US20170140404A1 (en) Methods and apparatus to analyze and adjust demographic information
US20140278976A1 (en) Matching social media user to marketing campaign
WO2012024316A4 (en) Unified data management platform
CN106384254A (en) Advertisement display method and device
CN107526810B (en) Method and device for establishing click rate estimation model and display method and device
CN102893300A (en) Methods and apparatus for integrating volumetric sales data, media consumption information, and geographic -demographic data to target advertisements
CN114747227A (en) Method, system, and apparatus for estimating census-level audience size and total impression duration across demographic groups
US20160088332A1 (en) Advertisement selection based on demographic information inferred from media item preferences
KR102111491B1 (en) System and Method for Estimating the Indirect Advertising Value of Independent Media Video Channel
US20110055004A1 (en) Method and system for selecting and optimizing bid recommendation algorithms
US20110231248A1 (en) Impression-trend techniques for providing a display advertising supply forecast
CN112948670B (en) Construction method of platform transaction recommendation model based on user behavior preference
Zhong et al. Stock constrained recommendation in tmall
US20140129321A1 (en) Combination of Social Networking Data with Other Data Sets for Estimation of Viewership Statistics
CN104185041B (en) The automatic generation method and system of video interactive advertisement
WO2018201666A1 (en) Advertisement generating method, computer-readable storage medium and system
US20240428282A1 (en) Self-learning valuation
US8095482B2 (en) System and method to learn and deploy an optimal user experience in an online system
JP2017201535A (en) Determination device, learning device, determination method, and determination program
WO2014160730A1 (en) Obtaining metrics for online advertising using multiple sources of user data
TWI843662B (en) A similar user extension system, method and non-volatile computer-readable storage medium thereof based on target user group
US20090177522A1 (en) Contact stream optimization
CN114969550A (en) Service recommendation method and device, computer equipment and storage medium