[go: up one dir, main page]

TWI722041B - 用於晶圓逐點分析及呈現的方法、系統及非暫時性機器可讀取存儲媒體 - Google Patents

用於晶圓逐點分析及呈現的方法、系統及非暫時性機器可讀取存儲媒體 Download PDF

Info

Publication number
TWI722041B
TWI722041B TW105136200A TW105136200A TWI722041B TW I722041 B TWI722041 B TW I722041B TW 105136200 A TW105136200 A TW 105136200A TW 105136200 A TW105136200 A TW 105136200A TW I722041 B TWI722041 B TW I722041B
Authority
TW
Taiwan
Prior art keywords
values
recipe
sensitivity
parameters
wafer
Prior art date
Application number
TW105136200A
Other languages
English (en)
Other versions
TW201727520A (zh
Inventor
德莫特 坎特維爾
沙希延德拉 甘塔薩拉
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW201727520A publication Critical patent/TW201727520A/zh
Application granted granted Critical
Publication of TWI722041B publication Critical patent/TWI722041B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/398Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

一種用於進行晶圓逐點分析的方法,包括下步驟:接收一第一程序配方的第一配方參數、一第二程序配方的第二配方參數、使用該第一程序配方來處理之一第一晶圓上之複數個位置的第一複數個量測及使用該第二程序配方來處理之一第二晶圓上之該複數個位置的第二複數個量測。使用該複數個配方參數的該等第一及第二值及該第一及第二複數個量測來運算複數個敏感度值,該複數個敏感度值中的各者相對應於該複數個位置中的一者且表示該複數個配方參數中的一者的一敏感度。接著提供一晶圓的一圖形表示,該圖形表示顯示該複數個位置之該第一複數個敏感度值的至少一子集合。

Description

用於晶圓逐點分析及呈現的方法、系統及非暫時性機器可 讀取存儲媒體
本發明的實施例大體而言係關於擴充現有的晶圓分析以執行晶圓逐點實驗設計(DOE)分析。
越來越高之個人電腦處理速度的持續需求需要越來越小的晶圓上特徵。更小特徵的需求產生了光學平版印刷術系統及相關聯之晶圓度量衡學上的更大需求。隨著特徵指數地變得越來越小,晶圓各處的幾何均勻性變得越來越有用。
敏感度分析是用以決定不同的獨立變數值將如何在給定的條件集合(腔室參數)下影響特定依變數(例如晶圓薄膜厚度)的技術。晶圓上的敏感度分析有益於決定不同的晶圓配方參數如何影響晶圓薄膜厚度,舉例而言。
通常而言,是以跨整個晶圓的單一、平均的敏感度的意義來檢視及分析敏感度分析輸出。更複雜的方法 提供跨晶圓的徑向敏感度值,其中是跨晶圓針對若干徑向截距決定敏感度值。
為了提供本揭示案之某些態樣的基本理解,下文為本揭示案的簡化概要。此概要並非本揭示案的廣泛綜述。不欲識別本揭示案之關鍵或重要的構件,亦不欲敘述本揭示案之特定實施方式的任何範圍或請求項的任何範圍。其唯一的目的是以簡化的形式呈現本揭示案的某些概念,如同之後呈現之更詳細描述的前奏。
本發明的實施例提供供晶圓逐點分析來分析實驗設計(DOE)資料的改良方法、系統及軟體。
在一個實施例中,一晶圓的逐點分析包括以下步驟:接收與一第一程序配方相關聯之複數個配方參數的第一值,及接收使用該第一程序配方來處理之一第一晶圓上之複數個位置的第一複數個量測。實施例可更包括以下步驟:接收與一第二程序配方相關聯之該複數個配方參數的第二值,及接收使用該第二程序配方來處理之一第二晶圓上之該複數個位置的第二複數個量測。一實施例可更包括以下步驟:使用該複數個配方參數的該等第一值、該複數個配方參數的該等第二值、該第一複數個量測及該第二複數個量測,運算複數個敏感度值。在各種實施例中,該複數個敏感度值中的各者可相對應於該複數個位置中的一者且表示對於該複數個配方參數中的一者的敏感度。此 外,在一個實施例中,該方法包括以下步驟:提供一晶圓的一圖形表示,該圖形表示顯示該複數個位置之該第一複數個敏感度值的至少一子集合。
此外,本揭示案的實施例係關於一DOE分析系統,該DOE分析系統包括:一記憶體,用以儲存複數個DOE參數及值;及一處理裝置,操作耦合至該記憶體。在一個實施例中,該處理裝置用以執行以上所列的操作。在另一實施例中,一非暫時性機器可讀取存儲媒體包括指令,該等指令在由一處理裝置存取時使該處理裝置執行以上操作。
本揭示案的實施例提供供晶圓逐點分析分析實驗設計(DOE)資料的改良方法、系統及軟體。在一個示例性說明中,分析DOE的配方參數值且在逐點的基礎上顯示相對應的敏感度值。與受測晶圓位置相關聯的敏感度值可被顯示在二維或三維等高線圖上。
晶圓敏感性分析技術(例如DOE)可用於半導體工業中。在各種實施例中,DOE技術用以基於改變配方參數來偵測晶圓敏感度。DOE是呈現變化之任何資訊收集試驗的設計。DOE分析是從DOE的執行產生之資料(DOE資料)的分析。在一個實施例中,DOE資料包括配方參數、配方參數值及晶圓量測。在一個實施例中, 對於可變化五個配方參數的晶圓敏感度DOE分析而言,可藉由運行多個實驗來執行DOE,其中依據各實驗的預定值來變化五個配方參數中的各者。可接著於各種位置處量測來自各實驗的晶圓且將該等晶圓與其相對應的配方參數相關聯。可藉由將配方參數上的變化與來自實驟中之各者的來自各受測位置之量測上的變化比較來運算敏感度值。接著通常平均化敏感度值以決定對於特定配方參數的晶圓平均敏感度。罕見地,可相對於跨晶圓的平均徑向敏感度值而運算敏感度。
使用晶圓的單一、平均的敏感度值或若干徑向敏感度值是有問題的,因為兩個技術萃取出特定、有價值的敏感度資訊。例如,晶圓可能在晶圓的一側上是非常敏感的且具有相對於配方參數的正相依性。相同的晶圓可能在晶圓的另一側上是同等敏感的但具有相對於配方參數的負相依性。在此類實例中,均數及平均徑向敏感度輸出值兩者會不正確地顯示零的敏感度值。
描述的是跨晶圓在逐點的基礎上執行敏感度分析的方法及系統的實施例。藉由針對晶圓上的量測位置在逐點的基礎上執行敏感度分析及將敏感度分析呈現為等高線圖,可以高精確水準徹底視覺化及分析晶圓敏感度。
依據本發明的一實施例,圖1繪示晶圓製造系統100的示例性架構。在一個實施例中,晶圓製造系統100可包括製造裝置110、度量衡裝置120、計算裝置130 及網路140。製造裝置110可為包括一或更多個處理腔室的半導體晶圓製造裝置。例如,製造裝置110可為離子注入機、蝕刻反應器、光刻法裝置、沉積裝置(例如用於執行化學氣相沉積(CVD)、物理氣相沉積(PVD)、離子輔助沉積(IAD)等等)或其他製造裝置。
在一個實施例中,製造裝置110經由網路140連接至度量衡裝置120及計算裝置130。網路140可為區域網路(LAN),且可為設備自動化層的部分,該設備自動化層可額外包括路由器、閘道器、伺服器、資料儲存所等等。製造裝置110可經由SEMI設備通訊標準/同屬設備模型(SECS/GEM)介面、經由乙太網路介面及/或經由其他介面連接至設備自動化層(例如連接至網路140)。在一個實施例中,設備自動化層允許程序資料(例如由製造裝置110在一程序運行期間所收集的資料)被儲存在資料儲存所140中。
在其他實施例中,製造裝置110可直接連接至度量衡裝置120、資料儲存所140及/或計算裝置130。在一個實施例中,製造裝置110可包括配方參數112及腔室參數114。
在一個實施例中,配方參數112可包括與製造半導體晶圓相關聯的所有參數。例如,配方參數112可包括(但一定不限於):腔室加熱器溫度、沉積壓力、脈衝時間、加熱器間隔、射頻(RF)功率及流動速率。此外,配方參數112可包括與各參數相關聯的值,其中該等 值影響如何在晶圓製造程序各處使用給定的參數。例如,在流動速率作為配方參數的DOE中,流動速率可具有75sccm的值。流動速率值影響有多少氧、矽烷、氨或其他類型的氣體進入腔室。在另一實例中,溫度配方參數可具有800℃的值。
在一個實施例中,腔室參數114可包括與在製造裝置110的特定腔室中製造半導體晶圓相關聯的受測原位參數。作為一實例,腔室參數114可包括(但不限於)腔室的各種物理量測。腔室參數114可額外包括腔室內部晶圓的位置。
在一個實施例中,製造裝置110被編程為執行與配方參數112相關聯的程序配方,該程序配方將使製造裝置110製造半導體晶圓。在一個實施例中,製造裝置110包括可加載、儲存及執行程序配方的可編程控制器。可編程控制器可控制製造裝置110的配方參數112,例如溫度設置、氣體及/或真空設置、時間設置、能量設置等等。可編程控制器可包括主記憶體(例如唯讀記憶體(ROM)、快閃記憶體、動態隨機存取記憶體(DRAM)、靜態隨機存取記憶體(SRAM)等等)及/或次記憶體(例如資料存儲裝置,例如磁碟驅動器)。主記憶體及/或次記憶體可儲存用於執行各種類型的製造程序的指令。
可編程控制器亦可包括耦合(例如經由匯流排)至主記憶體及/或次記憶體以執行指令的處理裝置。處理裝置可為通用處理裝置,例如微處理器、中央處理單 元等等。處理裝置亦可為專用處理裝置,例如特定應用積體電路(ASIC)、現場可程式閘陣列(FPGA)、數位訊號處理器(DSP)、網路處理器等等。在一個實施例中,可編程控制器為可編程邏輯控制器(PLC)。
晶圓製造系統100可更包括連接至網路140的一或更多個度量衡裝置120。在替代性實施例中,晶圓製造系統100可包括更多或更少的元件。例如,晶圓製造系統100可包括不連接至網路140的人工操作(例如離線)的製造裝置110及度量衡裝置120。
在一個實施例中,度量衡裝置120可執行晶圓量測,例如量測晶圓翹曲、阻抗值、包裝、扁平度及厚度,而產生量測值116。度量衡裝置120可用於測試,但亦可具有其他應用,例如監測聲學、振動及溫度上的環境參數及資料。度量衡裝置120在某些實施例中可額外執行其他任務,例如固持、接合、分離、焊接等等。度量衡裝置的實例包括套疊度量衡裝置、光學關鍵尺度(CD)度量衡裝置、薄膜厚度度量衡裝置、植入及退火度量衡裝置、薄片電阻映射度量衡裝置等等。
在一個實施例中,度量衡裝置120包括可加載、儲存及執行程序配方的可編程控制器。可編程控制器可控制產生量測值116的量測操作。可編程控制器可包括主記憶體(例如唯讀記憶體(ROM)、快閃記憶體、動態隨機存取記憶體(DRAM)、靜態隨機存取記憶體 (SRAM)等等)及/或次記憶體(例如資料存儲裝置,例如磁碟驅動器)。主記憶體及/或次記憶體可儲存用於執行逐點DOE分析的指令,如本文中所述。
可編程控制器亦可包括耦合(例如經由匯流排)至主記憶體及/或次記憶體以執行指令的處理裝置。處理裝置可為通用處理裝置,例如微處理器、中央處理單元等等。處理裝置亦可為專用處理裝置,例如特定應用積體電路(ASIC)、現場可程式閘陣列(FPGA)、數位訊號處理器(DSP)、網路處理器等等。在一個實施例中,可編程控制器為可編程邏輯控制器(PLC)。
晶圓製造系統100可更包括資料儲存所以儲存配方參數112、腔室參數114、量測值116、敏感度值118、顯著性值119及/或其他資訊。此外,晶圓製造系統100可包括連接至網路140的一或更多個計算裝置(例如計算裝置130)。
在一個實施例中,計算裝置130包括敏感度模組200。計算裝置130的敏感度模組200在配方參數112及量測值116上執行最小二乘方配合分析,以基於配方參數112及量測值116來決定敏感度值118。在一個實施例中,最小二乘方配合分析是迴歸分析中針對超定系統(亦即存在著比未知數還要多的方程式的方程式集合)之近似解的方法。在一個實施例中,「最小二乘方」意指整體的解最小化每個單一方程式的結果中產生之誤差之平方的總和。在另一實施例中,計算裝置130的敏感度模組200 可基於敏感度值118運算顯著性值119(例如t比率,於下文詳細論述)。
敏感度模組200可基於相對應於多個DOE的程序配方來決定配方參數112。配方參數112可包括與已用以依據DOE處理晶圓的各種配方排列相關聯的配方參數112。配方參數112的各集合可相對應於不同的程序配方(例如不同的配方參數112的集合),且可與配方識別符(ID)相關聯。
敏感度模組200額外獲取與各種配方排列相關聯的量測值116。可能已基於由度量衡裝置120量測使用特定程序配方來處理的晶圓來獲取各量測值集合。資料儲存所140可儲存指示晶圓是使用特定配方來處理的資訊,且此資訊可用以將針對該晶圓的量測值116與用以處理該晶圓之程序配方的配方參數112相關聯。
計算裝置130的敏感度模組200可基於最小二乘方配合分析來決定敏感度值。在一個實施例中,線性迴歸貝他係數(下文中稱為貝他係數)(最小二乘方配合分析的輸出)將敏感度資訊捕捉為貝他係數。在一個實施例中,針對各參數運算t比率以估算參數的顯著性。t比率用以空間性地顯示晶圓何處對於特定輸入因素是敏感的,且可指示與針對特定配方參數的敏感度值相關聯之誤差的量。在一個實施例中,t比率是經估算參數從其概念上的值及其標準誤差徧離的比率。
在一個實施例中,計算裝置130包括使用者介面208。在一示例性實施例中,計算裝置130的使用者介面208可用以顯示資料儲存所140中儲存的敏感度值118。在一個實施例中,使用者介面208以二維(2D)等高線圖的形式顯示敏感度值118‎‎(針對圖6論述)。在另一實施例中,使用者介面208以三維(3D)等高線圖的形式顯示敏感度值118(參照關於圖7的論述)。在各種實施例中,使用者介面208允許使用者決定敏感度值118是否以2D或3D的形式顯示。在其他實施例中,除了等高線圖以外可使用其他顯示形式,例如長條圖。使用者介面208亦允許使用者選擇與應顯示之敏感度值118相關聯的配方參數112。
在一個實施例中,計算裝置130可從資料儲存所140擷取與多個程序配方相關聯之配方參數112的集合 。計算裝置130可額外擷取已使用多個程序配方來處理之晶圓之量測值116的多個集合。計算裝置130可接著將量測值116的各集合與配方參數112之集合中的一者相關聯。可基於識別在受測晶圓中的各者上是使用哪些程序配方的經儲存資訊來執行關聯步驟。敏感度模組200可接著執行配方參數112及量測值116的逐點分析,以針對配方參數中的各者決定逐點敏感度值。
在一個示例性說明中,製造裝置110使用包括配方參數112及腔室參數114的配方來製造晶圓。接著將晶圓傳輸至度量衡裝置120以受測。在一個實施例中,度量衡裝置120量測晶圓之49個位置(點)的厚度。在另一實施例中,量測121個位置,或量測另一數量的位置。依據特定DOE的限制條件以變化的配方112及腔室參數114重複製造及量測程序。接著由敏感度模組200分析所有該等資料,以針對配方參數中的各者決定逐點敏感度。
依據本發明的一實施例, 2A 繪示晶圓分析系統200的示例性方塊圖。在一個實施例中,晶圓分析系統200包括計算裝置130及資料儲存所230。在一個實施例中,計算裝置130包括敏感度模組200。在各種實施例中,敏感度模組200包括各種子模組,該等子模組包括DOE分析器202、配方分析器204及使用者介面208。此模組佈置可為邏輯分離,且在其他實施例中,該等模組或其他元件可組合在一起或分離成進一步的元件。
在一個實施例中,資料儲存所230儲存配方參數112、腔室參數114及量測值116。在另一實施例中,資料儲存所230額外儲存敏感度值118‎‎。可選地,配方參數112、腔室參數114、量測值116及敏感度值118可全儲存在與製造裝置110相關聯的分離的資料儲存所中。在一個實施例中,資料儲存所230可包括查找表、關聯式資料庫、一系列平面檔或用於儲存資訊的其他資料結構。
資料儲存所230可包括一或更多個大量存儲裝置,該一或更多個大量存儲裝置例如可包括快閃記憶體、磁或光碟或磁帶驅動器、唯讀記憶體(ROM)、隨機存取記憶體(RAM)、可抹除式可編程記憶體(EPROM及EEPROM)、快閃記憶體或任何其他類型的存儲媒體。
在一個實施例中,敏感度模組200維持資料儲存所230或可存取資料儲存所230。敏感度模組200可起始DOE分析。作為DOE分析的部分,敏感度模組200可從製造裝置110、度量衡裝置120、資料儲存所230及/或電腦應用程式接收資料。在使用來自資料儲存所230、製造裝置110及/或度量衡裝置之輸入的情況下,敏感度模組200的各種模組可執行逐點DOE分析。
在一個實施例中,DOE分析器202及配方分析器204用以使用位於資料儲存所230中的配方參數112及量測值116來執行逐點DOE分析。在一個實施例中,DOE分析器202接收配方參數112及相關聯的量測值116。可直接從製造裝置及/或度量衡裝置接收配方參數112及量測值116。或者,可從資料儲存所230擷取配方參數112及量測值116。在某些實施例中,腔室參數114亦被擷取且用以執行DOE資料的逐點分析。
在一個實施例中,DOE分析器202接收參數112、114及/或量測值116,且執行DOE資訊上的逐點DOE分析。可在DOE完成之後自動地及/或回應於使用者輸入而執行DOE分析。在一個實施例中,藉由針對特定DOE中之晶圓上的各受測位置205在配方參數112及量測值116上施用最小二乘方配合分析來執行逐點DOE分析。在實施例中於各晶圓位置處針對各量測值單獨執行最小二乘方配合分析。最小二乘方配合分析的輸出是針對各晶圓位置的單獨最小二乘方配合模型。
最小二乘方配合分析的目標包括調整模型函數的參數以最佳地配合資料集合。簡單的資料集合以n個點(資料對偶)組成
Figure 02_image001
,i = 1, ..., n,其中
Figure 02_image003
是獨立變數而
Figure 02_image005
是依變數,該依變數的值是藉由觀察而得。模型函數可具有形式
Figure 02_image007
,其中m個可調整參數被保持在向量
Figure 02_image009
中。目標是針對模型尋找「最佳地」配合資料的參數值。最小二乘法在以下之平方的殘差的總和(S)為最小值時尋找其最佳值。
Figure 02_image011
殘差被定義為依變數的實際值及由模型所預測的值之間的差。
Figure 02_image013
模型的實例為二維度上之直線的模型。將截距表示為
Figure 02_image015
及將斜率表示為
Figure 02_image017
,模型函數由
Figure 02_image019
給定。
因為針對與位置250相關聯的各量測值116執行最小二乘方配合分析,是針對各受測位置250個別決定最小二乘方配合模型。在其他實施例中,可使用迴歸分析中的各種其他方法而非最小二乘方分析。
在一個實施例中,在已針對個別的晶圓位置250產生最小二乘方配合模型時,DOE分析器202基於最小二乘方配合模型針對位置250運算敏感度值118。在一個實施例中,敏感度值為貝他係數的形式。例如,可以
Figure 02_image021
表示單一輸入模型。此公式可被視為一線的方程式,其中
Figure 02_image023
是截距而
Figure 02_image025
是斜率。在一個實施例中,方程式的斜率(其為貝他係數)表示敏感度,其指示x上的改變影響y值多少。據此,配方參數的貝他係數指示配方參數影響經製造晶圓或程序的特定可量測屬性(例如薄膜厚度、蝕刻速率等等)有多少。此方程式可被歸納以支援許多輸入(x)。總體而言,(矩陣記法)
Figure 02_image027
在一個實施例中,顯著性值119(基於貝他係數)表示敏感度值118的顯著性。在一個實施例中,t比率(亦稱為t統計量)是經估算參數從其概念上的值及其標準誤差徧離之比率之形式的顯著性值。在一個實施例中,藉由使得
Figure 02_image029
為某些統計模型(例如上述的最小二乘方配合分析)中之參數β的估計量來運算t比率。此參數的t比率為以下形式的量:
Figure 02_image031
其中β0 為非隨機的、已知的常數,而
Figure 02_image033
為估計量
Figure 02_image029
的標準誤差。在一個實施例中,t比率為
Figure 02_image035
的訊號雜訊比;其值越大,越可信任貝他係數。在一個實施例中,t比率門檻值可為「2」。在各種實施例中,小於門檻值的t比率值指示的是,存在與貝他值相關聯的高誤差且因此其可能是不值得信任的。在其他實施例中,小於門檻值的t比率可能指示不良的實驗或在輸出(例如薄膜厚度)上不具有顯著效果的輸入(例如配方參數)。在其他實施例中,可使用各種其他形式的訊號雜訊比(顯著性值119)(例如z分數)。
在一個實施例中,針對各配方參數112決定單獨的敏感度值118。例如,晶圓對於任何數量之配方參數112中的各者而言可能具有單獨的敏感度值118。例如,晶圓上的薄膜厚度可具有對於氣體流動速率的第一敏感度、對於腔室壓力的第二敏感度、對於溫度的第三敏感度及對於程序時間的第四敏感度。可針對晶圓上的各位置250運算單獨的敏感度。例如,晶圓上的第一位置相較於晶圓上的第二位置可具有對於氣體流動速率的不同敏感度。結果是,晶圓上的各位置250具有多個敏感度值118;任何數量的配方參數112中的每一者一個敏感度值。
在一個實施例中,DOE分析器202可決定具有最高敏感度的配方參數112。例如,DOE分析器202可基於敏感度(例如基於貝他係數)來分類配方參數。在一個實施例中,DOE分析器202可決定門檻敏感度值(例如對於該門檻敏感度值而言,經計算的貝他係數大於一門檻值)以上的配方參數112。藉由執行多個DOE測試及比較經運算的敏感度值(例如線性迴歸貝他係數),DOE分析器可編譯依據相對應的敏感度值118來分類配方參數112的清單。此外,可基於敏感度值118來運算顯著性值119,以決定相關聯之配方參數的顯著性。可產生依據配方參數112的顯著性(例如t比率)來分類配方參數112的第二清單。或者,配方參數的t比率可被添加至第一清單。在以經分類的t比率來編譯第二清單時,具有落於門檻值以上之相關聯t比率的任何配方參數112可被標記給使用者。可由使用者經由使用者介面208提供門檻 值,或可將門檻值設定至預設值。在一個實施例中,門檻值相對應於2的t比率。或者,可使用其他門檻值(例如相對應於1.5、2.5等等的t比率)。在一個實施例中,具有敏感度門檻值以上的敏感度值及顯著性門檻值以上的顯著性值兩者的配方參數被標示給使用者。具有敏感度門檻值以上的敏感度值及顯著性門檻值以上的顯著性值的配方參數可為可被調整以控制配方之製造結果的彼等配方參數。
在一示例性實施例中,敏感度模組200的使用者介面208可用以顯示由DOE分析器202決定的敏感度值118。在一個實施例中,使用者介面208以二維(2D)等高線圖的形式顯示敏感度值118‎‎(針對圖6論述)。在另一實施例中,使用者介面208以三維(3D)等高線圖的形式顯示敏感度值118(參照關於圖7的論述)。使用者介面208亦可顯示配方參數的顯著性值119。例如,使用者介面208可顯示針對一或更多個配方參數圖示顯著性值119的2D或3D等高線圖。在各種實施例中,使用者介面208允許使用者決定敏感度值118及/或顯著性值119是否以2D或3D形式顯示。在其他實施例中,除了等高線圖以外可使用其他顯示形式,例如長條圖。使用者介面208亦允許使用者選擇與應顯示之敏感度值118及/或顯著性值119相關聯的配方參數112。
在某些實施例中,執行配方產生操作可為有用的。例如,在某些情況下,能夠基於目標晶圓薄膜厚度輪廓及先前運算的敏感度值118來決定晶圓配方是有用的。在一個實施例中,配方分析器204執行此類操作。配方分析器204將基於所需晶圓之厚度的目標輪廓接收為輸入。目標輪廓可包括整個晶圓的目標平均厚度、目標標準差或其他目標值。藉由將目標輪廓用作對於由DOE分析器202決定之最小二乘方配合模型(例如針對各配方參數及各晶圓位置的模型)集合的輸入,配方分析器204可輸出特定配方參數112,該等特定配方參數在組合時允許製造目標輪廓。在一個實施例中,配方分析器204儲存經決定的配方參數112作為新的程序配方及/或向製造裝置110傳遞經決定的配方參數112以供進行晶圓製造。
在一個實例中,函數f(x,β)以等式
Figure 02_image019
表示。在此實例中,可藉由尋找x來計算所需的目標,其中x表示從最小二乘方配合模型計算的貝他係數。我們可以矩陣記法將此重寫如下:
Figure 02_image038
其中y表示f(x,β)函數。故在此情況下,我們可藉由將上述方程式重新佈置如下來解出x:
Figure 02_image040
或以矩陣記法:
Figure 02_image042
在一個實例中,在三個位置處採取量測,產生三個方程式(各位置一個方程式)。針對x解開三個方程式於各位置處造成相同的目標(例如薄膜厚度)。將此以矩陣記法表示產生:
Figure 02_image044
其歸納如下:
Figure 02_image046
其中「n」為對於DOE之輸入的數量,而「m」為受測位置的數量。在解回傳對於程序不具意義之x值的情況下(例如其可在x為壓力讀數的情況下回傳-20 T),添加更多位置幫助限制x值。在一個實施例中,可同一限制方法使用線性規劃以解出此方程式集合。或者,若問題是非線性的,則可使用搜尋演算方法,其中x值被限制於已知的操作窗。
在額外的實施例中,執行相同製造裝置的不同腔室之間及/或不同製造裝置的腔室之間的腔室匹配操作可能是有用的。例如,能夠更改配方參數112以跨在不同腔室中製造的晶圓得到更佳的均勻性在某些情況下是有用的。在一個實施例中,配方分析器204執行此類操作。配方分析器204將與在來源腔室上執行之程序配方相關聯的第一配方參數112及第一敏感度值118以及與在目標腔室上執行之程序配方相關聯的第二配方參數112及第二敏感度值118接收為輸入。此類敏感度 值118可為由DOE分析器202在來源腔室上及在目標腔室上執行之逐點DOE分析的結果。在另一實施例中,配方分析器204可接收顯著性值119。
配方分析器204將來自來源腔室的敏感度值118及/或顯著性值119與目標腔室的彼等值比較,以決定可對於目標腔室的配方參數112作出什麼更改,使得由目標腔室及來源腔室兩者所生產的晶圓具有相同的厚度輪廓。在一個實施例中,配方分析器204針對目標腔室上的程序配方更改配方參數112,使得由目標腔室生產的晶圓更佳地匹配由來源腔室生產的晶圓。
在一個實例中,作出以下假設:來源及目標腔室在各位置處具有類似的敏感度值。亦假設的是,是將所需的目標用作基準來執行原始DOE或敏感度研究。配方分析器204採取目標腔室上的位置讀數,且使用來自來源腔室的敏感度值,以估算目標腔室中的配方徧移,以便最小化各位置處之目標腔室輸出及來源腔室輸出之間的差異。
在一個實施例中,如以上針對配方匹配所概述的相同運算可用以執行腔室匹配。於上文,回傳會達成所需輸出的輸入集合。在本實例中,提供了輸出(提供為目標腔室上之各位置處的輸出),且決定提供此輸出的輸入。基於目前的基準配方參數112以及由配方分析器204回傳的輸入或配方參數112之間的差來運算徧移。此徧移決定改變目標腔室配方參數多少,以使得使用目標腔室來處理的晶圓匹配由來源腔室處理的晶圓。在一個實例中,徧移被運算為最小化各位置處之目標及來源薄膜厚度之間的差,藉此在腔室之間造成更佳的匹配。
在一個實施例中,使用者介面208提供回應於使用者互動而實現與DOE分析器202及配方分析器204相關聯之操作的手段。在一個實施例中,DOE分析器202及配方分析器204向製造裝置110發送其要被自動實現的輸出。在其他實施例中,DOE分析器202及配方分析器204向使用者介面208發送其要被使用者檢視、解譯及據以行動的輸出。在一個實施例中,輸出為配方及/或腔室參數。
在各種實施例中,使用者介面208允許使用者選擇不同配方及腔室參數及檢視其跨晶圓的相對應敏感度值。使用者介面208可進一步接收使用者輸入以起始DOE分析。此外,使用者介面208可提供圖形輸出(例如等高線圖,參照圖6及7),且允許使用者與圖形輸出互動。在一個實施例中,使用者介面208允許使用者旋轉、拉近、高亮及執行有用於分析敏感度值的各種其他操作。
依據本發明的一實施例,圖2B為示例性晶圓及相關聯之資料點的方塊圖。如以上所論述,在一個實施例中,度量衡裝置跨晶圓240於各種位置250處量測晶圓240的厚度。在各種實施例中,度量衡裝置可從四十九個位置250、一百二十一個位置250或任何其他數量的位置250採取量測。不存在可記錄量測之位置250的最小或最大數量。在一個實施例中,基於記錄晶圓薄膜厚度的各位置250,針對各配方參數112決定敏感度值118及/或顯著性值119。在其他實施例中,僅針對位置250的子集合決定敏感度值118及/或顯著性值119。在又其他的實施例中,針對不具有相對應之厚度量測的位置250運算敏感度值118及/或顯著性值119。
依據本發明的一實施例, 3 為一流程圖,繪示用於針對製造程序逐點分析晶圓之DOE資料的方法。可藉由處理邏輯來執行方法300,該處理邏輯包括硬體(例如電路系統、專用邏輯、可編程邏輯、微代碼等等)、軟體(例如處理裝置上運行以執行硬體模擬的指令)或其組合。在一個實施例中,計算裝置130上執行之敏感度模組200的DOE分析器202執行方法300。
參照圖3,於方塊301處,處理邏輯接收與第一程序配方相關聯的配方參數112。配方參數112依據要執行的特定DOE及/或依據DOE所針對執行的程序而變化。例如,在設計為測試兩個配方參數112(溫度及壓力)的DOE中,各配方參數112對於一特定配方可具有一相關聯的值。在本實例中,溫度可具有五的值,而壓力具有十的值(各值以其各別的單位表示)。在一個實施例中,配方分析器204可從製造裝置110接收配方參數112及相關聯的值。
於方塊303中,處理邏輯接收針對使用於方塊301中接收之配方參數112及相關聯值的第一集合來製造之第一晶圓的晶圓量測值116。在一個實施例中,晶圓量測值116為來自晶圓上複數個位置250的厚度量測。例如,對於與方塊301中的程序配方相關聯的晶圓,處理邏輯可接收四十九個量測值116,各量測值相對應於不同位置250。在一個實施例中,配方分析器204可從度量衡裝置120接收量測值116。
於方塊305中,處理邏輯接收與第二程序配方相關聯的配方參數112。例如,在上述的DOE中,第二配方可指定的是,溫度具有十五的值而壓力具有二十的值(各值以其各別的單位表示)。在一個實施例中,配方分析器204可從製造裝置110接收配方參數112及相關聯的值。
於方塊307處,處理邏輯接收針對使用於方塊305中接收之配方參數112及相關聯值的第二集合來製造之第二晶圓的晶圓量測值116。例如,對於與方塊305中的程序配方相關聯的第二晶圓,處理邏輯可接收四十九個量測值116,各量測值相對應於不同位置250。在一個實施例中,配方分析器204可從度量衡裝置120接收量測值116。
於方塊309處,處理邏輯將第一配方參數值與第一量測值相關聯,且將第二配方參數值與第二量測值相關聯。
於方塊311處,處理邏輯運算敏感度值118及/或顯著性值119的第一集合,其中各敏感度值與晶圓上的一位置250相關聯。在一個實施例中,敏感度值118對於特定配方參數112是獨一的。在本實例中,針對四十九個位置250決定量測值116的晶圓240具有針對溫度的四十九個敏感度值118及/或顯著性值119以及針對壓力的四十九個敏感度值118及/或顯著性值119,各值相對應於晶圓上的一位置250。換言之,在一示例性實施例中,兩個敏感度值118及/或顯著性值119(一個針對溫度而一個針對壓力)與晶圓240上的四十九個位置250中的各者相關聯。
在一個實施例中,由計算裝置130上之DOE分析器202的處理邏輯運算敏感度值118。在一個實施例中,處理邏輯藉由針對晶圓240上的各受測位置250在配方參數112及量測值116上施用最小二乘方配合分析來決定敏感度值118。因為針對與位置250相關聯的各量測值116執行最小二乘方配合分析,可針對各受測位置250個別決定最小二乘方配合模型。亦應注意的是,於方塊311處由處理邏輯產生的最小二乘方配合模型對於晶圓上的位置250是特定的。因此,針對晶圓240上的各位置250而決定了模型。各模型包含對於模型之輸入上的(例如影響模型之配方參數上的)敏感度資訊。
在一個實施例中,在已針對晶圓位置250產生最小二乘方配合模型時,DOE分析器202基於與晶圓位置250相關聯的最小二乘方配合模型於晶圓位置250處針對各配方參數112運算敏感度值118。在一個實施例中,貝他係數(最小二乘方配合分析的輸出)捕捉敏感度資訊。在一個實施例中,顯著性值119(例如t比率)用以估算特定參數的顯著性。t比率用以空間性地顯示晶圓何處對於特定輸入因素是最敏感的。在一個實施例中,t比率是經估算參數從其概念上的值及其標準誤差徧離的比率。在其他實施例中,可使用各種其他形式的訊號雜訊比(顯著性值)(例如z分數)。
於方塊313處,處理邏輯在圖形介面上顯示於方塊311處決定之敏感度值118及/或顯著性值119的圖形表示。在一個實施例中,圖形介面為計算裝置130的使用者介面208。在一個實施例中,使用者介面208以二維(2D)等高線圖的形式顯示敏感度值118‎‎及/或顯著性值119(針對圖6論述)。在一個實施例中,使用者介面208以三維(3D)等高線圖的形式顯示敏感度值118‎‎及/或顯著性值119(針對圖7論述)。在各種實施例中,使用者介面208允許使用者決定敏感度值118及/或顯著性值119是否以2D或3D形式顯示。在其他實施例中,除了等高線圖以外可使用其他顯示形式,例如長條圖。使用者介面208亦允許使用者選擇與應顯示之敏感度值118及/或顯著性值119相關聯的配方參數112。
依據本發明的一實施例, 4 為一流程圖,繪示用於決定與目標輪廓相關聯之晶圓配方的方法400。可藉由處理邏輯來執行方法400,該處理邏輯包括硬體(例如電路系統、專用邏輯、可編程邏輯、微代碼等等)、軟體(例如處理裝置上運行以執行硬體模擬的指令)或其組合。方法400可在特別針對決定與目標輪廓相關聯之晶圓配方的情況下執行逐點DOE分析。在一個實施例中,可在方法300中的操作之後執行方法400中所執行的操作。在一個實施例中,計算裝置130中之敏感度模組200的配方分析器204可執行方法400。
在某些實施例中,執行配方產生操作可為有用的。例如,在某些情況下,能夠基於目標晶圓薄膜厚度輪廓及先前運算的敏感度值118來決定晶圓配方是有用的。
參照圖4,於方塊401處,處理邏輯將所需晶圓的目標輪廓接收為輸入。在一個實施例中,目標輪廓是基於所需的晶圓厚度輪廓。在另一實施例中,目標輪廓可基於其他因素,例如蝕刻速率、薄片電阻及薄膜成分。例如,本揭示案的處理邏輯可用以針對配方參數尋找目標值以增加蝕刻速率的均勻性。在另一實例中,處理邏輯可用以尋找輸入(配方參數)以提供跨晶圓的目標「薄片電阻」。在進一步的實例中,處理邏輯可用以尋找輸入(配方參數)以確保Ti對Al的比率跨晶圓是一致的。
於方塊403及405處,處理邏輯基於過去的敏感度值118及/或顯著性值119分析目標輪廓且決定一晶圓配方,該晶圓配方在被使用時將造成匹配或近乎匹配目標輪廓的晶圓輪廓。藉由將目標輪廓用作對於例如方法300中所決定之最小二乘方配合模型的輸入,處理邏輯於方塊405處可輸出特定配方參數112,該等特定配方參數在被結合時允許製造目標輪廓。在一個實施例中,配方分析器向製造裝置110傳遞所決定的配方參數112以供進行晶圓製造。例如,採取表示跨晶圓均勻分佈之晶圓薄膜厚度的目標輪廓。處理邏輯將目標輪廓用作對於先前(例如在方法300中)決定之敏感度模型的輸入,以決定將造成所需目標輪廓的特定配方。
依據本發明的一實施例, 5 為一流程圖,繪示用於決定與來源腔室參數相關聯之目標腔室參數的方法500。可藉由處理邏輯來執行方法500,該處理邏輯包括硬體(例如電路系統、專用邏輯、可編程邏輯、微代碼等等)、軟體(例如處理裝置上運行以執行硬體模擬的指令)或其組合。方法500可在特別針對腔室匹配的情況下執行逐點DOE分析。在一個實施例中,方法500中執行的操作是在方法300中執行的操作之後。在一個實施例中,敏感度模組200的配方分析器204可執行方法500。
在各種實施例中,執行腔室匹配操作可能是有用的。例如,能夠更改配方參數112以跨不同製造裝置上製造的晶圓得到更佳的輪廓一致性在某些情況下是有用的。參照圖5,於方塊501處,處理邏輯接收敏感度值118及/或顯著性值119的第二集合。在一個實施例中,於方法300的方塊311處決定敏感度值118及/或顯著性值119的第一集合。在一個實施例中,敏感度值118及/或顯著性值119的第一集合相對應於來源腔室,而敏感度值118及/或顯著性值119的第二集合相對應於目標腔室。
於方塊502處,處理邏輯分析敏感度值118及/或顯著性值119的第一及第二集合以及腔室參數的第一及第二集合。在一個實施例中,配方分析器204將來自來源腔室的敏感度值118及/或顯著性值119與目標腔室的彼等值比較,以決定可對於目標腔室的配方參數112作出什麼更改,使得由目標腔室及來源腔室兩者所生產的晶圓具有類似的厚度輪廓。在一個實施例中,處理邏輯可決定的是,對於由目標腔室使用之配方參數112的更改可被更改以在由來源及目標腔室生產的晶圓之間達到更佳的晶圓均勻性。
於方塊503處,基於方塊502處的分析來更改與目標腔室相關聯的配方參數112。在一個實施例中,敏感度模組200的處理邏輯經由網路140向製造裝置110發送經更改的配方參數112。在其他實施例中,參數配方112被相對於計算裝置130本端地儲存在資料儲存所230中。
依據本發明的一實施例, 6 為2維(2D)等高線圖600的示例性示意表示。在一個實施例中,由此揭示案的系統及方法決定的敏感度值118及/或顯著性值119呈現於2維等高線圖中,如 6 中所示。在一個實施例中,2D等高線圖重疊在其表示之晶圓的繪圖上。在一個實施例中,敏感度模組200的處理邏輯基於單一配方參數112呈現及顯示2D等高線圖。使用者可選擇將哪個配方參數表示在敏感度值118及/或顯著性值119的2D等高線圖中。在其他實施例中,可由單一的2D等高線圖表示多於一個配方參數112。例如,可使用具有第一線風格的等高線來圖示針對第一配方參數的敏感度值118及/或顯著性值119,而可使用具有第二線風格的等高線來圖示針對第二配方參數的敏感度值118及/或顯著性值119。
在2D等高線圖中,描繪表示針對配方參數之特定敏感度的線。該等線可包括敏感度的數值表示(例如以貝他係數的形式表示,如所示地)。在另一實施例中,線可包括配方參數之顯著性的數值表示(例如t比率)。在一個實施例中,2D等高線圖額外使用各種色彩及色調來顯示敏感度值118及/或顯著性值119中之範圍之間的對比。例如,2D等高線圖可使用一色彩範圍(從紅色到綠色到藍色)來指示變化的敏感度及/或顯著性水準。在一個實施例中,可藉由各種紅色色調表示具有最高敏感度或顯著性的區域,而可藉由各種藍色色調表示具有最低敏感度的區域。在其他實施例中,在2D等高線圖上直接顯示敏感度值118及/或顯著性值119。在各種實施例中,敏感度值118及/或顯著性值119在其相關聯的位置250上重疊於2D等高線圖上。在一個實施例中,可旋轉及歪斜2D等高線圖以得到各種敏感度值的更佳檢視。並且,可以2D等高線圖提供經繪示的檢索表。檢索表可顯示各種敏感度值118及/或顯著性值119及相對應的色彩表示。
依據本發明的一實施例, 7 為3維(3D)等高線圖的示例性示意表示。在一個實施例中,由此揭示案的系統及方法決定的敏感度值118及/或顯著性值119呈現於3維等高線圖中,如圖7中所示。在一個實施例中,3D等高線圖重疊在其表示之晶圓的繪圖上。在一個實施例中,敏感度模組200的處理邏輯基於單一配方參數112呈現及顯示3D等高線圖。在其他實施例中,可由單一的3D等高線圖表示多於一個配方參數112。
在一個實施例中,3D等高線圖顯示晶圓參數(例如薄膜厚度)對於配方參數(例如溫度、壓力等等)的敏感度。在一個實施例中,等高線的高度是基於敏感度值,其中高度直接關聯於敏感度。在另一實施例中,等高線的高度是基於顯著性值119(例如t比率)。在所繪示的實例中,晶圓的中心相較於晶圓的其餘部分對於特定的配方參數是更敏感的。此外,晶圓的外周邊相較於晶圓之其餘部分的大部分對於配方參數是更敏感的。如先前所述,傳統系統包括對於特定配方參數的單一平均敏感度,該單一平均敏感度是在整個晶圓上平均化而得。藉由跨晶圓進行平均化,可能損失資訊。例如,跨晶圓的單一、平均的敏感度並不精確地表示特定變形,然而最好是要在設計及製造晶圓時考慮該等變形。在成品中意識到此類變形是有用的。此外,發現特定變形極大地改良了晶圓設計及製造的精確度。相較之下,本文中所述的實施例提供跨晶圓對於配方參數之敏感度的逐點分析。
在一個實施例中,3D等高線圖使用各種色彩及色調來顯示敏感度值118及/或顯著性值119中之範圍之間的對比。在其他實施例中,在3D等高線圖上直接顯示敏感度值118及/或顯著性值119。在各種實施例中,敏感度值118及/或顯著性值119在其相關聯的位置250上重疊於3D等高線圖上。在一個實施例中,可旋轉及歪斜3D等高線圖以得到各種敏感度值的更佳檢視。並且,可以3D等高線圖提供經繪示的檢索表。檢索表可顯示各種敏感度值及相對應的色彩表示。
8 繪示電腦系統800之示例性形式之機器的圖解,一組指令可執行於該電腦系統800內,該組指令係用於使該機器執行本文中所論述之方法學中之任一或更多者。在替代性的實施例中,機器可在LAN、內部網路、外部網路或網際網路中連接(例如聯網)至其他機器。機器可操作為客戶端及伺服器網路環境中的伺服器或客戶端機器,或操作為同級間(或分佈式)網路環境中的同級機器。機器可為個人電腦(PC)、平板PC、機上盒(STB)、個人數位助理(PDA)、行動電話、網頁設備、伺服器、網路路由器、開關或橋接器或能夠執行一組指令(順序的或其他方式)的任何機器,該組指令指定要由該機器所採取的動作。進一步地,儘管繪示單一機器,亦應採用術語「機器」以包括個別地或聯合地執行一組(或多組)指令以執行本文中所論述之方法學中之任一或更多者的任何系列的機器。
示例性電腦系統800包括經由匯流排830來互相通訊的處理裝置(處理器)802、主記憶體804(例如唯讀記憶體(ROM)、快閃記憶體、動態隨機存取記憶體(DRAM)(例如同步DRAM(SDRAM)、雙資料率(DDR SDRAM)或DRAM(RDRAM))等等)、靜態記憶體806(例如快閃記憶體、靜態隨機存取記憶體(SRAM)等等)及資料儲存裝置818。
處理器802代表一或更多個通用處理裝置,例如微處理器、中央處理單元等等。更特定而言,處理器802可為複合指令集計算(complex instruction set computing,CISC)微處理器、減少指令集計算(reduced instruction set computing,RISC)、非常長指令字元(very long instruction word,VLIW)微處理器、或實施其他指令集的處理器或實施指令集之組合的處理器。處理器802亦可為一或更多個專用處理裝置,例如特定應用積體電路(ASIC)、現場可程式閘陣列(FPGA)、數位訊號處理器(DSP)、網路處理器等等。處理器802被配置為執行指令822以供執行本文中所論述的操作及步驟。
電腦系統800可進一步包括網路介面裝置808。電腦系統800亦可包括視訊顯示單元810(例如液晶顯示器(LCD)或陰極射線管(CRT))、文數字輸入裝置812(例如鍵盤)、游標控制裝置814(例如滑鼠)及訊號產生裝置816(例如喇叭)。
資料儲存裝置818可包括將一或更多組的指令822(例如軟體)儲存於其上的電腦可讀取存儲媒體824,該等組的指令實現了本文中所述之方法學或功能中之任何一或更多者,包括如圖8中所示的敏感度模組200。指令822亦可(完全地或至少部分地)在由電腦系統800執行該軟體622期間常駐於主記憶體804內及/或處理器802內,主記憶體804及處理器802亦構成電腦可讀取存儲媒體。指令822可進一步經由網路介面裝置808在網路140上傳送或接收。
在一個實施例中,指令822包括用於整合逐點DOE分析及/或包含呼叫敏感度模組200方法之軟體程式館的指令,該敏感度模組包括用於進行逐點DOE分析的指令。儘管電腦可讀取存儲媒體824(機器可讀取存儲媒體)於示例性實施例中被圖示為單一媒 體,應採用術語「電腦可讀取存儲媒體」來包括儲存 一或更多組指令的單一媒體或多個媒體(例如集中式或分 佈式資料庫及/或相關聯的快取記憶體及伺服器)。亦應 採用術語「電腦可讀取存儲媒體」以包括能夠儲存、編碼或實現由機器所執行之一組指令的任何媒體,且該組指令使機器執行本發明之方法學中之任何一或更多者。應據此採用術語「電腦可讀取存儲媒體」以包括(但不限於)固態記憶體、光學媒體及磁式媒體。
在上述的說明中,闡述了許多細節。然而,受益於此揭示案之本領域中具通常技藝者將理解的是,可在沒有該等特定細節的情況下實行本發明。在某些實例中,熟知的結構及裝置是以方塊圖形式來圖示而非詳細地圖示,以避免模糊本發明。
已在演算法的意義上以及電腦記憶體內之資料位元上之操作符號表示的意義上呈現詳細說明的某些部分。該等演算法的描述及表示是由彼等在資料處理技術領域中具技藝者所使用的手段以向其他在該技術領域中具技藝者最有效地傳達其工作的實質內容。演算法在此處(且總體而言)被構想為導致所需結果之自相一致的步驟序列。該等步驟是彼等需要物理量之物理操控的彼等步驟。通常,儘管未必,該等量採取能夠被儲存、傳輸、結合、比較及以其他方式操控的電或磁訊號的形式。將該等訊號指稱為位元、值、構件、符號、特性、項目、數字等等有時被證明是方便的(為了一般用途的理由)。
然而,應牢記的是,所有的該等術語及相似的術語要與適當的物理量相關聯且僅為施用於該等量的方便標籤。除非特別聲明,否則從以下的論述,顯然,理解的是,本說明書的各處(利用例如 「接收」、「使相關」、「運算」、「提供」、「執行」、「分析」、「修改」等等之術語的論述)代表電腦系統(或相似的電子計算裝置)的動作及處理,該電腦系統將在電腦系統的暫存器及記憶體內表示為物理(例如電子)量之資料操控及轉換為電腦系統記憶體或暫存器或其他此類的資訊存儲、傳送或顯示裝置內之其他類似地表示為物理量的資料。
本發明亦相關於用於執行本文中之操作的裝置。可針對所欲的用途來建構此裝置,或其可包括通用電腦,該通用電腦係由儲存於該電腦中的電腦程式選擇性啟動或重新配置。此類電腦程式可 儲存在電腦可讀取存儲媒體中,例如(但不限於)任何類型的碟片(包括軟碟、光碟、CD-ROM及磁光碟)、唯讀記憶體(ROM)、隨機存取記憶體(RAM)、EPROM、EEPROM、磁或光卡或適於儲存電子指令的任何類型媒體。
要了解的是,以上說明意欲為說明性的,而非限制性的。在閱讀及了解以上說明之後,本領域中具技藝者將理解許多其他實施方式。因此,將參照隨附的請求項來決定本發明的範圍以及如此請求項所賦予之等效物的整個範圍。
100‧‧‧晶圓製造系統110‧‧‧製造裝置112‧‧‧配方參數
114:腔室參數
116:量測值
118:敏感度值
119:顯著性值
120:度量衡裝置
130:計算裝置
140:資料儲存所/網路
200:敏感度模組
202:DOE分析器
204:配方分析器
208:使用者介面
230:資料儲存所
240:晶圓
250:位置
300:方法
301:方塊
303:方塊
305:方塊
307:方塊
309:方塊
311:方塊
313:方塊
400:方法
401:方塊
403:方塊
405:方塊
500:方法
501:方塊
502:方塊
503:方塊
600:2維(2D)等高線圖
700:3維(3D)等高線圖
800:電腦系統
802:處理裝置(處理器)
804:主記憶體
806:靜態記憶體
808:網路介面裝置
810:視訊顯示單元
812:文數字輸入裝置
814:游標控制裝置
816:訊號產生裝置
818:資料儲存裝置
822:指令
828:電腦可讀取存儲媒體
830:匯流排
將藉由下文提供的詳細說明及藉由本發明之各種實施例的隨附繪圖更完全地了解本發明的各種實施例。
依據本發明的一實施例,圖1繪示晶圓製造系統的示例性架構。
依據本發明的一實施例,圖2A繪示晶圓分析系統的示例性方塊圖。
依據本發明的一實施例,圖2B為示例性晶圓及相關聯之資料點的方塊圖。
依據本發明的一實施例,圖3為一流程圖,繪示用於針對製造程序逐點分析晶圓之DOE資料的方法。
依據本發明的一實施例,圖4為一流程圖,繪示用於決定與目標輪廓相關聯之晶圓配方的方法。
依據本發明的一實施例,圖5為一流程圖,繪示用於決定與來源腔室參數相關聯之目標腔室參數的方法。
依據本發明的一實施例,圖6為2維等高線圖的示例性示意表示。
依據本發明的一實施例,圖7為3維等高線圖的示例性示意表示。
圖8為可執行本文中所述之操作中之一或更多者的示例性電腦系統的方塊圖。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
(請換頁單獨記載) 無
300:方法
301:方塊
303:方塊
305:方塊
307:方塊
309:方塊
311:方塊
313:方塊

Claims (20)

  1. 一種用於晶圓逐點分析的方法,該方法包括以下步驟:接收與一第一程序配方相關聯之複數個配方參數的第一值;接收使用該第一程序配方來處理之一第一晶圓上之複數個位置的第一複數個量測;接收與一第二程序配方相關聯之該複數個配方參數的第二值;接收使用該第二程序配方來處理之一第二晶圓上之該複數個位置的第二複數個量測;藉由一處理裝置,將該複數個配方參數的該等第一值與該第一複數個量測相關聯,且將該複數個配方參數的該等第二值與該第二複數個量測相關聯;藉由該處理裝置,使用該複數個配方參數的該等第一值、該複數個配方參數的該等第二值、該第一複數個量測及該第二複數個量測來運算第一複數個敏感度值,該第一複數個敏感度值中的各者相對應於該複數個位置中的一者且表示對於該複數個配方參數中的一者的一敏感度;及 藉由該處理裝置,提供一晶圓的一圖形表示,該圖形表示顯示該複數個位置之該第一複數個敏感度值的至少一子集合。
  2. 如請求項1所述之方法,其中運算該第一複數個敏感度值之步驟包括以下步驟:基於該複數個配方參數的該等第一值、該複數個配方參數的該等第二值、該第一複數個量測及該第二複數個量測,執行一最小二乘方配合分析。
  3. 如請求項1所述之方法,其中該圖形表示為一三維等高線圖,且其中該三維等高線圖中的高度表示對於該複數個配方參數中的一個相對應的配方參數的相對應的敏感度。
  4. 如請求項1所述之方法,其中該圖形表示為一二維等高線圖,其中該二維等高線圖包括表示相對應的敏感度值的等高線。
  5. 如請求項1所述之方法,更包括以下步驟:接收識別該複數個配方參數之一配方參數的指令;及提供一更新的圖形表示,該更新的圖形表示顯示與該配方參數相關聯的該第一複數個敏感度值中的一第二子集合。
  6. 如請求項1所述之方法,更包括以下步驟: 接收一第三晶圓的一目標輪廓,其中該目標輪廓是基於該第三晶圓的目標厚度;基於該第一複數個敏感度值來分析該目標輪廓;及基於該基於該第一複數個敏感度值來分析該目標輪廓的步驟,決定與該目標輪廓相關聯的一新程序配方。
  7. 如請求項1所述之方法,更包括以下步驟:接收第二複數個敏感度值,其中該第二複數個敏感度值與一目標腔室相關聯;執行該第一複數個敏感度值及該第二複數個敏感度值的一第一分析;及基於該第一分析,更改該複數個配方參數的該等第二值,其中該複數個配方參數的該等第二值與該目標腔室相關聯。
  8. 一種用於晶圓逐點分析的系統,該系統包括:一記憶體;及一處理裝置,操作耦合至該記憶體,該處理裝置用以:接收與一第一程序配方相關聯之複數個配方參數的第一值;接收使用該第一程序配方來處理之一第一晶圓上之複數個位置的第一複數個量測; 接收與一第二程序配方相關聯之該複數個配方參數的第二值;接收使用該第二程序配方來處理之一第二晶圓上之該複數個位置的第二複數個量測;將該複數個配方參數的該等第一值與該第一複數個量測相關聯,且將該複數個配方參數的該等第二值與該第二複數個量測相關聯;使用該複數個配方參數的該等第一值、該複數個配方參數的該等第二值、該第一複數個量測及該第二複數個量測來運算第一複數個敏感度值,該第一複數個敏感度值中的各者相對應於該複數個位置中的一者且表示對於該複數個配方參數中的一者的一敏感度;及提供一晶圓的一圖形表示,該圖形表示顯示該複數個位置之該第一複數個敏感度值的至少一子集合。
  9. 如請求項8所述之系統,其中為了運算該第一複數個敏感度值,該處理裝置更用以:基於該複數個配方參數的該等第一值、該複數個配方參數的該等第二值、該第一複數個量測及該第二複數個量測,執行一最小二乘方配合分析。
  10. 如請求項8所述之系統,其中該圖形表示為一三維等高線圖,且其中該三維等高線圖中的高度表示對於該複數個配方參數中的一個相對應的配方參數的一相對應的敏感度。
  11. 如請求項8所述之系統,其中該圖形表示為一二維等高線圖,其中該二維等高線圖包括表示相對應的敏感度值的等高線。
  12. 如請求項9所述之系統,其中該處理裝置更用以:基於該第一複數個敏感度值來運算複數個顯著性值,其中該複數個顯著性值中的各者相對應於該複數個配方參數中的各者中的一者;及決定該複數個配方參數的一清單,其中該複數個配方參數中的各者基於相對應的顯著性值而在該清單中被排序。
  13. 如請求項8所述之系統,其中該處理裝置更用以:接收一第三晶圓的一目標輪廓,其中該目標輪廓是基於該第三晶圓的目標厚度;基於該第一複數個敏感度值來分析該目標輪廓;及基於基於該第一複數個敏感度值來分析該目標輪廓的步驟,決定與該目標輪廓相關聯的一新程序配方。
  14. 如請求項8所述之系統,其中該處理裝置更用以:接收第二複數個敏感度值,其中該第二複數個敏感度值與一目標腔室相關聯;執行該第一複數個敏感度值及該第二複數個敏感度值的一第一分析;及基於該第一分析,更改該複數個配方參數的該等第二值,其中該複數個配方參數的該等第二值與該目標腔室相關聯。
  15. 一非暫時性機器可讀取存儲媒體,包括指令,該等指令在由一處理裝置存取時使該處理裝置:接收與一第一程序配方相關聯之複數個配方參數的第一值;接收使用該第一程序配方來處理之一第一晶圓上之複數個位置的第一複數個量測;接收與一第二程序配方相關聯之該複數個配方參數的第二值;接收使用該第二程序配方來處理之一第二晶圓上之該複數個位置的第二複數個量測;將該複數個配方參數的該等第一值與該第一複數個量測相關聯,且將該複數個配方參數的該等第二值與該第二複數個量測相關聯; 使用該複數個配方參數的該等第一值、該複數個配方參數的該等第二值、該第一複數個量測及該第二複數個量測來運算第一複數個敏感度值,該第一複數個敏感度值中的各者相對應於該複數個位置中的一者且表示對於該複數個配方參數中的一者的一敏感度;及提供一晶圓的一圖形表示,該圖形表示顯示該複數個位置之該第一複數個敏感度值的至少一子集合。
  16. 如請求項15所述之非暫時性機器可讀取存儲媒體,其中為了運算該第一複數個敏感度值,該處理裝置更用以:基於該複數個配方參數的該等第一值、該複數個配方參數的該等第二值、該第一複數個量測及該第二複數個量測,執行一最小二乘方配合分析。
  17. 如請求項15所述之非暫時性機器可讀取存儲媒體,其中該圖形表示為一三維等高線圖,且其中該三維等高線圖中的高度表示對於該複數個配方參數中的一個相對應的配方參數的一相對應的敏感度。
  18. 如請求項15所述之非暫時性機器可讀取存儲媒體,其中該圖形表示為一二維等高線圖,其中該二維等高線圖包括表示相對應的敏感度值的等高線。
  19. 如請求項15所述之非暫時性機器可讀取存儲媒體,其中該處理裝置更用以: 接收一第三晶圓的一目標輪廓,其中該目標輪廓是基於該第三晶圓的目標厚度;基於該第一複數個敏感度值來分析該目標輪廓;及基於基於該第一複數個敏感度值來分析該目標輪廓的步驟,決定與該目標輪廓相關聯的一新程序配方。
  20. 如請求項15所述之非暫時性機器可讀取存儲媒體,其中該處理裝置更用以:接收第二複數個敏感度值,其中該第二複數個敏感度值與一目標腔室相關聯;分析該第一複數個敏感度值及該第二複數個敏感度值;及基於分析該第一複數個敏感度值及該第二複數個敏感度值的步驟,更改該複數個配方參數的該等第二值,其中該複數個配方參數的該等第二值與該目標腔室相關聯。
TW105136200A 2015-11-09 2016-11-08 用於晶圓逐點分析及呈現的方法、系統及非暫時性機器可讀取存儲媒體 TWI722041B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/936,559 2015-11-09
US14/936,559 US9934351B2 (en) 2015-11-09 2015-11-09 Wafer point by point analysis and data presentation

Publications (2)

Publication Number Publication Date
TW201727520A TW201727520A (zh) 2017-08-01
TWI722041B true TWI722041B (zh) 2021-03-21

Family

ID=58663847

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105136200A TWI722041B (zh) 2015-11-09 2016-11-08 用於晶圓逐點分析及呈現的方法、系統及非暫時性機器可讀取存儲媒體

Country Status (6)

Country Link
US (1) US9934351B2 (zh)
JP (1) JP6951333B2 (zh)
KR (1) KR102401565B1 (zh)
CN (1) CN108369916B (zh)
TW (1) TWI722041B (zh)
WO (1) WO2017083411A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170199511A1 (en) * 2016-01-12 2017-07-13 Globalfoundries Inc. Signal detection metholodogy for fabrication control
JP7014805B2 (ja) * 2017-08-29 2022-02-01 ギガフォトン株式会社 データ解析装置、半導体製造システム、データ解析方法、及び半導体製造方法
US10930531B2 (en) 2018-10-09 2021-02-23 Applied Materials, Inc. Adaptive control of wafer-to-wafer variability in device performance in advanced semiconductor processes
US10705514B2 (en) * 2018-10-09 2020-07-07 Applied Materials, Inc. Adaptive chamber matching in advanced semiconductor process control
US11157661B2 (en) * 2018-12-19 2021-10-26 Applied Materials, Inc. Process development visualization tool
US20220285231A1 (en) * 2019-07-12 2022-09-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element characteristic value estimation method and semiconductor element characteristic value estimation system
KR20220053603A (ko) * 2019-08-26 2022-04-29 도쿄엘렉트론가부시키가이샤 정보 처리 장치 및 기판 처리 방법
CN112735959B (zh) * 2019-10-28 2022-03-18 长鑫存储技术有限公司 晶圆检测方法及晶圆检测装置
US11761969B2 (en) * 2020-01-21 2023-09-19 Kla Corporation System and method for analyzing a sample with a dynamic recipe based on iterative experimentation and feedback
US11449026B2 (en) * 2020-05-27 2022-09-20 Applied Materials, Inc. Variable loop control feature
US11688616B2 (en) * 2020-07-22 2023-06-27 Applied Materials, Inc. Integrated substrate measurement system to improve manufacturing process performance
US11955358B2 (en) * 2021-09-24 2024-04-09 Applied Materials, Inc. Model-based failure mitigation for semiconductor processing systems
JP2023072178A (ja) * 2021-11-12 2023-05-24 東京エレクトロン株式会社 制御パラメータ設定方法、基板処理装置、及び記憶媒体
US12372930B2 (en) * 2021-12-01 2025-07-29 United Microelectronics Corp. Recipe verifying method, recipe verifying server, and smart manufacturing controlling system using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI250601B (en) * 2002-11-12 2006-03-01 Applied Materials Inc Method and apparatus employing integrated metrology for improved dielectric etch efficiency
CN100432879C (zh) * 2001-07-16 2008-11-12 应用材料有限公司 运行至运行控制与故障检测的集成
US7509186B2 (en) * 2006-11-07 2009-03-24 International Business Machines Corporation Method and system for reducing the variation in film thickness on a plurality of semiconductor wafers having multiple deposition paths in a semiconductor manufacturing process
TWI311161B (en) * 2004-07-14 2009-06-21 Tokyo Electron Limite Formula-based run-to-run control
US7877722B2 (en) * 2006-12-19 2011-01-25 Kla-Tencor Corp. Systems and methods for creating inspection recipes
US8102408B2 (en) * 2006-06-29 2012-01-24 Kla-Tencor Technologies Corp. Computer-implemented methods and systems for determining different process windows for a wafer printing process for different reticle designs
US20130011939A1 (en) * 2011-07-06 2013-01-10 Taiwan Semiconductor Manufacturing Company, Ltd. Techniques Providing Semiconductor Wafer Grouping In A Feed Forward Process

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4805089A (en) * 1985-04-30 1989-02-14 Prometrix Corporation Process control interface system for managing measurement data
JPH07122478A (ja) * 1993-10-27 1995-05-12 Sony Corp パターン投影方法
US6407396B1 (en) 1999-06-24 2002-06-18 International Business Machines Corporation Wafer metrology structure
JP2002202806A (ja) * 2000-12-28 2002-07-19 Mitsubishi Electric Corp 工程管理システム及び物品の製造方法
US7089075B2 (en) 2001-05-04 2006-08-08 Tokyo Electron Limited Systems and methods for metrology recipe and model generation
US6913938B2 (en) * 2001-06-19 2005-07-05 Applied Materials, Inc. Feedback control of plasma-enhanced chemical vapor deposition processes
TWI276162B (en) * 2002-06-05 2007-03-11 Tokyo Electron Ltd Multi-variable analysis model forming method of processing apparatus, multi-variable analysis method for processing apparatus, control apparatus of processing apparatus, and control system of processing apparatus
JP2005051210A (ja) * 2003-07-15 2005-02-24 Matsushita Electric Ind Co Ltd 面内分布データの圧縮法、面内分布の測定方法、面内分布の最適化方法、プロセス装置の管理方法及びプロセス管理方法
CN100479095C (zh) 2005-12-09 2009-04-15 北京北方微电子基地设备工艺研究中心有限责任公司 一种硅片刻蚀工艺处方的控制方法
US7283882B1 (en) 2006-02-15 2007-10-16 Kla-Tencor Technologies Corporation Automatic recipe validation
JP5341448B2 (ja) * 2007-09-25 2013-11-13 株式会社東芝 品質管理方法、半導体装置の製造方法及び品質管理システム
US8843875B2 (en) * 2012-05-08 2014-09-23 Kla-Tencor Corporation Measurement model optimization based on parameter variations across a wafer
US9158867B2 (en) * 2012-10-09 2015-10-13 Taiwan Semiconductor Manufacturing Co., Ltd. 2D/3D analysis for abnormal tools and stages diagnosis

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100432879C (zh) * 2001-07-16 2008-11-12 应用材料有限公司 运行至运行控制与故障检测的集成
TWI250601B (en) * 2002-11-12 2006-03-01 Applied Materials Inc Method and apparatus employing integrated metrology for improved dielectric etch efficiency
TWI311161B (en) * 2004-07-14 2009-06-21 Tokyo Electron Limite Formula-based run-to-run control
US8102408B2 (en) * 2006-06-29 2012-01-24 Kla-Tencor Technologies Corp. Computer-implemented methods and systems for determining different process windows for a wafer printing process for different reticle designs
US7509186B2 (en) * 2006-11-07 2009-03-24 International Business Machines Corporation Method and system for reducing the variation in film thickness on a plurality of semiconductor wafers having multiple deposition paths in a semiconductor manufacturing process
US7877722B2 (en) * 2006-12-19 2011-01-25 Kla-Tencor Corp. Systems and methods for creating inspection recipes
US20130011939A1 (en) * 2011-07-06 2013-01-10 Taiwan Semiconductor Manufacturing Company, Ltd. Techniques Providing Semiconductor Wafer Grouping In A Feed Forward Process

Also Published As

Publication number Publication date
JP6951333B2 (ja) 2021-10-20
JP2018537853A (ja) 2018-12-20
US9934351B2 (en) 2018-04-03
CN108369916B (zh) 2022-09-09
US20170132352A1 (en) 2017-05-11
WO2017083411A1 (en) 2017-05-18
CN108369916A (zh) 2018-08-03
KR20180069093A (ko) 2018-06-22
TW201727520A (zh) 2017-08-01
KR102401565B1 (ko) 2022-05-23

Similar Documents

Publication Publication Date Title
TWI722041B (zh) 用於晶圓逐點分析及呈現的方法、系統及非暫時性機器可讀取存儲媒體
JP7569444B2 (ja) ハイブリッド学習モデルを用いて性能を向上させた半導体処理ツール
TW202221580A (zh) 使用機器學習決定基板輪廓性質
US12429846B2 (en) Systems and methods for adaptive troubleshooting of semiconductor manufacturing equipment
JP2024510568A (ja) プロセスチャンバ健康状態モニタリングおよび仮想モデルを使用した診断のためのシステムおよび方法
US11862520B2 (en) Systems and methods for predicting film thickness of individual layers using virtual metrology
US11157661B2 (en) Process development visualization tool
TW202314559A (zh) 使用缺陷模型估計缺陷風險和最佳化製程配方
US12253476B2 (en) Multi-level RF pulse monitoring and RF pulsing parameter optimization at a manufacturing system
US20240152675A1 (en) Determining substrate characteristics by virtual substrate measurement
TW202544574A (zh) 用於半導體製造設備的自適應故障排除的系統和方法
JP2025186217A (ja) 製造システムにおけるマルチレベルrfパルス監視およびrfパルス化パラメータ最適化