TWI721582B - Digital fuzzy controller and control method based on adaptive network based fuzzy inference system for boost converter - Google Patents
Digital fuzzy controller and control method based on adaptive network based fuzzy inference system for boost converter Download PDFInfo
- Publication number
- TWI721582B TWI721582B TW108135560A TW108135560A TWI721582B TW I721582 B TWI721582 B TW I721582B TW 108135560 A TW108135560 A TW 108135560A TW 108135560 A TW108135560 A TW 108135560A TW I721582 B TWI721582 B TW I721582B
- Authority
- TW
- Taiwan
- Prior art keywords
- boost converter
- signal
- adaptive network
- digital
- fuzzy inference
- Prior art date
Links
Images
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
本發明是關於一種電力轉換器之數位模糊控制器及其控制方法,特別是關於一種基於適應性網路模糊推論系統之電力轉換器之數位模糊控制器及其控制方法。 The present invention relates to a digital fuzzy controller and a control method of a power converter, in particular to a digital fuzzy controller and a control method of the power converter based on an adaptive network fuzzy inference system.
直流-直流(DC-DC)轉換器或直流-交流(DC-AC)轉換器是電力轉換上相當重要的課題,且通常會藉由基本的連續電路來實施,其轉換的效率會由使用的控制方法所影響。通過模糊控制應用在直流轉交流之電力轉換器時,通常會浪費太多時間對輸入調整因子(input scaled factor)、模糊規則(fuzzy rule)及歸屬函數(membership function)去進行試誤學習,造成效能不佳。 Direct current-direct current (DC-DC) converter or direct current-alternating current (DC-AC) converter is a very important topic in power conversion, and it is usually implemented by a basic continuous circuit, and its conversion efficiency will be determined by the use of Affected by the control method. When applying fuzzy control to a DC-to-AC power converter, too much time is usually wasted for trial and error learning of input scaled factor, fuzzy rule, and membership function, resulting in Poor performance.
有鑑於此,如何建立一種提升效能的電力轉換器的控制器或控制方式,是本領域所重視的課題。因此,本發明之發明人思索並設計一種基於適應性網路模糊推論系統之電力轉換器之數位模糊控制器及其控制方法,針對現有技術之缺失加以改善,進而增進產業上之實施利用。 In view of this, how to build a controller or control method for power converters with improved performance is a topic that is emphasized in this field. Therefore, the inventor of the present invention considered and designed a digital fuzzy controller and its control method for a power converter based on an adaptive network fuzzy inference system to improve the lack of existing technology, thereby enhancing the industrial application.
有鑑於上述已知技藝之問題,本發明之目的就是在提供一種基於適應性網路模糊推論系統之電力轉換器之數位模糊控制器及其控制方法,以解決已知之連續控制訊號產生之問題。 In view of the above-mentioned known technical problems, the purpose of the present invention is to provide a digital fuzzy controller and control method of a power converter based on an adaptive network fuzzy inference system to solve the known problem of continuous control signal generation.
根據本發明之一目的,提出一種基於適應性網路模糊推論系統之電力轉換器之數位模糊控制器,其包含升壓轉換器以及數位電腦。升壓轉換器包含電感、切換開關及輸出電容,電感之一端電性連接輸入電源,切換開關連接於電感之另一端,另一端連接於輸出電容,通過連續訊號控制切換開關以將輸入電壓轉換為輸出電壓。數位電腦包含處理器及資料庫,資料庫接收連續訊號,並且依據連續訊號對輸出電壓及參考電壓進行取樣,將取樣訊號及對應之連續訊號儲存於資料庫。處理器存取資料庫以執行資料訓練程序,將取樣訊號及連續訊號通過適應性網路模糊推論演算法建立升壓轉換器控制模型,並通過升壓轉換器控制模型產生實際控制訊號,將實際控制訊號傳送至切換開關。 According to one objective of the present invention, a digital fuzzy controller for a power converter based on an adaptive network fuzzy inference system is proposed, which includes a boost converter and a digital computer. The boost converter includes an inductor, a switch and an output capacitor. One end of the inductor is electrically connected to the input power source, the switch is connected to the other end of the inductor, and the other end is connected to the output capacitor. The switch is controlled by a continuous signal to convert the input voltage into The output voltage. The digital computer includes a processor and a database. The database receives continuous signals, and samples the output voltage and reference voltage according to the continuous signals, and stores the sampled signals and corresponding continuous signals in the database. The processor accesses the database to execute the data training program. The sampled signal and continuous signal are used to establish a boost converter control model through an adaptive network fuzzy inference algorithm, and the actual control signal is generated through the boost converter control model. The control signal is sent to the switch.
較佳地,取樣訊號可包含輸出電壓與參考電壓之間之差異值以及差異值與前一連續訊號對應的差異值之間之變化值。 Preferably, the sampling signal may include the difference value between the output voltage and the reference voltage and the change value between the difference value and the difference value corresponding to the previous continuous signal.
較佳地,適應性網路模糊推論演算法可包含5層之定向節點運算,由差異值及變化值作為輸入參數,由連續訊號作為輸出結果,經由資料訓練程序產生升壓轉換器控制模型。 Preferably, the adaptive network fuzzy inference algorithm may include 5 layers of directional node operations, with difference values and change values as input parameters, continuous signals as output results, and a data training program to generate a boost converter control model.
較佳地,各該定向節點運算可包含具有節點參數集之運算及空參數集之運算。 Preferably, each of the directional node operations may include operations with a node parameter set and operations with an empty parameter set.
較佳地,升壓轉換器可包含直流-直流轉換器或直流-交流轉換器。 Preferably, the boost converter may include a DC-DC converter or a DC-AC converter.
根據本發明之另一目的,提出一種基於適應性網路模糊推論系統之電力轉換器之數位模糊控制方法,其包含以下步驟:設置升壓轉換器,升壓轉換器包含電感、切換開關及輸出電容,切換開關通過連續訊號控制以將輸入電壓轉換為輸出電壓;設置數位電腦,數位電腦包含處理器及資料庫,資料庫接收連續訊號,並將連續訊號儲存於資料庫;進行取樣程序,數位電腦依據連續訊號對輸出電壓及參考電壓進行取樣,將取樣訊號儲存於資料庫;進行資料訊練程序,處理器存取資料庫,將取樣訊號及連續訊號通過適應性網路模糊推論演算法建立升壓轉換器控制模型;以及數位電腦通過升壓轉換器控制模型產生實際控制訊號,並將實際控制訊號傳送至切換開關以控制升壓轉換器。 According to another object of the present invention, a digital fuzzy control method for a power converter based on an adaptive network fuzzy inference system is proposed, which includes the following steps: setting up a boost converter, which includes an inductor, a switch, and an output Capacitor and switch are controlled by continuous signal to convert input voltage to output voltage; set up a digital computer, which includes a processor and a database, the database receives the continuous signal, and stores the continuous signal in the database; performs sampling procedures, digital The computer samples the output voltage and reference voltage according to the continuous signal, and stores the sampled signal in the database; performs data training procedures, the processor accesses the database, and establishes the sampled signal and the continuous signal through an adaptive network fuzzy inference algorithm The boost converter control model; and the digital computer generates the actual control signal through the boost converter control model, and transmits the actual control signal to the switch to control the boost converter.
較佳地,取樣訊號可包含輸出電壓與參考電壓之間之差異值以及差異值與前一連續訊號對應的差異值之間之變化值。 Preferably, the sampling signal may include the difference value between the output voltage and the reference voltage and the change value between the difference value and the difference value corresponding to the previous continuous signal.
較佳地,適應性網路模糊推論演算法可包含5層之定向節點運算,由差異值及變化值作為輸入參數,由連續訊號作為輸出結果,經由資料訓練程序產生升壓轉換器控制模型。 Preferably, the adaptive network fuzzy inference algorithm may include 5 layers of directional node operations, with difference values and change values as input parameters, continuous signals as output results, and a data training program to generate a boost converter control model.
較佳地,各該定向節點運算可包含具有節點參數集之運算及空參數集之運算。 Preferably, each of the directional node operations may include operations with a node parameter set and operations with an empty parameter set.
較佳地,升壓轉換器可包含直流-直流轉換器或直流-交流轉換器。 Preferably, the boost converter may include a DC-DC converter or a DC-AC converter.
承上所述,依本發明之基於適應性網路模糊推論系統之電力轉換器之數位模糊控制器及其控制方法,其可具有一或多個下述優點: As mentioned above, according to the digital fuzzy controller and control method of the power converter based on the adaptive network fuzzy inference system of the present invention, it can have one or more of the following advantages:
(1)此基於適應性網路模糊推論系統之電力轉換器之數位模糊控制器及其控制方法能降低傳統花費大量時間對輸入調整因子、模糊規則及歸屬 函數去進行試誤學習的問題,提升控制的效能,以進一步提升電力轉換器之性能。 (1) The digital fuzzy controller and its control method of the power converter based on the adaptive network fuzzy inference system can reduce the traditional time spent on input adjustment factors, fuzzy rules and attribution Function to carry out trial-and-error learning problems, improve control efficiency, and further improve the performance of the power converter.
(2)此基於適應性網路模糊推論系統之電力轉換器之數位模糊控制器及其控制方法能夠採用適應性網路模糊推論系統的演算方式來訓練輸入及輸出之數據,將系統模型參數調整至最佳化,使得取得的控制訊號能準確達成所需輸出,降低操作誤差。 (2) The digital fuzzy controller of the power converter based on the adaptive network fuzzy inference system and its control method can use the calculation method of the adaptive network fuzzy inference system to train the input and output data, and adjust the system model parameters To optimize, the obtained control signal can accurately achieve the required output and reduce the operating error.
(3)此基於適應性網路模糊推論系統之電力轉換器之數位模糊控制器及其控制方法能運用在現有的電力轉換器上,無須重新設計複雜的判斷電路,減少開發及製作上之成本,進而降低生產成本。 (3) The digital fuzzy controller of the power converter based on the adaptive network fuzzy inference system and its control method can be applied to the existing power converter without the need to redesign the complex judgment circuit, reducing the cost of development and production , Thereby reducing production costs.
1:電力轉換器之數位模糊控制器 1: Digital fuzzy controller of power converter
10:升壓轉換器 10: Boost converter
20:數位電腦 20: digital computer
C:輸出電容 C: output capacitor
L:電感 L: inductance
R:電阻 R: resistance
T:切換開關 T: Toggle switch
Vin:輸入電源 Vin: input power
S1~S5:步驟 S1~S5: steps
第1圖係為本發明實施例之升壓轉換器之示意圖。 Figure 1 is a schematic diagram of a boost converter according to an embodiment of the invention.
第2圖係為本發明實施例之電力轉換器之數位模糊控制器之示意圖。 Figure 2 is a schematic diagram of the digital fuzzy controller of the power converter according to the embodiment of the present invention.
第3圖係為本發明實施例之適應性網路模糊推論演算法之示意圖。 Figure 3 is a schematic diagram of an adaptive network fuzzy inference algorithm according to an embodiment of the present invention.
第4圖係為本發明實施例之電力轉換器之數位模糊控制方法之流程圖。 Fig. 4 is a flowchart of a digital fuzzy control method for a power converter according to an embodiment of the present invention.
第5圖係為本發明實施例之直流-交流轉換器追蹤結果之示意圖。 FIG. 5 is a schematic diagram of the tracking result of the DC-AC converter according to the embodiment of the present invention.
第6圖係為本發明實施例之直流-直流轉換器追蹤結果之示意圖。 FIG. 6 is a schematic diagram of the tracking result of the DC-DC converter according to the embodiment of the present invention.
為利貴審查委員瞭解本發明之技術特徵、內容與優點及其所能達成之功效,茲將本發明配合附圖,並以實施例之表達形式詳細說明如下,而其中所使用之圖式,其主旨僅為示意及輔助說明書之用,未必為本發明實施後之真實比例與精準配置,故不應就所附之圖式的比例與配置關係解讀、侷限本發明於實際實施上的權利範圍,合先敘明。 In order to facilitate the reviewers to understand the technical features, content and advantages of the present invention and the effects that can be achieved, the present invention is described in detail with the accompanying drawings and in the form of embodiment expressions as follows. The drawings used therein are as follows: The subject matter is only for the purpose of illustration and auxiliary description, and may not be the true proportions and precise configuration after the implementation of the invention. Therefore, it should not be interpreted in terms of the proportions and configuration relationships of the accompanying drawings, and should not limit the scope of rights of the invention in actual implementation. Hexian stated.
請參閱第1圖,其係為本發明實施例之升壓轉換器之電路示意圖,如圖所示,升壓轉換器10包含電感L、切換開關T及輸出電容C,電感L之一端電性連接輸入電源Vin,切換開關T連接於電感L之另一端,另一端連接於輸出電容C。升壓轉換器10還可包含電阻R,串接於切換開關T與輸出電容C之接點。輸入電源V in 會提供已知的恆壓,使得電流通過電感L而具有電壓x 1c,經過切換開關T後使得輸出電容C具有輸出電壓x 2c。此時,通過提供至切換開關T的連續訊號u c,可以控制切換開關T在導通與斷開之間切換(u c [0 1]),以將輸入電壓轉換為輸出電壓。上述電感L與輸出電容C的電壓(x 1c、x 2c )滿足以下的方程式:
y c =x 2c (3) y c = x 2 c (3)
其中,u c為控制切換開關T的連續訊號,v in 為已知恆壓,R為電阻R,y c為升壓轉換器之輸出訊號。升壓轉換器10通過控制連續訊號u c,可以讓已知恆壓v in 對應轉換成所需的輸出電壓x 2c。至於如何建置控制切換開關T的控制器,則於以下實施例說明。
Wherein, u c for the continuous control signal of the switch T, v in a known constant pressure, R is the resistance R, y c is the output signal of the boost converter.
請參閱第2圖,其係為本發明實施例之電力轉換器之數位模糊控制器之示意圖,如圖所示,電力轉換器之數位模糊控制器1包含升壓轉換器10以
及數位電腦20。升壓轉換器10包含電感L、切換開關T及輸出電容C,其與前一實施例所述之升壓轉換器10相同,因此,不在重複描述相同內容。如前所述,升壓轉換器10之電容C的輸出電壓x 2c為輸出訊號,通過與參考電壓x r 的比較,可對輸出電壓x 2c及參考電壓x r 進行取樣,其中,取樣訊號可包含輸出電壓x 2c與參考電壓x r 之間之差異值(e(k)=x r -x 2c )以及差異值與前一連續訊號對應的差異值之間之變化值(△e(k)=e(k)-e(k-1))。
Please refer to FIG. 2, which is a schematic diagram of the digital fuzzy controller of the power converter according to the embodiment of the present invention. As shown in the figure, the digital
數位電腦20包含處理器及資料庫,資料庫可以接收並儲存控制切換開關T之連續訊號u c,並且依據連續訊號u c對輸出電壓x 2c及參考電壓x r 進行取樣,將取樣訊號(e(k)、△e(k))也同樣儲存於資料庫。處理器可以執行程式存取資料庫當中的資料來執行資料訓練程序,將取樣訊號當中差異值e(k)及變化值△e(k)作為輸入參數,將連續訊號u c作為對應輸出結果,經過資料取樣與學習訓練後,通過適應性網路模糊推論演算法建立升壓轉換器控制模型,數位電腦20通過升壓轉換器控制模型產生實際控制訊號u d,將實際控制訊號u d傳送至升壓轉換器10之切換開關T。以下將進一步說明適應性網路模糊推論演算法之網路節點分析架構。
請參閱第3圖,其係為本發明實施例之適應性網路模糊推論演算法之示意圖,如圖所示,適應性網路模糊推論系統30為5層之網路節點架構,其為定向節點運算方式的網路架構,通過這些節點當中可調整參數的修正,可使輸出的誤差降到最低。在本實施例中,適應性網路模糊推論系統30可假設有2個輸入(x,y)及一個輸出z=f,對應於前述輸入的差異值、變化值以及輸出的連續訊號,且包含兩個規則:規則1:If x is A 1 and y is B 1 then f 1=p 1 x+q 1 y+r 1 Please refer to Figure 3, which is a schematic diagram of the adaptive network fuzzy inference algorithm according to the embodiment of the present invention. As shown in the figure, the adaptive network
規則2:If x is A 2 and y is B 2 then f 2=p 2 x+q 2 y+r 2 Rule 2: If x is A 2 and y is B 2 then f 2 = p 2 x + q 2 y + r 2
上述規則中x與y是系統的兩個輸入值,A1、A2、B1與B2是語法符號,最後輸出值是,與是一個權重比例,與的調整就是由輸出評分的增減來告知輸入量的好與不好參考,透過基於適應性網路模糊推論系統的學習可以找出最好權重比例,本實施例是以此來獲得最近似原先的模型。 In the above rules, x and y are the two input values of the system, A 1 , A 2 , B 1 and B 2 are syntax symbols, and the final output value is , versus Is a weight ratio, versus The adjustment of is to inform the good and bad reference of the input amount by the increase or decrease of the output score. The best weight ratio can be found through the learning based on the adaptive network fuzzy inference system. This embodiment uses this to obtain the closest approximation to the original Model.
如圖所示,如果該層具有節點參數集,則以方框表示,即節點的輸出函數依據參數值改變,例如第1層及第4層節點。相對的,當該層為空參數集,則以圓圈表示,即節點的輸出函數是固定的,例如其他層。在本實施例中,第一層的節點輸出函數為,其中x為節點之輸入值,A i 為語言標籤(linguistic label),O i 1為A i 之隸屬函數(membership function)。第二層則是接收第一層之輸出,將其相乘後輸出,其滿足輸出規則為。第三層接收第二層之輸出後,計算其平均值後輸出,其滿足。第四層與第一層同樣接收參數集輸入,其輸出函數為。第五層則是將第四層的所有輸出加總,其輸出函數為。適應性網路模糊推論系統30整合了多種運算法則來訓練參數,藉由資料的訓練程序來建立控制模型,即升壓轉換器控制模型,使得控制誤差能降到最低。
As shown in the figure, if the layer has a node parameter set, it is represented by a box, that is, the output function of the node changes according to the parameter value, such as the first and fourth layer nodes. In contrast, when the layer is an empty parameter set, it is represented by a circle, that is, the output function of the node is fixed, such as other layers. In this embodiment, the node output function of the first layer is , Where x is the input value of the node, A i is a language label (linguistic label), O i 1 A i of the membership function (membership function). The second layer receives the output of the first layer, multiplies it and outputs it, and it satisfies the output rule as . After the third layer receives the output of the second layer, calculates its average value and outputs it, which satisfies . The fourth layer and the first layer also receive the parameter set input, and its output function is . The fifth layer is to add up all the outputs of the fourth layer, and its output function is . The adaptive network
請參閱第4圖,其係為本發明實施例之電力轉換器之數位模糊控制方法之流程圖。如圖所示,電力轉換器之數位模糊控制方法包含以下步驟(S1~S5): Please refer to FIG. 4, which is a flowchart of a digital fuzzy control method for a power converter according to an embodiment of the present invention. As shown in the figure, the digital fuzzy control method of the power converter includes the following steps (S1~S5):
步驟S1:設置升壓轉換器。升壓轉換器包含電感、切換開關及輸出電容,切換開關通過連續訊號控制以將輸入電壓轉換為輸出電壓。升壓轉換
器之設置可請參閱第1圖所述之實施例,原本升壓轉換器10的控制模型可為x c =f(x c )+g(x c )u c (t),其中在時間t時的控制訊號,K為正的常數,,x 1r及x 2r分別為電感電流的穩定狀態值及電容電壓值,x 2c為可量測的輸出訊號。
Step S1: Set up the boost converter. The boost converter includes an inductor, a switch and an output capacitor. The switch is controlled by a continuous signal to convert the input voltage into an output voltage. For the configuration of the boost converter, please refer to the embodiment described in Figure 1. The original control model of the
步驟S2:設置數位電腦。數位電腦包含處理器及資料庫,資料庫接收連續訊號,並將連續訊號儲存於資料庫。請重新參閱第2圖,升壓轉換器10將控制訊號u c(t)傳送至數位電腦,將其儲存於資料庫當中。
Step S2: Set up the digital computer. The digital computer includes a processor and a database. The database receives continuous signals and stores the continuous signals in the database. Please refer to Figure 2 again. The
步驟S3:進行取樣程序。數位電腦依據連續訊號對輸出電壓及參考電壓進行取樣,將取樣訊號儲存於資料庫。針對不同時間t的控制訊號,針對輸出訊號的電壓進行取樣,藉由輸出電壓與參考電壓之間之差異值e(k)以及差異值與前一連續訊號對應的差異值之間之變化值△e(k)作為取樣訊號,將取樣訊號同樣儲存於資料庫當中。 Step S3: Perform a sampling procedure. The digital computer samples the output voltage and reference voltage according to the continuous signal, and stores the sampled signal in the database. For the control signal at different time t , the output signal voltage is sampled, and the difference value e ( k ) between the output voltage and the reference voltage and the change value △ between the difference value and the difference value corresponding to the previous continuous signal e ( k ) is used as the sampling signal, and the sampling signal is also stored in the database.
步驟S4:進行資料訊練程序。處理器能執行程式來存取資料庫,藉由指令執行將取樣訊號及連續訊號通過上述適應性網路模糊推論演算法進行運算及訓練,修正升壓轉換器的控制訊號u d (t)=FLC(e(k),△e(k))。 Step S4: Carry out the data training procedure. The processor can execute the program to access the database, and through the command execution, the sampled signal and the continuous signal are calculated and trained through the above-mentioned adaptive network fuzzy inference algorithm, and the control signal u d ( t ) of the boost converter is corrected. FLC ( e ( k ) , △ e ( k )).
步驟S5:建立升壓轉換器控制模型。數位電腦通過升壓轉換器控制模型產生實際控制訊號,並將實際控制訊號傳送至切換開關以控制升壓轉換器。將修正升壓轉換器的控制訊號用來置換連續訊號u c(t),建立新的升壓轉換器控制模型x d=f(x d )+g(x d )u d (t),其中電感L與輸出電容C的電壓分別表示如下:
y d =x 2d (6) y d = x 2 d (6)
升壓轉換器通過控制連續訊號u d,可以讓已知恆壓v in 對應轉換成所需的輸出電壓x 2d,使其幾乎等於參考電壓x r。 By controlling the boost converter continuous signal u d, that allows a constant voltage v in known converted into a corresponding desired output voltage x 2d, that it is almost equal to the reference voltage x r.
請參閱第5圖,其係為本發明實施例之直流-交流轉換器追蹤結果之示意圖。如圖所示,其為直流轉交流之轉換器之追蹤之實施例,追蹤正弦參考訊號xr(t)=100+30 sin(20πt)於負載為220Ω的升壓轉換器上,其中直流電源供應為48V,切換開關的頻率為30kHz,電感為12mH,電容為15μF。通過上述的資料訓練程序後,實際控制訊號輸入與已知連續控制訊號輸入的比較如圖所繪示,其控制訊號幾乎完全相同。 Please refer to FIG. 5, which is a schematic diagram of the tracking result of the DC-AC converter according to the embodiment of the present invention. As shown in the figure, it is an embodiment of the tracking of a DC-to-AC converter, tracking the sinusoidal reference signal x r (t)=100+30 sin(20πt) is applied to a boost converter with a load of 220Ω, where the DC power supply is 48V, the frequency of the switch is 30kHz, the inductance is 12mH, and the capacitance is 15μF. After the above-mentioned data training procedure, the comparison between the actual control signal input and the known continuous control signal input is shown in the figure, and the control signals are almost identical.
請參閱第6圖,其係為本發明實施例之直流-直流轉換器追蹤結果之示意圖。如圖所示,其為直流轉直流之轉換器之追蹤之實施例,追蹤常數參考訊號xr(t)=100於負載為220Ω的升壓轉換器上,其中直流電源供應為48V,切換開關的頻率為30kHz,電感為12mH,電容為15μF。通過上述的資料訓練程序後,實際控制訊號輸入與已知連續控制訊號輸入的比較如圖所繪示,其控制訊號幾乎完全相同。 Please refer to FIG. 6, which is a schematic diagram of the tracking result of the DC-DC converter according to the embodiment of the present invention. As shown in the figure, it is an embodiment of the tracking of a DC-to-DC converter. The tracking constant reference signal x r (t)=100 is applied to a boost converter with a load of 220Ω, where the DC power supply is 48V, and the switch is switched The frequency is 30kHz, the inductance is 12mH, and the capacitance is 15μF. After the above-mentioned data training procedure, the comparison between the actual control signal input and the known continuous control signal input is shown in the figure, and the control signals are almost identical.
由上述模擬結果可以看出僅利用可得的輸出訊號,即能達成與已知連續訊號控制相同之效果,且可適用於直流-直流轉換器或直流-交流轉換器。 From the above simulation results, it can be seen that only the available output signal can achieve the same effect as the known continuous signal control, and it can be applied to a DC-DC converter or a DC-AC converter.
以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。 The above description is only illustrative, and not restrictive. Any equivalent modifications or alterations that do not depart from the spirit and scope of the present invention should be included in the scope of the appended patent application.
1:電力轉換器之數位模糊控制器 1: Digital fuzzy controller of power converter
10:升壓轉換器 10: Boost converter
20:數位電腦 20: digital computer
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW108135560A TWI721582B (en) | 2019-10-01 | 2019-10-01 | Digital fuzzy controller and control method based on adaptive network based fuzzy inference system for boost converter |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW108135560A TWI721582B (en) | 2019-10-01 | 2019-10-01 | Digital fuzzy controller and control method based on adaptive network based fuzzy inference system for boost converter |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI721582B true TWI721582B (en) | 2021-03-11 |
| TW202116004A TW202116004A (en) | 2021-04-16 |
Family
ID=76035913
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW108135560A TWI721582B (en) | 2019-10-01 | 2019-10-01 | Digital fuzzy controller and control method based on adaptive network based fuzzy inference system for boost converter |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI721582B (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW200934197A (en) * | 2008-01-31 | 2009-08-01 | Univ Yuan Ze | Real-time control system of dynamic petri recurrent-fuzzy-neural-network and its method |
| TW201203137A (en) * | 2010-07-09 | 2012-01-16 | Univ Nat Taipei Technology | Data correction method for remote terminal unit |
| US9590425B2 (en) * | 2013-12-30 | 2017-03-07 | King Fahd University Of Petroleum And Minerals | Parking lot shade for generating electricity having a photovoltaic system that tracks a maximum power point |
| TW201719315A (en) * | 2015-11-17 | 2017-06-01 | 遠東科技大學 | DC boost converter controlled system |
-
2019
- 2019-10-01 TW TW108135560A patent/TWI721582B/en not_active IP Right Cessation
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW200934197A (en) * | 2008-01-31 | 2009-08-01 | Univ Yuan Ze | Real-time control system of dynamic petri recurrent-fuzzy-neural-network and its method |
| TW201203137A (en) * | 2010-07-09 | 2012-01-16 | Univ Nat Taipei Technology | Data correction method for remote terminal unit |
| US9590425B2 (en) * | 2013-12-30 | 2017-03-07 | King Fahd University Of Petroleum And Minerals | Parking lot shade for generating electricity having a photovoltaic system that tracks a maximum power point |
| TW201719315A (en) * | 2015-11-17 | 2017-06-01 | 遠東科技大學 | DC boost converter controlled system |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202116004A (en) | 2021-04-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN114679067B (en) | Predictive control method and predictive control device for isolated double-active-bridge direct-current converter | |
| CN108494259B (en) | A control method for a series-parallel combination system of a high-voltage DC power supply | |
| CN105048821A (en) | Load current feedforward control method of increasing full-bridge isolation DC-DC convertor output voltage dynamic response | |
| CN109217664B (en) | Fuzzy PI control method of boost circuit analog load unit | |
| CN114221553A (en) | DAB converter control method and system based on model predictive control | |
| Acikgoz et al. | Experimental evaluation of dynamic performance of three‐phase AC–DC PWM rectifier with PD‐type‐2 fuzzy neural network controller | |
| WO2024159591A1 (en) | Method for estimating leakage inductance parameter of high-frequency transformer of dab converter | |
| Deng et al. | Neural controller for UPS inverters based on B-spline network | |
| CN117097189A (en) | Control method of photovoltaic inverter | |
| CN108539978B (en) | A kind of adaptive control system of Boost type DC-DC converter | |
| TWI721582B (en) | Digital fuzzy controller and control method based on adaptive network based fuzzy inference system for boost converter | |
| CN110212800B (en) | Modular multilevel converter universal control method based on model predictive control | |
| CN105517278A (en) | Control method and apparatus of filament currents | |
| CN106374452B (en) | A feedback passive control method of DC microgrid converter | |
| CN118381337B (en) | A preset time feedback controller, control system and control method of a dual active bridge circuit | |
| CN117614270B (en) | Buck converter conduction mode switching control method based on neural network | |
| CN112072893A (en) | Power electronic converter control method with synthesized variable feedback | |
| CN117155081A (en) | Double-vector model predictive control method applied to three-phase full-bridge inverter | |
| Xia et al. | Model predictive control of superbuck converter based on digital triplet | |
| CN116526842A (en) | A Model Predictive Control Method Based on Improved Cost Function of Three-level Bidirectional DC-DC FC Converter | |
| Mishra et al. | Fuzzy-controlled power factor correction using single ended primary inductance converter | |
| CN108649796A (en) | A kind of More General Form control method for noninverting One Buck-Boost converter body | |
| CN106130030B (en) | A kind of reactive power control method and device of four-quadrant current source converter (csc) | |
| CN116455184A (en) | Variable frequency adjustment control method, device and system | |
| CN112684698B (en) | A Fractional-Order Fuzzy PID Control Method for DC/DC Converters |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| MM4A | Annulment or lapse of patent due to non-payment of fees |