[go: up one dir, main page]

TWI719843B - Method for generating model for estimating bone density, method for estimating bone density and electronic system - Google Patents

Method for generating model for estimating bone density, method for estimating bone density and electronic system Download PDF

Info

Publication number
TWI719843B
TWI719843B TW109106388A TW109106388A TWI719843B TW I719843 B TWI719843 B TW I719843B TW 109106388 A TW109106388 A TW 109106388A TW 109106388 A TW109106388 A TW 109106388A TW I719843 B TWI719843 B TW I719843B
Authority
TW
Taiwan
Prior art keywords
image data
predetermined
bone density
processing unit
data
Prior art date
Application number
TW109106388A
Other languages
Chinese (zh)
Other versions
TW202131863A (en
Inventor
裴育晟
范佐搖
陳嶽鵬
何長軒
郭昶甫
戴聞
翁唯城
Original Assignee
長庚醫療財團法人林口長庚紀念醫院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 長庚醫療財團法人林口長庚紀念醫院 filed Critical 長庚醫療財團法人林口長庚紀念醫院
Priority to TW109106388A priority Critical patent/TWI719843B/en
Application granted granted Critical
Publication of TWI719843B publication Critical patent/TWI719843B/en
Publication of TW202131863A publication Critical patent/TW202131863A/en

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Image Analysis (AREA)

Abstract

一種產生用於估測骨質密度的模型的方法,藉由一電子系統實施,該電子系統包含一X光機、一雙能X光吸收儀及一處理單元,該方法包含:該X光機拍攝多位參考患者的一預定骨骼以產生多筆訓練影像資料;該雙能X光吸收儀檢測該等參考患者的該預定骨骼以產生多筆骨質密度資料;及該處理單元根據該等訓練影像資料及該等骨質密度資料,訓練一第一卷積神經網路模型而產生一估測模型,該估測模型用於根據一由該X光機拍攝一目標患者的該預定骨骼所產生的待分析影像資料估測該目標患者的骨質密度。A method for generating a model for estimating bone density is implemented by an electronic system, the electronic system includes an X-ray machine, a dual-energy X-ray absorber and a processing unit, the method includes: the X-ray machine photographs Multiple reference patients’ predetermined bones to generate multiple training image data; the dual-energy X-ray absorber detects the predetermined bones of the reference patients to generate multiple bone density data; and the processing unit is based on the training image data And the bone density data, train a first convolutional neural network model to generate an estimation model, the estimation model is used for the X-ray machine to photograph the predetermined bone of a target patient to be analyzed The imaging data estimates the bone density of the target patient.

Description

產生用於估測骨質密度的模型的方法、估測骨質密度的方法及電子系統Method for generating model for estimating bone density, method for estimating bone density, and electronic system

本發明是有關於一種產生模型的方法,特別是指一種產生用於估測骨質密度的模型的方法。本發明還有關於一種估測骨質密度的方法及一種電子系統。The present invention relates to a method for generating a model, in particular to a method for generating a model for estimating bone density. The invention also relates to a method for estimating bone density and an electronic system.

骨質疏鬆症(Osteoporosis)所造成的股骨頸(Femoral neck)骨折死亡率近20%。造成骨質疏鬆的成因很多,包括藥物、飲食、等生活習慣等,並且好發於高齡族群。目前標準的骨質密度檢查,是使用雙能X光吸收儀(Dual energy x-ray absorptiometry,DEXA)進行詳細檢查。Osteoporosis (Femoral neck) fractures caused by osteoporosis has a mortality rate of nearly 20%. There are many causes of osteoporosis, including drugs, diet, and other lifestyle habits, and it is more common in the elderly. The current standard bone density examination is a detailed examination using dual energy x-ray absorptiometry (DEXA).

藉由雙能X光吸收儀所產生之骨礦物質含量(Bone mineral content,BMC)、骨質密度(Bone mineral density,BMD)、T評分(T-score)及Z評分(Z-score)等參數數值,輔助醫師進行骨質疏鬆的診斷。此項檢驗病患需承受輻射劑量之風險,若病患先前已接受一般骨盆X光檢查(Pelvis x-ray),則有二次輻射劑量承受之風險。如何改善現有技術以降低病患承受輻射劑量之風險,是本發明進一步要探討的主題。Bone mineral content (BMC), bone mineral density (BMD), T-score (T-score) and Z-score (Z-score) and other parameters generated by dual-energy X-ray absorbance Numerical value to assist physicians in the diagnosis of osteoporosis. In this test, the patient has to bear the risk of radiation dose. If the patient has previously received a general pelvis x-ray (Pelvis x-ray), there is a risk of a second radiation dose. How to improve the existing technology to reduce the risk of patients receiving radiation dose is the subject of the present invention.

因此,本發明的目的,即在提供一種產生用於估測骨質密度的模型的方法。Therefore, the purpose of the present invention is to provide a method for generating a model for estimating bone density.

本發明的另一目的在於提供一種估測骨質密度的方法。Another object of the present invention is to provide a method for estimating bone density.

本發明的又一目的在於提供一種電子系統。Another object of the present invention is to provide an electronic system.

於是,本發明產生用於估測骨質密度的模型的方法,藉由一電子系統實施,該電子系統包含一X光機、一雙能X光吸收儀及一處理單元,該方法包含:該X光機拍攝多位參考患者的一預定骨骼以產生多筆訓練影像資料;該雙能X光吸收儀檢測該等參考患者的該預定骨骼以產生多筆骨質密度資料;及該處理單元根據該等訓練影像資料及該等骨質密度資料,訓練一第一卷積神經網路模型而產生一估測模型,該估測模型用於根據一由該X光機拍攝一目標患者的該預定骨骼所產生的待分析影像資料估測該目標患者的骨質密度。Therefore, the method of the present invention for generating a model for estimating bone density is implemented by an electronic system that includes an X-ray machine, a dual-energy X-ray absorber, and a processing unit, and the method includes: the X The optical machine photographs a predetermined bone of multiple reference patients to generate multiple training image data; the dual-energy X-ray absorber detects the predetermined bones of the reference patients to generate multiple bone density data; and the processing unit generates multiple bone density data according to the predetermined bones of the reference patients. Training image data and the bone density data, training a first convolutional neural network model to generate an estimation model, the estimation model is used for the X-ray machine to shoot a target patient's predetermined bone generated The image data to be analyzed estimates the bone density of the target patient.

在一些實施態樣中,該電子系統還包含一輸入單元。該方法在產生該估測模型之前且在產生該等訓練影像資料之後還包含:該處理單元針對每一訓練影像資料,根據經由該輸入單元接收到的一圈選指令於該訓練影像資料圈選出該預定骨骼的影像;及該處理單元針對每一訓練影像資料進行一預定影像處理,該預定影像處理包含將該訓練影像資料中未被圈選的影像去除。In some embodiments, the electronic system further includes an input unit. Before generating the estimation model and after generating the training image data, the method further includes: the processing unit, for each training image data, selects a circle from the training image data according to a circle selection command received through the input unit The image of the predetermined skeleton; and the processing unit performs a predetermined image processing for each training image data, and the predetermined image processing includes removing unselected images from the training image data.

在產生該估測模型的步驟中,該處理單元是根據進行過該預定影像處理的該等訓練影像資料及該等骨質密度資料,訓練該第一卷積神經網路模型而產生該估測模型。In the step of generating the estimation model, the processing unit trains the first convolutional neural network model to generate the estimation model based on the training image data and the bone density data subjected to the predetermined image processing .

在一些實施態樣中,在進行該預定影像處理的步驟之後還包含:該處理單元根據進行過該預定影像處理的該等訓練影像資料,訓練一第二卷積神經網路模型而產生一圈選模型,該圈選模型用於根據該待分析影像資料圈選出該預定骨骼的影像。In some implementations, after the step of performing the predetermined image processing, the method further includes: the processing unit trains a second convolutional neural network model to generate a circle based on the training image data subjected to the predetermined image processing A selection model, and the circle selection model is used to circle out the image of the predetermined bone according to the image data to be analyzed.

在一些實施態樣中,該預定骨骼為一骨盆的一髖關節、一腰椎、一饒骨、一尺骨或一股骨。In some embodiments, the predetermined bone is a hip joint of a pelvis, a lumbar spine, a pelvis, a ulna, or a femur.

本發明估測骨質密度的方法,藉由一電子系統實施,該電子系統包含一X光機及一處理單元,該方法包含:該X光機拍攝一目標患者的一預定骨骼以產生一待分析影像資料;及該處理單元根據該待分析影像資料,使用該估測模型估測該目標患者的骨質密度以產生一骨質密度估測資料。The method for estimating bone density of the present invention is implemented by an electronic system. The electronic system includes an X-ray machine and a processing unit. The method includes: the X-ray machine photographs a predetermined bone of a target patient to generate a to-be-analyzed Image data; and the processing unit uses the estimation model to estimate the bone density of the target patient based on the image data to be analyzed to generate a bone density estimation data.

在一些實施態樣中,該電子系統還包含一輸出單元。該方法於產生該骨質密度估測資料之後還包含:該處理單元判斷該骨質密度估測資料是否符合一預定警示條件;及當該處理單元判斷該骨質密度估測資料符合該預定警示條件,該處理單元經由該輸出單元輸出一警示訊息。In some embodiments, the electronic system further includes an output unit. After generating the bone density estimation data, the method further includes: the processing unit determines whether the bone density estimation data meets a predetermined warning condition; and when the processing unit determines that the bone density estimation data meets the predetermined warning condition, the The processing unit outputs a warning message through the output unit.

在一些實施態樣中,該預定警示條件包含該骨質密度估測資料對應的一T評分小於一T評分門檻值。In some implementation aspects, the predetermined warning condition includes that a T score corresponding to the bone density estimation data is less than a T score threshold.

在一些實施態樣中,該預定警示條件包含該骨質密度估測資料對應的一Z評分小於一Z評分門檻值。In some implementation aspects, the predetermined warning condition includes that a Z score corresponding to the bone density estimation data is less than a Z score threshold.

在一些實施態樣中,於產生該骨質密度估測資料之前且於產生該待分析影像資料之後還包含:該處理單元根據該待分析影像資料,使用該圈選模型圈選出該待分析影像資料中該預定骨骼的影像;及該處理單元對該待分析影像資料進行一預定影像處理,該預定影像處理包含將該待分析影像資料中未被圈選的影像去除。In some implementation aspects, before generating the bone density estimation data and after generating the image data to be analyzed, the method further includes: the processing unit selects the image data to be analyzed by using the circle selection model according to the image data to be analyzed And the processing unit performs a predetermined image processing on the image data to be analyzed, and the predetermined image processing includes removing unselected images from the image data to be analyzed.

在產生該骨質密度估測資料的步驟中,該處理單元是根據進行過該預定影像處理的該待分析影像資料,使用該估測模型估測該目標患者的骨質密度以產生該骨質密度估測資料。In the step of generating the bone density estimation data, the processing unit uses the estimation model to estimate the bone density of the target patient based on the image data to be analyzed that has undergone the predetermined image processing to generate the bone density estimation data.

本發明電子系統,包含一X光機、一雙能X光吸收儀及一處理單元。該X光機拍攝多位參考患者的一預定骨骼以產生多筆訓練影像資料。該雙能X光吸收儀檢測該等參考患者的該預定骨骼以產生多筆骨質密度資料。該處理單元根據該等訓練影像資料及該等骨質密度資料,訓練一第一卷積神經網路模型而產生一估測模型,該估測模型用於根據一由該X光機拍攝一目標患者的該預定骨骼所產生的待分析影像資料估測該目標患者的骨質密度。The electronic system of the present invention includes an X-ray machine, a dual-energy X-ray absorber and a processing unit. The X-ray machine photographs a predetermined bone of a plurality of reference patients to generate a plurality of training image data. The dual-energy X-ray absorber detects the predetermined bones of the reference patients to generate multiple bone density data. The processing unit trains a first convolutional neural network model based on the training image data and the bone density data to generate an estimation model. The estimation model is used according to a target patient photographed by the X-ray machine The to-be-analyzed image data generated by the predetermined bone estimates the bone density of the target patient.

本發明電子系統,包含一X光機及一處理單元。該X光機拍攝一目標患者的一預定骨骼以產生一待分析影像資料。該處理單元根據該待分析影像資料,使用該估測模型估測該目標患者的骨質密度以產生一骨質密度估測資料。The electronic system of the present invention includes an X-ray machine and a processing unit. The X-ray machine photographs a predetermined bone of a target patient to generate an image data to be analyzed. The processing unit uses the estimation model to estimate the bone density of the target patient according to the image data to be analyzed to generate a bone density estimation data.

本發明的功效在於:藉由該處理單元根據該等訓練影像資料及該等骨質密度資料訓練該第一卷積神經網路模型而產生該估測模型,使得該目標患者只要被該X光機拍攝過就可以根據該X光機產生的該待分析影像資料產生該骨質密度估測資料,不需再透過該雙能X光吸收儀檢測,從而降低病患承受輻射劑量之風險,以及醫療單位對於該雙能X光吸收儀這種昂貴儀器的依賴程度,此外,本發明藉由該處理單元針對每一訓練影像資料及該待分析影像資料進行該預定影像處理,以透過限制識別部位而降低雜訊干擾,從而還能進一步提高估測的準確率。The effect of the present invention is that the processing unit trains the first convolutional neural network model according to the training image data and the bone density data to generate the estimation model, so that the target patient only needs to be subjected to the X-ray machine After shooting, the bone density estimation data can be generated based on the image data to be analyzed generated by the X-ray machine, without the need for the dual-energy X-ray absorber to detect, thereby reducing the risk of patients receiving radiation doses, and medical units The degree of reliance on expensive instruments such as the dual-energy X-ray absorber. In addition, the present invention uses the processing unit to perform the predetermined image processing for each training image data and the image data to be analyzed, so as to reduce the recognition by restricting the recognition part. Noise interference can further improve the accuracy of the estimation.

在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that in the following description, similar elements are denoted by the same numbers.

參閱圖1,本發明的一第一實施例,藉由一電子系統100實施,該電子系統100包含一X光機1、一雙能X光吸收儀2(Dual energy x-ray absorptiometry,DEXA)、一輸入單元3、一輸出單元4及一處理單元5。該輸入單元3、該輸出單元4及該處理單元5可以是藉由一個人電腦的鍵盤/滑鼠、螢幕及主機實施。Referring to FIG. 1, a first embodiment of the present invention is implemented by an electronic system 100. The electronic system 100 includes an X-ray machine 1 and a dual energy X-ray absorptiometry (DEXA). , An input unit 3, an output unit 4 and a processing unit 5. The input unit 3, the output unit 4, and the processing unit 5 can be implemented by a keyboard/mouse, a screen, and a host of a personal computer.

參閱圖1及圖2,以下說明本發明產生用於估測骨質密度的模型的方法的步驟。首先,如步驟S01所示,該X光機1拍攝多位參考患者的一預定骨骼以產生多筆訓練影像資料。在本實施例中,該預定骨骼為一骨盆(Pelvis)的一髖關節(Hip),但不以此為限,在其他實施態樣中,該預定骨骼也可以例如是腰椎、饒骨、尺骨或股骨。1 and 2, the steps of the method for generating a model for estimating bone density of the present invention are described below. First, as shown in step S01, the X-ray machine 1 photographs a predetermined bone of a plurality of reference patients to generate a plurality of training image data. In this embodiment, the predetermined bone is a hip joint (Hip) of a pelvis (Pelvis), but it is not limited to this. In other embodiments, the predetermined bone may also be, for example, the lumbar spine, the bone, and the ulna. Or femur.

接著,如步驟S02所示,該雙能X光吸收儀2檢測該等參考患者的該預定骨骼以產生多筆骨質密度(Bone mineral density,BMD)資料。在本實施例,該X光機1及該雙能X光吸收儀2所產生的資料皆是16位元之Dicom(Digital Imaging and Communications in Medicine)格式(位元數不以16位元為限)。在本實施例,該等訓練影像資料及該等骨質密度資料的資料筆數分別例如是3600筆,但不以此為限。步驟S01與步驟S02的先後順序不以本實施例舉例的順序為限。Then, as shown in step S02, the dual-energy X-ray absorber 2 detects the predetermined bones of the reference patients to generate multiple bone mineral density (BMD) data. In this embodiment, the data generated by the X-ray machine 1 and the dual-energy X-ray absorber 2 are both in 16-bit Dicom (Digital Imaging and Communications in Medicine) format (the number of bits is not limited to 16 bits) ). In this embodiment, the number of data items of the training image data and the bone density data is, for example, 3,600, but it is not limited thereto. The sequence of step S01 and step S02 is not limited to the sequence exemplified in this embodiment.

接著,如步驟S03所示,該處理單元5針對每一訓練影像資料,根據經由該輸入單元3接收到的一圈選指令於該訓練影像資料圈選出該預定骨骼的影像。在本實施例中,是由專業的醫療人員輸入該圈選指令而於該訓練影像資料圈選出該預定骨骼的影像。Then, as shown in step S03, for each training image data, the processing unit 5 selects the image of the predetermined bone in the training image data according to a circle selection command received through the input unit 3. In this embodiment, a professional medical staff inputs the circle selection instruction to circle the image of the predetermined bone in the training image data.

接著,如步驟S04所示,該處理單元5針對每一訓練影像資料進行一預定影像處理,該預定影像處理包含將該訓練影像資料中未被圈選的影像去除。在本實施例中,該預定影像處理還包含裁切、旋轉、亮度調整、對比調整等。Then, as shown in step S04, the processing unit 5 performs a predetermined image processing for each training image data, and the predetermined image processing includes removing unselected images from the training image data. In this embodiment, the predetermined image processing further includes cropping, rotation, brightness adjustment, contrast adjustment, and so on.

接著,如步驟S05所示,該處理單元5根據進行過該預定影像處理的該等訓練影像資料及該等骨質密度資料,訓練一第一卷積神經網路(Convolutional Neural Network,CNN)模型而產生一估測模型。在本實施例中,該第一卷積神經網路模型是名稱為MobleNetv2之模型,其中每次訓練結果會藉由向後傳遞(Back-propagation)更新參數,但該第一卷積神經網路模型不以MobleNetv2為限。補充說明的是,若該雙能X光吸收儀2產生的該等骨質密度資料是呈現在影像檔中,該處理單元5在執行步驟S05的訓練步驟前需要透過例如光學字元辨識技術(OCR)自該雙能X光吸收儀2所產生的影像檔中擷取出該等骨質密度資料,再根據文字化的該等骨質密度資料執行步驟S05。但若該雙能X光吸收儀2產生的該等骨質密度資料就是文字格式,則該處理單元5可以直接執行步驟S05而不需執行文字擷取。Next, as shown in step S05, the processing unit 5 trains a first Convolutional Neural Network (CNN) model based on the training image data and the bone density data that have undergone the predetermined image processing. Generate an estimation model. In this embodiment, the first convolutional neural network model is a model named MobleNetv2, in which each training result will update the parameters through back-propagation, but the first convolutional neural network model Not limited to MobleNetv2. It is supplemented that if the bone density data generated by the dual-energy X-ray absorber 2 is presented in an image file, the processing unit 5 needs to pass, for example, optical character recognition technology (OCR) before performing the training step of step S05. ) Extract the bone density data from the image file generated by the dual-energy X-ray absorber 2, and then execute step S05 according to the textualized bone density data. However, if the bone density data generated by the dual-energy X-ray absorber 2 is in text format, the processing unit 5 can directly execute step S05 without performing text extraction.

接著,如步驟S06所示,該處理單元5根據進行過該預定影像處理的該等訓練影像資料,訓練一第二卷積神經網路模型而產生一圈選模型。在本實施例中,該第二卷積神經網路模型是名稱為U-Net like之分割(segmentation)模型,其中每次訓練結果會藉由向後傳遞(Back-propagation)更新參數,但該第二卷積神經網路模型不以U-Net like為限。Then, as shown in step S06, the processing unit 5 trains a second convolutional neural network model based on the training image data subjected to the predetermined image processing to generate a circle selection model. In this embodiment, the second convolutional neural network model is a segmentation model named U-Net like, in which each training result will update the parameters through Back-propagation, but the first The two-convolutional neural network model is not limited to U-Net like.

步驟S05與步驟S06的先後順序不以本實施例舉例的順序為限。The sequence of step S05 and step S06 is not limited to the sequence exemplified in this embodiment.

參閱圖1及圖3,以下說明本發明估測骨質密度的方法的步驟。首先,如步驟S11所示,該X光機1拍攝一目標患者的一預定骨骼以產生一待分析影像資料。1 and 3, the following describes the steps of the method for estimating bone density of the present invention. First, as shown in step S11, the X-ray machine 1 photographs a predetermined bone of a target patient to generate an image data to be analyzed.

接著,如步驟S12所示,該處理單元5根據該待分析影像資料,使用如步驟S06所述的該圈選模型圈選出該待分析影像資料中該預定骨骼的影像。Then, as shown in step S12, the processing unit 5 selects the image of the predetermined bone in the image data to be analyzed by using the circle selection model described in step S06 according to the image data to be analyzed.

接著,如步驟S13所示,該處理單元5對該待分析影像資料進行一預定影像處理,該預定影像處理包含將該待分析影像資料中未被圈選的影像去除。在本實施例中,該預定影像處理還包含裁切、旋轉、亮度調整、對比調整等。Then, as shown in step S13, the processing unit 5 performs a predetermined image processing on the image data to be analyzed, and the predetermined image processing includes removing unselected images from the image data to be analyzed. In this embodiment, the predetermined image processing further includes cropping, rotation, brightness adjustment, contrast adjustment, and so on.

接著,如步驟S14所示,該處理單元5根據進行過該預定影像處理的該待分析影像資料,使用如步驟S05所述的該估測模型估測該目標患者的骨質密度以產生一骨質密度估測資料。此外,還經由該輸出單元4顯示該骨質密度估測資料。Then, as shown in step S14, the processing unit 5 uses the estimation model described in step S05 to estimate the bone density of the target patient based on the image data to be analyzed that has undergone the predetermined image processing to generate a bone density Estimated data. In addition, the bone density estimation data is also displayed through the output unit 4.

接著,如步驟S15所示,該處理單元5判斷該骨質密度估測資料是否符合一預定警示條件,若是,則接著執行步驟S16,若否,則流程結束。在本實施例中,該預定警示條件包含該骨質密度估測資料對應的一T評分(T-score)小於一T評分門檻值,及該骨質密度估測資料對應的一Z評分(Z-score)小於一Z評分門檻值,且只要該T評分小於該T評分門檻值或該Z評分小於該Z評分門檻值,就會接著執行步驟S16。該預定警示條件不以本實施例為限,在其他實施態樣中,該預定警示條件例如還包含該骨質密度估測資料小於一骨質密度門檻值。Next, as shown in step S15, the processing unit 5 determines whether the bone density estimation data meets a predetermined warning condition, if yes, then step S16 is executed, if not, the process ends. In this embodiment, the predetermined warning condition includes a T-score corresponding to the bone density estimation data being less than a T-score threshold, and a Z-score corresponding to the bone density estimation data. ) Is less than a Z-score threshold, and as long as the T-score is less than the T-score threshold or the Z-score is less than the Z-score threshold, step S16 is then executed. The predetermined warning condition is not limited to this embodiment. In other embodiments, the predetermined warning condition further includes, for example, that the bone density estimation data is less than a bone density threshold value.

最後,如步驟S16所示,當該處理單元5判斷該骨質密度估測資料符合該預定警示條件,該處理單元5經由該輸出單元4輸出一警示訊息,該警示訊息指示該T評分小於該T評分門檻值或該Z評分小於該Z評分門檻值,以提示醫療人員該目標患者的骨質密度異常偏低,從而對骨質疏鬆高風險病患提出警訊。Finally, as shown in step S16, when the processing unit 5 determines that the bone density estimation data meets the predetermined warning condition, the processing unit 5 outputs a warning message via the output unit 4, the warning message indicating that the T score is less than the T The score threshold or the Z score is less than the Z score threshold to remind medical staff that the bone density of the target patient is abnormally low, thereby providing a warning to patients at high risk of osteoporosis.

補充說明的是,本發明雖用於估測患者的骨質密度,但透過類似的技術手段也可以用來估測患者的骨礦物質含量(Bone mineral content,BMC)。It is added that although the present invention is used to estimate the bone density of a patient, it can also be used to estimate the bone mineral content (BMC) of the patient through similar technical means.

綜上所述,本發明藉由該處理單元5根據該等訓練影像資料及該等骨質密度資料訓練該第一卷積神經網路模型而產生該估測模型,使得該目標患者只要被該X光機1拍攝過就可以根據該X光機1產生的該待分析影像資料產生該骨質密度估測資料,不需再透過該雙能X光吸收儀2檢測,從而降低病患承受輻射劑量之風險,以及醫療單位對於該雙能X光吸收儀2這種昂貴儀器的依賴程度,此外,本發明藉由該處理單元5針對每一訓練影像資料及該待分析影像資料進行該預定影像處理,以透過限制識別部位而降低雜訊干擾,從而還能進一步提高估測的準確率,因此,確實能達成本發明的目的。In summary, in the present invention, the processing unit 5 trains the first convolutional neural network model based on the training image data and the bone density data to generate the estimation model, so that the target patient only needs to be affected by the X The bone density estimation data can be generated based on the image data to be analyzed by the X-ray machine 1 after shooting by the X-ray machine 1, without the need for the dual-energy X-ray absorber 2 to detect, thereby reducing the patient’s radiation dose. Risks and the degree of dependence of medical units on expensive instruments such as the dual-energy X-ray absorber 2. In addition, the present invention uses the processing unit 5 to perform the predetermined image processing for each training image data and the image data to be analyzed, In order to reduce the noise interference by restricting the recognition part, the accuracy of the estimation can be further improved. Therefore, the objective of the invention can be achieved.

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above are only examples of the present invention. When the scope of implementation of the present invention cannot be limited by this, all simple equivalent changes and modifications made in accordance with the scope of the patent application of the present invention and the content of the patent specification still belong to Within the scope of the patent of the present invention.

100:電子系統 1:X光機 2:雙能X光吸收儀 3:輸入單元 4:輸出單元 5:處理單元 S01~S06:步驟 S11~S16:步驟 100: electronic system 1: X-ray machine 2: Dual energy X-ray absorber 3: Input unit 4: output unit 5: Processing unit S01~S06: Step S11~S16: steps

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是本發明的一個實施例的一硬體連接關係示意圖; 圖2是該實施例的一流程圖,說明產生用於估測骨質密度的模型的方法的步驟;及 圖3是該實施例的另一流程圖,說明估測骨質密度的方法的步驟。 Other features and effects of the present invention will be clearly presented in the embodiments with reference to the drawings, in which: FIG. 1 is a schematic diagram of a hardware connection relationship according to an embodiment of the present invention; Figure 2 is a flow chart of this embodiment, illustrating the steps of a method for generating a model for estimating bone density; and Fig. 3 is another flowchart of this embodiment, illustrating the steps of the method for estimating bone density.

S01~S06:步驟 S01~S06: Step

Claims (20)

一種產生用於估測骨質密度的模型的方法,藉由一電子系統實施,該電子系統包含一X光機、一雙能X光吸收儀及一處理單元,該方法包含:該X光機拍攝多位參考患者的一預定骨骼以產生多筆訓練影像資料;該雙能X光吸收儀檢測該等參考患者的該預定骨骼以產生多筆骨質密度資料;及該處理單元根據該等訓練影像資料及該等骨質密度資料,訓練一第一卷積神經網路模型而產生一估測模型,該估測模型用於根據一由該X光機拍攝一目標患者的該預定骨骼所產生的待分析影像資料估測該目標患者的骨質密度。 A method for generating a model for estimating bone density is implemented by an electronic system, the electronic system includes an X-ray machine, a dual-energy X-ray absorber and a processing unit, the method includes: the X-ray machine photographs Multiple reference patients’ predetermined bones to generate multiple training image data; the dual-energy X-ray absorber detects the predetermined bones of the reference patients to generate multiple bone density data; and the processing unit is based on the training image data And the bone density data, train a first convolutional neural network model to generate an estimation model, the estimation model is used for the X-ray machine to photograph the predetermined bone of a target patient to be analyzed The imaging data estimates the bone density of the target patient. 如請求項1所述的產生用於估測骨質密度的估測模型的方法,其中,該電子系統還包含一輸入單元,該方法在產生該估測模型之前且在產生該等訓練影像資料之後還包含:該處理單元針對每一訓練影像資料,根據經由該輸入單元接收到的一圈選指令於該訓練影像資料圈選出該預定骨骼的影像;及該處理單元針對每一訓練影像資料進行一預定影像處理,該預定影像處理包含將該訓練影像資料中未被圈選的影像去除;在產生該估測模型的步驟中,該處理單元是根據進行 過該預定影像處理的該等訓練影像資料及該等骨質密度資料,訓練該第一卷積神經網路模型而產生該估測模型。 The method for generating an estimation model for estimating bone density according to claim 1, wherein the electronic system further includes an input unit, and the method is before generating the estimation model and after generating the training image data It also includes: for each training image data, the processing unit selects an image of the predetermined skeleton in the training image data according to a circle selection command received through the input unit; and the processing unit performs a cycle for each training image data Predetermined image processing, the predetermined image processing includes removing unselected images from the training image data; in the step of generating the estimation model, the processing unit is based on The training image data and the bone density data of the predetermined image processing are used to train the first convolutional neural network model to generate the estimation model. 如請求項2所述的產生用於估測骨質密度的估測模型的方法,在進行該預定影像處理的步驟之後還包含:該處理單元根據進行過該預定影像處理的該等訓練影像資料,訓練一第二卷積神經網路模型而產生一圈選模型,該圈選模型用於根據該待分析影像資料圈選出該預定骨骼的影像。 The method for generating an estimation model for estimating bone density as described in claim 2, after the step of performing the predetermined image processing, further includes: the processing unit according to the training image data that has undergone the predetermined image processing, A second convolutional neural network model is trained to generate a circle selection model, and the circle selection model is used to circle the image of the predetermined bone according to the image data to be analyzed. 如請求項1所述的產生用於估測骨質密度的估測模型的方法,其中,該預定骨骼為一骨盆的一髖關節、一腰椎、一饒骨、一尺骨或一股骨。 The method for generating an estimation model for estimating bone density according to claim 1, wherein the predetermined bone is a hip joint of a pelvis, a lumbar vertebra, a pelvis, a ulna, or a femur. 一種估測骨質密度的方法,藉由一電子系統實施,該電子系統包含一X光機、一雙能X光吸收儀及一處理單元,該方法包含:該X光機拍攝多位參考患者的一預定骨骼以產生多筆訓練影像資料;該雙能X光吸收儀檢測該等參考患者的該預定骨骼以產生多筆骨質密度資料;該處理單元根據該等訓練影像資料及該等骨質密度資料,訓練一第一卷積神經網路模型而產生一估測模型;該X光機拍攝一目標患者的一預定骨骼以產生一待分析影像資料;及該處理單元根據該待分析影像資料,使用該估測模型估測該目標患者的骨質密度以產生一骨質密度估測資料。 A method for estimating bone density is implemented by an electronic system. The electronic system includes an X-ray machine, a dual-energy X-ray absorber and a processing unit. The method includes: the X-ray machine photographs multiple reference patients. A predetermined bone to generate multiple training image data; the dual-energy X-ray absorber detects the predetermined bone of the reference patient to generate multiple bone density data; the processing unit is based on the training image data and the bone density data , Training a first convolutional neural network model to generate an estimation model; the X-ray machine photographs a predetermined bone of a target patient to generate an image data to be analyzed; and the processing unit uses the image data to be analyzed The estimation model estimates the bone density of the target patient to generate a bone density estimation data. 如請求項5所述的估測骨質密度的方法,其中,該電子系統還包含一輸出單元,該方法於產生該骨質密度估測資料之後還包含:該處理單元判斷該骨質密度估測資料是否符合一預定警示條件;及當該處理單元判斷該骨質密度估測資料符合該預定警示條件,該處理單元經由該輸出單元輸出一警示訊息。 The method for estimating bone density according to claim 5, wherein the electronic system further includes an output unit, and after generating the bone density estimation data, the method further includes: the processing unit judging whether the bone density estimation data is Meets a predetermined warning condition; and when the processing unit determines that the bone density estimation data meets the predetermined warning condition, the processing unit outputs a warning message through the output unit. 如請求項6所述的估測骨質密度的方法,其中,該預定警示條件包含該骨質密度估測資料對應的一T評分小於一T評分門檻值。 The method for estimating bone density according to claim 6, wherein the predetermined warning condition includes that a T score corresponding to the bone density estimation data is less than a T score threshold. 如請求項6所述的估測骨質密度的方法,其中,該預定警示條件包含該骨質密度估測資料對應的一Z評分小於一Z評分門檻值。 The method for estimating bone density according to claim 6, wherein the predetermined warning condition includes that a Z score corresponding to the bone density estimation data is less than a Z score threshold. 如請求項5所述的估測骨質密度的方法,其中,該電子系統還包含一輸入單元,該方法在產生該估測模型之前且在產生該等訓練影像資料之後還包含:該處理單元針對每一訓練影像資料,根據經由該輸入單元接收到的一圈選指令於該訓練影像資料圈選出該預定骨骼的影像;及該處理單元針對每一訓練影像資料進行一預定影像處理,該預定影像處理包含將該訓練影像資料中未被圈選的影像去除;在產生該估測模型的步驟中,該處理單元是根據進行過該預定影像處理的該等訓練影像資料及該等骨質密度 資料,訓練該第一卷積神經網路模型而產生該估測模型;該方法在進行該預定影像處理的步驟之後還包含:該處理單元根據進行過該預定影像處理的該等訓練影像資料,訓練一第二卷積神經網路模型而產生一圈選模型;於產生該骨質密度估測資料之前且於產生該待分析影像資料之後還包含:該處理單元根據該待分析影像資料,使用該圈選模型圈選出該待分析影像資料中該預定骨骼的影像;及該處理單元對該待分析影像資料進行該預定影像處理,該預定影像處理包含將該待分析影像資料中未被圈選的影像去除;在產生該骨質密度估測資料的步驟中,該處理單元是根據進行過該預定影像處理的該待分析影像資料,使用該估測模型估測該目標患者的骨質密度以產生該骨質密度估測資料。 The method for estimating bone density according to claim 5, wherein the electronic system further includes an input unit, and before generating the estimation model and after generating the training image data, the method further includes: the processing unit for For each training image data, an image of the predetermined skeleton is circled from the training image data according to a circle selection command received through the input unit; and the processing unit performs a predetermined image processing for each training image data, the predetermined image The processing includes removing unselected images from the training image data; in the step of generating the estimation model, the processing unit is based on the training image data and the bone densities that have undergone the predetermined image processing Data, training the first convolutional neural network model to generate the estimation model; after the step of performing the predetermined image processing, the method further includes: the processing unit according to the training image data that has undergone the predetermined image processing, Training a second convolutional neural network model to generate a circle selection model; before generating the bone density estimation data and after generating the image data to be analyzed, the processing unit further includes: the processing unit uses the image data to be analyzed according to the image data to be analyzed. The circle selection model circle selects the image of the predetermined bone in the image data to be analyzed; and the processing unit performs the predetermined image processing on the image data to be analyzed, and the predetermined image processing includes the unselected image data in the image data to be analyzed Image removal; in the step of generating the bone density estimation data, the processing unit uses the estimation model to estimate the bone density of the target patient based on the image data to be analyzed that has undergone the predetermined image processing to generate the bone density Density estimation data. 如請求項5所述的估測骨質密度的方法,其中,該預定骨骼為一骨盆的一髖關節、一腰椎、一饒骨、一尺骨或一股骨。 The method for estimating bone density according to claim 5, wherein the predetermined bone is a hip joint of a pelvis, a lumbar vertebra, a spine, a ulna, or a femur. 一種電子系統,包含:一X光機;一雙能X光吸收儀;及一處理單元;該X光機拍攝多位參考患者的一預定骨骼以產生多筆 訓練影像資料;該雙能X光吸收儀檢測該等參考患者的該預定骨骼以產生多筆骨質密度資料;該處理單元根據該等訓練影像資料及該等骨質密度資料,訓練一第一卷積神經網路模型而產生一估測模型,該估測模型用於根據一由該X光機拍攝一目標患者的該預定骨骼所產生的待分析影像資料估測該目標患者的骨質密度。 An electronic system comprising: an X-ray machine; a dual-energy X-ray absorber; and a processing unit; the X-ray machine photographs a predetermined bone of multiple reference patients to generate multiple pens Training image data; the dual-energy X-ray absorber detects the predetermined bones of the reference patients to generate multiple bone density data; the processing unit trains a first convolution based on the training image data and the bone density data The neural network model generates an estimation model for estimating the bone density of the target patient based on a to-be-analyzed image data generated by the X-ray machine photographing the predetermined bone of a target patient. 如請求項11所述的電子系統,還包含一輸入單元;該處理單元針對每一訓練影像資料,根據經由該輸入單元接收到的一圈選指令於該訓練影像資料圈選出該預定骨骼的影像;該處理單元針對每一訓練影像資料進行一預定影像處理,該預定影像處理包含將該訓練影像資料中未被圈選的影像去除;其中,該處理單元是根據進行過該預定影像處理的該等訓練影像資料及該等骨質密度資料,訓練該第一卷積神經網路模型而產生該估測模型。 The electronic system according to claim 11, further comprising an input unit; for each training image data, the processing unit selects the image of the predetermined bone in the training image data according to a circle selection command received through the input unit The processing unit performs a predetermined image processing for each training image data, the predetermined image processing includes removing unselected images in the training image data; wherein, the processing unit is based on the predetermined image processing performed Waiting for the training image data and the bone density data to train the first convolutional neural network model to generate the estimation model. 如請求項12所述的電子系統,其中,該處理單元根據進行過該預定影像處理的該等訓練影像資料,訓練一第二卷積神經網路模型而產生一圈選模型,該圈選模型用於根據該待分析影像資料圈選出該預定骨骼的影像。 The electronic system according to claim 12, wherein the processing unit trains a second convolutional neural network model based on the training image data subjected to the predetermined image processing to generate a circle selection model, the circle selection model It is used to circle the image of the predetermined bone according to the image data to be analyzed. 如請求項11所述的電子系統,其中,該預定骨骼為一骨盆的一髖關節、一腰椎、一饒骨、一尺骨或一股骨。 The electronic system according to claim 11, wherein the predetermined bone is a hip joint of a pelvis, a lumbar spine, a spine, an ulna, or a femur. 一種電子系統,包含:一X光機;一雙能X光吸收儀;及一處理單元;該X光機拍攝多位參考患者的一預定骨骼以產生多筆訓練影像資料;該雙能X光吸收儀檢測該等參考患者的該預定骨骼以產生多筆骨質密度資料;該處理單元根據該等訓練影像資料及該等骨質密度資料,訓練一第一卷積神經網路模型而產生一估測模型;該X光機拍攝一目標患者的一預定骨骼以產生一待分析影像資料;該處理單元根據該待分析影像資料,使用該估測模型估測該目標患者的骨質密度以產生一骨質密度估測資料。 An electronic system comprising: an X-ray machine; a dual-energy X-ray absorber; and a processing unit; the X-ray machine photographs a predetermined bone of a plurality of reference patients to generate multiple training image data; the dual-energy X-ray The absorptiometer detects the predetermined bones of the reference patients to generate multiple bone density data; the processing unit trains a first convolutional neural network model based on the training image data and the bone density data to generate an estimate Model; the X-ray machine photographs a predetermined bone of a target patient to generate an image data to be analyzed; the processing unit uses the estimation model to estimate the bone density of the target patient based on the image data to be analyzed to generate a bone density Estimated data. 如請求項15所述的電子系統,還包含一輸出單元;該處理單元判斷該骨質密度估測資料是否符合一預定警示條件;當該處理單元判斷該骨質密度估測資料符合該預定警示條件,該處理單元經由該輸出單元輸出一警示訊息。 The electronic system according to claim 15, further comprising an output unit; the processing unit determines whether the bone density estimation data meets a predetermined warning condition; when the processing unit determines that the bone density estimation data meets the predetermined warning condition, The processing unit outputs a warning message through the output unit. 如請求項16所述的電子系統,其中,該預定警示條件包含該骨質密度估測資料對應的一T評分小於一T評分門檻值。 The electronic system according to claim 16, wherein the predetermined warning condition includes that a T score corresponding to the bone density estimation data is less than a T score threshold. 如請求項16所述的電子系統,其中,該預定警示條件包含該骨質密度估測資料對應的一Z評分小於一Z評分門檻 值。 The electronic system according to claim 16, wherein the predetermined warning condition includes that a Z score corresponding to the bone density estimation data is less than a Z score threshold value. 如請求項15所述的電子系統,還包含一輸入單元;該處理單元針對每一訓練影像資料,根據經由該輸入單元接收到的一圈選指令於該訓練影像資料圈選出該預定骨骼的影像;該處理單元針對每一訓練影像資料進行一預定影像處理,該預定影像處理包含將該訓練影像資料中未被圈選的影像去除;其中,該處理單元是根據進行過該預定影像處理的該等訓練影像資料及該等骨質密度資料,訓練該第一卷積神經網路模型而產生該估測模型;其中,該處理單元根據進行過該預定影像處理的該等訓練影像資料,訓練一第二卷積神經網路模型而產生一圈選模型;該處理單元根據該待分析影像資料,使用該圈選模型圈選出該待分析影像資料中該預定骨骼的影像;該處理單元對該待分析影像資料進行該預定影像處理,該預定影像處理包含將該待分析影像資料中未被圈選的影像去除;其中,該處理單元是根據進行過該預定影像處理的該待分析影像資料,使用該估測模型估測該目標患者的骨質密度以產生該骨質密度估測資料。 The electronic system according to claim 15, further comprising an input unit; for each training image data, the processing unit selects the image of the predetermined bone in the training image data according to a circle selection command received through the input unit The processing unit performs a predetermined image processing for each training image data, the predetermined image processing includes removing unselected images in the training image data; wherein, the processing unit is based on the predetermined image processing performed Training the first convolutional neural network model to generate the estimation model based on the training image data and the bone density data; wherein, the processing unit trains a first convolutional neural network model based on the training image data subjected to the predetermined image processing Two convolutional neural network models generate a circle selection model; the processing unit uses the circle selection model to circle out the image of the predetermined bone in the image data to be analyzed according to the image data to be analyzed; the processing unit performs the analysis on the image data to be analyzed The image data is subjected to the predetermined image processing, and the predetermined image processing includes removing the unselected images from the image data to be analyzed; wherein, the processing unit uses the image data to be analyzed based on the image data to be analyzed that has undergone the predetermined image processing. The estimation model estimates the bone density of the target patient to generate the bone density estimation data. 如請求項15所述的電子系統,其中,該預定骨骼為一骨盆的一髖關節、一腰椎、一饒骨、一尺骨或一股骨。 The electronic system according to claim 15, wherein the predetermined bone is a hip joint of a pelvis, a lumbar spine, a spine, an ulna, or a femur.
TW109106388A 2020-02-27 2020-02-27 Method for generating model for estimating bone density, method for estimating bone density and electronic system TWI719843B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109106388A TWI719843B (en) 2020-02-27 2020-02-27 Method for generating model for estimating bone density, method for estimating bone density and electronic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109106388A TWI719843B (en) 2020-02-27 2020-02-27 Method for generating model for estimating bone density, method for estimating bone density and electronic system

Publications (2)

Publication Number Publication Date
TWI719843B true TWI719843B (en) 2021-02-21
TW202131863A TW202131863A (en) 2021-09-01

Family

ID=75746008

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109106388A TWI719843B (en) 2020-02-27 2020-02-27 Method for generating model for estimating bone density, method for estimating bone density and electronic system

Country Status (1)

Country Link
TW (1) TWI719843B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI751049B (en) * 2021-03-05 2021-12-21 興友科技股份有限公司 Bioimpedance vector analysis technology is used to assess the method of local or whole body bone density
CN115661052A (en) * 2022-10-13 2023-01-31 高峰医疗器械(无锡)有限公司 Alveolar bone detection method, alveolar bone detection device, alveolar bone detection equipment and storage medium
TWI828096B (en) * 2022-03-25 2024-01-01 英屬開曼群島商百蒂醫股份有限公司 X-ray image analysis method
TWI891074B (en) * 2023-09-28 2025-07-21 宏碁智醫股份有限公司 Bone mineral density prediction method and device
US12469132B2 (en) 2023-03-30 2025-11-11 Acer Incorporated Method and electronic device for evaluating osteoporosis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240331870A1 (en) * 2023-03-29 2024-10-03 Acer Medical Inc. Bmd model training method, bmd abnormality risk prediction method, bmd abnormality risk learning system, and bmd abnormality risk prediction system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108498075A (en) * 2017-02-24 2018-09-07 西门子保健有限责任公司 The personalized assessment of bone health
US10327725B2 (en) * 2014-07-21 2019-06-25 Zebra Medical Vision Ltd. Systems and methods for emulating DEXA scores based on CT images
JP2019200788A (en) * 2018-05-09 2019-11-21 威久 山本 Method for predicting future bone mass, information processing device, and computer program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10327725B2 (en) * 2014-07-21 2019-06-25 Zebra Medical Vision Ltd. Systems and methods for emulating DEXA scores based on CT images
CN108498075A (en) * 2017-02-24 2018-09-07 西门子保健有限责任公司 The personalized assessment of bone health
JP2019200788A (en) * 2018-05-09 2019-11-21 威久 山本 Method for predicting future bone mass, information processing device, and computer program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI751049B (en) * 2021-03-05 2021-12-21 興友科技股份有限公司 Bioimpedance vector analysis technology is used to assess the method of local or whole body bone density
TWI828096B (en) * 2022-03-25 2024-01-01 英屬開曼群島商百蒂醫股份有限公司 X-ray image analysis method
CN115661052A (en) * 2022-10-13 2023-01-31 高峰医疗器械(无锡)有限公司 Alveolar bone detection method, alveolar bone detection device, alveolar bone detection equipment and storage medium
CN115661052B (en) * 2022-10-13 2023-09-12 高峰医疗器械(无锡)有限公司 Alveolar bone detection method, device, equipment and storage medium
US12469132B2 (en) 2023-03-30 2025-11-11 Acer Incorporated Method and electronic device for evaluating osteoporosis
TWI891074B (en) * 2023-09-28 2025-07-21 宏碁智醫股份有限公司 Bone mineral density prediction method and device

Also Published As

Publication number Publication date
TW202131863A (en) 2021-09-01

Similar Documents

Publication Publication Date Title
TWI719843B (en) Method for generating model for estimating bone density, method for estimating bone density and electronic system
Choi et al. Using a dual-input convolutional neural network for automated detection of pediatric supracondylar fracture on conventional radiography
Liu et al. Artificial intelligence to diagnose tibial plateau fractures: an intelligent assistant for orthopedic physicians
EP3457356A1 (en) Method and apparatus for fully automated segmentation of joint using patient-specific optimal thresholding and watershed algorithm
US12046357B2 (en) Methods for determining one or more captured images used in a machine learning assessment of an animal
Aldhyani et al. Diagnosis and detection of bone fracture in radiographic images using deep learning approaches
Sharifi et al. Diagnostic performance of neural network algorithms in skull fracture detection on CT scans: a systematic review and meta-analysis
EP4309121A1 (en) Detecting abnormalities in an x-ray image
US20210334959A1 (en) Inference apparatus, medical apparatus, and program
CN113450306A (en) Method of providing a fracture detection tool
CN113303817A (en) Method for generating model for estimating bone density, method for estimating bone density and electronic system
Kim et al. Using Convolutional Neural Network with Taguchi Parametric Optimization for Knee Segmentation from X‐Ray Images
JP6145874B2 (en) Radiation image processing apparatus and method
WO2020106393A2 (en) Skeletal maturity determination using radiographs of portions of a hand
CN111178297B (en) Image processing method, device, electronic equipment and medium
CN118315058B (en) Method, device, equipment and medium for predicting recovery of affected part
TWI873920B (en) Method, system and computer-readable recording medium for analyzing tibia platform using deep learning method
Achararit et al. Generating accurate sex estimation from hand X-ray images using AI deep-learning techniques: A study of limited bone regions
TWI851121B (en) Method and electronic apparatus for evaluating osteoporosis
Liu et al. Automatic Detection of Mandibular Fractures on CT scan Using Deep Learning
Lin et al. Automatic Pneumothorax Segmentation in Chest Radiographs Preprocessed by IEDSR Bone Suppression
Seo et al. Explainable Deep Learning Framework for Classifying Mandibular Fractures on Panoramic Radiographs
Elgohary et al. Lung Segmentation Using ResUnet++ Powered by Variational Auto Encoder-Based Enhancement in Chest X-ray Images
WO2025164612A1 (en) Generation method, training method, generation device, control program, and recording medium
Fakhrurrifqi et al. A Multi-Method Fusion for Improving Missing Teeth Detection in Intraoral Images