TWI798002B - Oral eating ability assessment system - Google Patents
Oral eating ability assessment system Download PDFInfo
- Publication number
- TWI798002B TWI798002B TW111106611A TW111106611A TWI798002B TW I798002 B TWI798002 B TW I798002B TW 111106611 A TW111106611 A TW 111106611A TW 111106611 A TW111106611 A TW 111106611A TW I798002 B TWI798002 B TW I798002B
- Authority
- TW
- Taiwan
- Prior art keywords
- sensing
- oral
- sensor
- heart rate
- sensing signal
- Prior art date
Links
- 230000007937 eating Effects 0.000 title claims abstract description 8
- 230000033001 locomotion Effects 0.000 claims abstract description 44
- 230000029058 respiratory gaseous exchange Effects 0.000 claims abstract description 44
- 238000011156 evaluation Methods 0.000 claims abstract description 31
- 210000000214 mouth Anatomy 0.000 claims abstract description 11
- 230000005540 biological transmission Effects 0.000 claims description 8
- 238000010801 machine learning Methods 0.000 claims description 4
- 238000004891 communication Methods 0.000 claims description 2
- 238000003780 insertion Methods 0.000 claims 1
- 230000037431 insertion Effects 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 5
- 230000008569 process Effects 0.000 abstract description 3
- 238000013135 deep learning Methods 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 230000033764 rhythmic process Effects 0.000 description 4
- 210000002569 neuron Anatomy 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000009747 swallowing Effects 0.000 description 2
- 206010003497 Asphyxia Diseases 0.000 description 1
- 206010012559 Developmental delay Diseases 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 208000005107 Premature Birth Diseases 0.000 description 1
- 206010036590 Premature baby Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000012854 evaluation process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000011478 gradient descent method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000030363 nerve development Effects 0.000 description 1
- 230000002232 neuromuscular Effects 0.000 description 1
- 201000008585 noma Diseases 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 229920006132 styrene block copolymer Polymers 0.000 description 1
- 230000036266 weeks of gestation Effects 0.000 description 1
Images
Landscapes
- Sampling And Sample Adjustment (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
一種口腔進食能力評估系統,包含一吸吮件、一感測裝置及一分析裝置。該感測裝置包括一用來感測呼吸並輸出一呼吸感測信號的呼吸感測器、一用來感測心率並輸出一心率感測信號的心率感測器,及一用來感測口腔動作並輸出一動作感測信號的動作感測器。該分析裝置通訊連接於該感測裝置且用來接收該呼吸感測信號、該心率感測信號與該動作感測信號,並根據一智慧型口腔進食能力評估模組輸出一分析結果。藉由該感測裝置感測呼吸、心率及口腔動作,並由該分析裝置的分析結果來判斷口腔進食能力,感測與分析過程客觀而能提高評估準確性。An evaluation system for oral feeding ability includes a sucking piece, a sensing device and an analyzing device. The sensing device includes a respiration sensor for sensing respiration and outputting a respiration sensing signal, a heart rate sensor for sensing heart rate and outputting a heart rate sensing signal, and a respiration sensor for sensing oral cavity A motion sensor that operates and outputs a motion sensing signal. The analyzing device is communicatively connected to the sensing device and is used to receive the breathing sensing signal, the heart rate sensing signal and the motion sensing signal, and output an analysis result according to a smart oral eating ability evaluation module. The sensing device senses respiration, heart rate and oral movement, and judges oral feeding ability based on the analysis result of the analyzing device. The sensing and analyzing process is objective and the evaluation accuracy can be improved.
Description
本發明是有關於一種評估系統,特別是指一種口腔進食能力評估系統。The invention relates to an evaluation system, in particular to an evaluation system for oral feeding ability.
中樞神經損傷的患者或因早產而導致神經發展未成熟的嬰兒,都可能缺乏口腔期進食、吞嚥與呼吸間的神經肌肉動作協調能力,由口腔進食時容易發生食物誤入氣管而發展成吸入性肺炎及窒息的問題。Patients with central nervous system damage or infants with immature nerve development due to premature birth may lack the ability to coordinate neuromuscular movements between eating, swallowing, and breathing in the oral cavity. Pneumonia and suffocation problems.
為了判斷、評估患者口腔進食能力的修復或發展狀況,現有的評估方式主要是由醫療人員配合口腔動作發展量表來觀察並評分。但人工觀察會受到主觀判斷以及臨床經驗影響,評估結果較不客觀,缺乏評估準確性,有待改善。In order to judge and evaluate the restoration or development of the patient's oral feeding ability, the existing evaluation method is mainly to observe and score by medical personnel with the oral movement development scale. However, manual observation will be affected by subjective judgment and clinical experience, the evaluation results are not objective, and the evaluation accuracy is lacking, which needs to be improved.
因此,本發明之目的,即在提供一種能提高評估準確性的口腔進食能力評估系統。Therefore, the object of the present invention is to provide an oral feeding ability evaluation system that can improve the evaluation accuracy.
於是,本發明口腔進食能力評估系統包含一吸吮件、一感測裝置及一分析裝置。該吸吮件適用於放入口腔。該感測裝置包括一設置於該吸吮件且用來感測呼吸並輸出一呼吸感測信號的呼吸感測器、一適用於設置於胸部且用來感測心率並輸出一心率感測信號的心率感測器,及一設置於該吸吮件且用來感測口腔動作並輸出一動作感測信號的動作感測器。該分析裝置通訊連接於該感測裝置且內建一智慧型口腔進食能力評估模組。該分析裝置用來接收該呼吸感測信號、該心率感測信號與該動作感測信號,並根據該智慧型口腔進食能力評估模組輸出一分析結果。Therefore, the oral feeding ability evaluation system of the present invention includes a sucking member, a sensing device and an analyzing device. The suction piece is adapted to be placed in the mouth. The sensing device includes a respiration sensor arranged on the sucking part for sensing respiration and outputting a respiration sensing signal, a respiration sensor suitable for being arranged on the chest for sensing heart rate and outputting a heart rate sensing signal A heart rate sensor, and a motion sensor arranged on the sucking part and used to sense oral motion and output a motion sensing signal. The analyzing device is communicatively connected to the sensing device and has a built-in intelligent mouth-feeding ability evaluation module. The analysis device is used to receive the breathing sensing signal, the heart rate sensing signal and the motion sensing signal, and output an analysis result according to the intelligent oral eating ability evaluation module.
本發明之功效在於:藉由該感測裝置感測呼吸、心率及口腔動作,並由該分析裝置的分析結果來判斷口腔進食能力,感測與分析過程客觀而能提高評估準確性。The effect of the present invention is: the sensing device senses respiration, heart rate and oral movement, and judges oral feeding ability based on the analysis result of the analysis device. The sensing and analysis process is objective and the evaluation accuracy can be improved.
參閱圖1與圖2,本發明口腔進食能力評估系統的一實施例,適用於評估一受測者9的口腔進食能力。本實施例包含一吸吮件1、一感測裝置2及一分析裝置3。Referring to FIG. 1 and FIG. 2 , an embodiment of the oral feeding ability evaluation system of the present invention is suitable for evaluating the oral feeding ability of a
該吸吮件1包括一適用於放入該受測者9的口腔的吸吮部11,及一連接於該吸吮部11且外露於口腔的擋止部12。該擋止部12用來擋止於口腔外,避免該受測者9誤吞該吸吮件1。在本實施例中,該吸吮件1由矽膠製成,但在其他變化例中,該吸吮件1也可以由矽膠或其他具可撓性與生物親和性的材料製成。The sucking
該感測裝置2設置於該吸吮件1且包括一呼吸感測器21、一心率感測器22、一動作感測器23及一傳輸件24。The
該呼吸感測器21設置於該吸吮件1的擋止部12,且用來感測該受測者9的呼吸並輸出一呼吸感測信號。在本實施例中,該呼吸感測器21為用來感測呼吸溫度的溫度計。The
該心率感測器22用來設置於該受測者9的胸部,且用來感測心率並輸出一心率感測信號。The
該動作感測器23設置於該吸吮件1的吸吮部11,且用來感測口腔動作並輸出一動作感測信號。在本實施例中,該動作感測器23為三軸加速度計。The
該傳輸件24電連接該呼吸感測器21、該心率感測器22與該動作感測器23且通訊連接該分析裝置3,並用來將該鼻息感測信號、該心率感測信號與該動作感測信號傳送至該分析裝置3。The
在本實施例中,該傳輸件24是微型單板電腦(Single-Board Computers, SBCs),以有線通信方式連接於該分析裝置3。In this embodiment, the
該分析裝置3通訊連接於該感測裝置2的傳輸件24且內建一智慧型口腔進食能力評估模組。該分析裝置3用來接收該呼吸感測信號、該心率感測信號與該動作感測信號,並由該智慧型口腔進食能力評估模組計算並輸出一分析結果。The
在本實施例中,該分析裝置3內建的該智慧型口腔進食能力評估模組以深度學習(Deep Learning)方式訓練完成一人工神經網路(Artificial Neural Network)。In this embodiment, the intelligent oral feeding ability evaluation module built in the analyzing
其中,深度學習為機器學習(Machine Learning)的其中一種,機器學習還分為其他如監督式學習(Supervised Learning)、非監督式學習(Unsupervised Learning)與增強學習(Reinforcement learning)等種類。而深度學習是基於對資料進行表徵學習(Representation Learning)的演算法,其觀測值(例如一幅圖像)可以使用多種特徵方式來表示,如每個像素強度值的向量,或者更抽象地表示成一系列邊、特定形狀的區域等。深度學習的優點在於以非監督式或半監督式的特徵學習和分層特徵提取高效演算法來替代手工取得特徵。Among them, deep learning is one of machine learning (Machine Learning), and machine learning is also divided into other types such as Supervised Learning, Unsupervised Learning and Reinforcement Learning. Deep learning is an algorithm based on representation learning (Representation Learning) of data. Its observation value (for example, an image) can be represented by a variety of feature methods, such as a vector of each pixel intensity value, or more abstractly. into a series of edges, regions of a specific shape, etc. The advantage of deep learning is that it replaces manual feature acquisition with unsupervised or semi-supervised feature learning and efficient algorithms for hierarchical feature extraction.
該智慧型口腔進食能力評估模組由輸入多筆訓練資料進行訓練,每一該訓練資料包括一輸入資料與一輸出資料。該輸入資料具有由該呼吸感測器21、該心率感測器22與該動作感測器23所獲得的該呼吸感測信號、該心率感測信號與該動作感測信號之數值。The intelligent oral feeding ability evaluation module is trained by inputting a plurality of training data, and each training data includes an input data and an output data. The input data includes values of the respiration sensing signal, the heart rate sensing signal and the motion sensing signal obtained by the
本發明透過人工智慧之深度學習建置決策輔助系統來評估口腔內的感覺與動作反應並建置:The present invention builds a decision-making assistance system through deep learning of artificial intelligence to evaluate the sensory and action responses in the oral cavity and builds:
一、發展診斷模型:藉由收集不同妊娠週數(妊娠28-40週)的嬰兒之由該呼吸感測器21、該心率感測器22與該動作感測器23所獲得的該呼吸感測信號、該心率感測信號與該動作感測信號之數值來建置並應用於診斷發展延遲狀況。1. Development of a diagnostic model: by collecting the breathing sensations obtained by the
二、吸吮特性模型:依照早產兒口腔動作發展,區辨以下三種吸吮模式特性:正常的吸吮模式、雜亂無章的吸吮模式(disorganized sucking pattern)及功能障礙的吸吮模式(dysfunctional sucking pattern)。2. Model of sucking characteristics: According to the development of oral movements of premature infants, distinguish the following three characteristics of sucking patterns: normal sucking pattern, disorganized sucking pattern and dysfunctional sucking pattern.
正常的吸吮模式為新生兒在吸吮時能持續且規律地進行10至30次吸吮,且呈現規律節奏的吸吮-吞嚥-呼吸韻律韻律。藉由該呼吸感測器21、該心率感測器22與該動作感測器23來感測呼吸、心率及口腔動作,再由該智慧型口腔進食能力評估模組分析該呼吸感測信號、該心率感測信號與該動作感測信號的連續性、節奏及規律性。The normal sucking pattern is that newborns can suck continuously and regularly for 10 to 30 times, and present a regular rhythm of sucking-swallowing-breathing rhythm. The respiration, heart rate and oral movement are sensed by the
雜亂無章的吸吮模式為新生兒無法維持吸吮-吞嚥-呼吸或運動,缺乏規律節奏。Disorganized sucking pattern is the newborn's inability to sustain suck-swallow-breath or movement without regular rhythm.
功能障礙的吸吮模式為新生兒的運動反應以及下巴、舌頭運動異常或沒有吸吮運動。Dysfunctional sucking patterns are neonatal motor responses with abnormal or absent jaw and tongue movements.
該輸出資料的正確判定答案輔以醫護專家根據收集該呼吸感測信號、該心率感測信號與該動作感測信號並搭配嬰兒矯正年齡(corrected age:由預產期當天起算的年齡)及臨床口腔餵食評估量表(Neonatal Oral Motor Assessment Scale, NOMAS)所評估判定之。The correct judgment answer of the output data is supplemented by medical experts collecting the breathing sensing signal, the heart rate sensing signal and the motion sensing signal and matching the corrected age of the baby (corrected age: the age calculated from the day of the expected date of delivery) and clinical oral feeding Assessment scale (Neonatal Oral Motor Assessment Scale, NOMAS) assessment and judgment.
該智慧型口腔進食能力評估模組的訓練方式為計算該輸入資料輸入該人工神經網路並經運算後所得之輸出結果與該輸出資料的正確判定答案間的誤差值,以梯度下降法(Gradient Descent)調整該人工神經網路中層跟層神經元(neuron)間的連結權重(weight)與神經元內的偏值(bias),以達到減小該輸出結果與正確判定答案間的差異之目的。The training method of the intelligent oral eating ability evaluation module is to calculate the error value between the output result obtained after inputting the input data into the artificial neural network and the correct judgment answer of the output data, using the gradient descent method (Gradient Descent) adjusts the connection weight (weight) and the bias value (bias) in the neuron between the middle layer and the layer neuron (neuron) of the artificial neural network, so as to reduce the difference between the output result and the correct decision answer. .
將本實施例用來評估該受測者9的口腔能力的評估過程說明如下:The evaluation process used to evaluate the oral ability of the
首先,將該吸吮件1的吸吮部11放入該受測者9的口腔,使受測者9自行呼吸、吸吮該吸吮部11及吞嚥。同時,該呼吸感測器21感測該受測者9的呼吸溫度並輸出該呼吸感測信號、該心率感測器22感測該受測者9的心率並輸出該呼吸感測信號,及該動作感測器23感測該受測者9的口腔運動並輸出該動作感測信號。該傳輸件24接收該呼吸感測信號、該呼吸感測信號與該動作感測信號並傳輸至該分析裝置3。最後,該分析裝置3將該呼吸感測信號、該呼吸感測信號與該動作感測信號輸入該智慧型口腔進食能力評估模組並輸出該分析結果為:正常、雜亂無章或功能障礙的吸吮模式。First, put the
本發明藉由該感測裝置2感測呼吸、心率及口腔動作,並由該分析裝置3的分析結果來判斷口腔進食能力,感測與分析過程客觀而能提高評估準確性。因此,確實能達成本發明的目的。In the present invention, the
惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。But what is described above is only an embodiment of the present invention, and should not limit the scope of the present invention. All simple equivalent changes and modifications made according to the patent scope of the present invention and the content of the patent specification are still within the scope of the present invention. Within the scope covered by the patent of the present invention.
1:吸吮件 11:吸吮部 12:擋止部 2:感測裝置 21:呼吸感測器 22:心率感測器 23:動作感測器 24:傳輸件 3:分析裝置 9:受測者1: sucking piece 11: sucking part 12: stop part 2: Sensing device 21: Breathing sensor 22: Heart rate sensor 23: Motion sensor 24: Transmission parts 3: Analysis device 9: Subject
本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一張立體示意圖,說明本發明口腔進食能力評估系統的一實施例用來評估一受測者的口腔進食能力;及 圖2是該實施例的一張電路圖。 Other features and effects of the present invention will be clearly presented in the implementation manner with reference to the drawings, wherein: Fig. 1 is a schematic perspective view illustrating an embodiment of the oral feeding ability evaluation system of the present invention used to evaluate a subject's oral feeding ability; and Fig. 2 is a circuit diagram of this embodiment.
1:吸吮件 1: sucking piece
11:吸吮部 11: sucking part
12:擋止部 12: stop part
2:感測裝置 2: Sensing device
21:呼吸感測器 21: Breathing sensor
22:心率感測器 22: Heart rate sensor
23:動作感測器 23: Motion sensor
24:傳輸件 24: Transmission parts
3:分析裝置 3: Analysis device
9:受測者 9: Subject
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW111106611A TWI798002B (en) | 2022-02-23 | 2022-02-23 | Oral eating ability assessment system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW111106611A TWI798002B (en) | 2022-02-23 | 2022-02-23 | Oral eating ability assessment system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI798002B true TWI798002B (en) | 2023-04-01 |
| TW202333620A TW202333620A (en) | 2023-09-01 |
Family
ID=86945090
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW111106611A TWI798002B (en) | 2022-02-23 | 2022-02-23 | Oral eating ability assessment system |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI798002B (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20170127979A1 (en) * | 2015-11-07 | 2017-05-11 | Massachusetts Institute Of Technology | Methods and apparatus for detecting hand-to-mouth behavior |
| US20190076100A1 (en) * | 2017-09-14 | 2019-03-14 | Oridion Medical 1987 Ltd. | Systems and methods for operating an alert system of medical devices |
| US20200113512A1 (en) * | 2018-10-10 | 2020-04-16 | Sharp Kabushiki Kaisha | Eating monitoring method, program, and eating monitoring device |
| WO2021084725A1 (en) * | 2019-10-31 | 2021-05-06 | フジデノロ株式会社 | Detection device, magnetic composition, and management system |
-
2022
- 2022-02-23 TW TW111106611A patent/TWI798002B/en active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20170127979A1 (en) * | 2015-11-07 | 2017-05-11 | Massachusetts Institute Of Technology | Methods and apparatus for detecting hand-to-mouth behavior |
| US20190076100A1 (en) * | 2017-09-14 | 2019-03-14 | Oridion Medical 1987 Ltd. | Systems and methods for operating an alert system of medical devices |
| US20200113512A1 (en) * | 2018-10-10 | 2020-04-16 | Sharp Kabushiki Kaisha | Eating monitoring method, program, and eating monitoring device |
| WO2021084725A1 (en) * | 2019-10-31 | 2021-05-06 | フジデノロ株式会社 | Detection device, magnetic composition, and management system |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202333620A (en) | 2023-09-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Glass et al. | A global perspective on feeding assessment in the neonatal intensive care unit | |
| Adolph et al. | Physical and motor development | |
| CN114569132B (en) | A cloud server for infant training system based on teaching | |
| JP6975952B2 (en) | Living body motion identification system and living body motion identification method | |
| EP2667777B1 (en) | Apparatuses for diagnosing swallowing dysfunction | |
| Cay et al. | An e-textile respiration sensing system for NICU monitoring: design and validation | |
| US12257044B1 (en) | System and method for neuroactivity detection in infants | |
| CN118829389A (en) | Digital healthcare device for measuring heart rate using remote PPG | |
| CN109758281B (en) | A safety system based on body position adjustment | |
| TWI536962B (en) | Swallowing function detection system | |
| CN113939231B (en) | Program, information processing method and information processing device | |
| Adjerid et al. | The effect of stiffness and hole size on nipple compression in infant suckling | |
| TWI798002B (en) | Oral eating ability assessment system | |
| Wang et al. | Development of a wireless oral-feeding monitoring system for preterm infants | |
| Sukhadia et al. | IMU-Based Approach to Detect Spastic Cerebral Palsy in Infants at Early Stages. | |
| Chen et al. | Wireless monitoring system for oral-feeding evaluation of preterm infants | |
| Akbarzadeh et al. | Evaluation of Apgar scores and non-nutritive sucking skills in infants using a novel sensitized non-nutritive sucking system | |
| Hernandez-Reif et al. | Differential sucking by neonates of depressed versus non-depressed mothers | |
| Dai et al. | BabyBot: Robot with infant-like feeding behaviours and developmental oral skills | |
| Chiu et al. | AI Smart Materials for Enhancing Sucking Ability in Preterm Infants. | |
| Cay | Design of a Wearable Multi-Sensory Based Chest Belt Integrated with Iot Functions for Respiration Monitoring | |
| CN107126218A (en) | Evaluate life entity breathing and swallow the monitor system of the coordination ability | |
| Nandhini¹ et al. | Design of an Intelligent Pillow with Maternal Temperature and Heartbeat Vibrations for Comforting NICU Infants | |
| WO2024173730A2 (en) | Systems, devices, and methods for measuring biosignals and monitoring and evaluating neurodevelopment | |
| Ochoa | Automatic Feature Discrimination of Non-Nutritive Suck Dynamics Among Extremely Preterm Infants. |