TWI796767B - Drug addict detection system amd method thereof - Google Patents
Drug addict detection system amd method thereof Download PDFInfo
- Publication number
- TWI796767B TWI796767B TW110131508A TW110131508A TWI796767B TW I796767 B TWI796767 B TW I796767B TW 110131508 A TW110131508 A TW 110131508A TW 110131508 A TW110131508 A TW 110131508A TW I796767 B TWI796767 B TW I796767B
- Authority
- TW
- Taiwan
- Prior art keywords
- subject
- head
- drug
- drug addicts
- heart rate
- Prior art date
Links
- 239000003814 drug Substances 0.000 title claims abstract description 182
- 229940079593 drug Drugs 0.000 title claims abstract description 182
- 238000001514 detection method Methods 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims description 19
- 210000003739 neck Anatomy 0.000 claims abstract description 84
- 230000036760 body temperature Effects 0.000 claims abstract description 36
- 238000001931 thermography Methods 0.000 claims abstract description 28
- 230000008859 change Effects 0.000 claims abstract description 18
- 210000003128 head Anatomy 0.000 claims description 131
- 230000010344 pupil dilation Effects 0.000 claims description 39
- 238000013473 artificial intelligence Methods 0.000 claims description 29
- 230000008320 venous blood flow Effects 0.000 claims description 28
- 230000008321 arterial blood flow Effects 0.000 claims description 27
- 230000001815 facial effect Effects 0.000 claims description 26
- 230000017531 blood circulation Effects 0.000 claims description 15
- 238000013527 convolutional neural network Methods 0.000 claims description 5
- 238000000513 principal component analysis Methods 0.000 claims description 5
- 238000012800 visualization Methods 0.000 claims 3
- 239000008280 blood Substances 0.000 abstract description 5
- 210000004369 blood Anatomy 0.000 abstract description 5
- 210000001367 artery Anatomy 0.000 abstract 4
- 210000003462 vein Anatomy 0.000 abstract 4
- 230000006870 function Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 208000011117 substance-related disease Diseases 0.000 description 3
- 206010013654 Drug abuse Diseases 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 210000001747 pupil Anatomy 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 206010013663 drug dependence Diseases 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
Images
Landscapes
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Description
本發明係有關於一種毒癮者偵測系統,特別是一種非接觸式的毒癮者偵測系統。本發明還涉及此毒癮者偵測系統的毒癮者偵測方法。The invention relates to a detection system for drug addicts, in particular to a non-contact detection system for drug addicts. The invention also relates to the drug addict detection method of the drug addict detection system.
毒品氾濫對社會的危害甚鉅,毒癮者有不斷年輕化的趨勢。毒癮者難以克制自己對毒品的需求,只能耗費大量的金錢不斷地購買毒品,故許多毒癮者也不可避免的成為販毒者。因此,如何有效地找出毒癮者以防止毒品氾濫為一個重要的議題。The proliferation of drugs is very harmful to society, and drug addicts tend to be younger. It is difficult for drug addicts to restrain their demand for drugs, and they can only spend a lot of money to buy drugs continuously, so many drug addicts will inevitably become drug traffickers. Therefore, how to effectively identify drug addicts to prevent drug abuse is an important issue.
然而,目前警方大多僅能透過快篩試劑進行毒癮檢驗,並沒有一個有效地且快速的檢驗裝置,故無法有效率地找出毒癮者。However, at present, most of the police can only conduct drug addiction tests through rapid screening reagents, and do not have an effective and rapid testing device, so they cannot efficiently find drug addicts.
根據本發明之一實施例,本發明提出一種毒癮者偵測系統,其包含影像擷取裝置、熱像裝置及分析裝置。影像擷取裝置用於擷取複數個毒癮者的影像。熱像裝置用於獲得該些毒癮者的頭部與頸部的體溫溫度。分析裝置用於分析該些毒癮者的影像以獲得該些毒癮者的頭部與頸部的動靜脈血流的溫度變化,並透過人工智慧演算法分析該些毒癮者的頭部與頸部的動靜脈血流的溫度變化及頭部與頸部的體溫溫度以獲得心率變異值門檻值及頭部溫度門檻值。其中,影像擷取裝置擷取之受測者的影像且熱像裝置獲得受測者的頭部與頸部的體溫溫度,分析裝置分析受測者的影像以獲得受測者的頭部與頸部的動靜脈血流的溫度變化,再分析受測者的頭部與頸部的動靜脈血流的溫度變化及頭部與頸部的體溫溫度以獲得受測者的心率變異值及頭部溫度,並分別將受測者的心率變異值及頭部溫度與心率變異值門檻值及頭部溫度門檻值比對以產生判斷結果。According to an embodiment of the present invention, the present invention provides a drug addict detection system, which includes an image capture device, a thermal imaging device, and an analysis device. The image capture device is used for capturing multiple images of drug addicts. Thermal imaging devices are used to obtain the body temperature of the drug addicts' heads and necks. The analysis device is used to analyze the images of the drug addicts to obtain the temperature changes of the arterial and venous blood flow in the head and neck of the drug addicts, and analyze the head and neck of the drug addicts through the artificial intelligence algorithm. The temperature change of the arterial and venous blood flow in the neck and the body temperature of the head and the neck are used to obtain the heart rate variation threshold value and the head temperature threshold value. Wherein, the image capture device captures the subject's image and the thermal imaging device obtains the body temperature of the subject's head and neck, and the analysis device analyzes the subject's image to obtain the subject's head and neck temperature. The temperature change of the arteriovenous blood flow in the head and neck, and then analyze the temperature change of the arteriovenous blood flow in the head and neck of the subject and the body temperature of the head and neck to obtain the heart rate variation value of the subject and the head temperature, and compare the heart rate variation value and head temperature of the subject with the heart rate variation threshold value and the head temperature threshold value respectively to generate a judgment result.
據本發明之另一實施例,本發明提出一種毒癮者偵測方法,其包含下列步驟:透過影像擷取裝置擷取複數個毒癮者的影像;經由熱像裝置獲得該些毒癮者的頭部與頸部的體溫溫度;由分析裝置分析該些毒癮者的影像以獲得該些毒癮者的頭部與頸部的動靜脈血流的溫度變化;由分析裝置透過人工智慧演算法分析該些毒癮者的頭部與頸部的動靜脈血流的溫度變化及頭部與頸部的體溫溫度以獲得心率變異值門檻值及頭部溫度門檻值;經由影像擷取裝置擷取之受測者的影像;透過熱像裝置獲得受測者的頭部與頸部的體溫溫度;由分析裝置分析受測者的影像以獲得受測者的頭部與頸部的動靜脈血流的溫度變化,再分析受測者的頭部與頸部的動靜脈血流的溫度變化及頭部與頸部的體溫溫度以獲得受測者的心率變異值及頭部溫度;以及經由分析裝置分別將受測者的心率變異值及頭部溫度與心率變異值門檻值及頭部溫度門檻值比對以產生判斷結果。According to another embodiment of the present invention, the present invention proposes a method for detecting drug addicts, which includes the following steps: capturing images of a plurality of drug addicts through an image capture device; obtaining images of these drug addicts through a thermal imaging device The body temperature of the head and neck of the drug addict; the analysis device analyzes the images of the drug addicts to obtain the temperature changes of the arterial and venous blood flow in the head and neck of the drug addict; the analysis device calculates through artificial intelligence The method analyzes the temperature changes of the arterial and venous blood flow in the head and neck of these drug addicts and the body temperature of the head and neck to obtain the threshold value of heart rate variation and the threshold value of head temperature; Take the image of the subject; obtain the body temperature of the subject's head and neck through the thermal imaging device; analyze the image of the subject by the analysis device to obtain the arterial and venous blood of the subject's head and neck Then analyze the temperature changes of the arterial and venous blood flow in the head and neck of the subject and the body temperature of the head and neck to obtain the heart rate variation and head temperature of the subject; and through analysis The device compares the heart rate variation value and head temperature of the subject with the threshold value of the heart rate variation value and the head temperature threshold value to generate a judgment result.
在一實施例中,分析演算法可為主成份分析法,也可為其它類似的演算法。In one embodiment, the analysis algorithm may be principal component analysis, or other similar algorithms.
在一實施例中,分析裝置分析該些毒癮者的影像以獲得該些毒癮者的臉脥凹陷值,並透過人工智慧演算法分析該些毒癮者的臉脥凹陷值以獲得臉脥凹陷門檻值,而分析裝置分析受測者的影像以獲得受測者的臉脥凹陷值,並將受測者的臉脥凹陷值與臉脥凹陷門檻值比對以產生判斷結果。In one embodiment, the analysis device analyzes the images of the drug addicts to obtain the facial sag values of the drug addicts, and analyzes the facial sag values of the drug addicts through an artificial intelligence algorithm to obtain the facial sag values. The threshold value of depression, and the analysis device analyzes the image of the subject to obtain the value of depression of the face of the subject, and compares the value of depression of the face of the subject with the threshold value of depression of the face to generate a judgment result.
在一實施例中,分析裝置分析該些毒癮者的影像以獲得該些毒癮者的瞳孔放大值,並透過人工智慧演算法分析該些毒癮者的瞳孔放大值以獲得瞳孔放大門檻值,而分析裝置分析受測者的影像以獲得受測者的瞳孔放大值,並將受測者的瞳孔放大值與瞳孔放大門檻值比對以產生判斷結果。In one embodiment, the analysis device analyzes the images of the drug addicts to obtain the pupil dilation values of the drug addicts, and analyzes the pupil dilation values of the drug addicts through an artificial intelligence algorithm to obtain the pupil dilation threshold , and the analysis device analyzes the image of the subject to obtain the pupil dilation value of the subject, and compares the pupil dilation value of the subject with the pupil dilation threshold value to generate a judgment result.
在一實施例中,當受測者的心率變異值、受測者的頭部溫度、受測者的臉脥凹陷值及受測者的瞳孔放大值的任二項超過心率變異值門檻值、頭部溫度門檻值、臉脥凹陷門檻值及瞳孔放大門檻值時,分析裝置的判斷結果顯示受測者為可疑毒癮者。In one embodiment, when any two items of the subject's heart rate variation value, the subject's head temperature, the subject's face depression value and the subject's pupil dilation value exceed the heart rate variation value threshold value, When the head temperature threshold value, facial depression threshold value and pupil dilation threshold value are determined, the judgment result of the analysis device shows that the subject is a suspected drug addict.
在一實施例中,人工智慧演算法可為卷積神經網路,也可為其它類似的演算法。In one embodiment, the artificial intelligence algorithm may be a convolutional neural network, or other similar algorithms.
承上所述,依本發明之毒癮者偵測系統,其可具有一或多個下述優點:Based on the above, according to the drug addict detection system of the present invention, it may have one or more of the following advantages:
(1)本發明之一實施例中,毒癮者偵測系統採用影像擷取裝置及熱像裝置取得待分析資料,再透過分析裝置對待分析資料進行分析並產生判斷結果,故可有效地實現遠距離的偵測,且能達到高效率。(1) In one embodiment of the present invention, the drug addict detection system uses an image capture device and a thermal imaging device to obtain the data to be analyzed, and then analyzes the data to be analyzed through the analysis device and generates a judgment result, so it can effectively realize Long-distance detection, and can achieve high efficiency.
(2)本發明之一實施例中,毒癮者偵測系統針對毒癮者的頭部與頸部的動靜脈血流的溫度變化進行分析,經實驗證明其能更有效地表示心率變化,故能達到更佳的精確度,以有效地找出可疑毒癮者。(2) In one embodiment of the present invention, the drug addict detection system analyzes the temperature changes of the arterial and venous blood flow in the head and neck of the drug addict, and experiments have proved that it can more effectively represent heart rate changes, Therefore, better accuracy can be achieved to effectively identify suspected drug addicts.
(3)本發明之一實施例中,毒癮者偵測系統將人工智慧演算法與特殊的分析技術整合,並針對毒癮者的多個特徵參數進行分析,故能進一步提升精確度,以更有效地找出可疑毒癮者。(3) In one embodiment of the present invention, the drug addict detection system integrates artificial intelligence algorithm and special analysis technology, and analyzes multiple characteristic parameters of drug addicts, so the accuracy can be further improved, and Identify suspected drug addicts more effectively.
(4)本發明之一實施例中,毒癮者偵測系統的設計巧妙且簡單,故能在不大幅提升成本的前提下達到所欲達到的功效,極具商業價值。(4) In one embodiment of the present invention, the design of the drug addict detection system is ingenious and simple, so it can achieve the desired effect without greatly increasing the cost, which is of great commercial value.
以下將參照相關圖式,說明依本發明之毒癮者偵測系統之實施例,為了清楚與方便圖式說明之故,圖式中的各部件在尺寸與比例上可能會被誇大或縮小地呈現。在以下描述及/或申請專利範圍中,當提及元件「連接」或「耦合」至另一元件時,其可直接連接或耦合至該另一元件或可存在介入元件;而當提及元件「直接連接」或「直接耦合」至另一元件時,不存在介入元件,用於描述元件或層之間之關係之其他字詞應以相同方式解釋。為使便於理解,下述實施例中之相同元件係以相同之符號標示來說明。The following will refer to the related drawings to illustrate the embodiment of the drug addict detection system according to the present invention. For the sake of clarity and convenience of illustration, the sizes and proportions of the components in the drawings may be exaggerated or reduced. presented. In the following description and/or claims, when it is mentioned that an element is "connected" or "coupled" to another element, it may be directly connected or coupled to the other element or there may be an intervening element; When "directly connected" or "directly coupled" to another element, there are no intervening elements present, and other words used to describe the relationship between elements or layers should be interpreted in the same manner. To facilitate understanding, the same components in the following embodiments are described with the same symbols.
請參閱第1圖,其係為本發明之第一實施例之毒癮者偵測系統之方塊圖。如圖所示,毒癮者偵測系統1包含影像擷取裝置11、熱像裝置12及分析裝置13。Please refer to Fig. 1, which is a block diagram of the drug addict detection system according to the first embodiment of the present invention. As shown in the figure, the drug
影像擷取裝置11用於擷取複數個毒癮者的影像。在一實施例中,影像擷取裝置11可為攝影機或其它具有相同功能的裝置。其中,影像擷取裝置11可透過機器視覺技術追蹤各個毒癮者的頭部及頸部,以利分析裝置13進行後續的分析。在一實施例中,影像擷取裝置11可為具有熱感影像功能的攝影機或具有類似功能的裝置。The image capturing
熱像裝置12用於獲得該些毒癮者的頭部與頸部的體溫溫度。在一實施例中,熱像裝置12可為紅外線熱像儀、熱感應儀器或其它類似的裝置。The
分析裝置13用於分析該些毒癮者的影像以獲得該些毒癮者的頭部與頸部的動靜脈血流的溫度變化,並透過人工智慧演算法分析該些毒癮者的頭部與頸部的動靜脈血流的溫度變化及頭部與頸部的體溫溫度以進行機械學習,進而獲得心率變異值(Heart Rate Variability,HRV)門檻值T1及頭部溫度門檻值T2。在一實施例中,分析裝置13可為中央處理器(CPU)、特殊應用積體電路或其它類似的裝置。在一實施例中,前述的人工智慧演算法可為但不限於卷積神經網路(CNN);在另一實施例中,前述的人工智慧演算法也可以是其它具有機器學習功能的演算法。如前述,分析裝置13分析該些毒癮者的影像以獲得該些毒癮者的頭部與頸部的動靜脈血流的溫度變化,透過熱感影像可取得該些毒癮者的頭部與頸部的動靜脈血流的溫度變化,而透過分析頭部與頸部的動靜脈血流的溫度變化則可取得對應的心率變異值。因此,透過分析大量毒癮者的資料即可得出一個心率變異值門檻值T1。同樣的,分析裝置13分析該些毒癮者的頭部與頸部的體溫溫度以取得各個毒癮者的頭部平均溫度,再透過分析大量毒癮者的資料即可得出一個頭部溫度門檻值T2。The
分析裝置13透過分析演算法分析該些毒癮者的頭部與頸部的動靜脈血流的溫度變化,藉此獲得可視化資料,再透過人工智慧演算法分析可視化資料以獲得心率變異值門檻值T1。在一實施例中,前述的分析演算法可為但不限於主成份分析法(PCA);在另一實施例中,前述的分析演算法也可以是其它具有現有的演算法。由於毒癮者的心率變異值及頭部溫度均較正常人為高,故透過前述特殊的分析步驟可找出其特徵。The
透過此機制及前述的過濾步驟,分析裝置13可以獲得大量毒癮者的心率變異值及頭部溫度,並透過人工智慧演算法進行機械學習,以找出能夠篩選毒癮者的心率變異值門檻值T1及頭部溫度門檻值T2。在另一實施例中,分析裝置13還可透過人工智慧演算法分析正常人的心率變異值及頭部溫度,並與大量毒癮者的心率變異值及頭部溫度整合進行分析,以找出能夠篩選毒癮者的心率變異值門檻值T1及頭部溫度門檻值T2,以增加精確度。Through this mechanism and the above-mentioned filtering steps, the
當進行毒癮者偵測時,影像擷取裝置11擷取之受測者的影像且熱像裝置12獲得受測者的頭部與頸部的體溫溫度,分析裝置13分析受測者的影像以獲得受測者的頭部與頸部的動靜脈血流的溫度變化,再分析受測者的頭部與頸部的動靜脈血流的溫度變化以獲得受測者的心率變異值,並分別將受測者的心率變異值及頭部溫度與心率變異值門檻值T1及頭部溫度門檻值T2比對以產生判斷結果R。When detecting drug addicts, the
在本實施例中,當受測者的心率變異值及頭部溫度均超過心率變異值門檻值T1及頭部溫度門檻值T2時(此條件可視實際情況調整),分析裝置13的判斷結果R顯示受測者為可疑毒癮者。此時,警方則可對受測者進行快篩,以確認其是否確實為毒癮者。In this embodiment, when both the heart rate variation value and the head temperature of the subject exceed the heart rate variation threshold value T1 and the head temperature threshold value T2 (this condition can be adjusted according to the actual situation), the judgment result R of the
本實施例之毒癮者偵測系統1可設置在建築物的出入口、交通設施(如捷運站、火車站、高鐵站、機場、各種建築物等)的出入口或其它毒癮者可能出沒的地點。如此,可透過毒癮者偵測系統1以遠距離偵測的方式快速找出可疑毒癮者,使警方能更有效率地採取必要措施以防止毒品氾濫。The drug
由上述可知,本實施例之毒癮者偵測系統1可針對毒癮者的頭部與頸部的動靜脈血流的溫度變化進行分析,經實驗證明其能更有效地表示心率變化。另外,毒癮者偵測系統1更將人工智慧演算法與特殊的分析技術整合,並且針對毒癮者的多個特徵參數進行分析,故能大幅地提升精確度,以更有效地找出可疑毒癮者。From the above, it can be known that the drug
此外,本實施例之毒癮者偵測系統1的分析流程還包含特殊的過濾步驟,其可排除不與正常心率的頻率範圍內對應的頭部與頸部的動靜脈血流的溫度變化,僅針對與正常心率的頻率範圍內對應的頭部與頸部的動靜脈血流的溫度變化進行分析,故能進一步提升精確度,以更有效地找出可疑毒癮者。In addition, the analysis process of the drug
當然,上述僅為舉例,本實施例之毒癮者偵測系統1的各元件及其功能可依實際需求變化,本發明並不以此為限。Of course, the above is just an example, and the elements and functions of the drug
請參閱第2圖,其係為本發明之第一實施例之毒癮者偵測方法之流程圖。如圖所示,本實施例之毒癮者偵測方法包含下列步驟:Please refer to Fig. 2, which is a flow chart of the drug addict detection method according to the first embodiment of the present invention. As shown in the figure, the drug addict detection method of this embodiment includes the following steps:
步驟S21:透過影像擷取裝置擷取複數個毒癮者的影像。Step S21: Capture images of a plurality of drug addicts through an image capture device.
步驟S22:由熱像裝置獲得該些毒癮者的頭部與頸部的體溫溫度。Step S22: The body temperature of the head and neck of the drug addicts is obtained by the thermal imaging device.
步驟S23:經由分析裝置用於分析該些毒癮者的影像以獲得該些毒癮者的頭部與頸部的動靜脈血流的溫度變化,並透過人工智慧演算法分析該些毒癮者的頭部與頸部的動靜脈血流的溫度變化及頭部與頸部的體溫溫度以獲得心率變異值門檻值及頭部溫度門檻值。Step S23: Analyze the images of the drug addicts through the analysis device to obtain the temperature changes of the arterial and venous blood flow in the head and neck of the drug addicts, and analyze the drug addicts through artificial intelligence algorithms The temperature changes of the arterial and venous blood flow in the head and neck and the body temperature of the head and neck are used to obtain the heart rate variation threshold and the head temperature threshold.
步驟S24:透過影像擷取裝置擷取之受測者的影像。Step S24: The image of the subject captured by the image capture device.
步驟S25:由熱像裝置獲得受測者的頭部與頸部的體溫溫度。Step S25: The body temperature of the subject's head and neck is obtained by the thermal imaging device.
步驟S26:經由分析裝置分析受測者的影像以獲得受測者的頭部與頸部的動靜脈血流的溫度變化,再分析受測者的頭部與頸部的動靜脈血流的溫度變化以獲得受測者的心率變異值,並分別將受測者的心率變異值及頭部溫度與心率變異值門檻值及頭部溫度門檻值比對以產生判斷結果。Step S26: Analyze the image of the subject through the analysis device to obtain the temperature change of the arteriovenous blood flow in the subject's head and neck, and then analyze the temperature of the arteriovenous blood flow in the subject's head and neck Change to obtain the heart rate variation value of the subject, and compare the heart rate variation value and head temperature of the subject with the heart rate variation value threshold value and the head temperature threshold value respectively to generate a judgment result.
請參閱第3圖,其係為本發明之第二實施例之毒癮者偵測系統之方塊圖。如圖所示,毒癮者偵測系統2包含影像擷取裝置21、熱像裝置22及分析裝置23。Please refer to Fig. 3, which is a block diagram of the drug addict detection system according to the second embodiment of the present invention. As shown in the figure, the drug
影像擷取裝置21用於擷取複數個毒癮者的影像。The
熱像裝置22用於獲得該些毒癮者的頭部與頸部的體溫溫度。The
分析裝置23用於分析該些毒癮者的影像以獲得該些毒癮者的頭部與頸部的動靜脈血流的溫度變化,並透過人工智慧演算法分析該些毒癮者的頭部與頸部的動靜脈血流的溫度變化及頭部與頸部的體溫溫度以進行機械學習,進而獲得心率變異值門檻值T1及頭部溫度門檻值T2。The
上述分析程序與前述實施例相同,故不在此多加贅述。與前述實施例不同的是,本實施例之毒癮者偵測系統2還進一步針對毒癮者的其它特徵參數進行分析。The above-mentioned analysis procedure is the same as the above-mentioned embodiment, so it will not be repeated here. Different from the foregoing embodiments, the drug
分析裝置23分析該些毒癮者的影像以獲得該些毒癮者的臉脥凹陷值,並透過人工智慧演算法分析該些毒癮者的臉脥凹陷值以產生臉脥凹陷門檻值T3。The
然後,分析裝置23分析該些毒癮者的影像以獲得該些毒癮者的瞳孔放大值,並透過人工智慧演算法分析該些毒癮者的瞳孔放大值以產生瞳孔放大門檻值T4。由於毒癮者的臉脥凹陷值及瞳孔放大值均較正常人為高,故透過前述特殊的分析步驟也可找出其特徵。Then, the
當進行毒癮者偵測時,影像擷取裝置21擷取之受測者的影像且熱像裝置12獲得受測者的頭部與頸部的體溫溫度,分析裝置23分析受測者的影像以獲得受測者的頭部與頸部的動靜脈血流的溫度變化、臉脥凹陷值及瞳孔放大值,再分析受測者的頭部與頸部的動靜脈血流的溫度變化及頭部與頸部的體溫溫度以獲得受測者的心率變異值及頭部溫度,並分別將受測者的心率變異值、頭部溫度、臉脥凹陷值及瞳孔放大值分別與心率變異值門檻值T1、頭部溫度門檻值T2、臉脥凹陷門檻值T3及瞳孔放大門檻值T4比對以產生判斷結果R。When detecting drug addicts, the
當受測者的心率變異值、頭部溫度、臉脥凹陷值及瞳孔放大值的任二項超過心率變異值門檻值T1、頭部溫度門檻值T2、臉脥凹陷門檻值T3及瞳孔放大門檻值T4時,分析裝置23的判斷結果顯示此受測者為可疑毒癮者。When any two items of heart rate variation value, head temperature, facial depression value and pupil dilation value exceed the heart rate variation threshold T1, head temperature threshold T2, facial depression threshold T3 and pupil dilation threshold When the value is T4, the judgment result of the
如前述,本實施例之毒癮者偵測系統2將人工智慧演算法與特殊的分析技術整合,並針對毒癮者更多的特徵參數進行分析,並於其中二個或以上的特徵參數(此條件可視實際情況調整)有異時判斷受測者為可疑毒癮者,此方式能進一步提升精確度,以更有效地找出可疑毒癮者。As mentioned above, the drug
當然,上述僅為舉例,本實施例之毒癮者偵測系統2的各元件及其功能可依實際需求變化,本發明並不以此為限。Of course, the above is only an example, and the components and functions of the drug
請參閱第4圖,其係為本發明之第二實施例之毒癮者偵測方法之流程圖。如圖所示,本實施例之毒癮者偵測方法包含下列步驟:Please refer to FIG. 4, which is a flow chart of the method for detecting drug addicts according to the second embodiment of the present invention. As shown in the figure, the drug addict detection method of this embodiment includes the following steps:
步驟S41:透過影像擷取裝置擷取複數個毒癮者的影像。Step S41: Capture images of a plurality of drug addicts through an image capture device.
步驟S42:由熱像裝置獲得該些毒癮者的頭部與頸部的體溫溫度。Step S42: The body temperature of the head and neck of the drug addicts is obtained by the thermal imaging device.
步驟S43:經由分析裝置用於分析該些毒癮者的影像以獲得該些毒癮者的頭部與頸部的動靜脈血流的溫度變化、臉脥凹陷值及瞳孔放大值,並透過人工智慧演算法分析該些毒癮者的頭部與頸部的動靜脈血流的溫度變化、頭部與頸部的體溫溫度、臉脥凹陷值及瞳孔放大值以獲得心率變異值門檻值、頭部溫度門檻值、臉脥凹陷門檻值及瞳孔放大門檻值。Step S43: Analyze the images of the drug addicts through the analysis device to obtain the temperature changes of the arterial and venous blood flow in the head and neck of the drug addicts, the sunken face value and the pupil dilation value, and manually The intelligent algorithm analyzes the temperature changes of the arterial and venous blood flow in the head and neck, the body temperature of the head and neck, the sunken face value and pupil dilation value of these drug addicts to obtain the threshold value of heart rate variation, head Body temperature threshold, face sunken threshold and pupil dilation threshold.
步驟S44:透過影像擷取裝置擷取之受測者的影像。Step S44: The image of the subject captured by the image capture device.
步驟S45:由熱像裝置獲得受測者的頭部與頸部的體溫溫度。Step S45: Obtain the body temperature of the subject's head and neck by the thermal imaging device.
步驟S46:經由分析裝置分析受測者的影像以獲得受測者的頭部與頸部的動靜脈血流的溫度變化、臉脥凹陷值及瞳孔放大值,再分析頭部與頸部的動靜脈血流的溫度變化及頭部與頸部的體溫溫度以獲得受測者的心率變異值及頭部溫度,並分別將受測者的心率變異值、頭部溫度、臉脥凹陷值及瞳孔放大值分別與心率變異值門檻值、頭部溫度門檻值、臉脥凹陷門檻值及瞳孔放大門檻值比對以產生判斷結果。Step S46: Analyze the image of the subject through the analysis device to obtain the temperature change of the arterial and venous blood flow of the subject's head and neck, the value of the depression of the face and the dilation value of the pupil, and then analyze the movement of the head and neck. The temperature change of the venous blood flow and the body temperature of the head and neck are used to obtain the heart rate variation value and head temperature of the subject, and the heart rate variation value, head temperature, face depression value and pupil The magnification value is compared with the heart rate variation threshold value, the head temperature threshold value, the sunken face threshold value and the pupil dilation threshold value respectively to generate a judgment result.
步驟S47:當受測者的心率變異值、頭部溫度、臉脥凹陷值及受測者的瞳孔放大值的任二項超過心率變異值門檻值、頭部溫度門檻值、臉脥凹陷門檻值及瞳孔放大門檻值時,分析裝置的判斷結果顯示此受測者為可疑毒癮者。Step S47: When any two items of the subject's heart rate variation value, head temperature, facial depression value and subject's pupil dilation value exceed the threshold value of heart rate variation value, head temperature threshold value, and facial depression threshold value and pupil dilation threshold, the analysis device's judgment result shows that the subject is a suspected drug addict.
綜上所述,根據本發明之實施例,毒癮者偵測系統採用影像擷取裝置及熱像裝置取得待分析資料,再透過分析裝置對待分析資料進行分析並產生判斷結果,故可有效地實現遠距離的偵測,且能達到高效率。In summary, according to the embodiment of the present invention, the drug addict detection system uses an image capture device and a thermal imaging device to obtain the data to be analyzed, and then analyzes the data to be analyzed through the analysis device to generate a judgment result, so it can effectively Realize long-distance detection, and can achieve high efficiency.
又,根據本發明之實施例,毒癮者偵測系統針對毒癮者的頭部與頸部的動靜脈血流進行分析,經實驗證明其能更有效地表示心率變化,故能達到更佳的精確度,以有效地找出可疑毒癮者。In addition, according to the embodiment of the present invention, the drug addict detection system analyzes the arterial and venous blood flow in the head and neck of the drug addict, and experiments have proved that it can more effectively represent heart rate changes, so it can achieve better results. accuracy to effectively identify suspected drug addicts.
另外,根據本發明之實施例,毒癮者偵測系統將人工智慧演算法與特殊的分析技術整合,並針對毒癮者的多個特徵參數進行分析,故能進一步提升精確度,以更有效地找出可疑毒癮者。In addition, according to the embodiment of the present invention, the drug addict detection system integrates artificial intelligence algorithms and special analysis techniques, and analyzes multiple characteristic parameters of drug addicts, so that the accuracy can be further improved for more effective to identify suspected drug addicts.
再者,根據本發明之實施例,毒癮者偵測系統的設計巧妙且簡單,故能在不大幅提升成本的前提下達到所欲達到的功效,極具商業價值。Furthermore, according to the embodiment of the present invention, the design of the drug addict detection system is ingenious and simple, so the desired effect can be achieved without greatly increasing the cost, which is of great commercial value.
可見本發明在突破先前之技術下,確實已達到所欲增進之功效,且也非熟悉該項技藝者所易於思及,其所具之進步性、實用性,顯已符合專利之申請要件,爰依法提出專利申請,懇請 貴局核准本件發明專利申請案,以勵創作,至感德便。It can be seen that the present invention has indeed achieved the desired effect after breaking through the previous technology, and it is not easy for those who are familiar with this technology to think about it. Its progress and practicability obviously meet the requirements for patent application. ¢I filed a patent application in accordance with the law, and I sincerely ask your bureau to approve this invention patent application to encourage creation, and I am grateful for it.
以上所述僅為舉例性,而非為限制性者。其它任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應該包含於後附之申請專利範圍中。The above descriptions are illustrative only, not restrictive. Any other equivalent modifications or changes made without departing from the spirit and scope of the present invention shall be included in the scope of the appended patent application.
1, 2: 毒癮者偵測系統
11, 21: 影像擷取裝置
12, 22: 熱像裝置
13, 23: 分析裝置
T1: 心率變異值門檻值
T2: 頭部溫度門檻值
T3: 臉脥凹陷門檻值
T4: 瞳孔放大門檻值
R: 判斷結果
S21~S26, S41~S47: 步驟流程
1, 2: Drug
第1圖 係為本發明之第一實施例之毒癮者偵測系統之方塊圖。 第2圖 係為本發明之第一實施例之毒癮者偵測方法之流程圖。 第3圖 係為本發明之第二實施例之毒癮者偵測系統之方塊圖。 第4圖 係為本發明之第二實施例之毒癮者偵測方法之流程圖。 Fig. 1 is a block diagram of a drug addict detection system according to the first embodiment of the present invention. Fig. 2 is a flow chart of the method for detecting drug addicts according to the first embodiment of the present invention. Fig. 3 is a block diagram of a drug addict detection system according to the second embodiment of the present invention. Fig. 4 is a flow chart of the method for detecting drug addicts according to the second embodiment of the present invention.
1: 毒癮者偵測系統 11: 影像擷取裝置 12: 熱像裝置 13: 分析裝置 T1: 心率變異值門檻值 T2: 頭部溫度門檻值 R: 判斷結果 1: Drug addict detection system 11: Image capture device 12: Thermal imaging device 13: Analysis device T1: HRV threshold T2: head temperature threshold R: Judgment result
Claims (16)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW110131508A TWI796767B (en) | 2021-08-25 | 2021-08-25 | Drug addict detection system amd method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW110131508A TWI796767B (en) | 2021-08-25 | 2021-08-25 | Drug addict detection system amd method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW202308719A TW202308719A (en) | 2023-03-01 |
| TWI796767B true TWI796767B (en) | 2023-03-21 |
Family
ID=86690892
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW110131508A TWI796767B (en) | 2021-08-25 | 2021-08-25 | Drug addict detection system amd method thereof |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI796767B (en) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109300529A (en) * | 2018-09-12 | 2019-02-01 | 阿呆科技(北京)有限公司 | Intervened based on artificial intelligence and the craving targeting of virtual reality/augmented reality drug addiction and rescues system |
| US20210319872A1 (en) * | 2016-08-15 | 2021-10-14 | Edmund L. Valentine | Drug and device combination products with improved safety and efficacy profiles |
-
2021
- 2021-08-25 TW TW110131508A patent/TWI796767B/en active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210319872A1 (en) * | 2016-08-15 | 2021-10-14 | Edmund L. Valentine | Drug and device combination products with improved safety and efficacy profiles |
| CN109300529A (en) * | 2018-09-12 | 2019-02-01 | 阿呆科技(北京)有限公司 | Intervened based on artificial intelligence and the craving targeting of virtual reality/augmented reality drug addiction and rescues system |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202308719A (en) | 2023-03-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Balcoh et al. | Algorithm for efficient attendance management: Face recognition based approach | |
| Li et al. | Generalized face anti-spoofing by detecting pulse from face videos | |
| Chen et al. | PulseEdit: Editing physiological signals in facial videos for privacy protection | |
| Bhatt et al. | Machine learning for cognitive behavioral analysis: datasets, methods, paradigms, and research directions | |
| WO2021227124A1 (en) | Facial recognition living body detection method based on facial iris recognition and thermal imaging technology | |
| Chang et al. | Drunk driving detection using two-stage deep neural network | |
| Menchetti et al. | Pain detection from facial videos using two-stage deep learning | |
| TWI796767B (en) | Drug addict detection system amd method thereof | |
| Ives et al. | Iris recognition using the ridge energy direction (RED) algorithm | |
| Mandal | Face recognition: Perspectives from the real world | |
| Phatak et al. | Advanced face detection using machine learning and AI-based algorithm | |
| Manssor et al. | TIRFaceNet: thermal IR facial recognition | |
| Xu et al. | Trajectory is not enough: Hidden following detection | |
| NaliniPriya et al. | A face recognition security model using transfer learning technique | |
| Tiwari et al. | Non-Invasive Stress Monitoring From Video | |
| Zhao et al. | EV-GazeLock: A User Authentication System Based on Micro Eye Movement with Event Cameras | |
| Jamdar et al. | Implementation of unimodal to multimodal biometrie feature level fusion of combining face iris and ear in multi-modal biometric system | |
| CN114821749A (en) | Emotion recognition-based ATM anti-clamping method and device | |
| Hernandez-Ortega et al. | Continuous presentation attack detection in face biometrics based on heart rate | |
| Wasi et al. | Dfvnet: real-time disguised face verification | |
| Mohammed | Design a multi biometric system for safe access to buildings | |
| KR20110092923A (en) | Access control system through pattern recognition | |
| Parab et al. | Face recognition-based automatic hospital admission with SMS alerts | |
| Reddy et al. | Simultaneous measurement and correlation of ppg signals taken from two different body parts for enhanced biometric security via two-level authentication | |
| Olugbenle et al. | User Authentication and Vital Signs Extraction from Low-Frame-Rate and Monochrome No-contact Fingerprint Captures |