TWI790831B - Multimodal Dynamic Key Method Based on Chaotic Peak Coding and Its Application - Google Patents
Multimodal Dynamic Key Method Based on Chaotic Peak Coding and Its Application Download PDFInfo
- Publication number
- TWI790831B TWI790831B TW110143765A TW110143765A TWI790831B TW I790831 B TWI790831 B TW I790831B TW 110143765 A TW110143765 A TW 110143765A TW 110143765 A TW110143765 A TW 110143765A TW I790831 B TWI790831 B TW I790831B
- Authority
- TW
- Taiwan
- Prior art keywords
- chaotic
- slave
- master
- dynamic key
- peak
- Prior art date
Links
- 230000000739 chaotic effect Effects 0.000 title claims abstract description 170
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000005540 biological transmission Effects 0.000 claims abstract description 50
- 238000004364 calculation method Methods 0.000 claims abstract description 34
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 17
- 230000001360 synchronised effect Effects 0.000 claims description 23
- 230000007717 exclusion Effects 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 8
- 239000000284 extract Substances 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 11
- 238000013461 design Methods 0.000 description 35
- 238000010586 diagram Methods 0.000 description 16
- 238000004891 communication Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 9
- 238000004088 simulation Methods 0.000 description 8
- 238000009826 distribution Methods 0.000 description 5
- 238000012795 verification Methods 0.000 description 5
- 238000005291 chaos (dynamical) Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000013178 mathematical model Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 2
- 238000013478 data encryption standard Methods 0.000 description 2
- 238000012938 design process Methods 0.000 description 2
- 238000010183 spectrum analysis Methods 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 240000007651 Rubus glaucus Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 235000021013 raspberries Nutrition 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Landscapes
- Storage Device Security (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
Abstract
本發明係揭露一種基於混沌峰值編碼之多模態動態金鑰方法及其應用,其包括位於發送端的第一資訊裝置及位於接收端的第二資訊裝置。第一資訊裝置內建主端第一混沌系統、主端雜湊演算模組、加密系統及主端網路傳輸模組。第二資訊裝置內建僕端第一混沌系統、僕端雜湊演算模組、解密系統及僕端網路傳輸模組。主端第一混沌系統與僕端第一混沌系統各自疊代產生隨機的混沌亂數,並由安全雜湊演算法的運算,以各自產生動態金鑰。加密系統將動態金鑰及明文資料加密為密文後透過主端網路傳輸模組經公共網域而傳輸至僕端網路傳輸模組,再由解密系統將動態金鑰及密文資料解密為明文資料,俾能利用混沌系統狀態的隨機特性及蝴蝶效應並引入SHA3-256演算法,以生成動態固定長度較難破解的隨機密鑰,以確保資訊裝置之間資訊傳遞的安全性。 The present invention discloses a multi-modal dynamic key method based on chaotic peak coding and its application, which includes a first information device at the sending end and a second information device at the receiving end. The first information device built-in the first chaos system of the main end, the hash calculation module of the main end, the encryption system and the network transmission module of the main end. The second information device has a built-in slave-side first chaos system, a slave-side hash calculation module, a decryption system, and a slave-side network transmission module. The first chaotic system at the master end and the first chaotic system at the slave end iteratively generate random chaotic random numbers, and each generates a dynamic key through the operation of a secure hash algorithm. The encryption system encrypts the dynamic key and plaintext data into ciphertext, and then transmits it to the slave-side network transmission module through the master-side network transmission module through the public network, and then decrypts the dynamic key and ciphertext data by the decryption system It is plaintext data, so that the random characteristics of the chaotic system state and the butterfly effect can be used and the SHA3-256 algorithm is introduced to generate a dynamic fixed-length random key that is difficult to crack, so as to ensure the security of information transmission between information devices.
Description
本發明係有關一種基於混沌峰值編碼之多模態動態金鑰方法及其應用,尤指一種以利用混沌系統狀態之隨機特性及蝴蝶效應並引入SHA3-256演算法來生成動態固定長度較難破解之隨機密鑰的多模態動態金鑰技術。 The invention relates to a multi-modal dynamic key method based on chaotic peak coding and its application, especially to a method that uses the random characteristics of the chaotic system state and the butterfly effect and introduces the SHA3-256 algorithm to generate a dynamic fixed length that is difficult to crack Multi-modal dynamic key technology of random key.
在基礎密碼學中,傳統的對稱式加密(Symmetric Encryption)有DES(Data Encryption Standard)、AES(AdvancedEncryptionStandard)、RC5(Rivest Cipher5)等等,皆依靠加密演算法的複雜度和固定金鑰[3]來完成資料的加解密。面對現在電腦的運算速度提升外,以及下世代量子電腦的技術成熟,量子計算將輕易的根據Shor或是Grover的量子計算演算法如參考文獻[4][5],這些密碼的數學問題將可以輕易的被量子電腦解決,未來如果量子電腦有足夠的位元數,所有的公鑰密碼系統都將面臨風險如參考文獻[6]。除此之外對稱式加密中的金鑰也有保存等問題,面對物聯網設施屢屢被駭的事件層出不窮,如果金鑰被駭客竊取,密文將會非常輕易的被破解,因此,設計動態金鑰的設計,隨時更新金鑰,將有助於此問題的解決。 In basic cryptography, traditional symmetric encryption (Symmetric Encryption) includes DES (Data Encryption Standard), AES (Advanced Encryption Standard), RC5 (Rivest Cipher5), etc., all rely on the complexity of the encryption algorithm and the fixed key [3 ] to complete the data encryption and decryption. In addition to the increase in the computing speed of the current computer and the maturity of the next generation of quantum computer technology, quantum computing will be easily based on Shor or Grover's quantum computing algorithms such as references [4][5]. The mathematical problems of these ciphers will be It can be easily solved by quantum computers. In the future, if quantum computers have enough bits, all public key cryptosystems will be at risk, as shown in reference [6]. In addition, the key in the symmetric encryption also has problems such as storage. In the face of the frequent hacking incidents of IoT facilities, if the key is stolen by hackers, the ciphertext will be easily cracked. Therefore, the design dynamic The design of the key and updating the key at any time will help to solve this problem.
再者,混沌系統是一種週期運動以及非週期運動交互作用下產生某種非週期卻有規律的理論,由於混沌運動顯示出對初始值的敏感, 蝴蝶效應以及奇異吸引子等其他特徵如參考文獻[7][8][9],即便相鄰的初始值經過幾次疉代,混沌系統將會獲得完全不同的序列。因此,混沌系統被廣泛應用於數據加密中如參考文獻[10][11]。 Furthermore, the chaotic system is a kind of non-periodic but regular theory under the interaction of periodic motion and non-periodic motion. Since the chaotic motion shows sensitivity to the initial value, Butterfly effect and other features such as strange attractors, such as references [7][8][9], even if adjacent initial values go through several iterations, the chaotic system will obtain completely different sequences. Therefore, chaotic systems are widely used in data encryption such as references [10][11].
基於混沌理論所設計的亂數產生器,具有蝴蝶效應以及不可預測的特性,經過高速的計算能在短時間內產生大量的類隨機訊號,在過去研究文献中如參考文獻[12][13],已有將此特性應用於對稱式加密當中,在發送及接收端分別建立主僕混沌系統,即可設計出可隨用即丟的高品質金鑰,解決金鑰保管及分派等問題,不過解決了傳統對稱式加密的缺點,隨之而來的問題是透過亂數產生器設計的加解密系統存在著初始值必須是相同的問題,但若混沌狀態受到干擾而產生極小的差異時,由於蝴蝶效應,此設計方法將失效。 The random number generator designed based on chaos theory has butterfly effect and unpredictable characteristics. After high-speed calculation, it can generate a large number of random-like signals in a short time. In the past research literature, such as reference [12][13] , this feature has been applied to symmetric encryption. A master-slave chaotic system is established at the sending and receiving ends, and high-quality keys that can be used and lost can be designed to solve the problems of key storage and distribution. However, It solves the shortcomings of traditional symmetric encryption. The following problem is that the initial value of the encryption and decryption system designed by the random number generator must be the same. However, if the chaotic state is disturbed and there is a very small difference, due to Butterfly effect, this design method will fail.
為解決此一問題,需要仰賴混沌同步控制技術,透過控制器的設計,則可有效抑制主僕混沌系統間的蝴蝶效應,強迫主僕混沌系統的狀態同步,以產生相同的金鑰完成對稱式加解密的設計流程。在過去的文献中如參考文獻[14-18],混沌密碼學的研究者,皆透過同步控制器完善整個加密系統,但仍然有可攻破之處,當數學模型以及同步控制器外流,透過攔截同步訊號,進行蠻力攻擊(Brute-force attack),混沌系統的初始值係數是可能被破解的,因此,如何開發出一種多模態的混沌系統架構以透過不同的混沌系統設計隨機的切換規則導入多個初始值不同的混沌金鑰產生器來進行混合的金鑰技術,確實已成為相關技術領域之產學業者所亟欲解決與挑戰的技術課題。 In order to solve this problem, it is necessary to rely on the chaos synchronization control technology. Through the design of the controller, the butterfly effect between the master and slave chaotic systems can be effectively suppressed, and the state synchronization of the master and slave chaotic systems is forced to generate the same key to complete the symmetric formula. Encryption and decryption design process. In the past literature, such as references [14-18], researchers of chaotic cryptography have perfected the entire encryption system through a synchronous controller, but there are still points that can be broken. When the mathematical model and the synchronous controller flow out, through the interception Synchronize signals, carry out brute-force attack (Brute-force attack), the initial value coefficient of the chaotic system may be cracked, therefore, how to develop a multi-modal chaotic system architecture to design random switching rules through different chaotic systems The introduction of multiple chaotic key generators with different initial values for mixed key technology has indeed become a technical issue that industry and academics in related technical fields are eager to solve and challenge.
基於相關產業的迫切需求之下,本發明人乃憑藉多年之實務 經驗及相關的專業知識,經不斷的努力研發之下,終於研發出一種多模態的混沌亂數產生器架構的本發明,主要是著重於提升混沌系統的亂數品質並增加其混亂度,同時引入混沌系統同步的設計概念,以解決傳統對稱式加密的金鑰保存及分派不易等問題外,加上混沌動態狀態結合SHA3-256所產生的動態金鑰,進而大幅提升其安全性使其難以被破解。 Based on the urgent needs of related industries, the inventor relies on many years of practice Experience and relevant professional knowledge, after continuous efforts in research and development, finally developed a multi-modal chaotic random number generator architecture. This invention mainly focuses on improving the random number quality of the chaotic system and increasing its degree of chaos. At the same time, the design concept of chaotic system synchronization is introduced to solve the problems of difficult storage and distribution of traditional symmetric encryption keys. In addition, the dynamic state of chaos combined with the dynamic key generated by SHA3-256 greatly improves its security. Hard to crack.
本發明第一目的,在於提供一種基於混沌峰值編碼之多模態動態金鑰方法,主要是利用混沌系統狀態的隨機特性及蝴蝶效應並引入SHA3-256演算法,以生成動態固定長度較難破解的隨機密鑰,以確保資訊裝置之間資訊傳遞的安全性。達成本發明第一目的之技術手段,係包括位於發送端的第一資訊裝置及位於接收端的第二資訊裝置。第一資訊裝置內建主端第一混沌系統、主端雜湊演算模組、加密系統及主端網路傳輸模組。第二資訊裝置內建僕端第一混沌系統、僕端雜湊演算模組、解密系統及僕端網路傳輸模組。主端第一混沌系統與僕端第一混沌系統各自疊代產生隨機的混沌亂數,並由安全雜湊演算法的運算,以各自產生動態金鑰。加密系統將動態金鑰及明文資料加密為密文後透過主端網路傳輸模組經公共網域而傳輸至僕端網路傳輸模組,再由解密系統將動態金鑰及密文資料解密為明文資料。 The first purpose of the present invention is to provide a multi-modal dynamic key method based on chaotic peak coding, which mainly uses the random characteristics of the chaotic system state and the butterfly effect and introduces the SHA3-256 algorithm to generate a dynamic fixed length that is difficult to crack random key to ensure the security of information transmission between information devices. The technical means to achieve the first objective of the present invention includes a first information device at the sending end and a second information device at the receiving end. The first information device built-in the first chaos system of the main end, the hash calculation module of the main end, the encryption system and the network transmission module of the main end. The second information device has a built-in slave-side first chaos system, a slave-side hash calculation module, a decryption system, and a slave-side network transmission module. The first chaotic system at the master end and the first chaotic system at the slave end iteratively generate random chaotic random numbers, and each generates a dynamic key through the operation of a secure hash algorithm. The encryption system encrypts the dynamic key and plaintext data into ciphertext, and then transmits it to the slave-side network transmission module through the master-side network transmission module through the public network, and then decrypts the dynamic key and ciphertext data by the decryption system for plaintext data.
本發明第二目的,在於提供一種利用峰值編碼與多模態混沌系統來提高亂數質量的基於混沌峰值編碼之多模態動態金鑰方法,主要是基於混沌理論的峰值編碼方法,可隨機控制切換混沌亂數產生器的動 態金鑰,以實現連設計者都無從得知切換時機的控制器,透過改變隨機種子改良偽亂數產生器可被預測的可能之外,通過蠻力攻擊以及頻譜分析也將無從找出任何特徵加以破解。達成本發明第二目的之技術手段,係包括位於發送端的第一資訊裝置及位於接收端的第二資訊裝置。第一資訊裝置內建主端第一混沌系統、主端雜湊演算模組、加密系統及主端網路傳輸模組。第二資訊裝置內建僕端第一混沌系統、僕端雜湊演算模組、解密系統及僕端網路傳輸模組。主端第一混沌系統與僕端第一混沌系統各自疊代產生隨機的混沌亂數,並由安全雜湊演算法的運算,以各自產生動態金鑰。加密系統將動態金鑰及明文資料加密為密文後透過主端網路傳輸模組經公共網域而傳輸至僕端網路傳輸模組,再由解密系統將動態金鑰及密文資料解密為明文資料。其更包括提供一主端第二混沌系統、一僕端第二混沌系統及二峰值編碼控制器,該主端第一混沌系統與該僕端第一混沌系統的數量為複數;該主端第二混沌系統與該僕端第二混沌系統各自產生峰值編碼,該二峰值編碼控制器依據該峰值編碼同步隨機選擇其中一個該主端第一混沌系統與該僕端第一混沌系統輸出該混沌亂數,並各自輸入至該主端雜湊演算模組及該僕端雜湊演算模組,以進行安全雜湊演算法的運算而各自產生該動態金鑰。 The second object of the present invention is to provide a multi-modal dynamic key method based on chaotic peak coding that utilizes peak coding and multi-modal chaotic system to improve the quality of random numbers, mainly based on the peak coding method of chaos theory, which can be randomly controlled Toggles the dynamics of the Chaos random number generator state key to realize the controller that even the designer has no way of knowing the timing of the switching. In addition to the possibility of improving the pseudo-random number generator by changing the random seed, it will be impossible to find anything through brute force attacks and spectrum analysis. Features are broken down. The technical means to achieve the second objective of the present invention includes a first information device at the sending end and a second information device at the receiving end. The first information device built-in the first chaos system of the main end, the hash calculation module of the main end, the encryption system and the network transmission module of the main end. The second information device has a built-in slave-side first chaos system, a slave-side hash calculation module, a decryption system, and a slave-side network transmission module. The first chaotic system at the master end and the first chaotic system at the slave end iteratively generate random chaotic random numbers, and each generates a dynamic key through the operation of a secure hash algorithm. The encryption system encrypts the dynamic key and plaintext data into ciphertext, and then transmits it to the slave-side network transmission module through the master-side network transmission module through the public network, and then decrypts the dynamic key and ciphertext data by the decryption system for plaintext data. It further includes providing a second chaotic system at the master end, a second chaotic system at the slave end, and two peak encoding controllers, the number of the first chaotic system at the master end and the first chaotic system at the slave end is plural; the first chaotic system at the master end The two chaotic systems and the second chaotic system at the slave end respectively generate peak codes, and the two peak code controller randomly selects one of the first chaotic system at the master end and the first chaotic system at the slave end to output the chaotic codes according to the peak code synchronously. The number is input to the master-side hash calculation module and the slave-side hash calculation module respectively, so as to perform operations of the secure hash calculation algorithm and generate the dynamic key respectively.
本發明第三目的,在於提供一種應用基於混沌峰值編碼之多模態動態金鑰方法的工具機資料保密傳輸系統,主要是應用此多模態混沌系統於工具機的通信安全系統的設計中,以確保工具機之間資訊傳遞的安全性。達成本發明第三目的之技術手段,係包括位於發送端的第一資訊裝置及位於接收端的第二資訊裝置。第一資訊裝置內建主端第一混沌 系統、主端雜湊演算模組、加密系統及主端網路傳輸模組。第二資訊裝置內建僕端第一混沌系統、僕端雜湊演算模組、解密系統及僕端網路傳輸模組。主端第一混沌系統與僕端第一混沌系統各自疊代產生隨機的混沌亂數,並由安全雜湊演算法的運算,以各自產生動態金鑰。加密系統將動態金鑰及明文資料加密為密文後透過主端網路傳輸模組經公共網域而傳輸至僕端網路傳輸模組,再由解密系統將動態金鑰及密文資料解密為明文資料。其中,包括至少一工具機及至少一資料擷取模組,該第一資訊裝置透過該至少一資料擷取模組擷取該至少一工具機作為該明文資料的加工參數,該加密系統將該加工參數、該工具機之一識別碼(ID)及該態金鑰加密為該密文,並透過該主端網路傳輸模組經該公共網域而傳輸至該僕端網路傳輸模組,再由該解密系統將該動態金鑰及密文資料解密為該明文資料,主要是利用混沌系統狀態的隨機特性及蝴蝶效應並引入SHA3-256演算法,以生成動態固定長度較難破解的隨機密鑰,以確保資訊裝置之間資訊傳遞的安全性。 The third purpose of the present invention is to provide a machine tool data confidential transmission system using the multi-modal dynamic key method based on chaotic peak coding, mainly to apply this multi-modal chaotic system to the design of the communication security system of the machine tool, To ensure the security of information transmission between machine tools. The technical means to achieve the third objective of the present invention includes a first information device at the sending end and a second information device at the receiving end. The first information device built-in main terminal first chaos System, main-end hash calculation module, encryption system and main-end network transmission module. The second information device has a built-in slave-side first chaos system, a slave-side hash calculation module, a decryption system, and a slave-side network transmission module. The first chaotic system at the master end and the first chaotic system at the slave end iteratively generate random chaotic random numbers, and each generates a dynamic key through the operation of a secure hash algorithm. The encryption system encrypts the dynamic key and plaintext data into ciphertext, and then transmits it to the slave-side network transmission module through the master-side network transmission module through the public network, and then decrypts the dynamic key and ciphertext data by the decryption system for plaintext data. Wherein, including at least one machine tool and at least one data acquisition module, the first information device extracts the at least one machine tool as the processing parameter of the plaintext data through the at least one data acquisition module, and the encryption system takes the The processing parameters, the identification code (ID) of the machine tool and the state key are encrypted into the ciphertext, and transmitted to the slave-end network transmission module through the public network domain through the master-end network transmission module , and then the decryption system decrypts the dynamic key and ciphertext data into the plaintext data, mainly using the random characteristics of the state of the chaotic system and the butterfly effect and introducing the SHA3-256 algorithm to generate a dynamic fixed-length hard-to-decipher Random keys to ensure the security of information transmission between information devices.
10:第一資訊裝置 10: The first information device
11:主端第一混沌系統 11: The first chaotic system on the master side
12:主端雜湊演算模組 12: Master-side hash calculation module
13:加密系統 13: Encryption system
130:第一互斥或 130: first mutex or
14:主端網路傳輸模組 14: Main-end network transmission module
15:主端第二混沌系統 15: The second chaotic system on the master side
16.26:峰值編碼控制器 16.26: Peak Encoder Controller
17:資料擷取模組 17: Data acquisition module
20:第二資訊裝置 20: The second information device
21:僕端第一混沌系統 21: The first chaotic system on the slave side
22:僕端雜湊演算模組 22: Slave side hash calculation module
23:解密系統 23: Decryption system
230:第二互斥或 230: The second mutex or
24:僕端網路傳輸模組 24: Slave-end network transmission module
25:僕端第二混沌系統 25: The second chaotic system on the slave side
30:公共網域 30: Public domain
40:工具機 40: machine tools
圖1係本發明動態誤差實施的示意圖。 Fig. 1 is a schematic diagram of the implementation of the dynamic error of the present invention.
圖2係本發明混沌動態金鑰產生器及加解密流程的實施示意圖。 Fig. 2 is the implementation diagram of the chaotic dynamic key generator and the encryption and decryption process of the present invention.
圖3係本發明動態金鑰設計架構的實施示意圖。 FIG. 3 is a schematic diagram of the implementation of the dynamic key design architecture of the present invention.
圖4係本發明互斥或加解密的流程實施示意圖。 Fig. 4 is a schematic diagram of the process implementation of mutual exclusion or encryption and decryption in the present invention.
圖5係本發明多模態混沌系統架構流程的實施示意圖。 Fig. 5 is an implementation schematic diagram of the multi-modal chaotic system architecture flow of the present invention.
圖6係本發明離散型4維連續Lorenz-Stenflo動態誤差的實施示意圖。 Fig. 6 is a schematic diagram of implementing the discrete 4-dimensional continuous Lorenz-Stenflo dynamic error of the present invention.
圖7係本發明峰值編碼曲線的分佈示意圖。 Fig. 7 is a schematic diagram of the distribution of peak encoding curves of the present invention.
圖8係本發明峰值編碼流程架構的實施示意圖。 FIG. 8 is a schematic diagram of the implementation of the framework of the peak encoding process of the present invention.
圖9係本發明多模態混沌訊號的分佈示意圖。 FIG. 9 is a schematic diagram of the distribution of multi-mode chaotic signals in the present invention.
圖10係本發明應用於智慧機械通訊安全系統架構示意圖。 FIG. 10 is a schematic diagram of the structure of the application of the present invention to the intelligent machine communication security system.
圖11係本發明多模態混沌通訊安全系統架構的實施示意圖。 Fig. 11 is a schematic diagram of the implementation of the architecture of the multi-modal chaos communication security system of the present invention.
圖12係本發明動態多模訊號實施的分佈示意圖。 FIG. 12 is a schematic diagram of the distribution of the dynamic multi-mode signal implementation of the present invention.
圖13係本發明於發送端顯示工具機狀態的畫面示意圖。 FIG. 13 is a schematic diagram of a screen displaying the state of the machine tool at the sending end according to the present invention.
圖14係本發明於接收端顯示工具機狀態的畫面示意圖。 FIG. 14 is a schematic diagram of the screen displaying the state of the machine tool at the receiving end according to the present invention.
圖15係本發明於接收端顯示無法解密狀態的畫面示意圖。 FIG. 15 is a schematic diagram of a screen displaying an undecryptable status at the receiving end according to the present invention.
為讓 貴審查委員能進一步瞭解本發明整體的技術特徵與達成本發明目的之技術手段,玆以具體實施例並配合圖式加以詳細說明如下:請配合參看圖2~4所示,為達成本發明第一目的之第一實施例,係包括位於發送端的第一資訊裝置10(如晶片處理器、微控制器或電腦;但不以此為限)及位於接收端的第二資訊裝置20(如伺服器;但不以此為限)。該第一資訊裝置10內建包括至少一主端第一混沌系統11、一主端雜湊演算模組12、一加密系統13及一主端網路傳輸模組14。該第二資訊裝置20內建包括至少一與主端第一混沌系統11對應的僕端第一混沌系統21、一僕端雜湊演算模組22、一解密系統23及一僕端網路傳輸模組24。該主端第一混沌系統11與僕端第一混沌系統21用以各自疊代產生隨機的混沌亂數、主端同步訊號 u m 及僕端同步訊號 u s ,並將混沌亂數各自輸入至主端雜湊演算模組12及僕端雜湊演算模組22而進行安全雜湊演算法的運算,以各自產生相同的動態金鑰。該加密系統13用以將動態金鑰及明文資料加密為密文後透過主
端網路傳輸模組14經公共網域30(如網際網路或行動通訊網路;但不以此為限)而傳輸至僕端網路傳輸模組24,再由解密系統23將動態金鑰及密文資料解密還原為明文資料;另一方面,該主端網路傳輸模組14將密文與主端同步訊號 u m 放入一封包,經公共網域30而一併傳輸至僕端網路傳輸模組24,該僕端網路傳輸模組24將接收的主端同步訊號 u m 與僕端同步訊號 u s 結合經同步運算後得到完整同步訊號 u k ,於是即可讓主端第一混沌系統11與僕端第一混沌系統21同步,進而各自產生相同的動態金鑰。
In order to allow your examiner to further understand the overall technical characteristics of the present invention and the technical means to achieve the purpose of the present invention, the specific embodiments are described in detail in conjunction with the drawings as follows: please refer to Figures 2 to 4 for the purpose The first embodiment of the first object of the invention includes a first information device 10 (such as a chip processor, a microcontroller or a computer; but not limited thereto) at a sending end and a
請配合參看圖4所示的實施例,該加密系統13包含一第一互斥或130,該第一互斥或130之輸入端供輸入該明文資料,另一輸入端供輸入動態金鑰,經互斥或運算後,於其輸出端輸出加密後的密文。
Please cooperate with referring to the embodiment shown in Fig. 4, this
請配合參看圖4所示,該解密系統23包含一第二互斥或230,該第二互斥或230之輸入端供輸入密文,另一輸入端供輸入動態金鑰,經互斥或運算後,於其輸出端輸出解密還原的明文資料。
Please refer to shown in Fig. 4, this
具體的,該主端第一混沌系統11與僕端第一混沌系統21皆為HENON-MAP混沌系統。
Specifically, both the master first
請配合參看圖5、8及圖10所示,為達成本發明第二目的之第二實施例,本實施例除了包括上述第一實施例的整體技術內容之外,更包括一主端第二混沌系統15、一僕端第二混沌系統25及二峰值編碼控制器16.26,該主端第一混沌系統11與該僕端第一混沌系統21的數量為複數;該主端第二混沌系統15與該僕端第二混沌系統25各自產生峰值編碼,該二峰值編碼控制器16.26依據該峰值編碼同步隨機選擇其中一個主端第一混沌系統11與僕端第一混沌系統21輸出混沌亂數,並各自輸入至主端雜湊演算模組12
及該僕端雜湊演算模組22,以進行安全雜湊演算法的運算而各自產生動態金鑰。
Please refer to Fig. 5, 8 and Fig. 10, in order to achieve the second embodiment of the second purpose of the present invention, this embodiment not only includes the overall technical content of the above-mentioned first embodiment, but also includes a main terminal second
具體的,該主端第二混沌系統15與僕端第二混沌系統25皆為Lorenz-Stenflo混沌系統。該二峰值編碼控制器16.26皆為具多對一選擇功能的多工器。該主端雜湊演算模組12及僕端雜湊演算模組22皆為雜湊演算法(SHA256)。
Specifically, both the master-side second
請配合參看圖11所示,為達成本發明第三目的之第三實施例,本實施例除了包括上述第一實施例的整體技術內容之外,更包括至少一工具機40及至少一資料擷取模組17,該第一資訊裝置10透過至少一資料擷取模組17擷取至少一工具機40作為明文資料的加工參數,該加密系統13將加工參數、工具機40之識別碼(ID)及動態金鑰加密為密文,並透過主端網路傳輸模組14經公共網域30而傳輸至僕端網路傳輸模組24,再由解密系統23將動態金鑰及密文資料解密為明文資料。
Please refer to FIG. 11, in order to achieve the third embodiment of the third purpose of the present invention, this embodiment includes at least one machine tool 40 and at least one data acquisition system in addition to the overall technical content of the above-mentioned first embodiment. Take the module 17, the
為了解決傳統對稱式固定金鑰,所造成的通訊安全的疑慮,及非對稱式加密的私鑰傳送等問題,本發明採用混沌同步控制技術,使金鑰的資訊不曝露於公共的傳輸通道中,同時因混沌狀態同步的特性,可提供準確且動態的隨機亂數,結合SHA256的演算,即可提供高安全性的動態混沌金鑰。本發明使用Henon-Map數學模型來驗證模擬本發明的多模態架構中混沌同步,(1)(2)式分別為主僕Henon-Map的數學模型,(9)式為同步控制器,同步控制器設計詳細推導方法可參閱參考文獻[26]。 In order to solve the doubts of communication security caused by the traditional symmetric fixed key, and the transmission of asymmetric encrypted private key, the present invention adopts the chaotic synchronization control technology so that the information of the key is not exposed to the public transmission channel. At the same time, due to the characteristics of the synchronization of the chaotic state, it can provide accurate and dynamic random random numbers, combined with the calculation of SHA256, it can provide a highly secure dynamic chaotic key. The present invention uses the Henon-Map mathematical model to verify and simulate chaos synchronization in the multimodal framework of the present invention, (1) and (2) formulas are respectively the mathematical models of master and slave Henon-Map, and (9) formula is a synchronous controller, synchronous The detailed derivation method of controller design can be found in reference [26].
為了討論同步控制器設計,錯誤狀態被定義為: e i (k)=y i (k)-x i (k),i=1,2,3 (3) For the discussion of synchronous controller design, the error state is defined as: e i ( k )= y i ( k )- x i ( k ), i =1,2,3 (3)
誤差收斂為0即表示主僕混沌系統完成同步。根據(3),本發明可得到誤差動態方程式如下:
欲使主僕混沌系統(1)(2)達到同步,必須要設計一個同步控制器,本設計,將使用滑動模式的設計理論,本發明將分以下2個步驟,完成控制器的設計。 To synchronize the master-slave chaotic system (1) (2), a synchronous controller must be designed. In this design, the design theory of sliding mode will be used. The present invention will divide the following two steps to complete the design of the controller.
步驟一:滑動模式轉換面設計如下: s(k)=e 1 (k)+c 1 e 2 (k)+c 2 e 3 (k) (5)如果存在控制器 u(k)(控制器的設計將在下詳述),可以保証 s(k)=0,則可以得到: e 1 (k)=-c 1 e 2 (k)-c 2 e 3 (k) (6) Step 1: The sliding mode conversion surface is designed as follows: s ( k ) = e 1 ( k ) + c 1 e 2 ( k ) + c 2 e 3 ( k ) (5) If there is a controller u ( k ) (controller The design will be detailed below), it can be guaranteed that s ( k )=0 , then we can get: e 1 ( k )=- c 1 e 2 ( k )- c 2 e 3 ( k ) (6)
通過代入關係 e 1 (k)=c 1 e 2 (k)c 2 e 3 (k)進入誤差方程式(3)主從系統可以改寫為:
由上式可知,若將 c 1 ,c 2 選定為特定值,A的特徵根將會侷限於單位元中, i.e,|λ i (A)}<1,then E(k)=[e 2 (k)e 3 (k)] T can converge to zero.可以收斂到零同時由 s(k)=0可知 e 1 =0,即可確保誤差收斂至零,轉換面的設計對於混沌同步來說相當重要,如果設計不好將會造成主僕兩者數值發 散,在確認滑動模式下,誤差動態的穩定性後,接著本發明討論如何設計控制器,使系統可進入滑動模式。 It can be seen from the above formula that if c 1 and c 2 are selected as specific values, the characteristic roots of A will be limited to the identity element, ie ,| λ i ( A )}<1 , then E ( k )=[ e 2 ( k ) e 3 ( k )] T can converge to zero. It can converge to zero and at the same time, from s ( k )=0 , it can be known that e 1 =0 , which can ensure that the error converges to zero. The design of the conversion surface is for chaos synchronization It is very important. If the design is not good, the values of the master and the slave will diverge. After confirming the stability of the error dynamics in the sliding mode, the present invention discusses how to design the controller so that the system can enter the sliding mode.
步驟二設計控制器:為了確保系統能夠達到轉換面,控制器的設計方法敘述如下,由轉換面(5),可以得到:
令控制器為:
代入後可得: s(k+1)-s(k)=αs(k) (10) After substitution, we can get: s ( k +1)- s ( k )= αs ( k ) (10)
由(10)式可得到 s(k+1)=(α+1)s(k),如果本發明選擇適當的 α ,使|α+1|<1,即可確保系統將順利進入滑動模式中而系統將順利進入 s(k)=0滑動模式中,並由上述步驟一,可知誤差收斂至零,即可完成同步的設計。而在實際應用於通訊安全設計時,為考慮減少資訊的曝露,同步控制器的實現上,本發明進一步分成主僕端,並將所設計之同步控制器分解為 u k =F(u m ,u s )的型式,其中:
很明顯的, u m , u s 分別表示為主端及僕端所提供之合成訊號,經函數F組合後可得到如(9)式所示的控制器,代入僕端即可完成同步控制器進而完成主僕混沌系統同步之設計目標。 Obviously, u m , u s represent the synthesized signals provided by the master and slave respectively. After combining the function F, the controller shown in (9) can be obtained, and the synchronous controller can be completed by substituting it into the slave Then complete the design goal of master-slave chaotic system synchronization.
接著,本發明進行模擬測試上述同步控制的正確性,模擬時,主僕系統的初始值為 x 1 =1.19,x 2 =1.03,x 3 =0.34,y 1 =0.12,y 2 =0.11,y 3 =0.29,同 步控制器的參數值為 c 1 =-0.5,c 2 =0.06,α=-0.5,此時A的特徵根為(0.3,0.2)。滿足|λ i (A)|<1及|α+1|<1,由上面的討論可確定主僕系統可以完全同步。模擬結果如圖1所示。由模擬結果可以發現,同步運算隨疊代次數的增加, e i (k)=y i (k)-x i (k),i=1,2,3,在k>10後趨近於0,主、僕混沌系統已如預期已達同步。 Next, the present invention performs a simulation test to test the correctness of the above synchronous control. During the simulation, the initial values of the master-slave system are x 1 =1.19, x 2 =1.03, x 3 =0.34, y 1 =0.12, y 2 =0.11, y 3 =0.29 , the parameter values of the synchronous controller are c 1 =-0.5, c 2 =0.06, α =-0.5, and the characteristic root of A is (0.3,0.2) at this time . Satisfying | λ i ( A )|<1 and | α +1|<1 , it can be determined from the above discussion that the master-slave system can be fully synchronized. The simulation results are shown in Figure 1. It can be found from the simulation results that the synchronous operation increases with the number of iterations, e i ( k ) = y i ( k )- x i ( k ), i =1,2,3 , and tends to 0 after k>10 , the master and slave chaotic systems have reached synchronization as expected.
接著說明動態金鑰產生器的設計流程,從圖2可以看到本發明分別在發送端(client)及伺服端(server),各自設置主、僕混沌系統(即主端第一混沌系統11與僕端雜湊演算模組22)。主僕混沌系統都會各自疊代產生隨機亂數及 u m , u s ,將在server端將接收的同步訊號 u m 與僕端同步訊號 u s 結合後可得到 u k ,使其主、僕混沌系統同步。同時也分別在發送端(client)及伺服端(server)結合SHA-256雜湊演算法,如圖3,由於混沌系統的蝴蝶效應以及對初始值的敏感,結合SHA-256雜湊函式的雪崩效應,將產生具有不重複且無法預測的動態金鑰,而在加解密的機制上則採用互斥或(XOR)運算,如圖4所示。同時因在網路環境下做資料傳輸,因此本發明網路傳輸模組14,24係採用(TCP socket)為傳輸協定,將密文以及同步訊號 u m 放入封包一併傳送,如此即可在client端及server端順利的進行資料交換。
Then illustrate the design process of the dynamic key generator, as can be seen from Fig. 2, the present invention respectively sets master and slave chaotic systems (i.e. the first
為了進一步提升本發明亂數的品質(隨機性),基於混沌同步加解密技術,本發明提出了一個多模態的架構如圖5,從圖5中可以看到主端及從端(發送端及接收端)建置複數個混沌金鑰產生器,然後本發明設計了一個峰值編碼控制器(PVCC)16,26來隨機切換不同混沌金鑰產生器(即元件符號11,12;21,22的組合)產生的動態金鑰,如此一來可提升亂數的隨機品質,隨後將以NIST測試分析驗証,以此大幅提升系統的安全性。
In order to further improve the quality (randomness) of the random numbers of the present invention, based on the chaotic synchronous encryption and decryption technology, the present invention proposes a multi-modal architecture as shown in Figure 5, from which it can be seen that the master end and the slave end (sending end) and receiving end) to build a plurality of chaotic key generators, and then the present invention designs a peak code controller (PVCC) 16,26 to randomly switch different chaotic key generators (
峰值編碼(PVC)是透過混沌系統來產生的,由於混沌理論的特性,對初始值的敏感及蝴蝶效應,能產生不發散也不收斂具有奇異吸引子的類隨機訊號,因此收集無法預測的亂數,制定特徵值規則來做切換控制,即可達到無法預測的切換時機,此種設計具有以下三大優點: Peak coding (PVC) is generated through a chaotic system. Due to the characteristics of chaos theory, sensitivity to the initial value and the butterfly effect, it can generate random signals with strange attractors that do not diverge or converge, so it collects unpredictable random signals. Number, formulating eigenvalue rules to do switching control can achieve unpredictable switching timing. This design has the following three advantages:
(1)無法預測切換時機,可增加破解的難度。 (1) It is impossible to predict the timing of switching, which can increase the difficulty of cracking.
(2)降低亂數產生器可被預測的可能。 (2) Reduce the possibility that the random number generator can be predicted.
(3)動態改變random seed增加金鑰的品質。 (3) Dynamically change the random seed to increase the quality of the key.
接下來說明峰值編碼控制器的設計,首先介紹到峰值編碼使用的Lorenz-Stenflo混沌系統,數學模型參閱[27]:
接著,利用混沌同步技術,使建立在發送端以及接收端的Lorenz-Stenflo混沌系統產生相同的峰值編碼值,即可使client及server達到相同的切換時機,進而選擇相同的動態金鑰產生器所產生的動態金鑰,完成多模態混沌系統加解密流程,因此接下來說明及驗證Lorenz-Stenflo混沌系統的同步控制器設計。為方便在微控制器上實現,首先參閱[28],將(13)(14)4
維連續型Lorenz-Stenflo混沌系統進行離散化。系統經離散後的模型定義為如下:
其中系統參數 G R 4×4 和 H R 4×2 ,而 x d (k) R 4 和 y d (k) R 4 為離散化後的混沌同步系統的狀態,其分別定義為如下。 where the system parameter G R 4×4 and H R 4×2 , while x d ( k ) R 4 and y d ( k ) R 4 is the state of the discretized chaotic synchronous system, which are defined as follows.
代入係數 a =11.0、 b =2.9、 c =5.0、 d =23.0、 λ =1.9 Substitute coefficients a = 11.0 , b = 2.9 , c = 5.0 , d = 23.0 , λ = 1.9
其中T是取樣時間, a、b、c、d 和 λ 是離散化前4維連續型Lorenz-Stenflo混沌系統的係數。將系統離散化後,首先先定義誤差動態方程式為如下: e d2 (k+1)=0.2176e d1 (k)+1.0022e d2 (k)+0.0100(x d1 (k)x d4 (k)-y d1 (k)y d4 (k))+u(k) (21) where T is the sampling time, a , b , c , d and λ are the coefficients of the 4-dimensional continuous Lorenz-Stenflo chaotic system before discretization. After discretizing the system, first define the error dynamic equation as follows: e d 2 ( k +1)=0.2176 e d 1 ( k )+1.0022 e d 2 ( k )+0.0100( x d 1 ( k ) x d 4 ( k )- y d 1 ( k ) y d 4 ( k ))+ u ( k ) (21)
e d3 (k+1)=-0.0473e d1 (k)+0.9896e d3 (k) (22) e d 3 ( k +1)=-0.0473 e d 1 ( k )+0.9896 e d 3 ( k ) (22)
e d4 (k+1)=0.9714e d4 (k)+0.0099(-x d1 (k)x d2 (k)+y d1 (k)y d2 (k)) (23) e d 4 ( k +1)=0.9714 e d 4 ( k )+0.0099(- x d 1 ( k ) x d 2 ( k )+ y d 1 ( k ) y d 2 ( k )) (23)
接著,本發明將方程式(22)中的控制器 u(k)定義為如下: u(k)=-0.2176e d1 (k)-0.0100(x d1 (k)x d4 (k)-y d1 (k)y d4 (k))-r×e d2 (k) (24) Next, the present invention defines the controller u ( k ) in equation (22) as follows: u ( k )=-0.2176 e d 1 ( k )-0.0100( x d 1 ( k ) x d 4 ( k )- y d 1 ( k ) y d 4 ( k ))- r × e d 2 ( k ) (24)
將控制器 u(k)公式(25)代回方程式(22),可以獲得如下: e d2 (k+1)=(1.0022-r)e d2 (k) (25) Substituting controller u ( k ) formula (25) back into equation (22), it can be obtained as follows: e d 2 ( k +1)=(1.0022- r ) e d 2 ( k ) (25)
因此,本發明可以得知,若要讓動態誤差 e d2 (k)收斂至零,必須滿足|(1.0022- r )|<1。 Therefore, it can be known in the present invention that if the dynamic error ed 2 ( k ) is to converge to zero, |(1.0022- r )|<1 must be satisfied.
當 e d2 (k)=0時,可以將(20)(22)其整理為如下:
由此可知,可透過係數矩陣 A 獲得特徵根|λ i (A)|=(0.9192,0.9775),當特徵根小於1時, e d1 (k)和e d3 (k)均會收斂至零。最後將 e d1 (k)=e d2 (k)=e d3 (k)=0代入方程式(23),可以獲得如下: e d4 (k+1)=0.9714e d4 (k) (27) It can be seen that the characteristic root | λ i ( A )|=(0.9192,0.9775) can be obtained through the coefficient matrix A. When the characteristic root is less than 1, both ed 1 ( k ) and ed 3 ( k ) will converge to zero. Finally, substituting e d 1 ( k )= e d 2 ( k )= e d 3 ( k )=0 into equation (23), it can be obtained as follows: e d 4 ( k +1)=0.9714 e d 4 ( k ) (27)
說明 e d4 係數小於1能使 e d4 (k)收斂至零。最後動態誤差 e d1 (k)、 e d2 (k)、 e d3 (k)和 e d4 (k)皆為零時,代表混沌同步系統已同步完成。在系統實現時,與Henon-Map同步控制器設計一樣,本發明必須將控制器 u(k)公式(34)分解為 u(k)=F(u m ,u s )的型式。 It shows that ed 4 coefficient less than 1 can make ed 4 ( k ) converge to zero. When the final dynamic errors ed 1 ( k ) , ed 2 ( k ) , ed 3 ( k ) and ed 4 ( k ) are all zero, it means that the chaotic synchronous system has been synchronized. When the system is realized, like the Henon-Map synchronous controller design, the present invention must decompose the controller u ( k ) formula (34) into the form of u ( k ) = F ( u m , u s ) .
u m =0.2176x d1 (k)-0.0100x d1 (k)x d4 (k)+r×x d2 (k) (28) u m =0.2176 x d 1 ( k )-0.0100 x d 1 ( k ) x d 4 ( k )+ r × x d 2 ( k ) (28)
u s =-0.2176y d1 (k)+0.0100y d1 (k)y d4 (k)-r×y d2 (k) (29) u s =-0.2176 y d 1 ( k )+0.0100 y d 1 ( k ) y d 4 ( k )- r × y d 2 ( k ) (29)
模擬及驗證:令 r=0.9,本發明將(28)(29)式代入F,產生完整的控制器 u(k)後代入僕端混沌系統(17),進而使從端和主端同步。初始值則為 x d1 =18.0、 x d2 =-1.0、 x d3 =6.0、 x d4 =-2.0、 y d1 =-1.0、 y d2 =-3.0、 y d3 =2.0和 y d4 =-3-0,圖6中可以看到 e d1 、 e d2 、 e d3 、 e d4 動態誤差皆收斂至0完成同步。 Simulation and verification: let r = 0.9 , the present invention substitutes (28)(29) into F to generate a complete controller u ( k ) and substitute it into the slave chaotic system (17), thereby synchronizing the slave and the master. The initial values are x d 1 = 18.0 , x d 2 =- 1.0 , x d 3 = 6.0 , x d 4 =- 2.0 , y d 1 =- 1.0 , y d 2 =- 3.0 , y d 3 = 2.0 and y d 4 =- 3-0 , it can be seen from Figure 6 that the dynamic errors of ed 1 , ed 2 , ed 3 , and ed 4 all converge to 0 to complete synchronization.
接下來說明峰值編碼方法,由於離散Lorenz-Stenflo會產生隨機性的亂數,因此本發明將產生的數值比較,並記錄每次連續波峰的值
p i ,i=1,2,K,∞,並比較高低,如果p i+1>p i ,峰值編碼序列就存1,反之存0,如圖7所示將得到[1,1,0]序列。接著,收集起來的峰值編碼序列即可拿來控制切換到不同的混沌金鑰產生器以取得對應之亂數,圖7中說明每個混沌金鑰產生器的序號皆為二進制排序,而切換的峰值編碼序列長度n滿足(N 2 n ),N為金鑰產生器個數。如本次模擬驗證一共使用了4個混沌金鑰產生器,那麼混沌金鑰產生器的序號依序是[00,01,10,11],則切換的位元長度為2即可。
Next, the peak encoding method will be described. Since the discrete Lorenz-Stenflo will generate random random numbers, the present invention will compare the generated values and record the value p i of each continuous peak, i =1,2,K,∞, And compare the height, if p i +1 > p i , the peak coding sequence will store 1, otherwise
於圖8中,本發明可以導入N個Henon-Map主僕動態金鑰產生器(Henon-Map master dynamic key/Henon-Map slave dynamic key),當Lorenz-Stenflo主僕混沌系統達到同步後即可產生相同的峰值編碼(PVC),再透過相同的峰值編碼設計一個控制器(PVCC)來切換選擇使用Henon-Map產生的動態金鑰,即可完成一個連設計者都無法預測切換時機的峰值編碼設計。 In Fig. 8, the present invention can import N Henon-Map master-slave dynamic key generators (Henon-Map master dynamic key/Henon-Map slave dynamic key), when the Lorenz-Stenflo master-slave chaotic system reaches synchronization Generate the same peak code (PVC), and then design a controller (PVCC) through the same peak code to switch and choose to use the dynamic key generated by Henon-Map to complete a peak code that even the designer cannot predict the switching time design.
最後是模擬及驗證,圖9為導入4個Henon-Map混沌系統的多模態架構,其中一共點出了500個混沌訊號,四個顏色分別對應四個混沌亂數產生器,從圖中可以發現混沌系統的隨機切換外,將模擬驗證的顏色結果拿掉,將無法分辨到底使用了幾個混沌系統,連切換時機也將無從得知,大幅提昇了系統的安全性,也說明峰值編碼的前兩大優點,無法預測切換時機以及改良偽亂數產生器可被預測的可能,驗證本發明峰值編碼控制器的設計。 Finally, it is simulation and verification. Figure 9 shows the multi-modal architecture of four Henon-Map chaotic systems, in which a total of 500 chaotic signals are pointed out, and the four colors correspond to four chaotic random number generators. From the figure, we can see In addition to the random switching of the chaotic system, if the color results of the simulation verification are removed, it will be impossible to distinguish how many chaotic systems are used, and even the switching timing will not be known, which greatly improves the security of the system and also shows that the peak coding The first two advantages, the unpredictability of switching timing and the predictability of the improved pseudo-random number generator, validate the design of the peak encoding controller of the present invention.
在此章節,本發明使用NIST SP 800-22來進行測試多模態架構的金鑰產生器混亂度是否更佳。NIST SP 800-22是由NIST(美國國家標準暨技術研究院)所提出的加密標準,因此公信力極高!而測試的項目一共15項, 每項分數高於0.01即通過測試,這邊本發明使用7×106位元組的檔案大小來進行測試,測試結果如下表一所示。從表一中看到多模架構的測試分數總分優於單一混沌系統,驗證多模態架構其動態金鑰的品質確實大幅提升,呼應峰值編碼的上述優點三。 In this section, the present invention uses NIST SP 800-22 to test whether the chaos degree of the key generator of the multi-modal architecture is better. NIST SP 800-22 is an encryption standard proposed by NIST (National Institute of Standards and Technology), so its credibility is extremely high! There are 15 items in the test, and the test is passed if the score of each item is higher than 0.01. Here, the present invention uses a file size of 7×10 6 bytes for the test, and the test results are shown in Table 1 below. It can be seen from Table 1 that the total test score of the multi-modal architecture is better than that of a single chaotic system, which verifies that the quality of the dynamic key of the multi-modal architecture has indeed been greatly improved, echoing the above-mentioned advantage three of peak coding.
再者,工業4.0的時代下,大數據的分析及預測,使工具機所產生的數據都極為重要,為了防止駭客竊取公司的機密資料,在傳送資料方面的加密是不可缺少的。本發明提出基於峰值編碼的多模態架構,導入智慧機械場域,可建立起工具機與伺服器間的通訊安全系統,達到工業等級的通訊安全設計。圖10為本發明規劃之機械連網的通訊安全系統架構圖,首先將工具機加工參數擷取到晶片當中,在每個單晶片中建置主端多模態混沌系統進行加密,然後將工具機ID、同步控制訊號 u m 以及密文,經 過公共通道傳輸到本發明的伺服器端,再藉由建置在伺服器端,透過工具機ID對應該其僕端多模態混沌系統進行解密,最後將其資料可視化。本發明使用程式撰寫的方式寫入單晶片以及伺服器當中,因此可以輕易的擴充多台工具機不受電路限制。 Furthermore, in the era of Industry 4.0, the analysis and prediction of big data make the data generated by machine tools extremely important. In order to prevent hackers from stealing the company's confidential information, encryption of transmitted data is indispensable. The present invention proposes a multi-modal framework based on peak coding and introduces into the field of intelligent machinery to establish a communication security system between the machine tool and the server to achieve an industrial-grade communication security design. Figure 10 is the structure diagram of the communication security system of the machine network planned by the present invention. Firstly, the processing parameters of the tool are extracted into the chip, and a master-end multi-modal chaotic system is built in each single chip for encryption, and then the tool Machine ID, synchronous control signal u m and ciphertext are transmitted to the server end of the present invention through the public channel, and then by building on the server end, the slave end multi-modal chaotic system is decrypted through the machine tool ID , and finally visualize its data. The present invention writes in the single chip and the server by means of programming, so it can easily expand multiple machine tools without being limited by circuits.
圖11所示為整合上述技術之多模態混沌通訊安全系統架構,Lorenz-Stenflo混沌系統產生峰值編碼,Henon-Map混沌系統產生混沌訊號,由主、僕峰值編碼控制器16,26同步隨機選擇信號輸出,然後經由安全雜湊演算法的運算產生動態金鑰,完成多模態混沌系統的金鑰產生器設計。
Figure 11 shows the multi-modal chaos communication security system architecture integrating the above technologies. The Lorenz-Stenflo chaotic system generates peak codes, and the Henon-Map chaotic system generates chaotic signals, which are randomly selected by the master and slave
實現(Realization of)多模態混沌系統於工具機的通信安全系統,在系統實現時,本發明使用2個樹梅派,分別模擬2台工具機產生的加工數據,透過TCP Socket將資料傳送到第一資訊裝置10(即電腦)上(server 端),圖13、14為模擬驗證狀態的顯示畫面,顯示的資料包含混沌系統狀態、峰值編碼序列、動態金鑰、工具機參數、接收到的密文以及經解密後的明文。接下來說明各個顯示資料的涵義,混沌系統狀態表示該筆資料正在使用多模架構中的哪一個混沌亂數產生器,峰值編碼序列說明峰值編碼所收集到的序列,圖13、14可以看到峰值編碼特徵值序列最新的兩位元為10,對應多模架構也就是正在使用混沌系統3,當選擇到相同的混沌系統即可使用相同的金鑰進行加解密,接著動態金鑰為目前該筆資料正在使用的加解密金鑰,工具機參數為需加密資料也就是明文,最後是接收到的密文,經加密後轉成16進制做顯示,明文為經解密後還原回來的字串,圖13、14可以看到相同的動態金鑰即可成功解密,將工具機參數還原回明文,圖15為不相同的動態金鑰則無法還原工具機參數,驗證該系統的正確性,為了更具體化展示多模態架構的設計,圖12所示,繪製即時多模架構的混沌亂數示意
圖,並用不一樣的符號來表示不一樣的混沌系統,以此更清楚的展示基於峰值編碼的多模態架構。
To realize (Realization of) the multi-modal chaotic system in the communication security system of the machine tool, when the system is realized, the present invention uses two raspberries to simulate the processing data generated by the two machine tools respectively, and transmits the data to On the first information device 10 (i.e. computer) (server side), Figures 13 and 14 are the display screens of the simulated verification status, and the displayed data include the chaotic system status, peak code sequence, dynamic key, machine tool parameters, received ciphertext and decrypted plaintext. Next, the meaning of each displayed data is explained. The state of the chaotic system indicates which chaotic random number generator in the multi-mode architecture is being used for the data. The peak code sequence shows the sequence collected by the peak code. You can see it in Figures 13 and 14. The latest two bits of the peak coding eigenvalue sequence are 10, which corresponds to the multi-mode architecture that is using
經上述具體實施例的說明后,本發明確實是一種結合混沌同步系統的技術方案設計,提出一種創新之基於混沌理論的峰值編碼方法,可隨機控制切換混沌亂數產生器的動態金鑰,完成一個連設計者都無從得知切換時機的控制器,透過改變髓機種子(random seed)改良偽亂數產生器可被預測的可能之外,通過蠻力攻擊以及頻譜分析也將無從找出任何特徵加以破解,說明多模態架構的混沌加解密系統有著超高安全性,同時也透過NIST SP 800-22的混亂度測試,驗證多模態架構也進一步的提升了動態金鑰的混亂度。最後模擬工具機實際場域多對一的架構,導入多模態混沌系統到工具機端以及伺服器端,說明該系統的可行性及實用性,實際設計出智慧製造中機連網的資訊安全系統。 After the description of the above-mentioned specific embodiments, the present invention is indeed a technical scheme design combined with a chaotic synchronization system, and proposes an innovative peak coding method based on chaos theory, which can randomly control and switch the dynamic key of the chaotic random number generator, and completes A controller that even the designer has no way of knowing the timing of the switching. In addition to the predictable possibility of improving the pseudo-random number generator by changing the random seed, it will also be impossible to find out anything through brute force attacks and spectrum analysis. The characteristics are deciphered, which shows that the chaotic encryption and decryption system of the multi-modal architecture has ultra-high security. At the same time, through the chaos test of NIST SP 800-22, it is verified that the multi-modal architecture has further improved the chaos of the dynamic key. Finally, simulate the many-to-one structure of the actual machine tool field, introduce the multi-modal chaotic system to the machine tool end and the server end, illustrate the feasibility and practicability of the system, and actually design the information security of the machine network in smart manufacturing system.
以上所述,僅為本發明之可行實施例,並非用以限定本發明之專利範圍,凡舉依據下列請求項所述之內容、特徵以及其精神而為之其他變化的等效實施,皆應包含於本發明之專利範圍內。本發明所具體界定於請求項之結構特徵,未見於同類物品,且具實用性與進步性,已符合發明專利要件,爰依法具文提出申請,謹請 鈞局依法核予專利,以維護本申請人合法之權益。 The above is only a feasible embodiment of the present invention, and is not intended to limit the patent scope of the present invention. Any equivalent implementation of other changes based on the content, characteristics and spirit of the following claims should be Included in the patent scope of the present invention. The structural features of the invention specifically defined in the claims are not found in similar items, and are practical and progressive, and have met the requirements of an invention patent. I file an application in accordance with the law. I would like to ask the Jun Bureau to approve the patent in accordance with the law to maintain this invention. The legitimate rights and interests of the applicant.
[1] L. Bassi, "Industry 4.0: Hope, hype or revolution?," 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI), Modena, 2017, pp. 1-6, doi: 10.1109/RTSI.2017.8065927. [1] L. Bassi, "Industry 4.0: Hope, hype or revolution?," 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI), Modena, 2017, pp. 1-6, doi: 10.1109/ RTSI.2017.8065927.
[2] A. M. Awadelkarim Mohamed and Y. Abdallah M. Hamad, "IoT Security: Review and Future Directions for Protection Models," 2020 International Conference on Computing and Information Technology (ICCIT-1441), Tabuk, Saudi Arabia, 2020, pp. 1-4, doi: 10.1109/ICCIT-144147971.2020.9213715. [2] A. M. Awadelkarim Mohamed and Y. Abdallah M. Hamad, "IoT Security: Review and Future Directions for Protection Models," 2020 International Conference on Computing and Information Technology (ICCIT-1441), Tabuk, Saudi Arabia, 2020, pp. 1-4, doi: 10.1109/ICCIT-144147971.2020.9213715.
[3] Saha R, Geetha G, Kumar G, Kim TH (2018) RK-AES: An Improved Version of AES Using a New Key Generation Process with Random Keys. Security and Communication Networks 2018(11). [3] Saha R, Geetha G, Kumar G, Kim TH (2018) RK-AES: An Improved Version of AES Using a New Key Generation Process with Random Keys. Security and Communication Networks 2018(11).
[4] S. Gajbhiye, S. Karmakar, M. Sharma and S. Sharma, "Paradigm shift from classical cryptography to quantum cryptography," 2017 International Conference on Intelligent Sustainable Systems (ICISS), 2017, pp. 548-555, doi: 10.1109/ISS1.2017.8389231. [4] S. Gajbhiye, S. Karmakar, M. Sharma and S. Sharma, "Paradigm shift from classical cryptography to quantum cryptography," 2017 International Conference on Intelligent Sustainable Systems (ICISS), 2017, pp. 548-555, doi : 10.1109/ISS1.2017.8389231.
[5] S. Gupta, K. Sau, J. Pramanick, S. Pyne, R. Ahamed and R. Biswas, "Quantum computation of perfect time-eavesdropping in position-based quantum cryptography: Quantum computing and eavesdropping over perfect key distribution," 2017 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON), 2017, pp. 162-167, doi: 10.1109/IEMECON.2017.8079582. [5] S. Gupta, K. Sau, J. Pramanick, S. Pyne, R. Ahamed and R. Biswas, "Quantum computation of perfect time-eavesdropping in position-based quantum cryptography: Quantum computing and eavesdropping over perfect key distribution ," 2017 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON), 2017, pp. 162-167, doi: 10.1109/IEMECON.2017.8079582.
[6] Vasileios Mavroeidis, Kamer Vishi, Mateusz D. Zych, Audun Jsang, "The Impact of Quantum Computing on Present Cryptography",International Journal of Advanced Computer Science and Applications,2018, Vol. 9, No. 3. [6] Vasileios Mavroeidis, Kamer Vishi, Mateusz D. Zych, Audun J sang, "The Impact of Quantum Computing on Present Cryptography", International Journal of Advanced Computer Science and Applications, 2018, Vol. 9, No. 3.
[7] Edward N. Lorenz, Deterministic Nonperiodic Flow. journal of the atmospheric sciences, 1963,20, 130-141. [7] Edward N. Lorenz, Deterministic Nonperiodic Flow. Journal of the atmospheric sciences, 1963, 20, 130-141.
[8] A. Lasota, M. C. Mackey, Chaos, Fractals, and Noise-Stochastic Aspects of Dynamics[M], 2nd Edition, Springer-Verlag, New York, 1997. [8] A. Lasota, M. C. Mackey, Chaos, Fractals, and Noise-Stochastic Aspects of Dynamics[M], 2nd Edition, Springer-Verlag, New York, 1997.
[9] M. Blank, Discreteness and Continuity in Problems of Chaotic Dynamics, Vol. 161 of Translations of Mathematical Monographs, American Mathematical Society, Providence, Rhode Island, 1997. [9] M. Blank, Discreteness and Continuity in Problems of Chaotic Dynamics, Vol. 161 of Translations of Mathematical Monographs, American Mathematical Society, Providence, Rhode Island, 1997.
[10] H. Stoycheva and D. Chantov, "Design of chaotic synchronization system combining projective, marginal and hybrid synchronization with application to image encryption," 2020 International Conference Automatics and Informatics (ICAI), Varna, Bulgaria, 2020, pp. 1-6, doi: 10.1109/ICAI50593.2020.9311321. [10] H. Stoycheva and D. Chantov, "Design of chaotic synchronization system combining projective, marginal and hybrid synchronization with application to image encryption," 2020 International Conference Automatics and Informatics (ICAI), Varna, Bulgaria, 2020, pp. 1 -6, doi: 10.1109/ICAI50593.2020.9311321.
[11] P. Yue, L. Guodong and Z. Jing, "Based on the Improved RSA Keys and Compound Chaotic System and Design of Audio Encryption Algorithm," 2016 International Conference on Smart City and Systems Engineering (ICSCSE), Hunan, 2016, pp. 197-201, doi: 10.1109/ICSCSE.2016.0061. [11] P. Yue, L. Guodong and Z. Jing, "Based on the Improved RSA Keys and Compound Chaotic System and Design of Audio Encryption Algorithm," 2016 International Conference on Smart City and Systems Engineering (ICSCSE), Hunan, 2016 , pp. 197-201, doi: 10.1109/ICSCSE.2016.0061.
[12] P. Sarosh, S. A. Parah and G. Mohiuddin Bhat, "Fast Image Encryption Framework for Medical Images," 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM), 2021, pp. 149-154, doi: 10.1109/ICIEM51511.2021.9445362. [12] P. Sarosh, SA Parah and G. Mohiuddin Bhat, "Fast Image Encryption Framework for Medical Images," 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM) , 2021, pp. 149-154, doi: 10.1109/ ICIEM51511.2021.9445362.
[13] T. I. Karimov, O. S. Druzhina, A. I. Karimov, G. Y. Kolev and D. N. Butusov, "Comparison of Bifurcation Diagrams for Numerical and Analog Chaotic Systems," 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), 2021, pp. 124-128, doi: 10.1109/ElConRus51938.2021.9396558. [13] T. I. Karimov, O. S. Druzhina, A. I. Karimov, G. Y. Kolev and D. N. Butusov, "Comparison of Bifurcation Diagrams for Numerical and Analog Chaotic Systems," 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConR us), 2021, pp . 124-128, doi: 10.1109/ElConRus51938.2021.9396558.
[14] Lin C-H, Hu G-H, Chan C-Y, Yan J-J. Chaos-Based Synchronized Dynamic Keys and Their Application to Image Encryption with an Improved AES Algorithm. Applied Sciences. 2021; 11(3):1329. [14] Lin C-H, Hu G-H, Chan C-Y, Yan J-J. Chaos-Based Synchronized Dynamic Keys and Their Application to Image Encryption with an Improved AES Algorithm. Applied Sciences. 2021; 11(3):1329.
[15] Y. Huang and Y. Wang, "A new chaotic secure communication scheme based on shape synchronization," The 26th Chinese Control and Decision Conference (2014 CCDC), 2014, pp. 3497-3502, doi: 10.1109/CCDC.2014.6852784. [15] Y. Huang and Y. Wang, "A new chaotic secure communication scheme based on shape synchronization," The 26th Chinese Control and Decision Conference (2014 CCDC), 2014, pp. 3497-3502, doi: 10.1109/CCDC. 2014.6852784.
[16] Qu Shaocheng, Wang Xiaoyan and Gong Meijing, "Synchronization of unified chaotic systems and application to secure communication," 2008 27th Chinese Control Conference, 2008, pp. 370-373, doi: 10.1109/CHICC.2008.4605825. [16] Qu Shaocheng, Wang Xiaoyan and Gong Meijing, "Synchronization of unified chaotic systems and application to secure communication," 2008 27th Chinese Control Conference, 2008, pp. 370-373, doi: 10.1109/CHICC.2008.46 05825.
[17] Q. Huang, L. Wang and G. Li, "Research and Application of Video Encryption Technology Based on Chaotic Synchronization Theory," 2018 10th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), 2018, pp. 444-447, doi: 10.1109/ICMTMA.2018.00114. [17] Q. Huang, L. Wang and G. Li, "Research and Application of Video Encryption Technology Based on Chaotic Synchronization Theory," 2018 10th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), 2018, pp. 444- 447, doi: 10.1109/ICMTMA.2018.00114.
[18] S. Kassim, O. Megherbi, H. Hamiche, S. Djennoune and M. Bettayeb, "Speech encryption based on the synchronization of fractional-order chaotic maps," 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), 2019, pp. 1-6, doi: 10.1109/ISSPIT47144.2019.9001865. [18] S. Kassim, O. Megherbi, H. Hamiche, S. Djennoune and M. Bettayeb, "Speech encryption based on the synchronization of fractional-order chaotic maps," 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT ), 2019, pp. 1-6, doi: 10.1109/ISSPIT47144.2019.9001865.
[19] Daryabor, Abdolkarim. Momeni, Hamid Reza. A sliding mode observer approach to chaos synchronization. 2008 International Conference on Control, Automation and Systems. 2008. [19] Daryabor, Abdolkarim. Momeni, Hamid Reza. A sliding mode observer approach to chaos synchronization. 2008 International Conference on Control, Automation and Systems. 2008.
[20] Panikhom, Suphaphom. Implementation of chaos control in Chua's circuit via sliding mode control. 2017 International Electrical Engineering Congress (iEECON). 2017. [20] Panikhom, Suphaphom. Implementation of chaos control in Chua's circuit via sliding mode control. 2017 International Electrical Engineering Congress (iEECON). 2017.
[21] D. A. Miller and G. Grassi, "A discrete generalized hyperchaotic Henon map circuit," Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems. MWSCAS 2001 (Cat. No.01CH37257), Dayton, OH, USA, 2001, pp. 328-331 vol.1, doi: 10.1109/MWSCAS.2001.986179. [21] D. A. Miller and G. Grassi, "A discrete generalized hyperchaotic Henon map circuit," Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems. MWSCAS 2001 (Cat. No.01CH37257), Dayton, OH, USA, 2001 , pp. 328-331 vol.1, doi: 10.1109/MWSCAS.2001.986179.
[22] Lin, C.H.; Hu, GH.; Yan, J.J. Chaos suppression in uncertain generalized Lorenz - Stenflo systems via a single rippling controller with Input Nonlinearity. Mathematics. 2020, 8, 327。 [22] Lin, C.H.; Hu, GH.; Yan, J.J. Chaos suppression in uncertain generalized Lorenz - Stenflo systems via a single rippling controller with Input Nonlinearity. Mathematics. 2020, 8, 327.
[23] Dworkin, Morris J. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. FIPS PUB 202. 2015. [23] Dworkin, Morris J. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. FIPS PUB 202. 2015.
[24] Xavier JC, Rech PC (2010) Regular and chaotic dynamics of the Lorenz-Stenflo system. International Journal of Bifurcation and Chaos 20(1): 145-152. [24] Xavier JC, Rech PC (2010) Regular and chaotic dynamics of the Lorenz-Stenflo system. International Journal of Bifurcation and Chaos 20(1): 145-152.
[25] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker, Stefan Leigh, Mark Levenson, Mark Vangel, David Banks, Alan Heckert, James Dray, San Vo. (2010)。 A Statistical Test Suite forRandom and PseudorandomNumber Generators forCryptographic Applications。 [25] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker, Stefan Leigh, Mark Levenson, Mark Vangel, David Banks, Alan Heckert, James Dray, San Vo. (2010). A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications.
[26]吳應賢。「混沌同步電路實現技術與應用」。碩士論文,樹德科技大學電腦與通訊系碩士班,2019。https://hdl.handle.net/11296/bgct67。 [26] Wu Yingxian. "Chaos Synchronization Circuit Realization Technology and Application". Master's thesis, master's class, Department of Computer and Communication, Shude University of Technology, 2019. https://hdl.handle.net/11296/bgct67 .
[27] Lin C-H, Hu G-H, Yan J-J. Chaos Suppression in Uncertain Generalized Lorenz-Stenflo Systems via a Single Rippling Controller with Input Nonlinearity. Mathematics. 2020; 8(3):327. https://doi.org/10.3390/math8030327 [27] Lin CH, Hu GH, Yan JJ. Chaos Suppression in Uncertain Generalized Lorenz-Stenflo Systems via a Single Rippling Controller with Input Nonlinearity. Mathematics. 2020; 8(3):327. https://doi.org/10.3390 /math8030327
[28]Young KD, Utkin VI, Ozguner U (1999) A control engineer’ s guide to sliding mode control. IEEE Transactions on Control Systems Technology 7(3): 328-342. [28]Young KD, Utkin VI, Ozguner U (1999) A control engineer’s guide to sliding mode control. IEEE Transactions on Control Systems Technology 7(3): 328-342.
11:主端第一混沌系統 11: The first chaotic system on the master side
12:主端雜湊演算模組 12: Master-side hash calculation module
13:加密系統 13: Encryption system
14:主端網路傳輸模組 14: Main-end network transmission module
21:僕端第一混沌系統 21: The first chaotic system on the slave side
22:僕端雜湊演算模組 22: Slave side hash calculation module
23:解密系統 23: Decryption system
24:僕端網路傳輸模組 24: Slave-end network transmission module
30:公共網域 30: Public domain
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW110143765A TWI790831B (en) | 2021-11-24 | 2021-11-24 | Multimodal Dynamic Key Method Based on Chaotic Peak Coding and Its Application |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW110143765A TWI790831B (en) | 2021-11-24 | 2021-11-24 | Multimodal Dynamic Key Method Based on Chaotic Peak Coding and Its Application |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI790831B true TWI790831B (en) | 2023-01-21 |
| TW202322592A TW202322592A (en) | 2023-06-01 |
Family
ID=86670190
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW110143765A TWI790831B (en) | 2021-11-24 | 2021-11-24 | Multimodal Dynamic Key Method Based on Chaotic Peak Coding and Its Application |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI790831B (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI878124B (en) * | 2024-05-17 | 2025-03-21 | 中華電信股份有限公司 | Anonymous credential method and system based on post-quantum cryptography |
| TWI886961B (en) * | 2024-05-17 | 2025-06-11 | 中華電信股份有限公司 | Homomorphic encryption and decryption system and method based on post-quantum cryptography |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW201414258A (en) * | 2012-09-17 | 2014-04-01 | Univ Kun Shan | Chaotic image encryption method for cloud album |
| US8949619B2 (en) * | 2012-04-09 | 2015-02-03 | Brivas Llc | Systems, methods and apparatus for multivariate authentication |
| CN104618091A (en) * | 2015-02-16 | 2015-05-13 | 哈尔滨理工大学 | Dual-chaotic system dynamic key and RSA jointed streaming media secret communication method |
-
2021
- 2021-11-24 TW TW110143765A patent/TWI790831B/en active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8949619B2 (en) * | 2012-04-09 | 2015-02-03 | Brivas Llc | Systems, methods and apparatus for multivariate authentication |
| TW201414258A (en) * | 2012-09-17 | 2014-04-01 | Univ Kun Shan | Chaotic image encryption method for cloud album |
| CN104618091A (en) * | 2015-02-16 | 2015-05-13 | 哈尔滨理工大学 | Dual-chaotic system dynamic key and RSA jointed streaming media secret communication method |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI878124B (en) * | 2024-05-17 | 2025-03-21 | 中華電信股份有限公司 | Anonymous credential method and system based on post-quantum cryptography |
| TWI886961B (en) * | 2024-05-17 | 2025-06-11 | 中華電信股份有限公司 | Homomorphic encryption and decryption system and method based on post-quantum cryptography |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202322592A (en) | 2023-06-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9825761B2 (en) | Systems and methods improving cryptosystems with biometrics | |
| TWI790831B (en) | Multimodal Dynamic Key Method Based on Chaotic Peak Coding and Its Application | |
| WO2019214027A1 (en) | Sequential encryption and decryption method based on two-key stream cipher using singly linked list | |
| WO2019214024A1 (en) | Encryption and decryption method based on binary modulo operation utilizing stream hash | |
| Mishra et al. | A New algorithm of encryption and decryption of images using chaotic mapping | |
| Hananto et al. | Analyzing the Kasiski method against Vigenere cipher | |
| Dutta et al. | A cryptography algorithm using the operations of genetic algorithm & pseudo random sequence generating functions | |
| Rathod et al. | Design and implementation of image encryption algorithm by using block based symmetric transformation algorithm (hyper image encryption algorithm) | |
| Li et al. | Breaking a chaotic cryptographic scheme based on composition maps | |
| Akif et al. | A new pseudorandom bits generator based on a 2D-chaotic system and diffusion property | |
| El Hennawy et al. | LEA: link encryption algorithm proposed stream cipher algorithm | |
| Rajput et al. | VLSI implementation of lightweight cryptography technique for FPGA-IOT application | |
| CN103117850B (en) | A kind of method for building up of the cryptographic system based on random sequence database | |
| Yamuna et al. | Encryption of a Binary String using music notes and graph theory | |
| JP4399602B2 (en) | Random number generation, encryption and decryption apparatus, method, program, and recording medium | |
| CN103595524B (en) | A kind of encipher-decipher method of bit loss encryption-bit filling decryption based on stream cipher | |
| WO2019214025A1 (en) | Sequential encryption and decryption method based on two-key stream cipher using doubly linked list | |
| Abraham et al. | An improved caesar cipher (icc) algorithm | |
| Demir et al. | Security analysis of a random number generator based on a chaotic hyperjerk system | |
| Manucom et al. | Security analysis of improved one-time pad cryptography using TRNG key generator | |
| CN110474967B (en) | Block chain experiment system and method | |
| Raghunath et al. | Designing a secured audio based key generator for cryptographic symmetric key algorithms | |
| CN117077183B (en) | Semiconductor equipment maintenance data processing method and system | |
| Barnawi et al. | A HIVE STREAM ENCRYPTION (HSE): A NEW STREAM ENCRYPTION ALGORITHM. | |
| Pillai et al. | The analysis of PQ sequences generated from continued fractions for use as pseudorandom sequences in cryptographic applications |