TWI785582B - 用於在帶電粒子束檢測系統中增強檢測影像之方法、影像增強裝置及其相關非暫時性電腦可讀媒體 - Google Patents
用於在帶電粒子束檢測系統中增強檢測影像之方法、影像增強裝置及其相關非暫時性電腦可讀媒體 Download PDFInfo
- Publication number
- TWI785582B TWI785582B TW110115250A TW110115250A TWI785582B TW I785582 B TWI785582 B TW I785582B TW 110115250 A TW110115250 A TW 110115250A TW 110115250 A TW110115250 A TW 110115250A TW I785582 B TWI785582 B TW I785582B
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- segment
- layer
- updated
- blurriness
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/73—Deblurring; Sharpening
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/20—Image enhancement or restoration using local operators
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10056—Microscopic image
- G06T2207/10061—Microscopic image from scanning electron microscope
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10141—Special mode during image acquisition
- G06T2207/10148—Varying focus
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20172—Image enhancement details
- G06T2207/20201—Motion blur correction
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20221—Image fusion; Image merging
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30148—Semiconductor; IC; Wafer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/22—Treatment of data
- H01J2237/221—Image processing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/26—Electron or ion microscopes
- H01J2237/28—Scanning microscopes
- H01J2237/2813—Scanning microscopes characterised by the application
- H01J2237/2817—Pattern inspection
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Measurement Of Radiation (AREA)
Abstract
本發明揭示一種用於增強一帶電粒子束檢測系統中之一檢測影像的改良之方法及裝置。一種用於增強一檢測影像之改良方法包含:獲取一樣本之多個堆疊層之分別以一第一焦點及一第二焦點拍攝的一第一影像及一第二影像;使該第一影像之一第一片段與該多個堆疊層當中之一第一層相關聯且使該第二影像之一第二片段與該多個堆疊層當中之一第二層相關聯;基於對應於該第一層之一第一參考影像更新該第一片段及基於對應於該第二層之一第二參考影像更新該第二片段;及組合該經更新第一片段及該經更新第二片段以產生包括該第一層及該第二層之一組合式影像。
Description
本文中所提供之實施例係關於一種影像增強技術,且更特定言之,係關於在帶電粒子束檢測中用於晶圓上之多層結構之檢測影像增強。
在積體電路(IC)之製造程序中,檢測未完成或已完成的電路組件以確保其係根據設計而製造且無缺陷。可使用利用光學顯微鏡或帶電粒子(例如電子)束顯微鏡,諸如掃描電子顯微鏡(SEM)的檢測系統。隨著IC組件之實體大小持續縮小,缺陷偵測之準確度及良率變得愈來愈重要。
可自SEM影像以次奈米(nm)精度量測圖案/結構位移及與設計之尺寸偏差。此等量測可有助於識別所製造IC之缺陷且有助於控制製造程序。廣泛使用三維結構,諸如階梯結構,且三維結構之高度愈來愈高地生長以便增加晶片之密度或儲存容量。因此,需要用於三維結構之穩固檢測或準確度量衡量測。
本文中所提供之實施例揭示一種粒子束檢測裝置,且更特
定言之,一種使用一帶電粒子束之檢測裝置。
在一些實施例中,提供一種用於在一帶電粒子束檢測系統中增強一檢測影像之方法。該方法包含:獲取一樣本之多個堆疊層之分別以一第一焦點及一第二焦點拍攝的一第一影像及一第二影像;使該第一影像之一第一片段與該多個堆疊層當中之一第一層相關聯且使該第二影像之一第二片段與該多個堆疊層當中之一第二層相關聯;基於對應於該第一層之一第一參考影像估計該第一片段之一第一模糊程度及基於一第二參考影像估計該第二片段之一第二模糊程度;根據該第一模糊程度更新該第一片段且根據該第二模糊程度更新該第二片段;及組合該經更新第一片段與該經更新第二片段以產生包括該第一層及該第二層之一組合式影像。
在一些實施例中,一種影像增強裝置包含:一記憶體,其儲存一指令集;及至少一個處理器,其經組態以執行該指令集以致使該裝置執行以下操作:獲取一樣本之多個堆疊層之分別以一第一焦點及一第二焦點拍攝的一第一影像及一第二影像;使該第一影像之一第一片段與該多個堆疊層當中之一第一層相關聯且使該第二影像之一第二片段與該多個堆疊層當中之一第二層相關聯;基於對應於該第一層之一第一參考影像估計該第一片段之一第一模糊程度及基於一第二參考影像估計該第二片段之一第二模糊程度;根據該第一模糊程度更新該第一片段且根據該第二模糊程度更新該第二片段;及組合該經更新第一片段與該經更新第二片段以產生包括該第一層及該第二層之一組合式影像。
在一些實施例中,提供一種非暫時性電腦可讀媒體,其儲存一指令集,該指令集可由一運算器件之至少一個處理器執行以執行用於增強一影像之一方法。該方法包含:獲取一樣本之多個堆疊層之分別以一
第一焦點及一第二焦點拍攝的一第一影像及一第二影像;使該第一影像之一第一片段與該多個堆疊層當中之一第一層相關聯且使該第二影像之一第二片段與該多個堆疊層當中之一第二層相關聯;基於對應於該第一層之一第一參考影像估計該第一片段之一第一模糊程度及基於一第二參考影像估計該第二片段之一第二模糊程度;根據該第一模糊程度更新該第一片段且根據該第二模糊程度更新該第二片段;及組合該經更新第一片段與該經更新第二片段以產生包括該第一層及該第二層之一組合式影像。
在一些實施例中,提供一種用於在一帶電粒子束檢測系統中增強一檢測影像之方法。該方法包含:獲取一樣本之多個堆疊層之分別以一第一焦點及一第二焦點拍攝的一第一影像及一第二影像;使該第一影像之一第一片段與該多個堆疊層當中之一第一層相關聯且使該第二影像之一第二片段與該多個堆疊層當中之一第二層相關聯;基於對應於該第一層之一第一參考影像更新該第一片段及基於對應於該第二層之一第二參考影像更新該第二片段;及組合該經更新第一片段及該經更新第二片段以產生包括該第一層及該第二層之一組合式影像。
在一些實施例中,提供一種用於產生一樣本之一影像的方法。該方法包含:獲得該樣本上之一位置之多個影像,該多個影像中之每一者係在一不同焦點下獲得;判定該多個影像之特徵與一關聯參考影像之特徵之間的相關性;基於該等相關性及該關聯參考影像之層資訊來判定該多個影像之該等特徵中之每一者的一深度;選擇該多個影像中之一個影像,自該一個影像獲得用於該多個影像上之該等特徵中之每一者的一所選擇影像;及藉由組合該所選擇影像中之每一者來產生該位置之一影像。
本發明之實施例之其他優點將自結合隨附圖式進行之以下
描述變得顯而易見,在該等中藉助於說明及實例闡述本發明之某些實施例。
l1:長度
l2:長度
1:樣本
10:主腔室
20:裝載鎖定腔室
30:設備前端模組(EFEM)
30a:第一裝載埠
30b:第二裝載埠
40:電子束工具/裝置
50:控制器
100:實例電子束檢測(EBI)系統/實例帶電粒子束檢測系統
100_1:主光軸
101:電子源
101s:交越
102:初級電子束
102_1:細射束
102_1S:探測光點
102_1se:二次電子束
102_2:細射束
102_2S:探測光點
102_2se:二次電子束
102_3:細射束
102_3S:探測光點
102_3se:二次電子束
103:槍孔徑
110:聚光透鏡
120:源轉換單元
130:初級投影光學系統
131:物鏡
132:偏轉掃描單元
140:電子偵測器件
140_1:偵測元件
140_2:偵測元件
140_3:偵測元件
150:二次成像系統
150_1:副光軸
160:射束分離器
171:槍孔徑板
172:預細射束形成機構
300:多層結構
400:影像增強裝置
410:影像獲取器
420:影像分離器
430:影像補償器
440:影像組合器
450:資訊檔案
500:檢測影像
501:第一檢測影像
502:第二檢測影像
510:第一片段
520:第二片段
530:第三片段
700:組合式影像
701:第一經更新檢測影像
702:第二經更新檢測影像
800:方法
D:深度
L1:第一層/頂層
L2:第二層
L3:第三層
L4:第四層
L5:第五層
L6:第六層
L7:第七層
L8:第八層
L9:第九層
L10:第十層/底層
S1:第一曝露表面
S2:第二曝露表面
S3:曝露表面
S4:曝露表面
S5:曝露表面
S6:曝露表面
S7:曝露表面
S8:曝露表面
S9:曝露表面
S10:曝露表面
S810:步驟
S820:步驟
S830:步驟
S840:步驟
ST:隙縫溝槽
T1:厚度
T2:厚度
圖1為說明符合本發明之一些實施例的實例電子束檢測(EBI)系統之示意圖。
圖2為說明符合本發明之一些實施例的可為圖1之電子束檢測系統之一部分的實例電子束工具之示意圖。
圖3A為符合本發明之一些實施例的實例多層結構之橫截面圖。
圖3B為圖3A之實例多層結構之俯視圖。
圖4為符合本發明之一些實施例的實例影像增強裝置之方塊圖。
圖5為符合本發明之一些實施例的檢測影像之實例集合。
圖6說明符合本發明之一些實施例的分離檢測影像之實例。
圖7說明符合本發明之一些實施例的組合檢測影像之實例。
圖8為符合本發明之一些實施例的表示用於增強影像之實例方法的程序流程圖。
現在將詳細參考例示性實施例,在隨附圖式中說明該等例示性實施例之實例。以下描述參考隨附圖式,其中除非另外表示,否則不同圖式中之相同編號表示相同或相似元件。例示性實施例之以下描述中所
闡述之實施並不表示所有實施。取而代之,其僅僅為符合關於所附申請專利範圍中所敍述之所揭示實施例的態樣的裝置及方法之實例。舉例而言,儘管一些實施例係在利用電子束之內容背景中予以描述,但本發明不限於此。可以相似方式應用其他類型之帶電粒子束。此外,可使用其他成像系統,諸如光學成像、光偵測、x射線偵測等。
電子器件係由形成於被稱為基板之矽塊上的電路構成。許多電路可一起形成於同一矽塊上且被稱為積體電路或IC。此等電路之大小已顯著地減小,使得電路中之許多電路可安裝於基板上。舉例而言,智慧型手機中之IC晶片可與拇指甲一樣小且仍可包括超過20億個電晶體,每一電晶體之大小不到人類毛髮之大小的1/1000。
製造此等極小IC為常常涉及數百個個別步驟之複雜、耗時且昂貴之程序。甚至一個步驟中之錯誤亦有可能導致成品IC中之缺陷,該等缺陷使得成品IC為無用的。因此,製造程序之一個目標為避免此類缺陷以使在程序中製造之功能性IC的數目最大化,亦即改良程序之總體良率。
改良良率之一個組分為監測晶片製造程序,以確保其正生產足夠數目個功能積體電路。監測該程序之一種方式為在晶片電路結構形成之各個階段處檢測晶片電路結構。可使用掃描電子顯微鏡(SEM)來進行檢測。SEM可用以實際上將此等極小結構成像,從而獲取該等結構之「圖像」。影像可用以判定結構是否適當形成,且亦判定結構是否形成於適當位置中。若結構為有缺陷的,則程序可經調整,使得缺陷不大可能再現。
可自SEM影像以次奈米(nm)精度量測圖案/結構位移及與設計之尺寸偏差。此等量測可有助於識別所製造IC之缺陷且有助於控制製造程序。由於檢測工具之有限聚焦深度,因此難以獲得用於三維結構之焦
點對準檢測影像。然而,三維結構(諸如階梯結構)之高度愈來愈高地生長,以便增加晶片之密度或儲存容量,此禁止三維結構之穩固檢測或度量衡量測。
本發明之一些實施例提供一種用於獲得用於多層結構之焦點對準檢測影像之技術,該多層結構之深度大於檢測系統之聚焦深度。在一些實施例中,可基於對應圖形資料庫系統(GDS)資訊在每層基礎上補償以不同焦點針對多層結構所拍攝的複數個檢測影像,且可組合該複數個檢測影像以產生用於視場內之多層結構的更清晰檢測影像。本發明可幫助提供較準確SEM影像且因此使得能夠以較高準確度及效率偵測樣本之缺陷。
出於清楚起見,圖式中之組件的相對尺寸可被誇示。在以下圖式描述內,相同或類似參考數字係指相同或類似組件或實體,且僅描述關於個別實施例之差異。如本文中所使用,除非另外特定陳述,否則術語「或」涵蓋所有可能組合,除非不可行。舉例而言,若陳述組件可包括A或B,則除非另外特定陳述或不可行,否則組件可包括A,或B,或A及B。作為第二實例,若陳述組件可包括A、B或C,則除非另外特定陳述或不可行,否則組件可包括A,或B,或C,或A及B,或A及C,或B及C,或A及B及C。
現在參看圖1,其說明符合本發明之實施例的實例電子束檢測(EBI)系統100。如圖1中所展示,帶電粒子束檢測系統100包括主腔室10、裝載鎖定腔室20、電子束工具40及設備前端模組(EFEM)30。電子束工具40位於主腔室10內。雖然本說明書及圖式係針對電子束,但應瞭解,實施例並不用以將本發明限制至特定帶電粒子。
EFEM 30包括第一裝載埠30a及第二裝載埠30b。EFEM 30
可包括額外裝載埠。第一裝載埠30a及第二裝載埠30b收納含有待檢測之晶圓(例如,半導體晶圓或由其他材料製成之晶圓)或樣本的晶圓前開式單元匣(FOUP)(晶圓及樣本在下文中被集體地稱作「晶圓」)。EFEM 30中之一或多個機器人臂(圖中未繪示)將晶圓輸送至裝載鎖定腔室20。
裝載鎖定腔室20連接至裝載/鎖定真空泵系統(圖中未繪示),該裝載/鎖定真空泵系統移除裝載鎖定腔室20中之氣體分子以達到低於大氣壓力之第一壓力。在達到第一壓力之後,一或多個機器人臂(圖中未繪示)將晶圓自裝載鎖定腔室20輸送至主腔室10。主腔室10連接至主腔室真空泵系統(圖中未繪示),該主腔室真空泵系統移除主腔室10中之氣體分子以達到低於第一壓力之第二壓力。在達到第二壓力之後,晶圓經受電子束工具40之檢測。在一些實施例中,電子束工具40可包含單射束檢測工具。在其他實施例中,電子束工具40可包含多射束檢測工具。
控制器50可以電子方式連接至電子束工具40,且亦可以電子方式連接至其他組件。控制器50可為經組態以執行帶電粒子束檢測系統100之各種控制的電腦。控制器50亦可包括經組態以執行各種信號及影像處理功能之處理電路系統。雖然控制器50在圖1中被展示為在包括主腔室10、裝載鎖定腔室20及EFEM 30之結構之外部,但應瞭解,控制器50可為該結構之部分。
雖然本發明提供容納電子束檢測系統之主腔室10的實例,但應注意,本發明之態樣在其最廣泛意義上而言不限於容納電子束檢測系統之腔室。實際上,應瞭解,前述原理亦可應用於其他腔室。
現在參看圖2,其說明一示意圖,該示意圖說明符合本發明之實施例的可為圖1之實例帶電粒子束檢測系統100之一部分的實例電
子束工具40。電子束工具40(在本文中亦被稱作裝置40)包含電子源101、具有槍孔徑103之槍孔徑板171、預細射束形成機構172、聚光透鏡110、源轉換單元120、初級投影光學系統130、樣本載物台(圖2中未展示)、二次成像系統150及電子偵測器件140。初級投影光學系統130可包含物鏡131。電子偵測器件140可包含複數個偵測元件140_1、140_2及140_3。射束分離器160及偏轉掃描單元132可置放於初級投影光學系統130內部。可瞭解,適當時,可添加/省略裝置40之其他通常已知的組件。
電子源101、槍孔徑板171、聚光透鏡110、源轉換單元120、射束分離器160、偏轉掃描單元132及初級投影光學系統130可與裝置100之主光軸100_1對準。二次成像系統150及電子偵測器件140可與裝置40之副光軸150_1對準。
電子源101可包含陰極、提取器或陽極,其中初級電子可自陰極發射且經提取或加速以形成初級電子束102,該初級電子束形成交越(虛擬或真實)101s。初級電子束102可被視覺化為自交越101s發射。
源轉換單元120可包含影像形成元件陣列(圖2中未繪示)、像差補償器陣列(圖中未繪示)、射束限制孔徑陣列(圖中未繪示)及預彎曲微偏轉器陣列(圖中未繪示)。影像形成元件陣列可包含複數個微偏轉器或微透鏡以運用初級電子束102之複數個細射束形成交越101s之複數個平行影像(虛擬或真實)。圖2展示三個細射束102_1、102_2及102_3作為一實例,且應瞭解,源轉換單元120可處置任何數目個細射束。控制器50可連接至圖1之帶電粒子束檢測系統100之各種部分,諸如電子偵測器件140、初級投影光學系統130等。在一些實施例中,如下文進一步詳細地解釋,控制器50可執行各種影像及信號處理功能。控制器50亦可產生各種控制
信號以管控帶電粒子束檢測系統100之操作。
在一些實施例中,源轉換單元120可具備射束限制孔徑陣列及影像形成元件陣列(兩者均未展示)。射束限制孔徑陣列可包含射束限制孔徑。應瞭解,適當時可使用任何數目個孔徑。射束限制孔徑可經組態以限制初級電子束102之細射束102_1、102_2及102_3之大小。影像形成元件陣列可包含影像形成偏轉器(圖中未繪示),該等影像形成偏轉器經組態以藉由使朝向主光軸100_1之角度變化而偏轉細射束102_1、102_2及102_3。在一些實施例中,更遠離主光軸100_1之偏轉器可更大程度地偏轉細射束。此外,影像形成元件陣列可包含多個層(未說明),且偏轉器可經提供於單獨的層中。偏轉器可經組態為獨立於彼此而個別地受控制。在一些實施例中,偏轉器可經控制以調整形成於樣本1之表面上之探測光點(例如,102_1S、102_2S及102_3S)之節距。如本文中所提及,探測光點之節距可被定義為樣本1之表面上之兩個緊鄰探測光點之間的距離。
影像形成元件陣列之居中定位的偏轉器可與電子束工具40之主光軸100_1對準。因此,在一些實施例中,中心偏轉器可經組態以維持細射束102_1之軌跡為筆直的。在一些實施例中,可省略中心偏轉器。然而,在一些實施例中,初級電子源101可能未必與源轉換單元120之中心對準。此外,應瞭解,雖然圖2展示裝置40之側視圖,其中細射束102_1在主光軸100_1上,但當自不同側面檢視時,細射束102_1可偏離主光軸100_1。亦即,在一些實施例中,所有細射束102_1、102_2及102_3可為離軸。離軸組分可相對於主光軸100_1偏移。
經偏轉細射束之偏轉角可基於一或多個準則而設定。在一些實施例中,偏轉器可使離軸細射束自主光軸100_1徑向地向外或遠離(未
說明)主光軸100_1偏轉。在一些實施例中,偏轉器可經組態以使離軸細射束自主光軸100_1徑向向內或朝向主光軸100_1偏轉。細射束之偏轉角可經設定使得細射束102_1、102_2及102_3垂直著陸於樣本1上。由諸如物鏡131之透鏡所致之影像的離軸像差可藉由調整穿過透鏡之細射束之路徑而減小。因此,離軸細射束102_2及102_3之偏轉角可經設定使得探測光點102_2S及102_3S具有小的像差。細射束可經偏轉從而穿過或接近物鏡131之前焦點以減小離軸探測光點102_2S及102_3S之像差。在一些實施例中,偏轉器可經設定以使細射束102_1、102_2及102_3垂直著陸於樣本1上,同時探測光點102_1S、102_2S及102_3S具有小像差。
聚光透鏡110經組態以聚焦初級電子束102。可藉由調整聚光透鏡110之聚焦倍率或藉由改變射束限制孔徑陣列內之對應射束限制孔徑的徑向大小來使源轉換單元120下游之細射束102_1、102_2及102_3的電流變化。可藉由變更射束限制孔徑之徑向大小及聚光透鏡110之聚焦倍率兩者來改變電流。聚光透鏡110可為可經組態以使得其第一主面之位置可移動的可調整聚光透鏡。可調整聚光透鏡可經組態為磁性的,此可導致離軸細射束102_2及102_3以旋轉角照明源轉換單元120。旋轉角可隨著可調整聚光透鏡之聚焦倍率或第一主面之位置而改變。因此,聚光透鏡110可為反旋轉聚光透鏡,其可經組態以在聚光透鏡110之聚焦倍率改變時使旋轉角保持不變。在一些實施例中,聚光透鏡110可為可調整反旋轉聚光透鏡,其中當聚光透鏡110之聚焦倍率以及第一主面之位置變化時,旋轉角並不改變。
電子束工具40可包含預細射束形成機構172。在一些實施例中,電子源101可經組態以發射初級電子且形成初級電子束102。在一
些實施例中,槍孔徑板171可經組態以阻擋初級電子束102之周邊電子從而降低庫侖效應。在一些實施例中,預細射束形成機構172進一步切割初級電子束102之周邊電子以進一步降低庫侖效應。初級電子束102可在穿過預細射束形成機構172之後經修整為三個初級電子細射束102_1、102_2及102_3(或任何其他數目個細射束)。電子源101、槍孔徑板171、預細射束形成機構172及聚光透鏡110可與電子束工具40之主光軸100_1對準。
預細射束形成機構172可包含庫侖孔徑陣列。預細射束形成機構172之中心孔徑(在本文中亦被稱作軸上孔徑)及源轉換單元120之中心偏轉器可與電子束工具40之主光軸100_1對準。預細射束形成機構172可具備複數個預修整孔徑(例如庫侖孔徑陣列)。在圖2中,當初級電子束102穿過三個預修整孔徑時產生三個細射束102_1、102_2及102_3且切斷初級電子束102之許多剩餘部分。亦即,預細射束形成機構172可修整來自初級電子束102之不會形成三個細射束102_1、102_2及102_3的許多或大部分電子。預細射束形成機構172可在初級電子束102進入源轉換單元120之前切斷將最終不用以形成探測光點102_1S、102_2S及102_3S之電子。在一些實施例中,可接近電子源101提供槍孔徑板171以在初期切斷電子,同時亦可提供預細射束形成機構172以進一步切斷圍繞複數個細射束之電子。儘管圖2展現預細射束形成機構172之三個孔徑,但應瞭解,適當時可存在任何數目個孔徑。
在一些實施例中,預細射束形成機構172可置放於聚光透鏡110下方。更接近電子源101置放預細射束形成機構172可更有效地降低庫侖效應。在一些實施例中,當預細射束形成機構172能夠充分接近源101定位同時仍為可製造的時,可省略槍孔徑板171。
物鏡131可經組態以將細射束102_1、102_2及102_3聚焦至樣本1上以供檢測,且可在樣本1之表面上形成三個探測光點102_1s、102_2s及102_3s。槍孔徑板171可阻擋不在使用中之初級電子束102之周邊電子以降低庫侖相互作用效應。庫侖相互作用效應可放大探測光點102_1s、102_2s及102_3s中之每一者之大小,且因此使檢測解析度劣化。
射束分離器160可為韋恩濾波器類型之射束分離器,其包含產生靜電偶極子場E1及磁偶極子場B1(兩者皆在圖2中未展示)之靜電偏轉器。若施加靜電偶極子場E1及磁偶極子場B1,則由靜電偶極子場E1對細射束102_1、102_2及102_3之電子施加的力與由磁偶極子場B1對電子施加之力量值相等且方向相反。細射束102_1、102_2及102_3因此可以零偏轉角直接穿過射束分離器160。
偏轉掃描單元132可使細射束102_1、102_2及102_3偏轉以使探測光點102_1s、102_2s及102_3s遍及樣本1之表面區段中之三個小的經掃描區域進行掃描。回應於細射束102_1、102_2及102_3入射於探測光點102_1s、102_2s及102_3s處,可自樣本1發射三個二次電子束102_1se、102_2se及102_3se。二次電子束102_1se、102_2se及102_3se中之每一者可包含具有能量之分佈的電子,包括二次電子(能量50eV)及反向散射電子(能量介於50eV與細射束102_1、102_2及102_3之著陸能量之間)。射束分離器160可將二次電子束102_1se、102_2se及102_3se導向二次成像系統150。二次成像系統150可將二次電子束102_1se、102_2se及102_3se聚焦至電子偵測器件140之偵測元件140_1、140_2及140_3上。偵測元件140_1、140_2及140_3可偵測對應二次電子束102_1se、
102_2se及102_3se且產生對應信號,該等信號經發送至控制器50或信號處理系統(圖中未繪示),例如以建構樣本1之對應經掃描區域的影像。
在圖2中,分別由三個探測光點102_1S、102_2S及102_3S產生之三個二次電子束102_1se、102_2se及102_3se沿著主光軸100_1向上朝向電子源101行進,依次地穿過物鏡131及偏轉掃描單元132。三個二次電子束102_1se、102_2se及102_3se由射束分離器160(諸如韋恩濾波器)轉向以沿著其副光軸150_1進入二次成像系統150。二次成像系統150將三個二次電子束102_1se至102_3se聚焦至包含三個偵測元件140_1、140_2及140_3之電子偵測器件140上。因此,電子偵測器件140可同時產生分別由三個探測光點102_1S、102_2S及102_3S掃描之三個經掃描區的影像。在一些實施例中,電子偵測器件140及二次成像系統150形成一個偵測單元(圖中未繪示)。在一些實施例中,二次電子束之路徑上之電子光學元件,諸如但不限於物鏡131、偏轉掃描單元132、射束分離器160、二次成像系統150及電子偵測器件140,可形成一個偵測系統。
在一些實施例中,控制器50可包含影像處理系統,該影像處理系統包括影像獲取器(圖中未繪示)及儲存器(圖中未繪示)。影像獲取器可包含一或多個處理器。舉例而言,影像獲取器可包含電腦、伺服器、大型電腦主機、終端機、個人電腦、任何種類之行動運算器件及其類似者,或其組合。影像獲取器可經由諸如以下各者之媒體通信耦合至裝置40之電子偵測器件140:電導體、光纖纜線、攜帶型儲存媒體、IR、藍牙、網際網路、無線網路、無線電等,或其組合。在一些實施例中,影像獲取器可自電子偵測器件140接收信號,且可建構影像。影像獲取器可因此獲取樣本1之影像。影像獲取器亦可執行各種後處理功能,諸如產生輪廓、
疊加指示符於所獲取影像上,及其類似者。影像獲取器可經組態以執行所獲取影像之亮度及對比度等的調整。在一些實施例中,儲存器可為諸如以下各者之儲存媒體:硬碟、隨身碟、雲端儲存器、隨機存取記憶體(RAM)、其他類型之電腦可讀記憶體及其類似者。儲存器可與影像獲取器耦接,且可用於保存經掃描原始影像資料作為原始影像,及經後處理影像。
在一些實施例中,影像獲取器可基於自電子偵測器件140接收之一或多個成像信號獲取樣本之一或多個影像。成像信號可對應於用於進行導電帶電粒子成像之掃描操作。所獲取影像可為包含複數個成像區域之單個影像,或可涉及多個影像。可將該單個影像儲存於儲存器中。單個影像可為可劃分成複數個區之原始影像。該等區中之每一者可包含含有樣本1之特徵的一個成像區域。所獲取影像可包含在一時間序列內多次取樣的樣本1之單個成像區域之多個影像,或可包含樣本1之不同成像區域之多個影像。可將該多個影像儲存於儲存器中。在一些實施例中,控制器50可經組態以運用樣本1之同一位置之多個影像來執行影像處理步驟。
在一些實施例中,控制器50可包括量測電路系統(例如,類比至數位轉換器)以獲得經偵測二次電子的分佈。在偵測時間窗期間所收集之電子分佈資料與入射於晶圓表面上之初級細射束102_1、102_2及102_3中的每一者之對應掃描路徑資料組合可用以重建構受檢測晶圓結構之影像。經重建構影像可用以顯露樣本1之內部或外部結構的各種特徵,且藉此可用以顯露可能存在於晶圓中的任何缺陷。
在一些實施例中,控制器50可控制機動載物台(圖中未繪示)以在檢測期間移動樣本1。在一些實施例中,控制器50可使得機動載物
台能夠在一方向上以一恆定速度連續地移動樣本1。在其他實施例中,控制器50可使得機動載物台能夠取決於掃描程序之步驟隨著時間推移改變樣本1之移動的速度。在一些實施例中,控制器50可基於二次電子束102_1se、102_2se及102_3se之影像調整初級投影光學系統130或二次成像系統150之組態。
儘管圖2展示電子束工具40使用三個初級電子束,但應瞭解,電子束工具40可使用兩個或多於兩個初級電子束。本發明並不限制用於裝置40中之初級電子束之數目。
現在參看圖3A,其為符合本發明之實施例的樣本中之實例多層結構之橫截面圖。圖3A說明具有多個堆疊層L之多層結構300的側視圖。在本發明中,多層結構可包括例如階梯結構,該階梯結構包含在與平面(例如,X-Y平面)相交之Z方向上堆疊的多個層以用於拍攝檢測影像,且當自頂部檢視時曝露除頂層外之至少一個層。舉例而言,圖3A中之多層結構300包含10個層L1至L10,其自上而下堆疊為階梯。第一層L1具有經曝露且長度被指示為l1的第一曝露表面S1,且第二層L2具有並未由第一層L1覆蓋且長度被指示為l2的第二曝露表面S2。相似地,第三層L3至第十層L10中之每一者具有其自身未由堆疊於其上之層覆蓋的曝露表面。如圖3A中所展示,每一層L1至L10具有厚度T。舉例而言,第一層L1之厚度被指示為T1,且第二層L2之厚度被指示為T2。在此實例中,多層結構300可具有對應於第一層L1至第十層L10之每一厚度T之總和的深度D。在一些實施例中,堆疊層L1至L10可具有相對於彼此不同的厚度。
圖3B為圖3A之多層結構300之俯視圖。在一些實施例中,如圖3B中所展示,多層結構300可包含在長度方向(例如,圖3B中自左至
右方向)上形成於其中之隙縫溝槽ST。如圖3B中所展示,當自頂部檢視時,看到除了頂層(例如,L1)以外的層之至少部分(例如,曝露表面S2至S10)。因此,為了獲得整個多層結構300之更清晰影像,檢測工具之聚焦深度應足夠深以覆蓋底層(例如,L10)以及頂層(例如,L1)。然而,對於多層結構,由於檢測工具之有限聚焦深度而獲得焦點對準檢測影像係有挑戰性的。在一些實施例中,圖3B中所展示之多層結構300可包括於檢測工具之視場(FOV)中。當檢測工具之聚焦深度小於多層結構300之深度D時,檢測工具可不能夠拍攝整個多層結構300之清晰及焦點對準的檢測影像。此情形禁止對多層結構300之穩固檢測或度量衡量測。
僅出於說明目的,假定檢測工具之聚焦深度在距焦點-2.5微米(μm)至+2.5μm之範圍內,多層結構300之深度D為10μm,且層L1至L10中之每一者具有厚度1μm。在此假定下,作為一實例,若藉由將檢測工具之焦點設定為置放於第一層L1之頂表面上而拍攝用於多層結構300之檢測影像,則對於在焦深外之區域,檢測影像可散焦。舉例而言,檢測影像可具有用於第一層L1、第二層L2及第三層L3之清晰影像,該等層中之每一者在焦深內。然而,檢測影像可具有用於第四層L4至第十層L10之散焦影像,此係因為該等層在檢測工具之焦深外。作為另一實例,若藉由將檢測工具之焦點設定為置放於第五層L5之頂部表面上來拍攝多層結構300之檢測影像,則對於在焦深外之區域,檢測影像可散焦。舉例而言,檢測影像可具有用於第三層L3至第七層L7之清晰影像,該等層中之每一者在焦深內。然而,檢測影像可具有用於第一層L1、第二層L2及第八層L8至第十層L10之散焦影像,此係因為該等層在檢測工具之焦深外。
隨著技術進展,以上問題可能更糟。舉例而言,多個堆疊
層用於垂直NAND快閃記憶體,其中一些製造商堆疊多達32層,且堆疊層之數目更大生長以改良儲存容量及密度,其中一些製造商朝向能夠堆疊64層、128層及甚至更多層起作用。然而,如關於圖3A及圖3B所解釋,由於多層結構之深度變得更深,因此離焦檢測影像嚴重地影響檢測多層結構之能力。因而,針對視場內之多層結構拍攝經聚焦檢測影像具有挑戰性,更不必說自檢測影像採取準確量測。本發明之實施例可提供用以獲得用於多層結構之所有圖案之焦點對準影像的技術,該多層結構之深度比檢測工具之焦深更深,使得可基於檢測影像執行準確度量衡。
圖4為符合本發明之實施例的實例影像增強裝置之方塊圖。應瞭解,在各種實施例中,影像增強裝置400可為帶電粒子束檢測系統(例如圖1之電子束檢測系統100)之部分或可與帶電粒子束檢測系統分離。在一些實施例中,影像增強裝置400可為控制器50之部分且可包括影像獲取器、量測電路系統或儲存器或其類似者。在一些實施例中,影像增強裝置400可包含影像處理系統且可包括影像獲取器、儲存器或其類似者。
如圖4中所說明,影像增強裝置400可包括影像獲取器410、影像分離器420、影像補償器430、影像組合器440及資訊檔案450。
根據本發明之實施例,影像獲取器410可獲取待檢測樣本之複數個檢測影像。出於說明目的,包含圖3A.及圖3B中所說明之多層結構300之樣本將用作待檢測樣本之實例。在一些實施例中,檢測影像獲取器410可基於來自電子束工具40之電子偵測器件140之偵測信號產生檢測影像。在一些實施例中,檢測影像獲取器410可為包括於控制器50中之影像獲取器的部分或可與該影像獲取器分離。在一些實施例中,檢測影像獲
取器410可獲得由包括於控制器50中之影像獲取器產生的檢測影像。在一些實施例中,檢測影像獲取器410可自儲存檢測影像之儲存器件或系統獲得檢測影像。
在一些實施例中,可針對樣本之同一區拍攝複數個檢測影像。舉例而言,可針對具有圖3B中所展示之多層結構300之區拍攝複數個檢測影像。在一些實施例中,可在深度方向(例如,Z方向)上運用不同焦點拍攝複數個檢測影像。圖5為符合本發明之實施例的運用不同焦點拍攝之檢測影像500之實例集合。如圖5中所展示,第二檢測影像502相比於第一檢測影像501具有更清晰的中間層影像,此係因為影像502之焦點在Z維度上更接近於多層結構的中間,而第一檢測影像501相比於第二檢測影像具有更清晰的上層影像,此係因為影像501之焦點更接近於多層結構之頂部。舉例而言,可藉由將檢測工具之焦點設定成更接近多層結構之頂部的第一焦點來拍攝第一檢測影像501,且可藉由將檢測工具之焦點設定成不同於在深度(亦即,Z)方向上之第一焦點的第二焦點來拍攝第二檢測影像502。相似地,可藉由使焦點自先前檢測影像之焦點改變預定量來拍攝複數個檢測影像。
將關於圖5解釋藉由改變焦點來獲取複數個檢測影像。僅出於說明目的,可使用關於圖3B所論述之相同假定。舉例而言,假定檢測工具之焦深在距焦點-2.5μm至+2.5μm之範圍內,多層結構300之深度D為10μm,且層L1至L10中之每一者具有厚度1μm。在此假定下,作為一實例,可藉由將檢測工具之第一焦點設定為置放於第一層L1之頂部表面上來拍攝第一檢測影像501。可藉由將檢測工具之焦點自第一焦點增大預定量來拍攝第二檢測影像502。在此實例中,可藉由將第一焦點增大4
μm來設定第二焦點來拍攝第二檢測影像502,此使得將第二焦點置放於第五層L5之頂部表面上。相似地,可藉由將檢測工具之焦點自第二焦點增大預定量來拍攝第三檢測影像(圖中未繪示)。在一些實施例中,第一點與第二焦點之間的相同預定量可用於第二焦點與第三焦點之間的預定量。舉例而言,可藉由將第二焦點增大4μm來設定第三焦點來拍攝第三檢測影像,此使得將第三焦點置放於第九層L9之頂部表面上。在此實例中,底層L10之焦點對準影像可由第三檢測影像拍攝,且因此可能不拍攝第四檢測影像。
在一些實施例中,可判定兩個連續檢測影像之間的焦點間隙之預定量等於或小於檢測工具之焦深,以便針對堆疊層L1至L10中之每一者拍攝至少一個焦點對準影像。在一些實施例中,預定量可經設定成使得相鄰檢測影像之焦點對準區域之至少一部分可重疊以改良影像品質,此係因為檢測影像即使在焦深內亦可能有點模糊。在以上實例中,因為用於焦點間隙之預定量(例如,4μm)小於焦深(例如,5μm),所以相鄰檢測影像之焦點對準區域之一部分重疊。舉例而言,第一檢測影像501可具有用於第一層L1至第三層L3之焦點對準影像,相似地,第二檢測影像502可具有用於第三層L3至第七層L7之焦點對準影像,且第三檢測影像可具有用於第七層L7至第十層L10之焦點對準影像。在一些實施例中,預定量可經設定為等於焦深,使得每一層在僅一個檢測影像中具有焦點對準影像。舉例而言,若在以上實例中預定量經設定為5μm,則第一檢測影像501可具有用於第一層L1至第三層L3之焦點對準影像,此係因為第一焦點定位於第一層L1之頂部表面上,第二檢測影像502可具有用於第四層L4至第八層L8之焦點對準影像,此係因為第二焦點定位於第六層L6之頂部表面上,
等。因而,根據本發明之一些實施例,所有層可具有來自三個檢測影像之至少一個焦點對準影像。雖然相對於三個檢測影像來解釋影像獲取程序,但應瞭解,可根據檢測系統之焦深、三維結構之深度、解析度要求等來使用任何數目個檢測影像。
在圖5中,可藉由帶電粒子束檢測系統(例如,圖1之電子束檢測系統100)獲得複數個檢測影像500。舉例而言,複數個檢測影像500可為基於來自電子偵測元件140之電子偵測信號而產生的電子束影像。在一些實施例中,檢測工具之焦點可為帶電粒子束之焦點。在一些實施例中,可藉由控制帶電粒子系統之物鏡(例如,圖2中之物鏡131)來調整焦點。在一些實施例中,可藉由使用位於帶電粒子系統之物鏡之聚焦組件上游的組件(例如,帶電粒子源之陽極)來調整焦點。在一些實施例中,亦可藉由改變帶電粒子束之著陸能量來調整焦點。舉例而言,可藉由改變施加至位於物鏡下游且在晶圓附近之板的電壓來調整焦點。亦可藉由調整載物台在Z軸上之位置來調整焦點。
返回參看圖4,影像分離器420經組態以分離自影像獲取器410獲取之檢測影像上的層。在一些實施例中,影像分離器420可分離複數個檢測影像上之層。在一些實施例中,影像分離器420可藉由參考對應於檢測影像上之層之參考影像來分離該等層。檢測影像500可捕捉樣本上之特徵/圖案,諸如各種大小之通孔、接點、斜率等。如圖5中所展示,第一檢測影像501及第二檢測影像502包含表示存在於對應樣本上之特徵/圖案的特徵/圖案。根據本發明之一些實施例,影像分離器420可基於檢測影像上之圖案/特徵及其位置以及對應參考影像上之圖案/特徵及其位置而分離檢測影像上之層。
根據本發明之實施例,影像分離器420可使用來自資訊檔案450之資訊以分離層。資訊檔案450可含有對應於層(例如第一層L1至第十層L10)之參考影像。資訊檔案450可為儲存資訊之任何方式,諸如檔案、檔案之集合、資料庫、資料庫之集合等。舉例而言,資訊檔案450可包括用於檢測影像之層之參考影像。在一些實施例中,資訊檔案450中所含有之參考影像可為對應測試區之地面實況影像。地面實況影像可包括含有對應圖案之晶圓或晶粒的原始影像,或可包括自含有對應圖案之晶圓或晶粒量測的地面實況晶圓映圖,以及其他影像。在一些實施例中,參考影像可包含樣本之對應層之晶圓設計佈局,諸如呈圖形資料庫系統(GDS)格式、圖形資料庫系統II(GDS II)格式、開放原圖系統互換標準(OASIS)格式、加州理工學烷中間格式(CIF)等。晶圓設計佈局可基於用於建構晶圓之圖案佈局。在一些實施例中,參考影像以及其他影像可包含以二進位檔案格式儲存的特徵資訊,該二進位檔案格式表示平面幾何形狀、文字及與晶圓設計佈局有關之其他資訊。晶圓設計佈局可對應於用以將來自光微影遮罩或倍縮光罩之特徵轉移至晶圓之一或多個光微影遮罩或倍縮光罩。
將參看圖6解釋用於分離檢測影像之程序,圖6說明符合本發明之實施例的分離第一檢測影像501之實例。如圖6中所展示,檢測影像501係參考對應參考影像而每層分離。圖6說明與第一檢測影像501分離且對應於圖3A及圖3B之第一層L1、第二層L2及第三層L3的三個片段510、520及530。在一些實施例中,分離檢測影像可基於層(例如L1至L10)之參考影像之資訊來執行。舉例而言,藉由比較檢測影像501與一或多個參考影像上的圖案或特徵(例如,諸如經由GDS資料庫表示),其中每一影像可含有層L1至L10中之任一者或全部,可判定檢測影像501之哪一
部分對應於參考影像中之哪些圖案或特徵。
在一些實施例中,基於檢測影像與對應參考影像之間的特徵位置比較,可判定對應於某一層之片段。舉例而言,第一片段510可經判定為對應於第一層L1,第二片段520可經判定為對應於第二層L2,且第三片段可經判定為對應於第三層L3。作為另一實例,晶圓之SEM影像與GDS資料(其包括表示用以製造晶圓之遮罩資料之參考影像資料)之比較可判定GDS資料中之表示某一層(例如第一層L1)之特定片件的特定多邊形可與SEM影像中之特定特徵匹配,且SEM影像中之該特定特徵可因而經判定為該層之該特定片件。另外,可判定SEM影像中之特徵在Z維度上的位置,此係因為多層堆疊中之層之所有特徵的深度與製造程序之結果相同且係已知的。由於SEM影像與GDS資料之間的比較,因此SEM影像中之特徵中之每一者可與GDS資料中之對應特徵匹配,且SEM影像中之特徵中之每一者的深度可基於其所對應之特徵之GDS資料的特性予以判定。
在一些實施例中,分離檢測影像可針對具有某一等級清晰度之區域執行,此係因為若檢測影像過於模糊,則難以基於檢測影像與參考影像之比較而找到對應的層。在一實例中,可僅針對焦點對準影像區域執行影像分離。圖6說明三個片段與檢測影像501分離且不針對檢測影像501之其餘部分執行分離。類似地,第二檢測影像502亦可針對具有某一等級之清晰度之區域而分離。舉例而言,在焦點對準範圍內的對應於第三層L3至第七層L7的片段可與第二檢測影像502分離。相似地,可針對自檢測影像獲取器410獲取之每一檢測影像執行此分離。在一些實施例中,可針對比焦點對準範圍更寬的區域執行影像分離,只要呈現某一等級之清晰度即可。
返回參看圖4,影像補償器430經組態以更新每片段之檢測影像。舉例而言,可基於對應參考影像更新或修正由檢測影像分離器420進行的與檢測影像分離之片段。在一些實施例中,儘管在聚焦對準範圍內拍攝片段,但片段可能並不足夠清晰或可能仍過於模糊,且因此可參考對應參考影像來更新或修正片段。舉例而言,對應於第一層L1之第一片段510可基於對應第一參考影像而更新,且對應於第二層L2之第二片段520可基於對應第二參考影像而更新。在一些實施例中,可基於片段影像之模糊程度而更新片段。在一些實施例中,可基於對應參考影像判定每層之模糊程度。舉例而言,點散佈函數(PSF)可用以基於對應參考影像估計片段之模糊程度。出於說明之目的,將在下文關於第一層L1之第一片段510來解釋估計片段之點散佈函數。
模糊影像b與對應於模糊影像b之清晰影像(或原始物件平面)x之間的關係可表達為如下迴旋積分方程式:b(u.v)=ʃʃa(u.s.v.t)x(s.t)ds dt+e(u.v)(方程式1)
此處,函數a表示點散佈函數,其描述清晰影像x中之點物件在模糊影像b中之模糊程度。點散佈函數a可被認為係經聚焦光學系統(例如,檢測工具)之脈衝回應。函數e表示例如由光學系統產生之影像雜訊、操縱誤差、低信雜比等。通常,雜訊e並非已知的,但可自先前檢測歷史知曉一些統計資訊。在一些實施例中,雖然雜訊e可能不顯著,但其不可被忽略。變數s及t表示清晰影像x之座標,而變數u及v表示模糊影像b之座標。如方程式1中所展示,可藉由執行清晰影像x與點散佈函數a之間的迴旋積分運算且藉由添加雜訊e而獲得模糊影像b。
包含迴旋運算的方程式1可如下公式化為矩陣-向量方程
式: B = AX + E (方程式2)
此處,A表示呈矩陣形式之點散佈函數,其自方程式1中之點散佈函數a建置。E表示呈矩陣形式之雜訊。X及B分別表示呈矩陣形式之清晰影像(或原始物件平面)及模糊影像。藉此,方程式1中之迴旋運算變成方程式2中之矩陣乘積運算。
在一些實施例中,影像補償器430可基於對應於第一片段510之第一參考影像而估計第一片段510之點散佈函數A。當估計第一片段510之點散佈函數時,檢測影像501之第一片段510可用作模糊影像B且第一片段510之第一參考影像可被用作清晰影像X。然而,因為方程式2包括雜訊E因數,所以無法經由線性代數問題對點散佈函數A進行求解。在一些實施例中,可藉由使用機器學習網路推斷點散佈函數A之元素來獲得點散佈函數A。
在一些實施例中,機器學習網路可經組態以基於方程式2運用監督式學習來推斷點散佈函數A之元素。舉例而言,機器學習網路可經組態以在模糊影像B之元素為機器學習網路已知的條件下學習點散佈函數A之元素。在一些實施例中,機器學習網路可經組態以藉由將第一參考影像用作輸入資料(例如,用於清晰影像X)來學習點散佈函數A之元素。舉例而言,第一參考影像之特徵形狀及位置資訊可用作輸入資料(例如,用於清晰影像X)以推斷點散佈函數A之元素。在一些實施例中,亦可在推斷點散佈函數A期間推斷雜訊E。當雜訊E已經係已知的時,亦可將雜訊E給至機器學習網路以推斷點散佈函數A。
在一些實施例中,點散佈函數A可獨立於物件平面(例如,
原始物件平面X)中之位置,且因此點散佈函數A可用於整個層。舉例而言,只要第一層L1對於整個層L1具有相同高度,針對第一層L1之一部分所獲得之點散佈函數A就可用於整個第一層L1。在一些實施例中,點散佈函數A係平面特定的,且因此可針對每一層獲得點散佈函數A。舉例而言,可針對對應於第一層L1之第一片段510獲得第一點散佈函數A1,可針對對應於第二層L2之第二片段520獲得第二點散佈函數A2,且可針對對應於第三層L3之第三片段530獲得第三點散佈函數A3。相似地,對於來自其他檢測影像(例如第二檢測影像502)之每一片段,可估計點散佈函數A。因為在拍攝第一檢測影像501及第二檢測影像502時焦點係不同的,所以用於第一檢測影像501中之對應於某一層的片段之點散佈函數A可能不等於用於第二檢測影像中之對應於某一層的片段之點散佈函數A。舉例而言,用於第一檢測影像501中之第三片段530的點散佈函數A可能不同於用於第二檢測影像502中之片段的點散佈函數A。因此,儘管已經獲得用於一個檢測影像中之對應於某一層的片段之點散佈函數A,但可獲得用於另一檢測影像中之對應於某一層的片段之點散佈函數A。
影像補償器430可基於所估計點散佈函數A更新檢測影像。在一些實施例中,影像補償器430可基於點散佈函數A更新檢測影像以產生清晰影像。在一些實施例中,可基於方程式2執行影像補償,方程式2可如下變換: X=A -1 (B-E) (方程式3)
如所論述,模糊影像B已經係已知的,且雜訊E之元素係已知的或在推斷點散佈函數A時已被推斷出。因此,如方程式3中所展示,可藉由將點散佈函數A之逆矩陣A-1乘以模糊影像B與雜訊E之間的差來獲得清晰影
像X。
在一些實施例中,可在每層基礎上執行檢測影像更新。返回參看圖6,舉例而言,可基於針對第一層L1獲得之點散佈函數A更新第一檢測影像501之第一片段510,可基於針對第二層L2獲得之點散佈函數A更新第一檢測影像501之第二片段520,且可基於針對第三層L3獲得之點散佈函數A更新第一檢測影像501之第三片段530。第一檢測影像501之第一經更新檢測影像701在圖7中加以說明。第一經更新檢測影像701可包含例如對應於第一層L1至第三層L3之經更新片段,如圖7中所展示。相似地,可更新與第二檢測影像502及其他檢測影像分離之片段。第二檢測影像502之第二經更新檢測影像702在圖7中加以說明。第二經更新檢測影像702可包含例如對應於第三層L3至第七層L7之經更新片段,如圖7中所展示。相似地,可產生其他經更新檢測影像(圖中未繪示)。
如上文所論述,點散佈函數A可經判定為特定用於某些條件,例如,包括在拍攝層之對應檢測影像所藉以之層高度與焦點高度之間的差、所使用之檢測工具等。在一些實施例中,點散佈函數A可於對應條件一起被儲存,使得點散佈函數A可在運用相同條件拍攝檢測影像時被載入且用以增強檢測影像,此可改良產出量。
返回參看圖4,影像組合器440經組態以組合經更新影像以產生對應於由影像獲取器410拍攝之影像的組合式影像700。圖7說明符合本發明之實施例的組合檢測影像之實例。如圖7中所展示,將由影像補償器430進行之複數個經更新檢測影像701及702組合以產生整個視場之更清晰影像。複數個經更新檢測影像701及702之影像組合可表示如下: I f = I 1 * W 1 + I 2 * W 2 +…+ I n * W n (方程式4)
此處,I1至In表示待組合之複數個經更新檢測影像。舉例而言,I1表示第一經更新檢測影像701、I2可表示第二經更新檢測影像702,且相似地In表示第n經更新檢測影像。根據本發明之實施例,複數個經更新檢測影像與樣本之同一區(例如多層結構300)相關聯。If表示經更新檢測影像I1至In之組合式影像。W1至Wn表示對應經更新檢測影像I1至In之權重,且可經判定以反映經更新檢測影像之每一像素的融合率。
在圖7中,在複數個經更新檢測影像701及702當中,僅第一經更新檢測影像701包含用於第一層L1及第二層L2之片段,且因此,針對對應於第一層L1及第二層L2之元素之第一權重W1可具有值1,且針對對應於第一層L1及第二層L2之元素之其他權重W2至Wn可具有值0。
在圖7中,僅兩個檢測影像701及702包含用於第三層L3之片段,且因此可判定促進或使得能夠產生用於第三層L3之更清晰影像的第一經更新檢測影像701與第二經更新檢測影像702之間的融合率。在一些實施例中,組合式影像If中之用於第三層L3之像素可具有第一經更新檢測影像701與第二經更新檢測影像702之間的平均值。舉例而言,對於對應於第三層L3之元素之第一權重W1及第二權重W2可具有值1/2,且對於對應於第三層L3之元素之其他權重W3至Wn可具有值0。在一些實施例中,第一經更新檢測影像I1與第二經更新檢測影像I2之間的不同融合率可用於對應於第三層L3之像素。可基於各種因素判定多個經更新檢測影像之間的融合率,該等因素例如包括拍攝對應檢測影像所藉以之某一層之高度與焦點高度之間的差。舉例而言,可判定第三層L3在深度方向上與第一檢測影像501之焦點相距之第一距離,且可判定第三層L3在深度方向上與第二檢測影像502之焦點相距之第二距離。若第一距離大於第二距離,
則針對對應於第三層L3之元素之第一權重W1可具有比第二權重W2之值更大的值,或若第一距離小於第二距離,則針對對應於第三層L3之元素之第一權重W1可具有比第二權重W2之值更小的值。
判定最佳融合率可為複雜的,且因此,在一些實施例中,可藉由考量各種因素運用機器學習網路判定像素之融合率。相似地,對於所有層,可判定且組合融合率以產生用於樣本之整個視場的組合式影像。雖然已解釋判定兩個檢測影像之間的融合率以產生針對某一層之更清晰影像之方法,但應瞭解,本發明可應用於判定三個或多於三個檢測影像之融合率以產生針對某一層之更清晰影像。
根據本發明之實施例,可提供一種用於獲得用於多層結構之焦點對準檢測影像之技術,該多層結構之深度大於檢測系統之聚焦深度。在一些實施例中,可基於對應GDS資訊在每層基礎上補償運用不同焦點針對多層結構所拍攝的複數個檢測影像,且可組合該複數個檢測影像以產生用於視場內之多層結構的清晰檢測影像。本發明可幫助提供較準確SEM影像且因此使得能夠以較高準確度及效率偵測樣本之缺陷。
圖8為符合本發明之實施例的表示用於增強影像之實例方法的程序流程圖。出於說明之目的,將參考圖4之影像增強裝置400描述用於增強影像之方法。應瞭解,在一些實施例中,用於增強影像之方法可在控制器50中或直接地或間接地由控制器50執行。
在步驟S810中,可獲得複數個檢測影像(例如,圖5之檢測影像501、502)。步驟S810可尤其藉由例如影像獲取器410來執行。在一些實施例中,可針對樣本之同一區拍攝複數個檢測影像。舉例而言,可針對具有圖3B中所展示之多層結構300之區拍攝複數個檢測影像。在一些實
施例中,可在深度方向(例如,Z方向)上運用不同焦點拍攝複數個檢測影像。圖5為符合本發明之實施例的運用不同焦點拍攝之檢測影像500之實例集合。舉例而言,可藉由將檢測工具之焦點設定成第一焦點來拍攝第一檢測影像501,且可藉由將檢測工具之焦點設定成在深度方向上不同於第一焦點的第二焦點來拍攝第二檢測影像501。相似地,可藉由使焦點自先前檢測影像之焦點改變預定量來拍攝複數個檢測影像。
在一些實施例中,可判定兩個連續檢測影像之間的焦點間隙之預定量等於或小於檢測工具之焦深,以便針對堆疊層L1至L10中之每一者拍攝至少一個焦點對準影像。在一些實施例中,預定量可經設定成使得相鄰檢測影像之焦點對準區域之至少一部分可重疊以改良影像品質,此係因為檢測影像即使在焦深內亦可能有點模糊。
在步驟S820中,可每層分離步驟S810中所拍攝之檢測影像。步驟S820可尤其藉由例如影像分離器420來執行。在一些實施例中,可藉由參考對應於檢測影像上之層之參考影像來分離該等層。根據本發明之一些實施例,可基於檢測影像上之圖案/特徵及其位置以及對應參考影像上之圖案/特徵及其位置而分離檢測影像上之層。在一些實施例中,分離檢測影像可基於層(例如L1至L10)之參考影像之資訊來執行。舉例而言,藉由比較針對層L1至L10中之每一者的檢測影像501與參考影像上的圖案或特徵,可判定檢測影像501之哪一部分對應於參考影像之哪一部分。在一些實施例中,基於檢測影像與對應參考影像之間的特徵位置比較,可判定對應於某一層之片段。在一些實施例中,分離檢測影像可針對具有某一等級清晰度之區域執行,此係因為若檢測影像過於模糊,則難以基於檢測影像與參考影像之比較而找到對應的層。舉例而言,針對離焦影
像區域,可難以執行影像分離。已關於圖6解釋用於分離檢測影像之程序,且因此為簡單起見,此處將省略對用於分離檢測影像之程序的解釋。
在步驟S830中,可每片段更新檢測影像。步驟S830可尤其藉由例如影像補償器430來執行。舉例而言,可基於對應參考影像更新或修正在步驟S820中與檢測影像分離之片段。在一些實施例中,儘管在聚焦對準範圍內拍攝片段,但片段可能並不足夠清晰或可能仍模糊,且因此可參考對應參考影像來更新或修正片段。舉例而言,對應於第一層L1之第一片段510可基於對應第一參考影像而更新,且對應於第二層L2之第二片段520可基於對應第二參考影像而更新。在一些實施例中,可基於片段影像之模糊程度而更新片段。在一些實施例中,可基於對應參考影像判定每層之模糊程度。舉例而言,點散佈函數(PSF)可用以基於對應參考影像估計片段之模糊程度。
在一些實施例中,可基於對應於片段之參考影像以及方程式2來估計片段之點散佈函數A。在一些實施例中,機器學習網路可經組態以基於方程式2運用監督式學習來推斷點散佈函數A之元素。舉例而言,機器學習網路可經組態以在模糊影像B之元素為機器學習網路已知的條件下學習點散佈函數A之元素。在一些實施例中,機器學習網路可經組態以藉由將參考影像用作輸入資料(例如,用於清晰影像X)來學習點散佈函數A之元素。舉例而言,第一參考影像之特徵形狀及位置資訊可用作輸入資料(例如,用於清晰影像X)以推斷點散佈函數A之元素。在一些實施例中,亦可在推斷點散佈函數A期間推斷雜訊E。當雜訊E已經係已知的時,亦可將雜訊E給至機器學習網路以推斷點散佈函數A。
在一些實施例中,點散佈函數A可獨立於物件平面(例如,
原始物件平面X)中之位置,且因此點散佈函數A可用於整個層。舉例而言,只要第一層L1對於整個層L1具有相同高度,針對第一層L1之一部分所獲得之點散佈函數A就可用於整個第一層L1。在一些實施例中,點散佈函數A係平面特定的,且因此可針對每一層獲得點散佈函數A。舉例而言,可針對對應於第一層L1之第一片段510獲得第一點散佈函數A1,可針對對應於第二層L2之第二片段520獲得第二點散佈函數A2,且可針對對應於第三層L3之第三片段530獲得第三點散佈函數A3。相似地,對於來自其他檢測影像(例如第二檢測影像502)之每一片段,可估計點散佈函數A。因為在拍攝第一檢測影像501及第二檢測影像502時焦點係不同的,所以用於第一檢測影像501中之對應於某一層的片段之點散佈函數A可能不等於用於第二檢測影像中之對應於某一層的片段之點散佈函數A。舉例而言,用於第一檢測影像501中之第三片段530的點散佈函數A可能不同於用於第二檢測影像502中之片段的點散佈函數A。因此,儘管已經獲得用於一個檢測影像中之對應於某一層的片段之點散佈函數A,但可獲得用於另一檢測影像中之對應於某一層的片段之點散佈函數A。
在步驟S830中,可基於所估計點散佈函數A及方程式3更新檢測影像以產生清晰影像。在一些實施例中,可在每層基礎上執行更新檢測影像。返回參看圖6,舉例而言,可基於針對第一層L1獲得之點散佈函數A更新第一檢測影像501之第一片段510,可基於針對第二層L2獲得之點散佈函數A更新第一檢測影像501之第二片段520,且可基於針對第三層L3獲得之點散佈函數A更新第一檢測影像501之第三片段530。相似地,可產生其他經更新檢測影像(圖中未繪示)。
如上文所論述,點散佈函數A可經判定為特定用於某些條
件,例如,包括在拍攝層之對應檢測影像所藉以之層高度與焦點高度之間的差、所使用之檢測工具等。在一些實施例中,點散佈函數A可於對應條件一起被儲存,使得點散佈函數A可在運用相同條件拍攝檢測影像時被載入且用以增強檢測影像,此可改良產出量。
在步驟S840中,可組合經更新影像以產生對應於在步驟S810中獲取之影像的組合式影像700。步驟S840可尤其藉由例如影像組合器440來執行。圖7說明符合本發明之實施例的組合檢測影像之實例。如圖7中所展示,組合複數個經更新檢測影像701及702以產生多層結構之整個視場的清晰影像。在一些實施例中,當僅一個經更新影像包含對應於某一層之片段時,該一個經更新影像可用於組合式影像700中之某一層。在一些實施例中,當兩個或多於兩個經更新檢測影像包含對應於某一層之片段時,可組合該兩個或多於兩個經更新檢測影像以產生用於該某一層之更清晰影像。在一些實施例中,可藉由兩個或多於兩個經更新檢測影像之平均像素值產生用於某一層之更清晰影像。在一些實施例中,可根據兩個或多於兩個經更新檢測影像之間的某一融合率產生用於某一層之更清晰影像。在一些實施例中,可基於各種因素判定多個經更新檢測影像之間的融合率,該等因素例如包括拍攝對應檢測影像所藉以之某一層之高度與焦點高度之間的差。舉例而言,可基於某一層在深度方向上與第一檢測影像之焦點相距之第一距離及該某一層在深度方向上與第二檢測影像之焦點相距之第二距離來判定融合率。判定最佳融合率可為複雜的,且因此,在一些實施例中,可藉由考量各種因素運用機器學習網路判定像素之融合率。相似地,對於所有層,可判定且組合融合率以產生用於整個視場或樣本的組合式影像。
在以下編號條項中闡明本發明之態樣:
1.一種用於在一帶電粒子束檢測系統中增強一檢測影像之方法,該方法包含:獲取一樣本之多個堆疊層之分別以一第一焦點及一第二焦點拍攝的一第一影像及一第二影像;使該第一影像之一第一片段與該多個堆疊層當中之一第一層相關聯且使該第二影像之一第二片段與該多個堆疊層當中之一第二層相關聯;基於對應於該第一層之一第一參考影像估計該第一片段之一第一模糊程度及基於一第二參考影像估計該第二片段之一第二模糊程度;根據該第一模糊程度更新該第一片段且根據該第二模糊程度更新該第二片段;及組合該經更新第一片段與該經更新第二片段以產生包括該第一層及該第二層之一組合式影像。
2.如條項1之方法,其中使該第一影像之該第一片段與該多個堆疊層當中之該第一層相關聯且使該第二影像之該第二片段與該多個堆疊層當中之該第二層相關聯包含比較該第一影像及該第二影像上之特徵與該第一參考影像及該第二參考影像上之特徵。
3.如條項1或2之方法,其中該第一模糊程度經估計為該第一片段與該第一參考影像之間的一點散佈函數。
4.如條項1至3中任一項之方法,其進一步包含:使該第一影像之一第三片段與該第二層相關聯;基於該第二參考影像估計該第三片段之一第三模糊程度;及根據該第三模糊程度更新該第三片段,其中該第三模糊程度不同於
該第一模糊程度。
5.如條項4之方法,其中組合該經更新第一片段及該經更新第二片段包含:組合該經更新第一片段、該經更新第二片段及該經更新第三片段以產生包括該第一層及該第二層之一組合式影像,其中對應於該第二層之該組合式影像的一部分係基於該經更新第二片段及該經更新第三片段而產生。
6.如條項4之方法,其進一步包含基於該第二層與該第一焦點之間的一第一高度差及該第二層與該第二焦點之間的一第二高度差來判定該經更新第二片段與該經更新第三片段之間的一組合比率。
7.如條項1至6中任一項之方法,其中該第一參考影像及該第二參考影像呈圖形資料庫系統(GDS)格式、圖形資料庫系統II(GDS II)格式、開放原圖系統互換標準(OASIS)格式或加州理工學烷中間格式(CIF)。
8.如條項7之方法,其中該第一參考影像及該第二參考影像中之每一者為對應於該樣本之一參考影像之一部分。
9.一種影像增強裝置,其包含:一記憶體,其儲存一指令集;及至少一個處理器,其經組態以執行該指令集以致使該裝置執行以下操作:獲取一樣本之多個堆疊層之分別以一第一焦點及一第二焦點拍攝的一第一影像及一第二影像;使該第一影像之一第一片段與該多個堆疊層當中之一第一層相關聯且使該第二影像之一第二片段與該多個堆疊層當中之一第二層相關聯;
基於對應於該第一層之一第一參考影像估計該第一片段之一第一模糊程度及基於一第二參考影像估計該第二片段之一第二模糊程度;根據該第一模糊程度更新該第一片段且根據該第二模糊程度更新該第二片段;及組合該經更新第一片段與該經更新第二片段以產生包括該第一層及該第二層之一組合式影像。
10.如條項9之裝置,其中使該第一影像之該第一片段與該多個堆疊層當中之該第一層相關聯且使該第二影像之該第二片段與該多個堆疊層當中之該第二層相關聯包含比較該第一影像及該第二影像上之特徵與該第一參考影像及該第二參考影像上之特徵。
11.如條項9或10之裝置,其中該第一模糊程度經估計為該第一片段與該第一參考影像之間的一點散佈函數。
12.如條項9至11中任一項之裝置,其中該至少一個處理器經組態以執行該指令集以致使該裝置進一步執行以下操作:使該第一影像之一第三片段與該第二層相關聯;基於該第二參考影像估計該第三片段之一第三模糊程度;及根據該第三模糊程度更新該第三片段,其中該第三模糊程度不同於該第一模糊程度。
13.如條項12之裝置,其中組合該經更新第一片段及該經更新第二片段包含:組合該經更新第一片段、該經更新第二片段及該經更新第三片段以產生包括該第一層及該第二層之一組合式影像,其中對應於該第二層之該組合式影像的一部分係基於該經更新第二
片段及該經更新第三片段而產生。
14.如條項12之裝置,其進一步包含基於該第二層與該第一焦點之間的一第一高度差及該第二層與該第二焦點之間的一第二高度差來判定該經更新第二片段與該經更新第三片段之間的一組合比率。
15.如條項9至14中任一項之裝置,其中該第一參考影像及該第二參考影像呈圖形資料庫系統(GDS)格式、圖形資料庫系統II(GDS II)格式、開放原圖系統互換標準(OASIS)格式或加州理工學烷中間格式(CIF)。
16.一種非暫時性電腦可讀媒體,其儲存一指令集,該指令集可由一運算器件之至少一個處理器執行以執行用於增強一影像之一方法,該方法包含:獲取一樣本之多個堆疊層之分別以一第一焦點及一第二焦點拍攝的一第一影像及一第二影像;使該第一影像之一第一片段與該多個堆疊層當中之一第一層相關聯且使該第二影像之一第二片段與該多個堆疊層當中之一第二層相關聯;基於對應於該第一層之一第一參考影像估計該第一片段之一第一模糊程度及基於一第二參考影像估計該第二片段之一第二模糊程度;根據該第一模糊程度更新該第一片段且根據該第二模糊程度更新該第二片段;及組合該經更新第一片段與該經更新第二片段以產生包括該第一層及該第二層之一組合式影像。
17.如條項16之電腦可讀媒體,其中使該第一影像之該第一片段與該多個堆疊層當中之該第一層相關聯且使該第二影像之該第二片段與該多個堆疊層當中之該第二層相關聯包含比較該第一影像及該第二影像上之特
徵與該第一參考影像及該第二參考影像上之特徵。
18.如條項16或17之電腦可讀媒體,其中該第一模糊程度經估計為該第一片段與該第一參考影像之間的一點散佈函數。
19.如條項16至18中任一項之電腦可讀媒體,其中該指令集可由該運算器件之至少一個處理器執行以進一步執行以下操作:使該第一影像之一第三片段與該第二層相關聯;基於該第二參考影像估計該第三片段之一第三模糊程度;及根據該第三模糊程度更新該第三片段,其中該第三模糊程度不同於該第一模糊程度。
20.如條項19之電腦可讀媒體,其中組合該經更新第一片段及該經更新第二片段包含:組合該經更新第一片段、該經更新第二片段及該經更新第三片段以產生包括該第一層及該第二層之一組合式影像,其中對應於該第二層之該組合式影像的一部分係基於該經更新第二片段及該經更新第三片段而產生。
21.如條項19之電腦可讀媒體,其進一步包含基於該第二層與該第一焦點之間的一第一高度差及該第二層與該第二焦點之間的一第二高度差來判定該經更新第二片段與該經更新第三片段之間的一組合比率。
22.如條項16至21中任一項之電腦可讀媒體,其中該第一參考影像及該第二參考影像呈圖形資料庫系統(GDS)格式、圖形資料庫系統II(GDSII)格式、開放原圖系統互換標準(OASIS)格式或加州理工學烷中間格式(CIF)。
23.一種用於在一帶電粒子束檢測系統中增強一檢測影像之方法,
該方法包含:獲取一樣本之多個堆疊層之分別以一第一焦點及一第二焦點拍攝的一第一影像及一第二影像;使該第一影像之一第一片段與該多個堆疊層當中之一第一層相關聯且使該第二影像之一第二片段與該多個堆疊層當中之一第二層相關聯;基於對應於該第一層之一第一參考影像更新該第一片段及基於對應於該第二層之一第二參考影像更新該第二片段;及組合該經更新第一片段與該經更新第二片段以產生包括該第一層及該第二層之一組合式影像。
24.如條項23之方法,其中更新該第一片段包含基於該第一參考影像估計對應於該第一層之一第一點散佈函數及基於該所估計第一點散佈函數更新該第一片段。
25.如條項23或24之方法,其進一步包含:使該第一影像之一第三片段與該第二層相關聯;及基於該第二參考影像更新該第三片段,其中該第三模糊程度不同於該第一模糊程度。
26.如條項25之方法,其中組合該經更新第一片段及該經更新第二片段包含:組合該經更新第一片段、該經更新第二片段及該經更新第三片段以產生包括該第一層及該第二層之一組合式影像,其中對應於該第二層之該組合式影像的一部分係基於該經更新第二片段及該經更新第三片段而產生。
27.如條項26之方法,其進一步包含基於該第二層與該第一焦點之
間的一第一高度差及該第二層與該第二焦點之間的一第二高度差來判定該經更新第二片段與該經更新第三片段之間的一組合比率。
28.一種產生一樣本之一影像之方法,該方法包含:獲得該樣本上之一位置之多個影像,該多個影像中之每一者係在一不同焦點下獲得;判定該多個影像之特徵與一相關聯參考影像之特徵之間的相關性;基於該等相關性及該相關聯參考影像之層資訊來判定該多個影像之該等特徵中之每一者的一深度;選擇該多個影像中之一影像,自該一個影像獲得用於該多個影像上之該等特徵中之每一者的一所選擇影像;及藉由組合該所選擇影像中之每一者而產生該位置之一影像。
29.如條項28之方法,其進一步包含:基於該相關聯參考影像更新該所選擇影像。
30.如條項29之方法,其中更新該經選擇影像包含基於該對應特徵之該深度、獲得該所選擇影像之一焦點及該相關聯參考影像估計對應於該對應特徵之一點散佈函數。
31.如條項28至30中任一項之方法,其中該相關聯參考影像呈圖形資料庫系統(GDS)格式、圖形資料庫系統II(GDS II)格式、開放原圖系統互換標準(OASIS)格式或加州理工學烷中間格式(CIF)。
可提供一種非暫時性電腦可讀媒體,其儲存供控制器(例如圖1之控制器50)之處理器尤其進行以下操作之指令:影像檢測、影像獲取、載物台定位、射束聚焦、電場調整、射束彎曲、聚光透鏡調整、啟動帶電粒子源、射束偏轉以及方法800。非暫時性媒體之常見形式包括例如
軟碟、可撓性磁碟、硬碟、固態磁碟機、磁帶或任何其他磁性資料儲存媒體、光碟唯讀記憶體(CD-ROM)、任何其他光學資料儲存媒體、具有孔圖案之任何實體媒體、隨機存取記憶體(RAM)、可程式化唯讀記憶體(PROM)及可抹除可程式化唯讀記憶體(EPROM)、FLASH-EPROM或任何其他快閃記憶體、非揮發性隨機存取記憶體(NVRAM)、快取記憶體、暫存器、任何其他記憶體晶片或卡匣,及其網路化版本。
應瞭解,本發明之實施例不限於已在上文所描述及在隨附圖式中所說明之確切構造,且可在不脫離本發明之範疇的情況下作出各種修改及改變。本發明已結合各種實施例進行了描述,藉由考慮本文中所揭示之本發明之規格及實踐,本發明之其他實施例對於熟習此項技術者將為顯而易見的。意欲本說明書及實例僅被視為例示性的,其中本發明之真正範疇及精神藉由以下申請專利範圍指示。
以上描述意欲為說明性,而非限制性的。因此,對於熟習此項技術者將顯而易見,可在不脫離下文所闡明之申請專利範圍之範疇的情況下如所描述進行修改。
l1:長度
l2:長度
300:多層結構
D:深度
L1:第一層/頂層
L2:第二層
L3:第三層
L4:第四層
L5:第五層
L6:第六層
L7:第七層
L8:第八層
L9:第九層
L10:第十層/底層
S1:第一曝露表面
S2:第二曝露表面
T1:厚度
T2:厚度
Claims (15)
- 一種用於在一帶電粒子束檢測系統中增強一檢測影像之方法,該方法包含: 獲取一樣本之多個堆疊層之分別以一第一焦點及一第二焦點拍攝的一第一影像及一第二影像; 使該第一影像之一第一片段與該多個堆疊層當中之一第一層相關聯且使該第二影像之一第二片段與該多個堆疊層當中之一第二層相關聯; 基於對應於該第一層之一第一參考影像估計該第一片段之一第一模糊程度及基於一第二參考影像估計該第二片段之一第二模糊程度; 根據該第一模糊程度更新該第一片段且根據該第二模糊程度更新該第二片段;及 組合該經更新第一片段與該經更新第二片段以產生包括該第一層及該第二層之一組合式影像。
- 一種影像增強裝置,其包含: 一記憶體,其儲存一指令集;及 至少一個處理器,其經組態以執行該指令集以致使該裝置執行以下操作: 獲取一樣本之多個堆疊層之分別以一第一焦點及一第二焦點拍攝的一第一影像及一第二影像; 使該第一影像之一第一片段與該多個堆疊層當中之一第一層相關聯且使該第二影像之一第二片段與該多個堆疊層當中之一第二層相關聯; 基於對應於該第一層之一第一參考影像估計該第一片段之一第一模糊程度及基於一第二參考影像估計該第二片段之一第二模糊程度; 根據該第一模糊程度更新該第一片段且根據該第二模糊程度更新該第二片段;及 組合該經更新第一片段與該經更新第二片段以產生包括該第一層及該第二層之一組合式影像。
- 如請求項2之裝置,其中使該第一影像之該第一片段與該多個堆疊層當中之該第一層相關聯且使該第二影像之該第二片段與該多個堆疊層當中之該第二層相關聯包含:比較該第一影像及該第二影像上之特徵與該第一參考影像及該第二參考影像上之特徵。
- 如請求項2之裝置,其中該第一模糊程度經估計為該第一片段與該第一參考影像之間的一點散佈函數。
- 如請求項2之裝置,其中該至少一個處理器經組態以執行該指令集以致使該裝置進一步執行以下操作: 使該第一影像之一第三片段與該第二層相關聯; 基於該第二參考影像估計該第三片段之一第三模糊程度;及 根據該第三模糊程度更新該第三片段,其中該第三模糊程度不同於該第一模糊程度。
- 如請求項5之裝置,其中組合該經更新第一片段及該經更新第二片段包含: 組合該經更新第一片段、該經更新第二片段及該經更新第三片段以產生包括該第一層及該第二層之一組合式影像, 其中對應於該第二層之該組合式影像的一部分係基於該經更新第二片段及該經更新第三片段而產生。
- 如請求項5之裝置,其進一步包含基於該第二層與該第一焦點之間的一第一高度差及該第二層與該第二焦點之間的一第二高度差來判定該經更新第二片段與該經更新第三片段之間的一組合比率。
- 如請求項2之裝置,其中該第一參考影像及該第二參考影像呈圖形資料庫系統(GDS)格式、圖形資料庫系統II (GDS II)格式、開放原圖系統互換標準(OASIS)格式或加州理工學院中間格式(CIF)。
- 一種非暫時性電腦可讀媒體,其儲存一指令集,該指令集可由一運算器件之至少一個處理器執行以執行用於增強一影像之一方法,該方法包含: 獲取一樣本之多個堆疊層之分別以一第一焦點及一第二焦點拍攝的一第一影像及一第二影像; 使該第一影像之一第一片段與該多個堆疊層當中之一第一層相關聯且使該第二影像之一第二片段與該多個堆疊層當中之一第二層相關聯; 基於對應於該第一層之一第一參考影像估計該第一片段之一第一模糊程度及基於一第二參考影像估計該第二片段之一第二模糊程度; 根據該第一模糊程度更新該第一片段且根據該第二模糊程度更新該第二片段;及 組合該經更新第一片段與該經更新第二片段以產生包括該第一層及該第二層之一組合式影像。
- 如請求項9之電腦可讀媒體,其中使該第一影像之該第一片段與該多個堆疊層當中之該第一層相關聯且使該第二影像之該第二片段與該多個堆疊層當中之該第二層相關聯包含:比較該第一影像及該第二影像上之特徵與該第一參考影像及該第二參考影像上之特徵。
- 如請求項9之電腦可讀媒體,其中該第一模糊程度經估計為該第一片段與該第一參考影像之間的一點散佈函數。
- 如請求項9之電腦可讀媒體,其中該指令集可由該運算器件之至少一個處理器執行以進一步執行以下操作: 使該第一影像之一第三片段與該第二層相關聯; 基於該第二參考影像估計該第三片段之一第三模糊程度;及 根據該第三模糊程度更新該第三片段,其中該第三模糊程度不同於該第一模糊程度。
- 如請求項12之電腦可讀媒體,其中組合該經更新第一片段及該經更新第二片段包含: 組合該經更新第一片段、該經更新第二片段及該經更新第三片段以產生包括該第一層及該第二層之一組合式影像, 其中對應於該第二層之該組合式影像的一部分係基於該經更新第二片段及該經更新第三片段而產生。
- 如請求項12之電腦可讀媒體,其進一步包含基於該第二層與該第一焦點之間的一第一高度差及該第二層與該第二焦點之間的一第二高度差來判定該經更新第二片段與該經更新第三片段之間的一組合比率。
- 如請求項9之電腦可讀媒體,其中該第一參考影像及該第二參考影像呈圖形資料庫系統(GDS)格式、圖形資料庫系統II (GDS II)格式、開放原圖系統互換標準(OASIS)格式或加州理工學院中間格式(CIF)。
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US202063022170P | 2020-05-08 | 2020-05-08 | |
| US63/022,170 | 2020-05-08 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW202209390A TW202209390A (zh) | 2022-03-01 |
| TWI785582B true TWI785582B (zh) | 2022-12-01 |
Family
ID=75888032
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW110115250A TWI785582B (zh) | 2020-05-08 | 2021-04-28 | 用於在帶電粒子束檢測系統中增強檢測影像之方法、影像增強裝置及其相關非暫時性電腦可讀媒體 |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US11694312B2 (zh) |
| EP (1) | EP4147195A1 (zh) |
| JP (1) | JP7461502B2 (zh) |
| KR (1) | KR102762100B1 (zh) |
| CN (1) | CN115552455B (zh) |
| IL (1) | IL297344B1 (zh) |
| TW (1) | TWI785582B (zh) |
| WO (1) | WO2021224435A1 (zh) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI785582B (zh) * | 2020-05-08 | 2022-12-01 | 荷蘭商Asml荷蘭公司 | 用於在帶電粒子束檢測系統中增強檢測影像之方法、影像增強裝置及其相關非暫時性電腦可讀媒體 |
| CN116324868A (zh) * | 2020-10-13 | 2023-06-23 | Asml荷兰有限公司 | 生成去模糊模型和去模糊图像的装置和方法 |
| US11830176B2 (en) * | 2021-09-12 | 2023-11-28 | Nanya Technology Corporation | Method of measuring a semiconductor device |
| WO2024165248A1 (en) * | 2023-02-07 | 2024-08-15 | Asml Netherlands B.V. | Diversifying sem measurement scheme for improved accuracy |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040069956A1 (en) * | 1999-07-09 | 2004-04-15 | Hitachi, Ltd. | Charged particle beam apparatus |
| CN102292676A (zh) * | 2008-11-26 | 2011-12-21 | 麦克罗尼克迈达塔有限责任公司 | 使用复杂二维交织方案的图像读取和写入 |
| US20170148226A1 (en) * | 2015-11-19 | 2017-05-25 | Kla-Tencor Corporation | Generating simulated images from design information |
| TW201830006A (zh) * | 2017-01-10 | 2018-08-16 | 美商克萊譚克公司 | 用於在具有深堆疊層之晶圓中訓練及施加缺陷分類器之系統及方法 |
| TW201937553A (zh) * | 2016-12-30 | 2019-09-16 | 荷蘭商Asml荷蘭公司 | 微影製程和設備及檢測製程和設備 |
| TW201940985A (zh) * | 2018-01-24 | 2019-10-16 | 荷蘭商Asml荷蘭公司 | 基於計算度量衡之取樣方案 |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4261743B2 (ja) * | 1999-07-09 | 2009-04-30 | 株式会社日立製作所 | 荷電粒子線装置 |
| JP4483039B2 (ja) * | 2000-06-30 | 2010-06-16 | ソニー株式会社 | 検査装置 |
| US20070187571A1 (en) * | 2003-08-26 | 2007-08-16 | Hiroki Ebe | Autofocus control method, autofocus control apparatus and image processing apparatus |
| US7760928B2 (en) * | 2006-10-17 | 2010-07-20 | Applied Materials Israel, Ltd. | Focus error correction system and method |
| US20090196489A1 (en) * | 2008-01-30 | 2009-08-06 | Le Tuan D | High resolution edge inspection |
| JP5243477B2 (ja) * | 2010-04-13 | 2013-07-24 | パナソニック株式会社 | ブラー補正装置およびブラー補正方法 |
| JP5924267B2 (ja) * | 2010-12-14 | 2016-05-25 | 株式会社ニコン | 検査方法、検査装置、露光管理方法、露光システムおよび半導体デバイスの製造方法 |
| JP5537488B2 (ja) * | 2011-04-15 | 2014-07-02 | 株式会社日立ハイテクノロジーズ | 荷電粒子顕微鏡装置および画像撮像方法 |
| CN105074422B (zh) * | 2013-03-15 | 2019-07-09 | 艾瑞思国际股份有限公司 | 用于染色和样品处理的方法和组合物 |
| JP5669896B2 (ja) * | 2013-07-24 | 2015-02-18 | 株式会社日立ハイテクノロジーズ | 走査型荷電粒子顕微鏡の画質改善方法および走査型荷電粒子顕微鏡装置 |
| US20150104101A1 (en) * | 2013-10-14 | 2015-04-16 | Apple Inc. | Method and ui for z depth image segmentation |
| WO2016134076A1 (en) * | 2015-02-20 | 2016-08-25 | Artium Technologies, Inc. | Multiple beam and convergent light illumination crossed-beam imaging |
| EP3487163B1 (en) * | 2016-07-13 | 2023-07-05 | SCREEN Holdings Co., Ltd. | Image processing method, image processor, and imaging captureing device |
| JP6939283B2 (ja) * | 2017-09-05 | 2021-09-22 | ソニーグループ株式会社 | 画像処理装置、および画像処理方法、並びにプログラム |
| TWI785582B (zh) * | 2020-05-08 | 2022-12-01 | 荷蘭商Asml荷蘭公司 | 用於在帶電粒子束檢測系統中增強檢測影像之方法、影像增強裝置及其相關非暫時性電腦可讀媒體 |
-
2021
- 2021-04-28 TW TW110115250A patent/TWI785582B/zh active
- 2021-05-05 US US17/308,835 patent/US11694312B2/en active Active
- 2021-05-06 JP JP2022563226A patent/JP7461502B2/ja active Active
- 2021-05-06 WO PCT/EP2021/062087 patent/WO2021224435A1/en not_active Ceased
- 2021-05-06 EP EP21724633.9A patent/EP4147195A1/en active Pending
- 2021-05-06 CN CN202180033628.XA patent/CN115552455B/zh active Active
- 2021-05-06 KR KR1020227039146A patent/KR102762100B1/ko active Active
-
2022
- 2022-10-16 IL IL297344A patent/IL297344B1/en unknown
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040069956A1 (en) * | 1999-07-09 | 2004-04-15 | Hitachi, Ltd. | Charged particle beam apparatus |
| CN102292676A (zh) * | 2008-11-26 | 2011-12-21 | 麦克罗尼克迈达塔有限责任公司 | 使用复杂二维交织方案的图像读取和写入 |
| US20170148226A1 (en) * | 2015-11-19 | 2017-05-25 | Kla-Tencor Corporation | Generating simulated images from design information |
| TW201937553A (zh) * | 2016-12-30 | 2019-09-16 | 荷蘭商Asml荷蘭公司 | 微影製程和設備及檢測製程和設備 |
| TW201830006A (zh) * | 2017-01-10 | 2018-08-16 | 美商克萊譚克公司 | 用於在具有深堆疊層之晶圓中訓練及施加缺陷分類器之系統及方法 |
| TW201940985A (zh) * | 2018-01-24 | 2019-10-16 | 荷蘭商Asml荷蘭公司 | 基於計算度量衡之取樣方案 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN115552455A (zh) | 2022-12-30 |
| CN115552455B (zh) | 2025-10-28 |
| WO2021224435A1 (en) | 2021-11-11 |
| IL297344A (en) | 2022-12-01 |
| IL297344B1 (en) | 2025-11-01 |
| KR102762100B1 (ko) | 2025-02-05 |
| KR20220165771A (ko) | 2022-12-15 |
| US11694312B2 (en) | 2023-07-04 |
| US20210350507A1 (en) | 2021-11-11 |
| JP7461502B2 (ja) | 2024-04-03 |
| JP2023526176A (ja) | 2023-06-21 |
| EP4147195A1 (en) | 2023-03-15 |
| TW202209390A (zh) | 2022-03-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI785582B (zh) | 用於在帶電粒子束檢測系統中增強檢測影像之方法、影像增強裝置及其相關非暫時性電腦可讀媒體 | |
| CN110352469B (zh) | 使用多个带电粒子射束的装置 | |
| US10768126B2 (en) | Multiple charged particle beam inspection apparatus and multiple charged particle beam inspection method | |
| TWI864453B (zh) | 多重帶電粒子束裝置及其操作方法 | |
| TWI776085B (zh) | 用於監測束輪廓及功率的方法及設備 | |
| TWI723291B (zh) | 度量衡系統及方法與相關之非暫時性電腦可讀媒體 | |
| CN113632196B (zh) | 用于多射束检查装置中的次级射束的对准的系统和方法 | |
| TWI811655B (zh) | 用於在帶電粒子束檢測系統中增強檢測影像之方法、影像增強裝置及相關聯非暫時性電腦可讀媒體 | |
| JP7730892B2 (ja) | 検査装置及び方法 | |
| TWI791191B (zh) | 用於自檢測影像提取圖案輪廓資訊之方法、輪廓提取設備、及相關之非暫時性電腦可讀媒體 | |
| KR102785614B1 (ko) | 다중 하전 입자 빔 검사에서의 레벨링 센서 | |
| TWI901772B (zh) | 初級投影系統及相關之非暫時性電腦可讀媒體 | |
| KR20240076692A (ko) | 검사 장치 및 검사 방법 |